
Clemson University

TigerPrints

All Dissertations Dissertations

12-2011

Mechanical and Modular Verification Condition
Generation for Object-Based Software
Heather Harton
Clemson University, hkeown@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by

an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Harton, Heather, "Mechanical and Modular Verification Condition Generation for Object-Based Software" (2011). All Dissertations.
869.
https://tigerprints.clemson.edu/all_dissertations/869

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/869?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


 

 

 

 

 

 

MECHANICAL AND MODULAR VERIFICATION CONDITION GENERATION 

FOR OBJECT-BASED SOFTWARE 

 

A Dissertation 

Presented to 

the Graduate School of 

Clemson University 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

Computer Science  

 

by 

Heather Keown Harton 

December 2011 

 

 

Accepted by: 

Dr. Murali Sitaraman, Committee Chair 

Dr. Jason Hallstorm 

Dr. Joan Krone 

Dr. David Jacobs 



ii 

 

ABSTRACT 

 

The foundational goal of this work is the development of mechanizable proof rules and a 

verification condition generator based on those rules for modern software. The verification 

system will be modular so that it is possible to verify the implementation of a component relying 

upon only the specifications of underlying components that are reused. The system must enable 

full behavioral verification. The proof rules used to generate verification conditions (VCs) of 

correctness must be amenable to automation. While automation requires software developers to 

annotate implementations with assertions, it should not require assistance in the proofs.  This 

research has led to a VC generator that realizes these goals.  The VC generator has been applied 

to a range of benchmarks to show the viability of verified components.  It has been used in 

classrooms at multiple institutions to teach reasoning principles. 

A fundamental problem in computing is the inability to show that a software system behaves as 

required. Modern software systems are composed of numerous software components. The 

fundamental goal of this work is to verify each independently in a modular fashion, resulting in 

full behavioral verification and providing an assurance that components meet their specifications 

and can be used with confidence to build verified software systems. Of course, to be practical, 

such a system must be mechanical.  Although the principles of verification have existed for 

decades, the basis for a practical verification system for modern software components has 

remained elusive. 
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CHAPTER ONE 

INTRODUCTION 

A verification system to validate the correctness of software was first presented by James C. King 

in 1969 [1] [2]. The same year, Tony Hoare introduced proof rules that formed a basis for 

program verification [3] . Nearly 40 years later, no such verifier exists. Acknowledging this state 

of computing, Tony Hoare has proposed a Grand Challenge to the Computer Science community 

in 2003: development of a verifier that will automatically and mechanically prove through 

mathematical logic a program's correctness [4].  

Why verify? Because even with thorough testing, there is no guarantee that a program is error-

free. Most commercial software endures extensive testing until testing reveals no serious errors 

and the customers choose to accept the reliability of the resulting code. However, unknown and 

hidden errors remain. For example, in 2006, Joshua Bloch reports in a Google blog an error in the 

binary search algorithm that arises in searching large arrays [5]. This algorithm that has been in 

use for decades fails if the sum of the low value and the high value is greater than the value of the 

maximum positive integer. Amazingly, this simple error has remained hidden in a common piece 

of code. If this fairly simple and widely-used code has an error, it is likely that nearly all present-

day software—including safety-critical ones—have similar errors. Joshua Bloch notes that in his 

class at CMU, Bentley (author of Programming Pearls) proved the binary search algorithm to be 

correct. Actually, what Bentley did was give only a typical, ―informal‖ argument, not a formal 

proof. If integer bounds are specified and the code undergoes verification through a verifier (such 

as the one envisioned by Hoare and as shown through the generated proofs from my prototype 

Verification Condition (VC) generator), the error would have been caught in a straightforward 

manner. A key goal is to replace informal proofs with formal, automated proofs. The binary 
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search example shows that a verification system must consider all aspects of correctness – 

including checking that variables stay within their specified bounds. My goal is to provide a VC 

generator that will process modern object-oriented software systems and provide VCs that, if 

proven, establish correctness of components, independently, to achieve scalability. 

Organization 

The rest of this chapter presents the motivation for this work and discusses the complexities of 

generating verification conditions. Chapter 2 provides a detailed description of related research. 

This includes work by other organizations in verification, other approaches to verification, and a 

background of the RESOLVE language. Chapter 3 describes the semantics of RESOLVE and 

provides proofs of soundness and completeness for key proof rules. Operation-level proof rules 

are provided. Chapter 4 explains how RESOLVE VC generation provides modular and scalable 

software design using module-level proof rules. Chapter 5 provides a listing of examples and 

benchmarks demonstrating the capabilities of the VC generator. Chapter 6 briefly discusses 

educational uses of the RESOLVE VC generator. Finally, Chapter 7 will provide a conclusion 

and list future issues and directions to be researched.  

There are also numerous appendices containing proof rules, source code, and generated VCs. The 

proof rules are provided in Appendix A. Appendix B contains simplification rules that were 

considered when implementing the VC generator. Appendix C, Appendix D, Appendix E, 

Appendix F and Appendix G all contain source code and VCs for examples. These will be 

detailed in later chapters.  
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Problem Statement 

Overall, I see three challenges in developing a verification system (such as the one Hoare 

envisions): 

• It must be scalable so that each component can be proven correct independently using only the 

specifications for any subcomponents that the given component relies on; 

• It must enable full verification to guarantee that the implementation fulfills the completely 

specified behavior; and 

• It must be mechanical, requiring programmers to supply assertions, but developers should not 

need to interact with the prover. 

Research Approach and Contributions 

To address the verification challenge, we envision an architecture for a verifier similar to the one 

shown below. 

 

Figure 1. The architecture for a verifying compiler 
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In Figure 1, the Verification Condition Generator (a prototype of which I have developed) applies 

applicable proof rules to an implementation. To begin the process, a software specialist, who is 

assumed to be a competent programmer, will write the specification and implementation 

(annotated as necessary for generating the assertive code). The programmer may require 

assistance from the mathematician in writing the specifications. Using the specification of the 

new code and the specifications of components used by the implementation, the VC Generator 

mechanically forms mathematical clauses equivalent to the correctness of the program. The 

implementations will need to be annotated by internal assertions, such as loop invariants, progress 

metrics, and representation invariants and abstraction relations for objects. These assertions are 

not just annotations but are part of the language syntax that distinguishes RESOLVE from many 

other languages. The requirement for additional annotations by the developer is not unique to the 

RESOLVE verification system. In a recent set of benchmarks provided by various verification 

systems at VSTTE 2010, every solution with a loop had a loop invariant supplied by the 

programmer [6]. In addition, a recent paper has shown that when compared to a variety of 

systems, RESOLVE requires only minimal assertions [7]. 

The verification conditions (VCs) are sent to the Automated Prover that uses pre-established 

theorems from the mathematical units to prove the obligations correct.  The mathematical units 

exist in a library of theorems provided by the mathematical specialist. The theorems in the math 

units must be supported by proofs which will be checked for correctness by the Proof Checker. 

The expectation is that the proof of program obligations needs to be fully automated, but only the 

ability to validate proofs provided by the mathematicians is necessary for non-trivial 

mathematical theorems.  
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There are several research problems that concern general verification. These include techniques 

for construction of specifications that allow for easy mechanization, yet are human-

understandable, handling of higher-ordered assertions (e.g., such as those that arise in proving 

generic operations such as sorting), and mechanical handling of existential quantifiers using 

suitable language mechanisms and adjunct variables in programs. These issues and others must be 

considered when automating and implementing the proof rules used to generate the VCs. In order 

to achieve the ultimate goal of a verifying compiler that is useful for substantial software in 

languages like C++, Java or RESOLVE, my goal is to work towards modular verification of 

imperative, object-oriented software that is scalable as a result of the verification of individual 

components. This research will focus on the RESOLVE language because both C++ and Java are 

highly dependent upon aliasing which make reasoning for verification more difficult. Because of 

this design goal of modularity, additional research problems must be considered such as 

extensions, minimization of aliasing, handling of unavoidable aliasing that occurs with pointers, 

and the correct processing of global variables. My research will address these and other research 

issues, and establish the basis for a scalable and automated verification system for full behavioral 

correctness. A specific goal is to demonstrate the abilities of the VC generator by experimentally 

validating the correctness of a set of benchmarks. 

Thesis  

Challenges and Complexities 

If verification were a simple goal, automated verification systems would already exist and 

verification would likely be a normal part of software development. The verification problem is 

still an outstanding grand challenge because several research questions remain to be addressed. 

Some of these challenges are common to all software systems. For example, as with any 
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programming language, a verification system must be scalable in order for it to be usable. There 

are of course other challenges that are specific to the verification goal.  

The generation of clauses equivalent to the full behavioral verification is the primary goal of our 

VC generator. This goal, when achieved, will provide confidence that an implementation fulfills 

the complete behavioral specification. It is to be noted that specifications can be provided in 

varying levels of detail. If full verification is unnecessary, the specification can be written with 

only the required details.  

To provide any level of verification with confidence, the verification system must be sound and 

complete. A sound and complete verification system is dependent upon these qualities also 

existing in the proof rules used by the VC generator.  With proper proof rules, the VC Generator 

can create VCs that if proved will guarantee full behavioral correctness of a software system with 

respect to its specification. 

For a verification system to be practical, it must be scalable. This requires a mechanism for the 

verification of components. It is important that the verification process can focus on verifying a 

single component with the assumption that any supporting components have already been verified 

or will be verified separately. Developers should be able to create generic components. This 

allows data abstractions to be verified in such a way that they are correct independent of their 

parameters. For example, the ability to implement and verify the operations on a list of generic 

items as opposed to a list of integers will provide a more usable object. Component-based 

verification requires an implementation of a component, a specification of the component, and the 

specification of any used components to generate the VCs. Proving the generated VCs will also 

require mathematical units to complete the proofs. Scalability in verification is based on the same 
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ideas as in the traditional object oriented programming languages – where scalability is a result of 

component-based systems. 

Mechanization is vital to the verifying compiler. In order for the verification system to be used by 

software developers, it needs to work, in most ways, like a normal compiler. This is achieved by 

modifying proof rules to be automatable and generating VCs that can be proved or disproved by a 

prover with no human interaction. Previous proof rules were designed for a theoretical VC 

generator that was not suitable for implementation and required modifications in order to 

mechanically generate VCs. The automation of the proof rules while maintaining soundness and 

completeness is an important contribution provided by this research. Of course, the VC generator 

still requires the developer to write specifications that must describe the behavior of the 

implementation. In addition, internal assertions may be required for more complex language 

mechanisms – such as while loops and recursion. However, no human interaction should be 

required for performing the proofs of the generated VCs. If the proofs are unable to be completed, 

it may be that new mathematical theorems are required. A mathematician will be needed to 

update the theorems. Of course, at other times, the VCs will be unproved as a result of flaws in 

the implementation which the developer will need to correct.  

Scalability, full verification, and mechanization are three major issues that must be addressed by 

the RESOLVE verification system, and my work provides the clause generation for the system.  

Scalability 

Scalability is a necessary attribute of a language used to develop a large software system. Thus, in 

order for RESOLVE to be a practical alternative to current languages, RESOLVE must be 

scalable. RESOLVE is based on modular components. In object oriented languages, developers 
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build large systems by using components that they have not implemented and many times may 

not even have access to the implementation. For example, Java has a large library of components 

including lists, stacks, and queues which developers build upon in any major software system 

with access only to the specification. Similarly, RESOLVE developers will use components that 

have been implemented and verified previously and will build software in the already trusted 

object oriented method, using built-in and user defined components. An important distinction is 

that in RESOLVE developers will have formal specifications to use when building upon existing 

components instead of relying upon information descriptions provided in some other languages. 

Some developers may question whether the specifications will become overly complex and 

difficult to create as components get more complicated. However, just as object oriented 

languages today prevent excessive complexity by using previously written components, 

RESOLVE specs will remain similarly understandable through the use of suitable mathematical 

abstractions. 

