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ABSTRACT

The deflections are analytically studied in a flat, deformable layer,
firmly anchored to a rigid substrate, and frictionlessly indented by a
rigid paraboloidal punch, having in mind the design of hip replacements
possessing elastomeric layers. An existing perturbation solution of
differential character, developed for a layer subject to plane strain
conditions and indented by a rigid cylinder, and valid for high contact
widths, is here extended to the analogous axisymmetric problem of a
layer compressed by a rigid paraboloidal punch approximating a
spherical indenter. Perturbed solutions up to the second order are
obtained, and the contact pressure profiles activated by a paraboloidal
punch are derived for both compressible and incompressible layers.
Numerical examples exploring the sensitivity of the stress field to
perturbations of the Poisson's ratio are also included.

INTRODUCTION

This paper deals with the deflections of a flat, deformable layer,
firmly bonded to a rigid substrate and frictionlessly compressed by a
rigid paraboloidal indenter, Fig. 1. This axisymmetric study is relevant
in the design of hip replacements whose cup is covered with an
elastomeric layer, and compressed by a ball replacing the femoral head,
[1] . An analytical perturbation solution of differential character,
developed in [2] for a layer subject to plane strain conditions and
indented by a rigid cylinder, valid for high contact widths, is here
extended to the axisymmetric problem of a layer compressed by a rigid
paraboloidal punch approximating a spherical indenter.

This paper is organized as follows. First, the equations
describing the layer deflections as functions of an imposed axisymmetric
pressure profile are developed up to the second perturbation order. A
subsequent section solves the more relevant situation where the
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indenting profile is known, and the contact pressure has to be
determined. Numerical examples exploring the sensitivity of the
solution to perturbations of the Poisson's ratio end the paper.

THE PERTURBED PRESSURE-DEFLECTION SOLUTION

Following Armstrong [2], the subsequent steps are developed: a) the
axisymmetric equilibrium equations are expressed in terms of the
displacement field; b) the equilibrium equations are normalized with
respect to proper variables, and a small parameter e is identified,
which renders this problem amenable to perturbation solution
techniques; c) an approximate solution is achieved for parameter € up
to the second order, which connects the pressure (as well as its
derivatives) acting upon an elastomeric layer to its local deflection.
The axisymmetric equilibrium equations in terms of stresses are [3] :

By introducing into (1) the Hooke law linking stresses to strains,
expressed in cylindrical coordinates in terms of radial, u , and axial ,
w , displacements, [3], the equilibrium equations are formulated in
terms of the displacement field as :

(2)

(\-4_2 - -, _

where X and u are the so called Lame' constants, [3]. In elastomeric
materials, the Poisson's ratio if approaches the incompressibility value
0.5 . In this case, X = o© and jj, = E/3 . For a realistic figure of u =
0.499 , [1] , then X = 166.444 E , // = 0.333 E , that is, X =- 500 ILL .

The boundary conditions must represent the following aspects :
a) the layer is firmly bonded to a rigid substrate; b) due to the
smallness of the frictional coefficient in the presence of the synovial
fluid, only a normal pressure affects the upper boundary of the layer :

for z = 0 az= — p (r) ; Trz = 0
(3)

for z = 7% u = 0 ; w = 0

where p (r) is the applied pressure and h is the (supposed constant)
layer thickness.

According to [2], equations (2) are normalized by introducing the
following variables :
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_ u . T/ _ w . o _ r- - l V - - , 5 - (4)

where a is the contact radius. Equations (2) thus become :
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(5)

9S

where e = h/a is small provided that the contact radius is high.
Armstrong, [2], develops an approximate solution to this problem by a
perturbation method, [4]. The dimensionless radial, £/, and axial, W,
displacements are expressed via a series of functions in powers of e :

+ c" C/2 + (6)

Expressions (6) are then substituted into (5), and terms in the
same power of e are collected, so that the inital problem is split into
subproblems. Due to lack of space, only the salient results are reported.
The terms of 0 order (i.e., multiplying c°) supply the following solution :

- Z) P(S) =

The Winkler-type, zero order approximate solution (7) exhibits
no radial displacements u of the layer. If the elastomer is ideally
incompressible, then \ = oo , /^ is finite, and w too vanishes. This is
an unrealistic result, since an incompressible layer, when indented by a
rigid shpere, would still flow radially and, therefore, it would not fully
prevent any axial movements of the rigid indenter. Since this
behaviour is not simulated by the zero order solution, higher e orders
must be accounted for especially in the case of incompressible
materials. In particular, the first order e solution is :

With respect to the zero order solution (7), the up to the first
order expressions exhibit the same axial displacement function W^ -f- €

(it still vanishes for incompressible elastomers), whereas a non

vanishing radial displacement formula
second order solution is :

- \ - e U i is achieved. The €

(9)

ldp - /^ \ X - p. X

Finally, for an incompressible material, X
dimensional expression for w (r,z) simplifies to :

= oo , and the
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rp (r) i. d p(r;
~^~ T r -dT~

which, contrary to the axial displacement of (7), does not necessarily
vanish for incompressible materials.