In order to provide scalable verification, the verification process must provide a method to reason 

about and to verify individual components. Figure 2 demonstrates the elements of concern when 

reasoning about correctness of components in a RESOLVE system. To prove the correctness of a 

new component realization, it is only necessary to use the specs for the components used by the 

new component, A and B. The corresponding implementations are not taken into consideration. 

In order to provide this separation of concerns, it is necessary that the specifications for each 

component contain enough information to reason about correctness. Each level of a software 

system can be individually verified. This allows implementations to be written and proved 

independently. The system as a whole is proved correct when each subsystem has been verified.  
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Figure 2: Modularity of Verification 

Another element that is important to a verification system is the scalability of the proof rules 

themselves.  It is not possible to have a VC Generator that can handle the majority of code if it is 

necessary to have a unique proof rule for each data type or different situation. It is important that 

using a common set of proof rules, VCs can be generated for code that both uses built-in 

components, like pointers and arrays, as well as user-built components. In order for this to be 

plausible, built-in types must be specified similar to how user-defined components are specified. 

Because of this requirement of built-in types, different implementations of pointers or arrays 

could be plugged into the system without the need to re-verify any software built on these 

specifications. Thus, in RESOLVE, the proof rules are uniformly applied to all data types. The 

same proof rules are used independent of the type of module it is used in: a component, an 

enhancement, or a facility. 

Full Verification vs Verification of Properties 

In order to provide full verification, the proof system for the RESOLVE language has been 

designed to be both sound and complete. We distinguish full verification from ―lightweight 
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verification‖ that is based on lightweight specifications with the intent of checking only certain 

characteristics of the code. Lightweight verification can be used to check for common, 

specification-independent programming errors such as dereferencing null pointers [8] or 

unexpected cycles in pointer-based data structures [9]. Lightweight verification does not require 

specifications or internal assertions to prove the absence of these class of errors. Thus, other 

errors may remain.  So, to prove the correctness of software (that the realization implements a 

complete specification of the behavior of the component), full specification and verification are 

necessary. 

However, full behavioral verification does not mean that the specifications and assertions are 

going to be complicated. In fact, RESOLVE allows the specs to be as simple as the software 

developer desires. For example, a developer could write a spec for an operation such that the 

ensures clause is ―ensures true.‖ Then, no matter what is done within the operation, as long as the 

pre-conditions to any operations that are called are provable (which could be non-existent) and 

the procedure terminates, RESOLVE will verify that any implementation is correct. However, 

this obviously reduces any benefits of using RESOLVE to verify software.  Thus, a practical 

method for developing specifications is to write them only as detailed as required. For example, a 

developer could create an implementation of a stack which does not require that the actual stack 

behavior is verified. It may be important however, that too many items are not added to the stack 

removed from the stack (i.e., it may be important to show the bounds of the stack are respected). 

In this example, as opposed to modeling the stack as a string of entries, the stack could be 

modeled as a number which corresponds to the number of items in the stack. Details of how a 

stack may be specified will be provided later. 
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Steps Toward Mechanization 

In order for verification to be practical and reliable, it must be mechanical. As seen in the 

example of the binary search algorithm, non-mechanical verification (because of the many details 

it assumes that may or may not hold, when the ideas are mechanized) is prone to human error, 

even though the central ideas behind the code may be correct "in principle". Given an 

implementation annotated with suitable assertions, corresponding specifications, and appropriate 

theorems from mathematics, an automated verification system will postulate a correctness 

assertion, mechanically.  The implementation will be deemed correct if and only if the correctness 

assertion can be proved, also mechanically. 

The "principles" for a verification condition generator have also been around for numerous years, 

beginning with the work of Hoare [3] and King [1].  These principles have been enhanced in later 

research for verification code beyond simple procedures, such as the work of Krone [10] and 

Heym [11]. Just like there is a large gap between the idea of a binary search and its mechanical 

verification, there is a large gap between the previously known principles of verification and 

actual development of a mechanical VC generation system. Heym's dissertation that proposes the 

forward reasoning system (a complementary approach to the one taken in this dissertation) goes 

to considerable trouble just to establish the names of variables in different states, for example.  So 

the proof rules in the efforts of Hoare and Krone are useful starting points, mechanization of VC 

generation practically requires re-development of every single rule.  A significant contribution of 

this dissertation is in development of mechanizable rules that are also sound and relatively 

complete.  This is an iterative process.  For every rule, a new sound, mechanizable rule had to be 

devised, and when that mechanization wasn't adequate the rule had to be revamped and 

mechanized again. 
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There is a context in which every VC generation step takes place. For example, this context 

contains type information, specification of all operations within scope, and mathematical 

definitions (to be used by the prover). The proof rules and corresponding implementation must be 

developed to provide access to all information within the context. Several iterations of each proof 

rule were required for automation. The If/Else and While loop rules, for example, are discussed 

in detail in a later chapter. Among others, the condition in these statements must be converted 

from the condition statement in RESOLVE code to a mathematical statement in the VC, pre-

conditions for nested function calls must be generated, and termination of loops and recursion 

must be proved all while maintaining soundness and completeness in the proof rules. In other 

circumstances, verification variables must be generated to indicate different states, auxiliary 

variables (specification variables defined by developers) must be processed to allow easier-to-

complete proofs, and generic objects allowed for maintaining re-usability. These are but some of 

the complications involved in the automation of proof rules. 

While there is no verification of the VC generator itself at this point and it is an important topic 

for future research, the generator has gone through considerable experimentation by us and others 

as detailed in this dissertation. 

The RESOLVE VC generator expands upon a previously implemented RESOLVE-to-Java 

translator. Both the translator and assertion generator are based upon the visitor pattern and 

implemented in Java. RESOLVE is an object-based language and thus there are objects (concepts 

and corresponding concept specifications). In addition, there are facilities (where objects are 

instantiated) and enhancements (which allow a programmer to add extra operations to a concept 

that do not require access to private variables). After performing special processing depending on 

the source of the RESOLVE implementation and corresponding specification (concept versus 
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enhancement versus facility), the appropriate proof rules are applied in a goal-oriented fashion 

until all code is processed and a list of assertions are generated.  

Currently, the verification condition generator mechanically generates and outputs assertive code 

that needs to be proved in order to show correctness. In addition to the generated assertions, an 

automated prover will use theorems located in mathematical libraries to prove the assertions. An 

earlier version of the VC generator produced Isabelle-friendly VCs. Isabelle is powerful and can 

prove many of the VCs, but it is intended to be used as a proof assistant, not as an automated 

prover. Thus, the focus of the current VC generator has been on the prover that has been 

specialized to work with the RESOLVE VCs. The VC Generator will output the assertions in a 

Goal-Given form that lists the Goal of the VC followed by all the assumptions that can be used in 

the proof under a header Givens. This Goal/Givens format makes it easy to see what needs to be 

proved.  The VC generator also includes a verbose mode that shows each intermediate step in VC 

generation. 

Thesis Statement 

It is possible to generate provable verification conditions of correctness mechanically for full 

behavioral verification of object-based software in a modular fashion, one component at a time. 

Scope of Research 

The implementation of the VC generator has been a large effort and has included integrating 

many subtle details into the system. The basis of the VC generator is the mechanized version of 

proof rules for each language construct. Versions of these proof rules have been created from the 

non-mechanized versions which have been modified and implemented to develop the VC 

generator.    
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Although it is not a part of this work to attempt to verify the VC Generator, it is important to 

show that the process is reliable. First, to ensure the technical validity of proposed mechanizable 

proof rules we have shown the soundness and completeness of key proof rules in Chapter 3. To 

evaluate the implementation of the VC generation system based on the rules, VCs have been 

generated for a large library of reusable components, including a series of benchmarks 

(benchmarks #1 - #5) for verification discussed in [12].  

The focus of the current research is on the verification condition generation process. The diagram 

in Figure 1 is the overall verification vision. However, this research will focus only on the VC 

generation process. This process will apply proof rules to annotated code and corresponding 

specifications to generate VCs of correctness. The VC Generator will be able to interface with the 

prover to provide the VCs, but will otherwise not be involved in the details of the proof process.  

The prover is specialized to process the VCs and currently the VCs that could be simplified by 

the VC generator were already easily proved by the prover. The VC Generator should behave in a 

similar way to a compiler in that it will provide details to allow the programmer to identify the 

location of errors when the prover is unable to prove a VC. 

This VC generation process is based on the creation of sound, complete, and mechanized proof 

rules. This research will build upon the principles for creating proof rules for a RESOLVE-like 

language in [10]. As previously discussed, there is a wide research gap between principles of VC 

generation to the development of actual mechanizable proof rules for a language like RESOLVE. 

The process of mechanizing the current proof rules is an iterative process which occurred for each 

proof rule. The contributions of this dissertation are both research and development of 

mechanizable proof rules for object-based software verification, through several iterations of 

design and experimentation. Specifically, mechanizable proof rules for several specification and 
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implementation constructs, including the following, have been devised, implemented, and 

employed on a wide range of software components. 

o Module-Level Verification  

 Handing of Generic Parameters 

 Types 

 Operations 

 Mathematical Definitions 

 Concept and Enhancement Specifications 

 Conceptual requirements 

 Provided types and constraints 

 Conceptual global variables 

 Operations 

 Realizations 

 Facility Declarations  

 Type representations 

 Global Variables 

 Representation invariants 

 Abstraction functions 

 Local operations 

 Facility Declarations 

 Instantiations with and without enhancements 

 Handling of different kinds of facility parameters 

 Long facility declarations 
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o Specification-Based Operation-Level Verification  

 Operation Implementation Declarations 

 Various specification parameter modes 

 Iterative and Recursive Procedures 

 Object Declarations 

 Control Constructs 

 Auxiliary Variables and Code 

 Calls to Operations with Functional and Relational Specifications 

The remainder of this chapter contains a summary of research issues that arise for both module-

level and operation-level VC Generation.  For module-level verification, one such issue involves 

showing that the correspondence between the mathematical model and the implementation is 

valid. Also it is important to show that any parameters to the realization meet requirements for the 

parameter defined in the specification. At the operation level, some of the issues that are 

encountered include the process of context enrichment and code annotated with specification-

only variables.   

It is also important to handle global variables in the RESOLVE Verifier. As might be imagined 

global variables do cause difficulty in modularizing component-based verification. However, 

RESOLVE does permit the use of global variables. Each operation must specify if a global 

variable is updated. A realization that uses pointers and exemplifies the use of global variables 

will be shown in a later chapter. It is important that global variables are handled by the VC 

Generator, but there are still some issues that need to be researched concerning the use of global 

variables. The question of how best to handle global variables is still not resolved completely. 

Some of the other complications that arise with verification are a result of how the specifications 

are written. Ideally, suitable mathematical developments will make it possible to minimize or 

avoid quantifiers in specifications.  However, sometimes specifications may need to use 
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quantifiers. When existential quantifiers are unavoidable, there are programming constructs 

provided by RESOLVE to make automated verification possible. Auxiliary variables (in 

conjunction with auxiliary code) are specification-only variables (and non-executable code). 

These programming variables coincide with the mathematical variable in the existential 

quantification. The auxiliary code is used to set the value of the auxiliary variable which is then 

used to generate easier-to-prove VCs. Thus, the VC prover will not have to ―guess‖ at the value 

of the specification variable.  

While this research will indeed cover a vast territory in object-based software verification, by no 

means will it be exhaustive. For example, it will not cover all possible looping constructs or 

mutual recursion.  Nor does it cover object-oriented features such as subtype-supertype 

relationships and related polymorphism.  The treatment of global variables here is merely a 

starting point.  
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CHAPTER TWO 

RELATED RESEARCH 

Verification Research 

This chapter  summarizes specification and verification efforts that share some of the goals of the 

proposed research. A detailed survey of verification efforts may be found in [13] . Corresponding 

specification languages have been surveyed in [14]. 

―Why‖ is a software verification tool [15]. It is directed towards construction of functional 

programs with assertions, though imperative constructs such as iteration are available. ―Why‖ 

focuses on typically built-in types, such as arrays rather than modularization or generic data 

abstractions. The ―Why‖ system provides a mechanism to verify C, ML, and Java programs. The 

programs are converted into a ―Why‖ internal language which is similar to ML. For example, 

Java programs annotated in JML are translated into ―Why‖ by a program called 

Krakatoa.  Krakatoa therefore represents another verification system for Java programs with JML 

specs [16].  ―Why‖ generates VCs for various existing proof tools including Coq, PVS, Mizar, 

and HOL Light. ―Why‖ also uses the Simplify [17] and haRVey [18] decision procedures to 

perform proofs. In general, ―Why‖ disallows aliasing; however, Krakatoa models the Java heap 

so that once converted to ―Why‖, there is no aliasing. There are portions of Java which are not 

handled by Krakatoa [19]. ―Why‖ does not allow aliasing and only allows base types, arrays, and 

pointers, but no user defined types. 

Some verification efforts are integrated whereas some others address specific aspects of 

verification. An integrated method of verification is based on refinement [20]. This process 

consists of refinement between levels of abstraction that are based on abstraction relations. 
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Starting from higher levels of abstraction (written as a specification) through refinement a correct 

lower level result (such as an implementable solution) is developed. Verification then becomes 

the process of checking the correctness of the refinement steps. The Vienna Development Model 

(VDM) is based on this process [20] [21]. Each step of refinement creates proof obligations that 

show the refinement process does not alter the meaning of the original specification. PVS is both 

a specification language and a theorem prover [22] [23]. The included specification language is 

based on higher order logic and provides a type system. The specification language is closely 

accompanied by an interactive proof system that together provides the ability to complete 

verification of large systems. 

Model checking is often used as an alternative to full verification of behavior. Typically, the goal 

is to check whether (in the context of verification) the model (or implementation) has certain 

properties (the specification) [24]. Property verification is an area of model checking that verifies 

that certain specific characteristics (or properties) are evident in the implementation. An excellent 

summary of model checking efforts as well a specific system for model checking Java programs 

using JPF (Java Path Finder) can be found in [25]. Symbolic execution principles have been 

employed in SLAM, a model checking system for C programs [26]. Verification of safety 

specifications is an area of ongoing research in property verification. 

Research into verification of existing languages must deal with situations, such as aliasing, that 

greatly complicate modular reasoning. Using Isabelle, a theorem prover [27], Verisoft provides 

an integrated system for full verification of C0 programs, a subset of the C language [28]. By 

design, C0 precludes several inherent verification difficulties that exist with the C language, such 

as aliasing. Correct pointer manipulation, on the other hand, is one of the goals of the ESC-Java 

effort [8]. Because Verisoft uses Isabelle, the proof process is interactive. 
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There is also much research on modular verification of object-oriented programs. Leino and 

Muller have both dealt with verification of pointer behavior for object-oriented programs [8] [29]. 

JML, short for Java Modeling Language, is a specification language for Java. In JML, subclasses 

must have stronger specifications (stronger post-conditions, weaker pre-conditions) than those of 

their superclass [30] [31]. Though the initial focus of JML has been on specification and run-time 

assertion checking, more recent efforts include verification. ESC/Java2 is used to perform static 

checks for JML [32]. In addition to ESC, there are other JML Static Verification Tools [33] [34] 

[16]. In order to provide soundness and completeness while using Java and dealing with aliasing, 

several approaches have been taken. ESC/Java discourages aliasing. JML, however, uses a model 

that only allows the ―owner‖ of an object to modify the object. These approaches primarily result 

in the software developer being limited to a subset of Java. 

A precursor to JML is Larch. Larch provides a two-tiered style of specification that requires 

specifications written in two languages: the Larch Interface Language and the Larch Shared 

Language [35]. Some programs specified using Larch have been checked using LP, the Larch 

Prover. LSL specifications are algebraic. The Larch project is no longer actively being 

maintained. 

Jahob is a verification system where programs are written in a subset of the Java programming 

language using Isabelle as a specification language [36].  Jahob's goal is to provide static 

verification and ensure that a class of errors will not occur.  Jahob uses shape analysis to assist in 

automatically determining invariants [37], [38].  Proofs are based on a variety of decision 

procedures and automated provers.  Jahob attempts to choose the best procedure or prover for the 

proof at hand. As with other languages that use Isabelle, Jahob often requires interactive proofs. 
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A summary of many important verification efforts is given in Table 1. The table highlights how 

the RESOLVE effort differs from other verification systems. It is important to notice that only 

some of the languages allow for higher-order specifications. In order to reason about generic, 

user-defined types, it is necessary for a language to allow higher-ordered specifications. This 

allows specifications to take a mathematical function as a parameter and to be used in 

specifications. Of the languages that do allow higher-order specifications and provide full 

verification, none other than RESOLVE are automatic. In order to support full verification 

without restricting the language, the language needs to be defined with verification in mind. The 

characteristics of a language suitable for verification include maintaining efficiency and 

performance while supporting verification, handling the complexities that generics introduce, and 

the difficulties that come from aliasing. Many other languages that support verification have 

difficulties handling some of these challenges because the language was not designed for 

verification. 
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Effort  Implementation 
Language  

Specification 
Language  

Verification 
Type  

Prover  Automation  Logic  

Compcert  Clight,  
subset of C  

Coq  Restrictive* Coq  Interactive  Higher-
Order  

Dafny  Dafny (Research 
Language)  

Dafny  Restrictive* Boogie/Z3  Automatic  First-Order  

Eiffel  Eiffel  Eiffel  Verification 

of Properties  
(Currently only 

runtime checks)  
Automatic  First-Order 

ESC/Java  Java  JML  Verification 

of Properties  
Simplify  Automatic  Higher-

Order  
Jahob  Subset of Java  Subset of 

Isabelle  
Restrictive* Isabelle,  

Others  
Interactive  Higher-

Order  
JML/ 

FSPV  

Java  JML  Restrictive* Isabelle/Simpl  Interactive  Higher-
Order  

Larch  Various 
Languages  

Larch  Restrictive* Larch Prover  Interactive  First-Order  

PVS  PVS  PVS  Full  PVS  Interactive Higher-
Order  

SPARK 

Ada  

Subset of Ada  SPARK  Verification 

of Properties 
SPADE  Interactive Higher-

Order  
Spec#/ 

Boogie  

Spec #, 
Extension of C#  

Spec #  Verification 

of Properties 
Boogie/Z3  Automatic  First-Order 

VDM-SL/ 

VDM++  

Various 
Languages  

VDM  Full  VDM  Interactive Higher-
Order  

Verisoft  Subset of C, C0  Isabelle  Restrictive* Isabelle  Interactive Higher-
Order  

Why  C, Java, ML  Why  Restrictive* Isabelle and 
Coq  

Interactive First-Order 

πVC C-like language, 
PI  

πVC Restrictive* πVC Automatic  First-Order 

RESOLVE  RESOLVE  RESOLVE  Full  RESOLVE or 
Isabelle auto  

Automatic  Higher-
Order  

*These languages are listed as restrictive instead of full because they have restricted the 
capabilities of the language in order to provide full verification. 

Table 1: Related Works table 

Alternative Verification Condition Generation Approaches 

Two different approaches to generating VCs have been examined in the literature [10] [11]. Until 

now the research has been primarily theoretical with no actual mechanized VC generator. A brief 

discussion of the two approaches will follow.  

The Hoare-style, goal-oriented, approach in [10] begins with the goal and modifies the goal with 

each program statement until the ultimate the goal (or assertion) to be proved is generated. The 

other method is a tabular method in which verification assumptions and obligations are 
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documented for each statement of code [11].  The VC generator described in this proposal 

implements the goal-oriented approach. A RESOLVE verification system implementation in 

development at The Ohio State University is based on the tabular generation method. [11] 

The simple example in Figure 3 will be used to demonstrate the differences. The only explanation 

that should be necessary to understand this code is to describe the :=: symbol. This symbol is the 

‗swap‘ statement and will swap the values in the two variables. Further details on the swap 

statement and the RESOLVE language will be explained later in this chapter. 

Assume true; 
If J > I then 
 I:=:J 
end; 
If K > I then 
 I:=:K 
end; 
Confirm I >= J ^ I >= K; 

Figure 3: An example of Assertive Code 

Tabular Reasoning Approach 

The tabular reasoning approach forms as its name implies a table. The table is split into states and 

shows how the variables change by numbering them in each state. As seen in Figure 3, the table is 

formed to include the assumptions, requirements, and path conditions. One of the research 

problems that develop from this approach is how to best eliminate unnecessary statements and 

simplify out extra variables. The principles behind this approach are described in Heym‘s thesis 

[11]. 

The tabular method is straight-forward and thus may be the preferred method to use when 

introducing verification to students. When reading the table below the variable numbers are based 

on the value of at a certain state (or line number) in the code. So, for example, 1 is the state of the 
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variable after the first line of code. At line two, the table shows that the assumption is ―I2=J1 and 

J2=I1 and K2=K1.‖ This is because the value of K did not change but I and J were swapped. 

These assumptions are key as they are used to prove the obligations. The obligations must be 

proved to show correctness of the code. Obligations result from pre-conditions, invariants, and of 

course as in this example, the final Confirm clause (or goal), ―I6 >= J6 ^ I6 >= K6‖. 

State Path Conditions Assumptions Obligations 

0   True    

 If J > I then      

1 J1 > I1 J1=J0 and I1 = I0 and 
K1=K0  

   

 I:=:J      

2 J1 > I1 I2=J1 and J2=I1 and 
K2=K1 

  

 End;     

3.1 J1 > I1 I3=K2 and K3=I2 and 
J3=J2 

  

3.2 ~(J1 > I1) I3=I0 and K3=K0and 
J3=J0 

   

 If K > I then      

4 K4 > I4 J4=J3 and I4 = I3 and 
K4=K3  

   

 I:=:K     

5 K4 > I4 J5=J4 and I5 = K4 and 
K5=I4 

   

 End;      

6.1 K4 > I4 J6=J5 and I6 = I5 and 
K6=K5 

I6 >= J6 and 
I6 >= K6 

6.2 ~(K4 > I4) J6=J3 and I6 = I3 and 
K6=K3 

I6 >= J6 and 
I6 >= K6 

Table 2: Reasoning Table 

The final assertions to be proved by the tabular method are as follows:  

 (((J1 > I1) => (J1=J0 and I1 = I0 and K1=K0)) and ((J1 > I1) 

=> (I2=J1 and J2=I1 and K2=K1)) ^ ((J1 > I1) => (I3=K2 and 

K3=I2 and J3=J2)) and (~(J1 > I1) => (I3=I0 and K3=K0and 

J3=J0)) and ((K4 > I4) => (J4=J3 and I4 = I3 and K4=K3)) and 

((K4 > I4) => (J5=J4 and I5 = K4 and K5=I4)) and ((K4 > I4) => 

(J6=J5 and I6 = I5 and K6=K5))) => (I6 >= J6 and I6 >= K6)  
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 (((J1 > I1) => (J1=J0 and I1 = I0 and K1=K0)) and ((J1 > I1) 

=> (I2=J1 and J2=I1 and K2=K1)) and ((J1 > I1) => (I3=K2 and 

K3=I2 and J3=J2)) and (~(J1 > I1) => (I3=I0 and K3=K0 and 

J3=J0)) and ((K4 > I4) => (J4=J3 and I4 = I3 and K4=K3)) and 

((K4 > I4) => (J5=J4 and I5 = K4 and K5=I4)) and (~(K4 > I4) 

=> (J6=J3 and I6 = I3 and K6=K3))) => (I6 >= J6 ^ I6 >= K6)  

When using the tabular approach, there is no need to generate new names for variables that are 

not affected by a certain statement. If this aspect is mechanized, then unnecessary names would 

disappear, simplifying the VCs. This tabular approach appears ideal for teaching about 

verification condition generation. It is easy to explain, understand, and perform manually. 