THE PRESSURE PROFILE FOR A PARABOLOIDAL INDENTER

Once the axisymmetric pressure distribution, p (r), is known, equations
(7), (9) or (10) permit the axial deflections of the layer upper
boundary (z=0) to be computed with various precisions. The
practically more relevant situation is now treated of an imposed
displacement function, where the pressure profile is the unknown. In
particular, three axisymmetric cases are treated, all referring to a
rigid paraboloidal indenter : a) a compressible layer studied via the
zero order equation (7) ; b) an incompressible layer analyzed through
the second order expression (10); c) a compressible layer described via
(9). As usual, [41, the imposed displacement is approximated by a second
degree (paraboloidal) expression :

where 6 denotes the rigid body axial displacement (that is, the
indentation depth) and R is the equivalent radius of curvature of the
two contacting surfaces, namely of the indenting sphere of radius Rs ,
and of the upper surface (z = 0) of the elastomeric layer, of radius R,, .
A note of caution is here introduced on the accuracy of (11) in
describing very high contact radii. Anyway, the influence of the
indenter profile (paraboloidal or spherical) does not appear to be
generally very relevant, as the numerical forecasts of [1] indicate.

The zero order expression of the pressure profile as a function
of the peak pressure, po , and of the normalized S coordinate is :

p (r) = po (1 - SM ; p.,

This Winkler solution coincides with formula (5.73) of Johnson,
[51, valid for plane contacts.

The incompressible case according to (10) furnishes :

P (r) — — l~̂ ~4 — 2 A: 4- lj = Po (1 — S~r

3 cT6 ^^
Po = ———^— ; a =2 -^R6

Formula (13) differs from (5.75) of [5], valid for plane contacts.

Finally, the second order complete solution in dimensional form
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for the case of a paraboloidal indenter is expressible in terms of the

Bessel function In :

p (r]

A 4- 2

r
h X - X X -

h R A6R

2 X X — At (14)
h 2 h R 3 ̂  X 4- 2 A( R

where the following equation involving /Q and /i determines the value of a :

3_A6 X -

~X~ ~X~
2 A6 4 X X -

3 // X 2 At
0 US)

The maximum contact pressure is obtained from (15) for r = 0 .
Due to lack of space, a critical discussion on the applied boundary

conditions is omitted.

NUMERICAL RESULTS

Two different kinds of diagrams comprise this section. First, the
validity fields of compressible and incompressible solutions are
numerically explored for a realistic configuration. Secondly, various
wide spectrum diagrams reporting the normalized peak contact
pressure, the maximum shear stress at the layer-backing interface, and
the contact radius, versus the non-dimensional indentation depth are
presented for a selection of Poisson's ratios.

Turning to the first kind of diagrams, expressions (12) (Winkler
solution) and (13) (incompressible solution) are compared to (14) (complete
second order solution) for various Poisson's ratios, in order to define
their validity fields. The following realistic values have been selected,
[1]: E = 3.52 A/Pa, h =3 mm, R=4000 mm, 6 = 0.3 mm. Fig. 2 shows that
the maximum normalized contact pressure according to a Winkler model
approaches the second order complete solution (here assumed as a
benchmark) for Poisson's ratios lower than 0.48 . The incompressible
idealization holds true when // > 0.4999 . Unfortunately, there is a
sizeable it interval ( 0.48 < u <0.4999 ) including most of the physical
values of u for elastomers, [11, for which neither the Winkler modelling nor
the incompressible idealization supply results sufficiently close to the
second order complete solution, so that they are not valid for the
above u interval. There is also a need to assess the accuracy of the
complete second order solution by accounting for more perturbation
terms, an aspect which is deferred to a future paper. Anyway, the
accuracy of the second order complete perturbed solution for intermediate
Poisson's ratios has been proved in [1] for a plane situation.
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The second kind of diagrams includes results retrieved from the
complete second order perturbed solution (14) , namely the normalized
variables pR/(Ea) (where p denotes the peak contact pressure),
rR/(Ea) (where r indicates the maximum shear stress at the interface
between layer and backing, a relevant parameter in forecasting
debonding phenomena), and a/h , versus the normalized indentation
depth, 6R/h* , up to 200 (a realistic top value for hip joints, [1]), and
for // = 0.4999 ; 0.499 ; 0.48 . The asymptotic incompressible results
(13) as well as the Winkler findings (12) are included where pertinent.

By comparing Fig. 3 to 5, it appears that, when L> = 0.48 , the
Winkler approach produces acceptable results in terms of peak contact
pressure, whereas for i/ = 0.4999 the incompressible solution becomes
accurate. It clearly emerges that the contact pressure for an imposed
indentation depth is particularly sensitive to perturbations of the
Poisson's ratio, especially when u approaches the incompressibility
figure 0.5 and for high contact widths. Figs 6-8 show that the peak
contact pressure normally ranges between 1/6 and 1/20 times the
maximum interface shear stress. Fig. 9 details this ratio as a function
of the indentation depth, for // = 0.4999 and 0.49. From Figs 10-12 it
appears that the contact width is less sensitive to perturbations of i/.

For small contacts, the precision of these perturbed solutions is
expected to decline. In [1] it was found that, for plane cases, these
asymptotic solutions are applicable for a/h ratios beyond, say, 10 , a
figure which is comparable to the maximum a/h values encountered in
a hip replacement with elastomeric layer subject to normal gait loads.

CONCLUSIONS

A perturbation solution valid for high contact widths has been
developed up to the second order for the case of a deformable layer
firmly bonded to a rigid substrate and indented by a paraboloidal
punch. Winkler-type compressible, as well as incompressible solutions
have been derived as particular cases. They have been found to be
valid for is < 0.48 and u > 0.4999 , respectively. More generally, the
contact pressure for an imposed penetration depth has been shown to
be very sensitive to perturbations of the Poisson's ratio especially
when the following situations occur simultaneously: a) the Poisson's
ratio is close to its incompressibility figure 0.5 ; b) the contact width
is considerably larger than the layer thickness.
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