However, as this approach is not focused on the actual goal to be proved, it does not simplify out 

assumptions that will be unnecessary. 

Goal-Oriented Reasoning Approach 

The goal-oriented approach forms an assertion by modifying the goal based on each line of code 

moving in the opposite order from which the code will be executed.  A proof system consists of 

proof rules for each statement or construct in a language. Given the goal and code of an 

implementation, the verifier applies proof rules (which replace code with mathematical 

assertions) and then simplifies the assertions with the objective of reducing the final assertion to 

―true.‖ For example, consider the following piece of assertive code (a combination of code, facts, 

and goals), also called a Hoare triple. In the example, S and T are two Stack variables. The swap 

statement exchanges the values of the participating variables, without introducing aliasing. All 

code is written and verified within a context, and the Context (indicated in the proof rule with C/) 
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here includes mathematical String_Theory, the Stack_Template specification, as well as 

declarations of Stack variables. It is not explicitly listed in this proposal. 

C\ 
Assume S = empty_string; 
T :=: S; 
Confirm T = empty_string; 
 

To simplify the assertive code, a proof rule for the swap statement needs to be applied. In the rule 

shown below, it is necessary and sufficient to prove what is above the line to prove what follows 

below the line. This is the typical format of a formal proof rule. In the rule, C stands for Context. 

The notation, RP[x⇝y, y⇝x], means that concurrently, every x is replaced with y and every y is 

replaced with x. Intuitively, this rule means that to confirm what follows after the swap statement, 

the same assertion needs to be confirmed before the swap statement, but with x and y exchanged 

in the assertion. For the verifier to apply the rule mechanically,  the swap statement in the rule is 

preceded by ―code‖ which denotes 0 or more statements. 

Proof Rule for the Swap Statement: 

C\ code; Confirm RP[x⇝y, y⇝x]; 
—————————————————————— 
C\ code; x :=: y; Confirm RP; 
 

After the application of the swap rule, the following assertive code remains: 

Assume S = empty_string; 
Confirm S = empty_string; 
 

The next statements to be processed by the verifier are Assume and Confirm clauses. The rule 

for removing the Assume clause has the effect of making the resulting assertion an implication. 

The rule for handling the Confirm clause is simply syntactic: eliminate the keyword Confirm. 
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Assume Rule: 
C\ code; Confirm IP implies RP; 
—————————————————————— 
C\ code; Assume IP; Confirm RP; 
 
Confirm Rule: 
C\ RP; 
—————————————————————— 
C\ Confirm RP; 
 

In our example, after the application of the Assume rule, we have the following assertion: 

Confirm S = empty_string implies S = empty_string. 
 

Subsequently following the application of the Confirm rule produces the final assertion: 

S = empty_string implies S = empty_string. 
 

Since this implication is true based on mathematical logic, the assertion can be simplified to: 

true. 
 

Thus, we can see that our final assertion is true; therefore, assuming the soundness of the proof 

rules we have employed, we can conclude that the original assertive code is correct. 

To return to our previous example which we used to demonstrate the tabular method, the 

following table shows the process of generating the VCs using the goal-oriented method. 
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Step 1: Apply If_Then Rule  
Assume true;  
If J > I then 
 I:=:J 
end If; 
 
Assume K > I  
 I:=:K 
Confirm I >= J ^ I >= K; 

Assume true;  
If J > I then 
 I:=:J 
end If; 
 
Assume ~(K > I) 
 
Confirm I >= J ^ I >= K; 

Step 2: Apply Swap and Assume 
again   

 

Assume true; 
 
If J > I then  
 I:=:J 
end If; 
 
Confirm (K > I) => (K >= J ^ K >= 
I); 

Assume true; 
 
If J > I then 
 I:=:J 
end If; 
 
Confirm ~(K > I) => (I >= J ^ I >= 
K); 

Step 2: Apply If_Then Rule again   
Assume true; 
 
Assume J > I  
I:=:J 
 
Confirm (K > I) 
=>  
(K >= J ^ K >= 
I); 

Assume true; 
 
Assume ~(J > I)  
I:=:J 
 
Confirm (K > I) 
=>  
(K >= J ^ K >= 
I); 

Assume true; 
 
Assume J > I  
I:=:J 
 
Confirm ~(K > I) 
=>  
(I >= J ^ I >= K); 

Assume true; 
 
Assume ~(J > I)  
I:=:J 
 
Confirm ~(K > 
I) =>  
(I >= J ^ I >= 
K); 

Step 3: Apply Swap Rule:    

Assume true; 
 
Assume J > I  
 
Confirm (K > J) 
=>  
(K >= I ^ K >= 
J); 

Confirm true => 
(~(J > I) =>  
((K > I) =>  
(K >= J ^ K >= 
I))); 

Assume true; 
 
Assume J > I  
 
Confirm ~(K > J) 
=>  
(J >= I ^ J >= K); 

Confirm true => 
(~(J > I) =>  
(~(K > I) =>  
(I >= J ^ I >= 
K))); 

Step 4: Apply Swap Rule:    
Confirm true =>  
((J > I) =>  
((K > J) =>  
(K >= I ^ K >= 
J))); 

 Confirm true =>  
((J > I) =>  
(~(K > J) =>  
(J >= I ^ J >= 
K))); 

 

 

Table 3: An application of the goal oriented approach 
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The final assertions from the goal-oriented approach to be proved are as follows:  

 true => ((J > I) => ((K > J) => (K >= I ^ K >= J)));  

 true => (~(J > I) => ((K > I) => (K >= J ^ K >= I)));  

 true => ((J > I) => (~(K > J) => (J >= I ^ J >= K)));  

 true => (~(J > I) => (~(K > I) => (I >= J ^ I >= K))); 

One advantage of the goal-oriented approach is in the cases where the goals that need to be 

proved are weaker than what can be proved. The VCs can be generated in such a way as to 

simplify the proof process based on possibly modifying the goal with each step leading to an 

easier proof as opposed to appending more assumptions as in the tabular approach. Krone‘s 

dissertation explains the principles behind this approach of VC Generation [10].  

RESOLVE Background 

The RESOLVE Verification Condition Generator has benefitted from many years of previous 

verification research by the RESOLVE Research Community. RESOLVE is an object-based 

language designed to support verification [39]. In order to verify software, the code includes 

mathematical notations which specify the behavior of the software. There are several important 

characteristics of RESOLVE which provide the ability to generate verification conditions which 

are strong enough to provide full verification, yet not so complicated that they are too difficult for 

a proof system to prove. These characteristics include the design of the specification language 

and facilities for object-based design. RESOLVE also provides ―clean‖ semantics [40] which 

allows programmers to avoid aliasing. To be clear the use of the term object-based instead of 

object oriented is to distinguish RESOLVE in some specific aspects. Expressly, RESOLVE does 

not claim to solve issues concerning inheritance or polymorphism. In addition, RESOLVE only 

provides static typing. 
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RESOLVE allows (but does not require) programmers to provide a specification of the results of 

every implementation. RESOLVE requires that these specifications are written in a formal 

notation. The ultimate goal of writing the detailed specification is to prove that an implementation 

meets the specification.  With these formal specifications, the confusion that comes with informal 

specifications can be avoided and mechanical methods can be used to process the specification 

and an implementation.  

Concept Specifications and Implementations 

RESOLVE has been designed as an object-based specification and programming language to 

provide a scalable verification solution. A few example modules are useful to demonstrate the 

RESOLVE language. A commonly used object in many object-oriented languages is the stack, so 

we begin with a specification of the Stack_Template concept in Figure 4 . An actual realization of 

Stack_Template is in a different file and there could actually be multiple implementations that 

could meet this specification. An array-based implementation of Stack_Template is also provided 

below in Figure 6. 

A concept specification provides a mathematical model for the type specified by the concept and 

formally defines the behavior of each operation defined in the concept used to manipulate 

variables of the defining type. In Figure 4, the Stack type is modeled by a mathematical string of 

entries. In Stack_Template, S is introduced as an exemplar which is used to demonstrate the 

behavior of a generic Stack variable in this type portion of the specification. A concept provides 

initialization details, constraints for the variables of the type, and specifications for each 

operation. The initialization statement defines the initial state of a variable of the concept‘s type. 

The spec defines that a Stack is initially empty. Understanding that Stack is modeled as a string, 

the concept defines the initial value of Stack as the empty string. The constraint clause formally 
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describes that every Stack will always be constrained to be within bounds. This bound is based on 

the parameter Max_Depth which must be provided upon instantiation of the Stack_Template. The 

constraint requires that the length of the string must be less than Max_Depth.  

Concept Stack_Template(type Entry;  
  evaluates Max_Depth: Integer); 

    uses Std_Integer_Fac, String_Theory; 
    requires Max_Depth > 0; 
 
    Type Family Stack is modeled by Str(Entry); 
        exemplar S; 
        constraint |S| <= Max_Depth; 
        initialization ensures S = empty_string; 
 
    Operation Push(alters E: Entry; updates S: Stack);  
        requires |S| < Max_Depth; 
        ensures  S = <#E> o #S; 
 
    Operation Pop(replaces R: Entry; updates S: Stack); 
        requires |S| /= 0; 
        ensures #S = <R> o S; 
 
    Operation Depth(restores S: Stack): Integer; 
        ensures Depth = (|S|); 
 
    Operation Rem_Capacity(restores S: Stack): Integer; 
        ensures Rem_Capacity = (Max_Depth - |S|); 
 
    Operation Clear(clears S: Stack); 
 
end Stack_Template; 

Figure 4: Stack Template 

A Stack is specified as a mathematical string of entries and this is used to define the requirements 

for the various Stack_Template operations. A few more details are useful in understanding the 

specification. The pound (#) sign on a variable in the ensures clause indicates the value passed 

into the operation. A variable without the pound sign refers to the variable when the operation 

returns. The parameter modes (i.e., updates ) which precede each variable type and name in the 

operation definition is a part of the specification which describes how each parameter will (or will 

not) change during the operation. The specifications are supported by mathematical theories. 
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RESOLVE requires a math library that provides the mathematical definitions needed to prove the 

generated assertions. The specification of arrays can be found in Appendix B. 

Appendix D contains the specification of a stack modeled as a natural number and a stack 

specified as a string of entries. In addition, the code and the VCs generated for a stack reversal 

based on a stack modeled as a natural number as well as the stack modeled as a string can be 

found in this appendix. The VCs generated for the stack modeled as a natural number are much 

easier to prove than the VCs generated for the stack modeled as a string. 

One aspect of the specification that deserves a little more detailed explanation is the parameter 

modes. RESOLVE supports several parameter modes each of which is useful in certain types of 

specifications. These ease human comprehension, and in some cases they make specifications 

simpler because proof obligations are automatically generated based on the modes of each 

parameter without the programmer having to add additional conjuncts to the specifications. The 

updates parameter mode is probably the most ‗general‘ parameter mode. It means that the value 

of the parameter coming into the operation may be updated in some way. If important, the precise 

manner in which the parameter is updated will be defined by the ensures clause. Other parameter 

modes are evaluates, replaces, restores, preservers, alters, and clears. Restores and Preserves 

seem initially to define the same behavior; the distinction is that preserves is a statically checked 

mode that will prevent the variable from being modified by the implementation whereas restores 

will allow the value to change as long as it is always restored back to the original value. Clears 

requires that at the end of the operation the value is set to the initial value for the variable type. 

Replaces indicates that the incoming value of the variable is not important and cannot be 

guaranteed. Alters indicates that the outgoing value of the parameter is not important and cannot 
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be guaranteed. Finally, evaluates indicates that the incoming parameter is an expression that can 

be evaluated. If no mode is specified alters will be assumed. 

An operation‘s specification should be viewed as a contract between the client and implementer. 

The pre-condition (or requires clause) must be true prior to a call of any operation. In this 

example, the Push operation requires that there is room in the stack for another element. 

Similarly, in order to guarantee correct functionality, the Pop operation requires that there is at 

least one element in the Stack. The operation‘s implementation must satisfy the post-condition (or 

ensures clause) at the end of the procedure if the pre-condition holds. In Stack_Template, the 

ensures clause for Push provides the guarantee that S is updated so that it becomes the original 

value of E (a parameter of Push) concatenated with the original value of S. Pop removes the top 

entry from the parameter S and replaces the parameter R with the top entry.  

An implementation of Stack_Template realized with static arrays follows in Figure 6. The array is 

initialized to the maximum size of the stack and there is an additional variable, top, which indexes 

the top of the stack in the array. The specification for the RESOLVE array is provided in 

Appendix C. The :=: syntax in the realization is the swap operator. Operations to permit swapping 

an entry with an entry that is in an array are provided in the Static_Array_Template. Although 

these operations are indicated using the normal swapping syntax (:=:) these are actually replaced 

by a call to Swap_Entry (also defined in the Static_Array_Template). Swap_Entry is then 

processed as a normal operation with normal pre and post-conditions. This differs from the 

behavior of the default swap operator which swaps any two objects of the same type. 

Swapping is an important aspect of making RESOLVE a clean language. A clean language 

allows users to reason about components modularly without the problems that come with aliasing. 

Excluding references and aliasing from the semantics of a language simplifies the reasoning 
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process and allows for true abstraction. Kulczycki‘s dissertation details the use of clean semantics 

in the RESOLVE language [40].  RESOLVE implements swapping which has allowed the 

removal of pointers and references without losing the benefits of pointers. In addition, swapping 

is the mechanism used for passing parameters to an operation. Primarily, pointers are used to 

implement efficient copying of components in regards to both time and space. However, copying 

pointers creates reasoning difficulties by changing values of other variables when only one 

variable is modified.  Often, programmers do not really want or need to copy an object, but need 

to move it to a different location (into a different variable). Thus, RESOLVE incorporates 

swapping. Swapping allows the programmer to swap two variables which maintains the 

efficiency of pointers, but retains the ability to reason about the two variables as two distinct 

entities, i.e. changing one will not change the other. Further discussion of the importance of 

swapping in designing verified software can be found in [41].  

The conventions clause of this realization of Stack_Template documents the representation 

invariants.  The invariants must be true at the boundary of each external operation (i.e., an 

operation that is specified in the concept), including at the end of initialization and beginning of 

finalization. For the inductive proof that the given conventions are indeed representation 

invariants, the conventions are first proved to be true at the end of initialization for the base 

case.  For the inductive case, the conventions are assumed to be true at the start of each (external) 

operation and will be verified to be true at the end. The VC generator will produce a proof 

obligation to establish the conventions for each external operation as a part of the proof 

process.  The conventions for this implementation indicate that S.Top is less than Max_Depth. 

Thus, S.Top must be a valid index into the array. 
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Given the conventions defining which representation values in the implementation are valid, the 

correspondence, specified in the realization, relates them to the mathematical model. The 

correspondence assertion may be an abstraction function or relation between the representation 

space and the specification space.This relationship must be well founded.  This means that the 

correspondence must relate all legitimate representation values (i.e., values that satisfy to 

conventions) to legitimate abstract values (i.e., values that satisfy the constraints on the abstract 

model). Figure 5 models the conventions and correspondence relationship.  The VC generator 

will generate a proof obligation to establish that the correspondence is well founded.  Here, the 

correspondence specifies that the conceptual (specification) version of the Stack, Conc.S is equal 

to the reverse of the concatenation of each element of the array from the first element to S.Top. 

The implementation is intuitive in that push increments S.Top and then adds the element to that 

index in the array. Pop removes the top entry from the array and then decrements S.Top. 

 

 

 

 

Figure 5: Relationship of Correspondence, Constraints, and Conventions 
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Realization Array_Realiz for Stack_Template; 
 
    Type Stack is represented by Record 
        Contents: Array 1..Max_Depth of Entry; 
        Top: Integer; 
    end; 
    convention 
        0 <= S.Top <= Max_Depth; 
    correspondence 
        Conc.S = Reverse(Concatenation i: Integer 
            where 1 <= i <= S.Top, <S.Contents(i)>); 
 
    Procedure Push(alters E: Entry; updates S: Stack); 
        S.Top := S.Top + 1; 
        E :=: S.Contents[S.Top]; 
    end Push; 
 
    Procedure Pop(replaces R: Entry; updates S: Stack);  
        R :=: S.Contents[S.Top]; 
        S.Top := S.Top - 1; 
    end Pop; 
 
    Procedure Depth(preserves S: Stack): Integer; 
        Depth := S.Top; 
    end Depth; 
 
    Procedure Rem_Capacity(preserves S: Stack): Integer; 
        Rem_Capacity := Max_Depth - S.Top; 
    end Rem_Capacity; 
 
    Procedure Clear(clears S: Stack); 
        S.Top := 0; 
    end Clear; 
 
end Array_Realiz; 

Figure 6: Array Based Stack Implementation 

 

RESOLVE is an object-based language in that it provides a modular process to support 

verification. Thus, with only the specification of a component, a programmer can implement a 

second component relying only on the specification of the first component. This provides a 

scalable way to verify software (just as object oriented languages provide a scalable manner to 

implement large software systems). 
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Enhancement Specifications and Implementations 

Another aspect of RESOLVE is the enhancement of a concept (or an object), which is a form of 

specification inheritance. A language needs a mechanism to extend the primary or core set of 

operations. Secondary operations are not integral to the concept and can be realized in terms of 

the primary set of operations. Enhancements to a concept provide the ability to define secondary 

operations. 

An example enhancement is one for a stack reversal. The following implementation and 

specification of a reversal builds upon the operation in the Stack_Template without requiring 

knowledge of or allowing access to implementation details. VCs will be generated for this 

Stack_Template enhancement.  The verifier may assume the Stack constraints and requirements 

but are not reliant on an actual implementation of Stack_Template. The specification contains the 

signature for the operation Flip. Flip takes one Stack as parameter, S, and the ensures clause 

states the resulting Stack is equal to the reverse of the incoming Stack. 

This implementation of Flip contains a While loop in which the operation iteratively pops an item 

off the incoming Stack, S, and pushes it onto S_Flipped, another Stack. In order to support full 

verification, While loops require programmer-provided assertions in order to determine the 

behavior of the loop and show termination of the loop. The loop invariant is provided in the 

maintaining statement. In this example, the developer is stating that each time through the loop 

the reverse of S_Flipped when concatenated with the current Stack, S, will be equal to the 

original value of S. VCs will be generated to show the invariant is true in the base case (the first 

time through the loop) and in subsequent cases. The changing statement is used to simply the 

invariant. In a situation where some variables are not changed by the loop, by leaving these 

variables out of the changing clause, the developer does not have include the fact that these 
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variables are not modified in the maintaining statement. The decreasing clause requires an ordinal 

that will decrement each time through the loop. The decreasing clause is required to show 

termination of the loop. A VC will be generated to show that the decreasing clause does decrease 

with each iteration. 

Enhancement Flipping_Capability for Stack_Template; 
 Operation Flip(updates S: Stack); 
  ensures S = reverse(#S); 
end Flipping_Capability; 

 
Realization Obvious_Flip_Realiz for Flipping_Capability of 
Stack_Template; 
 uses Std_Boolean_Fac; 
 Procedure Flip(updates S: Stack); 
  Var S_Flipped: Stack; 
  Var Next_Entry: Entry; 
  While (Depth(S) /= 0) 
   changing S, S_Flipped, Next_Entry; 
   maintaining #S = reverse(S_Flipped) o S; 
   decreasing |S|; 
  do 
   Pop(Next_Entry, S); 
   Push(Next_Entry, S_Flipped); 
  end; 
  S_Flipped :=: S; 
 end Flip; 
end Obvious_Flip_Realiz; 

Figure 7: Stack Flip Specification and Realization 

Facility Specifications and Implementations 

Before a client can use the Stack_Template or an enhancement, they must first instantiate it.  

Shown below is an example facility declaration. VCs must be generated for facility declarations 

to show that parameters to the concepts, enhancements, and their realizations meet the defined 

requirements. 
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   Facility Rev_Stack_Fac is Stack_Template(Integer, 4) 
realized by Array_Realiz; 

     enhanced by Reversal_Capability 
      realized by Obvious_Rev_Realiz; 

Figure 8: Stack Facility enhanced with Reversal Capability 

In addition to facility declaration, RESOLVE has a facility construct that allows construction of 

one-of-a-kind software modules (that combine specifications and implementations), and are not 

designed for reuse.  Such a construct is also useful to develop a ‗main‘ module found in other 

languages. An example facility is below. 

Facility Stack_Flip_Facility; 
    uses Std_Boolean_Fac, Std_Character_Fac,  

Std_Integer_Fac, Std_Char_Str_Fac; 
 
    Facility Stack_Fac is Stack_Template(Integer, 4) 
            realized by Array_Realiz     
     enhanced by Flipping_Capability 
     realized by Obvious_Flip_Realiz; 
 
    Operation Main(); 
    Procedure 
       Var S: Stack_Fac.Stack; 
       Var C, D, E, F: Integer; 
 
       C := 150; 
       D := 300; 
     E := 7; 
     F := 9; 
     
       Push(C, S); 
       Push(D, S); 
       Push(E, S); 
       Push(F, S); 
     
       Flip(S); 
     
     Pop(C, S); 
     Pop(D, S); 
     Pop(E, S); 
     Pop(F, S); 
     
    end Main; 
end Stack_Flip_Facility; 
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In this example, the ―long‖ facility Stack_Flip_Facility creates a (short) facility of stack of 

Integers, enhanced with the stack Flip operation.   
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CHAPTER THREE 

MECHANIZATION AND SEMANTICS OF PROOF RULES 

In order to generate verification conditions (VCs), there must be mechanizable proof rules that 

convert the RESOLVE software implementation and specification into assertions which 

correspond to the correctness of the software. If all the VCs are provable, the software is correct. 

If one of the VCs is unprovable, then software correctness is not established. It is important to 

emphasize that the VC generation process for RESOLVE is unique, because unlike other 

programming languages, RESOLVE includes mathematics as a part of the language and was 

developed with verification and efficiency in mind using principles of software engineering. Also, 

it handles modularity, generics, and typically built-in data abstractions such as arrays and pointers 

in a unique component-centric way, so the challenges of generating VCs in RESOLVE are 

different in comparison with other VC generators. 

It is well known that the general verification problem of software correctness is undecidable. 

Provability of the VCs relies on mathematical theories that are undecidable. So the goal of 

verification of correctness of all software is unachievable. However, in practice, the reason for 

why verification of VCs generated to prove software fails has little to do with undecidability [42]. 

In fact, for much of the software we will ever write, verification fails because of poor code or 

annotations, not because of undecidability; in the remaining chapters, we will demonstrate 

practical verification condition generation on numerous examples over a variety of mathematical 

spaces. 

Two necessary characteristics of the verification system are soundness and completeness. 

Soundness is defined to mean that if the verifier reports the code is correct, that the code is in fact 

valid (where validity is defined by the semantics). Completeness means that if the code is valid, 
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the verifier will report that the code is correct. In our verification system, the actual goal can only 

be relative completeness, because of the incompleteness of any non-trivial mathematical theory 

upon which the proofs will rely. In order to show soundness and (relative) completeness for a 

basic set of mechanized proof rules, the semantics of RESOLVE are presented in this chapter. 

Semantic Foundations 

The RESOLVE semantics formally describe the meaning of RESOLVE software beyond what 

implementations do when they are executed. The semantics capture the behavior of the program 

by describing transformations from one (or more) state(s) to other state(s). There are ―normal‖ 

states and special ―stuck‖ states. In a ―normal‖ state, the semantics provide a function from 

variable names to their values. The ―stuck‖ states are special states from which the program 

cannot move to a normal state. Thus, once in a ―stuck‖ state, the state is ―stuck‖ in the special 

state. We use three stuck states, named, Manifestly Wrong (MW), Vacuously Correct (VC), and 

Bottom (). To distinguish the abbreviation for Vacuously Correct from Verification Condition, 

VC usage will be bold when indicating Vacuously Correct. For consistency, MW is a ―bad‖ state 

that indicates the code is wrong. An example that would cause a transformation of a calling code 

into the MW state is when a pre-condition of a called operation is violated in that code. VC is a 

state where the code is correct because of, for example, a false assumption. This is because we are 

assuming something that is false, so based on the principles of logic the result is true. For 

example, in a calling code if a called operation‘s implementation does not satisfy its post-

condition, then the calling code will reach the VC state. The bottom state is entered when the 

code does not terminate.  



43 

 

Another important concept to understand is what it means for code to be valid. This is based on 

the type or strength of the post-condition defined in the operation. The semantics can either 

respect or ensure the post-condition. If an operation respects the post-condition then if the code 

terminates, it must satisfy the post-condition. In this case, code is defined as valid if the program 

does not end in MW. Using the normal notion of validity, which requires that the code 

terminates, validity is defined as not ending in either MW or .  Now, we are ready to discuss 

RESOLVE semantics in more formal terms. 

 Def. St: Id→Set⊍{MW, VC, } = 
  ( Id( Var_Dom) ) ⊍ {MW, VC, } ); 
 

 Def. env: Id -> ( Var_Dom  Oper_Dom  Facility_Dom   

Realization_Domain  Concept_Domain) ) 
  … 
 

In the description above, St is a state which provides a mapping from the variable names (the set 

Id) to the corresponding set of values as well as the three special stuck states. ⊍ means the union 

in which all sets are completely not intersecting.  

The second definition in the semantics above defines the environment (env) which includes the 

union of the domains of all variables, procedures, facilities, realizations, and concepts. In classical 

semantics, only the domain of variables is included. Because RESOLVE uses the specifications 

components and operations instead of the actual components and operations to define the 

behavior of an operation, these extra domains are necessary. This allows the verification system 

defined by RESOLVE to maintain modularity by not relying on implementation of underlying 

components but only the specifications. The environment corresponds to the context that is 

maintained by the proof rules. 
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Relational Semantics 

Any language in which specifications of operations are allowed to be relational (i.e., one of many 

outputs is possible for a given input), relational semantics are necessary. Because RESOLVE 

allows operations with such relational specifications, each statement is potentially a relation that 

relates a state (or set of states) to another state (or set of states).  If any of the states in which a 

piece of code may end in is MW, the code is invalid.  The following example should demonstrate 

why relations are necessary. In this example, the Push procedure call alters Next_Entry; the state 

before and after the call to Push are connected by a relation. This is because the value of 

Next_Entry varies based on the implementation of Pop and Push. Based on the specification, 

Next_Entry can have any value. We have used the Push example here only because we have 

already discussed its specification.  Any operation that is specified to return one of several values 

(e.g., one that captures an optimization problem) will serve the purpose. 

    // Excerpt from a Stack Flip 
               While (Depth(S) /= 0) 
                       ... 
               do 
                       Pop(Next_Entry, S); 
                       Push(Next_Entry, S_Flipped); 
               end; 

 

In the same way operation specifications may be relational, the correspondence of a data 

abstraction in RESOLVE may also be an abstraction relation [43] [44]. The correspondence 

relation, specified in the implementation, relates the concrete representation space (in the 

implementation) with the abstract conceptual space (in the specification).  Figure 9 shows the 

implications of relational correspondences and operation specifications on the semantics. In the 

diagram, the value in the realization space, R, is a concrete value before the operation P is called. 

In the conceptual space, there are multiple abstract values to which R may be related to, 
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according to the correspondence relation. All the related values in the conceptual space must meet 

this pre-condition. The code for the operation may have relational behavior, denoted by 

Sem_R[code] in the figure.  So it is possible that R will be related to one of multiple 

implementation values after the call. In this example, suppose that the actual value after execution 

of the code for P is S. Once again, because the correspondence is relational, there may be multiple 

corresponding values in the conceptual space. For the code to be correct, any possible value, say 

D, after the operation is called must satisfy the post-condition of P.  Furthermore, all such values 

must be within the set of values that follow from the abstract pre-state of operation P; in 

particular, the precursor for D should be C or C‘ that satisfies the precondition of P and is within 

the envelope of values allowed by the correspondence from the concrete representation value R.  

This dissertation does not attempt to formalize this relational semantics for RESOLVE, but it is 

an important future direction. 

 

Figure 9: Implications of Relational Operation and Correspondence Specifications 
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Formal Semantics 

The semantics of RESOLVE are defined using an inductive definition on a sequence of 

statements in the description below. The base case, case (i) below, considers the condition when 

the sequence is empty. In this case, the state does not change; the state before the sequence of 

statements, S, is the same as the state after the statements, T, and they are related by the semantic 

relation, denoted by Sem_R. Next, we will consider the case when the sequence contains valid 

RESOLVE statements. 

Now we discuss case (ii).  To be clear, the state R lies before all the assertive code. S is the state 

before the statement of interest and T is the ‗current‘ state after the statement of interest. In the 

case where valid assertive code lies between states R and S, if S is already a stuck state, then the 

state T will be the same state as S. However, if S is not in stuck state, the modifications to the 

state vary based upon the statement type. This is the focus of the rest of the discussion. 
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Inductive Definition on code: Stmnt_Seq of  

(S: St) Sem_R[code] (T: St): B  is  

 i.  S Sem_R[] T  = ( T = S )  
 ii. if R Sem_R[code] S then if S  {MW, VC, } then T = S 
else 

(a) R Sem_R[code; x :: y] T  = (  : Id, if   {x, y}  
then  

 T() = S() and  
           T(x) = S(y) and  

 T(y) = S(x)); 
    (b) R Sem_R[code; If BE then code1 else code2] T = (   
    If not Invk_Cond(BEx),  

then T = MW 
    Else[Val(BE, S) and S Sem_R[code1] T or  

¬Val(BE, S) and S Sem_R[code2] T]); 

    (c) R Sem_R[code; x : f(y, exp)] T  = (   
    If not Invk_Cond(f(y, exp)),  

then T = MW 

Else[ : Id, if   x then T() = S()  
and T(x) = Val(f(y, exp), S)  ]); 

    (d) R Sem_R[code; op(updates y)] T  = (   
    If not Invk_Cond(op(y)),  

then T = MW 

Else[ : Id, if   y then T() = S()  
and T(y) Op_Rel S(y)  ]); 

 (e) R Sem_R[code; Confirm Q] T = (  T = S Val(Q,S)

T =





if

MW otherwise

  ); 

    (f) R Sem_R[code; Assume Q] T = (  
Val(Q,S)

T= S





VC if

otherwise
  ); 

    (g) R Sem_R[code; While BE do body end] T = (  … ); 
    

Figure 10: Semantics of Basic Statements 

In order to show that each proof rule of the RESOLVE verification system is sound and complete, 

it is necessary to have proofs of soundness and completeness for the proof rule for each language 

construct. A sample of the soundness and completeness proofs will be included in this chapter as 

the semantics and proof rules are provided and explained.  
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Proof Rules for RESOLVE Language Constructs 

Simple Operation and Procedure Declaration Rules 

Before we discuss the semantics and rules for executable statements that affect the state, we first 

discuss the basic operation and procedure declaration rules that serve as a useful starting point 

that sets up the assertive code for processing. To illustrate the rules, we return to the simple 

example to reverse a stack. 

Enhancement Flipping_Capability for Stack_Template; 
 Operation Flip(updates S: Stack); 
  ensures S = reverse(#S); 
end Flipping_Capability; 

 
Realization Obvious_Flip_Realiz for Flipping_Capability of 
Stack_Template; 
 uses Std_Boolean_Fac; 
 Procedure Flip(updates S: Stack); 
  Var S_Flipped: Stack; 
  Var Next_Entry: Entry; 
  While (Depth(S) /= 0) 
   changing S, S_Flipped, Next_Entry; 
   maintaining #S = reverse(S_Flipped) o S; 
   decreasing |S|; 
  do 
   Pop(Next_Entry, S); 
   Push(Next_Entry, S_Flipped); 
  end; 
  S_Flipped :=: S; 
 end Flip; 
end Obvious_Flip_Realiz; 

Figure 11: Stack Flip Specification and Realization 

CDP = Operation P( updates t: T1); 

  requires Pre/_t _\; 
  ensures Post/_#t, t _\; 
 

The Operation Declaration rule for the operation, P, will add the specification of P to the context. 

 C {CDP} \ 
 ____________________________________ 

 C \ CDP; 
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The Procedure Declaration rule for the operation, P, will generate assertive code to check the 

correctness of the implementation. 

Procedure Declaration Rule: 

 C {CDP}\ Assume Pre  T1.Constraint(t); 
 Remember; 

body;  
 Confirm Post; 

 

 C {CDP}\ code; Confirm RP; 
 ___________________________________________________________ 

 C {CDP}\ Proc P(updates t: T1); body; end P; code;  
Confirm RP; 

 

A simplified version of the operation declaration rule is above. This version of the rule only 

contains one parameter with a parameter mode of updates. The rule adds the specification of the 

parameter to the context and generates the assertive code that will be processed by the statement-

level rules. The rules assume the pre-condition and appropriate constraints. In Figure 12, the first 

Assume statement includes the constraints and requires clauses from the included templates. 

Specifically, the constraints from Integer_Template((min_int <= 0) and (0 < max_int)), the 

constraints from Character_Template(Last_Char_Num > 0), and the requires from 

Stack_Template (Max_Depth > 0).  We also assume the constraint on the parameter to Flip, S, 

from Stack_Template (|S| <= Max_Depth) is true.   The body of the operation is inserted into the 

assertive code after the pre-condition is assumed and before the post-condition is confirmed. One 

new verification statement (that has no effect on the program state) that is introduced in this rule 

is the Remember statement that simply is used to note that ―#‖ symbol denotes the value of the 

variable at this place. This is inserted prior to the first line of code from the procedure and it 

serves as a reminder to the verifier that variable values preceded by the distinguishing symbol (#) 

are the same as their values without that prefix at the point of remembrance. Initially, only one 
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goal is created, the ensures clause of the operation. In addition, there are no givens (or 

assumptions) that can be used to prove the goal. However, as the rest of the assertive code is 

processed, givens will be generated. The context is not shown in this excerpt of assertive code. 

Assume (((min_int <= 0) and (0 < max_int)) and 
(Last_Char_Num > 0) and ((Max_Depth > 0) and 
(min_int <= Max_Depth) and (Max_Depth <= max_int)))); 

Assume (|S| <= Max_Depth); 
Remember; 
 Var S_Flipped:Stack; 
 Var Next_Entry:Entry; 
      While (Depth(S) /= 0) 
  maintaining #S = (Reverse(S_Flipped) o S); 
  decreasing |S|; 
  changing S, S_Flipped, Next_Entry; 
      do 
              Pop(Next_Entry, S); 
              Push(Next_Entry, S_Flipped); 
      end; 
      S_Flipped :=: S; 
Confirm S = Reverse(#S); 

Figure 12: Flip Assertive Code after the Application of Procedure Declaration Rule  (Version 1) 

 

Swap Statement 

Now, let us consider the semantics for swap, the very last statement in the Flip code. It is 

necessary to understand the semantics of swap before proving that the swap proof rule used is 

sound and complete. I have reproduced below the semantics for the swap statement. As noted 

before, if the initial state is one of the stuck states, no statement will change the state. Otherwise, 

the state transformation depends on the type of statement. Now, we will address the questions of 

soundness and completeness for the swap rule. 
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Inductive Definition on code: Stmnt_Seq of  
(S: St) Sem_R[code] (T: St): B  is  

 i.  S Sem_R[] T  = ( T = S )  
 ii. if R Sem_R[code] S then if S  {MW, VC, } then T = S  

 else 

(a) R Sem_R[code; x :: y] T  = (  : Id,  
if   {x, y} then  

    T() = S() and  
     T(x) = S(y) and T(y) = S(x)); 
  (b)… 

 

In state T, all Ids other than x and y have the same value as in state S. However, for the Id x, in 

state T, the value is equal to the value of Id y in state S. The value of Id y, in state T, is equal to 

the value of Id x in state S. The swap rule has been supplied previously, but it is duplicated below 

for understanding this proof. For the verifier to apply the rule mechanically, the swap statement in 

the rule is preceded by ―code‖ which denotes 0 or more statements. 

Semantics of Swap: 

   if  = (x :: y), then  : Id{x, y}, U() = T()  
 and U(x) = T(y) and U(y) = T(x)  
  
Swap Rule: 

 C\ code; Confirm RP[ x⇝y, y⇝x ];  
_______________________________________________ 

 C\ code; x :: y; Confirm RP;  
  

First, we will prove that the swap rule is sound. Soundness means that if the code is provable, 

then it is valid. In the RESOLVE context, if the code is correct, the verifier will never report that 

it is incorrect. We will do a proof by contradiction. Thus, we assume the code is invalid but the 

generated VCs are provable.  

Another way of saying this is that we assume the assertive code on the top line of the Swap 

statement is provable but the assertive code underneath the line is not valid.  
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Because we assume the code is invalid, we know that we end in the state MW. We assume that 

state σ is prior to the swap statement.  

σ(y) if id = x 
σˊ =  id:Id,  {  σ(x) if id = y 

σ(id),otherwise 
 

From the semantics, if σ is the state before the swap statement, then because of the semantics of 

the Swap statement, RP[x⇝>y, y⇝x] is false in σ.  But this is a contradiction because we 

assumed that the assertive code above the line (which is state σ) ―code; Confirm RP[ x⇝y, 

y⇝x ]” is provable.  

Now, let us consider a proof to show completeness of the swap rule. Completeness means that if 

the code is valid, the generated VCs must be provable. In the RESOLVE context, if the code is 

incorrect, the verifier will never report that it is correct.  One important caveat is that because of 

the inherent incompleteness in any non-trivial mathematical theory, such as number theory, upon 

which proofs of programs are based, completeness can be only relative. We will do a proof by 

contradiction. Thus, we assume the code is valid but the generated VCs are not provable.  

 Another way of saying this is that we assume the assertive code below the line of the Swap 

statement rule is valid but the assertive code above the line is not provable. 

We assume that state σ is prior to the swap statement.  

σ(y) if id = x 
σˊ =  id:Id,  {  σ(x) if id = y 

σ(id),otherwise 
 



53 

 

From the semantics, if σ is the state before the swap statement, then because of the semantics of 

the Swap statement, RP[x⇝>y, y⇝x] is true in σ.  But this is a contradiction because we 

assumed that the assertive code above the line (which is state σ) ―code; Confirm RP[ x⇝y, 

y⇝x ]‖ is not provable.  

We conclude this discussion with an application of the Swap proof rule.  In the assertive code 

generated for the Flip procedure (as shown in Figure 12), the last statement in the assertive code 

was a swap statement, so we apply the swap statement proof rule to this assertive code.  Figure 13 

shows the modified assertive code after an application of the swap rule. Note that in the final 

Confirm statement, S was modified to S_Flipped. If any instances of S_Flipped had existed in 

the goal, they would have become S. 

Assume (((min_int <= 0) and (0 < max_int)) and 
(Last_Char_Num > 0) and ((Max_Depth > 0) and 
(min_int <= Max_Depth) and (Max_Depth <= max_int)))); 

Assume (|S| <= Max_Depth); 
Remember; 
 Var S_Flipped:Stack; 
 Var Next_Entry:Entry; 
      While (Depth(S) /= 0) 
  maintaining #S = (Reverse(S_Flipped) o S); 
  decreasing |S|; 
  changing S, S_Flipped, Next_Entry; 
      do 
              Pop(Next_Entry, S); 
              Push(Next_Entry, S_Flipped); 
      end; 
Confirm S_Flipped = Reverse(#S); 
 

Figure 13: Assertive Code after the Application of the Swap Rule (Version 2) 

 

If Statement 

Next we consider the proof rule for the If/Else construct. Because of the complexity of this proof 

rule and the many changes that were necessary to mechanize the rule, let‘s consider the original, 
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simple version of the rule first. Then, we will explain the steps that were necessary to create the 

current version of the proof rule. The initial version of the rule follows. The If/Else proof rule 

will generate assertive code that first confirms any pre-conditions to the condition. The assertive 

code will be split into two sections. One section will process the If section of Code. The second 

will process the Else section of code. Several updates are necessary to mechanize the classical 

version of the rule that looks something like the one below: 

Version 1: 

Assume BE; code1; Confirm RP; 
Assume ¬ BE; code2; Confirm RP; 
_____________________________________ 
If BE then code1 else code2 end_if;  

Confirm RP; 

 

An important aspect of this rule that is missing is the context (often abbreviated to C\ in the proof 

rules). The If/Else statement does not occur in isolation.  There is a context around it that is 

needed by the proof system to attempt verification of the code. The context includes the 

mathematical model (that is described in the specification) which describes the mathematical 

version of each variable and the specifications for the operation used in the code. For example, 

arrays and queues are often modeled as mathematical strings.  In the Stack_Template 

specification, our stacks are modeled as strings and that is a necessity in order to understand the 

syntax (e.g., concatenation = o) and the mathematical meanings of the assertions. The context 

also includes relevant concept and enhancement specifications (added through the application of 

declaration proof rules).  This observation leads us to following proof rule: 
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Version 2: 

 Context\ code; Assume BE; code1; Confirm RP; 
 Context\ code; Assume ¬ BE; code2; Confirm RP; 
 _______________________________________________________ 
 Context\ code; If BE then code1 else code2 end_if;  

Confirm RP; 

 

Another aspect of this proof rule that is necessary is the conversion from programming notation 

to mathematical notation. This provides proper processing of the conditional statement in the If 

condition. We cannot simply assume that the If condition statement true because the statement is 

in code not in a mathematical form. The proof system will not understand programmatic function 

calls. Consider an example (like the stack reversal) where we have an If statement that is based on 

the depth of a stack. Depth(S) > 0 does not have any mathematical meaning. Thus, this needs to 

be converted to its proper mathematical form that can be used by the VC generator. This is 

denoted with Math(BE). Math(BE) in this case would result in |S| > 0. Thus we need to convert 

our condition statements into a mathematical form before sending them to a mathematical proof 

system.  Math(BE) will generate the mathematical statements that must be true to enter the If 

portion of the code.  

Version 3: 

Context\ code; Assume Math(BE);  
code1; Confirm RP; 

 Context\ code; Assume ¬ Math(BE); code2; Confirm RP; 
 ___________________________________________________________ 
 Context\ code; If BE then code1 else code2 end_if;  

Confirm RP; 

 

In the example of Flip, neither Depth(S) nor the greater than operation have a pre-condition. 

However, it is possible that the code in the condition could have a pre-condition.  If there is a pre-
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condition for the condition statement, Invk_Cond(BE) will generate the goal that must be proved. 

Let us assume that BE is a complex statement that could include pre-conditions. Thus, prior to 

each iteration of the loop, we must also confirm that the pre-condition (or possibly multiple pre-

conditions depending on the complexity of the condition) are true.  For example, if the condition  

was (I * ((I + 1) – J)) > 0, there would be several conditions to prove. First, the addition operator 

requires that I + 1 is within the bounds of integer (greater than or equal to min_int and less than 

or equal to max_int). The subtraction operation requires that (I+1) – J is not greater than max_int 

or less than min_int. Finally, the multiplication operator requires that (I * ((I + 1) – J))  is also 

within integer bounds. Thus, all of these pre-conditions must be proved and will be generated by 

the Invk_Cond statement. The final version of the If/Else rule follows: 

Version 4: 

 
Context\ code; Confirm Invk_Cond(BE); Assume Math(BE);  

code1; Confirm RP; 
 Context\ code; Assume ¬ Math(BE); code2; Confirm RP; 
 ___________________________________________________________ 
 Context\ code; If BE then code1 else code2 end_if;  

Confirm RP; 
 
 

An example demonstrating the behavior of the If/Else rule will be shown in the discussion of the 

While Loop Rule. 

The If/Else proof rule aligns closely with the semantics. The semantics for the If Statement 

describe the behavior of the RESOLVE language when processing an If/Else statement. If the 

condition has a pre-condition and if that condition is false, then the transformation will move into 

the MW state. Otherwise, depending on the condition, S and T are related according to the code 

in either the If or the Else section based on the value of BE in S. 
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Inductive Definition on code: Stmnt_Seq of  
(S: St) Sem_R[code] (T: St): B  is  

 i.  S Sem_R[] T  = ( T = S )  
 ii. if R Sem_R[code] S then if S  {MW, VC, } then T = S 
else 
   (a) … 
    (b) R Sem_R[code; If BE then code1 else code2] T = (  
  If not Invk_Cond(BEx),  

then T = MW 
  Else[Val(BE, S) and S Sem_R[code1] T or  

¬Val(BE, S) and S Sem_R[code2] T] ); 
  (c) … 
 

 

To show soundness through a proof by contradiction, we assume the code is invalid but the 

generated VCs are provable. Another way of saying this is that we assume the assertive code on 

the top line of the If/Else statement is provable but the assertive code underneath the line is not 

valid.  Because we assume the code is invalid, we know that we end in the state MW. We assume 

that state σ is prior to the If/Else statement. Because of our assumption, then we know that 

beneath the line the code is invalid. Then in σ either RP is false or Invk_Cond(BE) is false in 

order to be in state MW. However this is a contradiction because we assumed that the assertive 

code above the line (which is state σˊ) is provable. This means that Invk_Cond(BE) is true and 

that RP is true.  

To show completeness, i.e., for proving that if the code is valid, the generated VCs must be 

provable, we do a proof by contradiction. Thus, we assume the code is valid but the generated 

VCs are not provable.  Another way of saying this is that we assume the assertive code below the 

line of the If/Else statement rule is valid but the assertive code above the line is not provable.  

We assume that state σ is prior to the If/Else statement. Because of our assumption, then we 

know that beneath the line the code is provable. Then in σ both RP is true and Invk_Cond(BE) is 

true in order for this to be valid. However this is a contradiction because we assumed that the 
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assertive code above the line (which is state σˊ) is probable. This means that Invk_Cond(BE) is 

false or that RP is false.  

Developmental Steps for a While Loop Proof Rule 

In 1969, Hoare put forth rules that have provided a basis for showing the correctness of software. 

Hoare‘s proof rules however are not mechanical. Thus the conversion from Hoare‘s original proof 

rules to automatable rules that can be used to create a verifier is an important process. Hoare‘s 

original rules are significantly different from the mechanical versions. The following will 

demonstrate the process of converting an example proof rule, the While loop, from Hoare‘s 

original rule to the implementable version. Following the same approach as was used for the 

If/Else statement, I will introduce the While loop rule by describing the conversion from the 

original rule, one modification at a time. This example helps highlight the iterative process for 

mechanizing a proof rule.  Most importantly, the iterative process must maintain soundness and 

completeness.  

Inv ^ B {S} Inv 
____________________________ 
Inv {While B do S} not(B) ^ Inv 
 

 for the while loop code with the invariant “inv”: 

While B 
do 
 S; 
end; 

Figure 14: Hoare’s Original Proof Rule 
 

Hoare‘s rule attempts to prove the invariant is true after the completion of the While loop rule 

(when it is true before the loop). In order to prove an invariant true, we will assume that the 
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invariant and conditional statement are true before an iteration of the loop and prove (based on 

that assumption and the body of the loop) that the invariant is true at the end of an iteration. If we 

can prove this invariant is true after an iteration of the loop, the proof rule shows that the 

invariant is true after all iterations. 

Proof Rule: Version 2 

In order to use this rule in a mechanical system, a few initial modifications are needed. First, a 

mechanical verification system needs to be able to prove (or try to prove) generic assertions, i.e. 

The invariant may be more specific than the general assertion the verification system may be 

attempting to prove. Thus, we need to modify our rule to prove assertions other than the invariant. 

Secondly, we need to add a syntactic slot for our invariant in the While statement. The 

programmer will include the invariant when writing the code. The invariant should be detailed 

enough to capture the ―reason‖ for the While loop. If not provided, the invariant will be assumed 

true. 

The second iteration of the While loop rule follows: 

code; Confirm Inv; 
Assume Inv ^ B; body; Confirm Inv; 
Assume Inv ^ not(B); Confirm RP; 
_________________________________ 
code; While B maintaining Inv; do Body end; Confirm RP 

 

This version of the proof rule will convert the previous example into three assertions. In order to 

do this, however, we must first know what we are trying to prove.  
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Proof Rule: Version 3 

As discussed when the If/Else rule was introduced, the context is necessary to perform proofs and 

reason about the VCs. Thus, this version includes the context in the proof rule. 

Context/ code; Confirm Inv; 
Context/ Assume Inv ^ B; body; Confirm Inv; 
Context/ Assume Inv ^ not(B); Confirm RP; 
_________________________________ 
Context/ code; While B maintaining Inv; do Body end;  

Confirm RP 

 

Proof Rule: Version 4 

Another aspect of this proof rule that needs modification is the handling of the conditional 

statement in the While loop. This is the same statements that were used in the If/Else rule. The 

proof system would not understand the calls to Depth(S). Thus we will convert our condition 

statements into a mathematical form before sending them to a mathematical proof system. 

Actually, this was necessary for the first multiplication example, as well. For the condition X > 

Y, The ‗>‘ sign in the code is actually a call to a ―Greater Than‖ operation from the Integer 

facility. On the other hand, the ‗>‘ sign when it‘s shown in the assertion, is a math symbol. 

Thus the following proof rule becomes the next iteration of our mechanical While loop proof 

rule: 

C/ code; Confirm Inv; 
C/ Assume Inv ^ Math(B); body; Confirm RP; 
C/ Assume Inv ^ not(Math(B)); Confirm RP; 
_________________________________ 
C/ code; While B maintaining Inv; do Body end; Confirm RP 
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Proof Rule: Version 5 

In order to motivate the next rule modifications, we will use an excerpt from the Stack Flip 

example.  

 Var S_Reversed: Stack; 
 Var Next_Entry: Entry; 
 While (Is_Not_Zero(Depth(S))) 
  maintaining #S = Rev(S_Reversed) o S; 
 do 
  Pop(Next_Entry, S); 
  Push(Next_Entry, S_Reversed); 
 end; 

 

The three assertions created by the above version of the While proof rule are as follows: 

1) Assume (((min_int <= 0) and (0 < max_int)) and 
(Last_Char_Num > 0) and ((Max_Depth > 0) and 
(min_int <= Max_Depth) and (Max_Depth <= max_int)))); 

Assume (|S| <= Max_Depth); 
Var S_Reversed: Stack;  
Var Next_Entry: Entry; 

    Confirm #S = Rev(S_Reversed) o S; 
 

2) Assume #S = Rev(S_Reversed) o S ^ (Depth(S) != 0) 
  Pop(Next_Entry, S);  
  Push(Next_Entry, S_Reversed); 
    Confirm #S = Rev(S_Reversed) o S; 
 

3) Assume #S = Rev(S_Reversed) o S ^  not(Depth(S) != 0)  
    Confirm S_Reversed = Reverse(S); 

 

It can be observed that by splitting the rule into three parts, we lose assumptions (seen in #1 

above) found in the beginning of the assertive code that may be needed to prove the VCs. 

previous code. Assertive code two and three do not assume the constraints. Assumptions about 

the constraints of the various variables are placed prior to the implementations by the procedure 

declaration rule. These constraints originate from the specification of the variable type. Thus, 
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when proving the invariant, we will assume the constraints on the various variables are true. As 

can be seen in this reversal example when trying to prove the assertion created by the While loop 

rule, we call both the Push and Pop operations. The VCs need be able to show the pre-condition 

of Push and Pop are true. 

Thus, in this example, to prove the pre-condition of push (|S| < Max_Depth), we will need the 

constraint |S| <= Max_Depth (in addition to the fact that we just popped an element off the top of 

the stack) to prove the pre-condition of push. The pre-condition of pop, does not require the 

constraints to prove. It can be shown by the assumption of the condition of the While loop.  Thus, 

the new version of the While loop rule is: 

C/ code; Confirm Inv; 
C/ Assume Inv ^Math(B) ^ Are_Constraints_Compliant(P, T);  

body; Confirm RP; 
C/ Assume Inv ^ not(Math(B)); Confirm RP; 
_________________________________ 
C Var P:Type1, Var T:Type2/ code; While B maintaining Inv; do 
Body end; Confirm RP; 

 

Proof Rule: Version 6 

There is a distinction between proofs that show partial and total correctness. If code is only 

partially correct, there is a guarantee of correctness only if the code terminates. Total correctness 

additionally requires a proof that the code will terminate. In order to guarantee total correctness 

with our proof rules, we must also show that the While loop terminates. The code can be 

modified to include an ordinal that is will decrease every time through the loop. The proof rule 

can, then, be modified to make use of that ordinal to show total correctness.  The rule making use 

of that ordinal is shown below: 
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C/ code; Confirm Inv; 
C/ Assume Inv ^Math(B) ^ Are_Constraints_Compliant(P, T) ^  

P_Val=P_Exp; body; Confirm P_Exp < P_Val ^ RP; 
C/ Assume Inv ^ not(Math(B)); Confirm RP; 
_________________________________ 
C  Var P:Type1, Var T:Type2/ code; While B maintaining Inv; 
decreasing P_Exp; do Body end; Confirm RP; 
 
 

Proof Rule: Version 7 

Another modification to the While rule concerns the pre-conditions of function operations 

invoked in condition B in the code, as discussed in the case of the If-then-else statement.  

  

C/ code; Confirm Inv; 
C/ Confirm Invk_Cond(B); Assume Inv ^Math(B) ^ 
Are_Constraints_Compliant(P, T) ^ P_Val=P_Exp; body;  

Confirm P_Exp < P_Val ^ RP; 
Context/ Assume Inv ^ not(Math(B)); Confirm RP; 
_________________________________ 
C  Var P:Type1, Var T:Type2/ code; While B maintaining Inv; 
decreasing P_Exp; do Body end; Confirm RP; 

 

Proof Rule: Version 8 

The final iteration of the rule is primarily to simplify the rule. This rule converts a While loop to 

an If statement. This obviously allows for reuse of the If/Else rule which reduces the possibility 

of implementation errors and ideally makes the rule more ―understandable.‖ Positive side-effects 

of converting the While loop to an If/Else statement include the removal of 

Are_Constraints_compliant, Invk_Cond(conditional statement), and Math(conditional statement) 

forming a much simpler rule. 
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C/ code; Confirm Inv; Change Vlist; Assume Inv ^ NQV(RP, 
P_Val)= P_Exp; If BE then body; Confirm Inv ^ P_Exp < NQV(RP, 
P_Val); else Confirm RP end_if; Confirm True; 
_________________________________ 
C/ code; While B maintaining Inv; decreasing P_Exp; changing 
VList; do Body end; Confirm RP 
 

In addition with this simplification, we will add another annotation to the While loop 

implementation. A list of all variables that the loop may change can be listing in changing. As a 

result of the formation of the rule as one unit (instead of the three previously discussed) and to 

simplify invariants, the verifier-introduced Change statement is necessary. The Change statement 

differentiates between variables that are altered in the loop and variables that the loop leaves 

unaltered. Without it, the verifier would assume that in the inductive case, when the ―Assume inv 

and BE‖ clause is processed, that each of these are unaltered variables that are modifiable by the 

application of rules on the code prior to the While loop. The statement has the effect of 

introducing new names for each of the variables listed in the changing clause by aging them with 

the Next Quotation Mark (NQV) variable  and by replacing each variable X with X‘ in 

subsequent assertions. In the case when a variable has been already aged and X‘ is found in 

subsequent assertions, the verifier will introduce X‘‘ and so on, as necessary. So, all verification-

introduced variables will be preceded by one or more question marks and they are all universally 

quantified. The proof rule uses NQV(RP, X) to state the need to find the instance of X in RP 

preceded by the most question marks and use one more question mark where NQV is used. NQV 

is also used with P_Val to insure that nested loops do not try to ―use‖ the same P_Val.  

After applying the While rule and the If/Else rule to the example in Figure 13, the following 

assertive code is generated. 
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Part One of Assertive Code after Loop Rule: 
Assume (((min_int <= 0) and (0 < max_int)) and 

(Last_Char_Num > 0) and ((Max_Depth > 0) and 
(min_int <= Max_Depth) and (Max_Depth <= max_int)))); 

Assume (|S| <= Max_Depth); 
Remember; 
 Var S_Flipped:Stack; 
 Var Next_Entry:Entry; 
Confirm #S = (Reverse(S_Flipped) o S); 
Change S:Modified_String_Theory.Str(Entry),  

S_Flipped:Modified_String_Theory.Str(Entry), 
Next_Entry:Entry, 
S_Flipped:Modified_String_Theory.Str(Entry), 
Next_Entry:Entry; 

Assume (#S = (Reverse(S_Flipped) o S) and P_val' = |S|); 
Confirm true; 
Assume |S| /= 0; 
      Pop(Next_Entry, S); 
      Push(Next_Entry, S_Flipped); 
Confirm (#S = (Reverse(S_Flipped') o S) and (|S| < P_val')); 

 

Figure 15: Application of the Mechanizable While Loop Rule (Version 3 – Part 1) 

 
Part Two of Assertive Code after Loop Rule: 
Assume (((min_int <= 0) and (0 < max_int)) and 

(Last_Char_Num > 0) and ((Max_Depth > 0) and 
(min_int <= Max_Depth) and (Max_Depth <= max_int)))); 

Assume (|S| <= Max_Depth); 
Remember; 
 Var S_Flipped:Stack; 
 Var Next_Entry:Entry; 
Change S:Modified_String_Theory.Str(Entry),  

S_Flipped:Modified_String_Theory.Str(Entry), 
Next_Entry:Entry, 
S_Flipped:Modified_String_Theory.Str(Entry), 
Next_Entry:Entry; 

Assume #S = (Reverse(S_Flipped) o S); 
Confirm true; 
Assume |S| = 0; 
Confirm S_Flipped = Reverse(#S); 
 

Figure 16: Application of the Mechanizable While Loop Rule (Version 3 – Part 2) 
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While Statement 

The following list explains the semantics of the While loop annotations in RESOLVE.   

  If a variable that is not in the ―changing‖ list is used in a way it might be changes (e.g., a 

non-restores mode argument of an operation or a swap statement),  then the program is 

syntactically incorrect.  If the changing list is omitted, then all variables in scope are 

considered to be ―changing‖.   In this case, and in general, if the changing list has 

something listed that doesn‘t change, then the implicit invariant may be too weak and we 

may not be able prove the VCs, but the code would still be valid.  Here, unprovability 

results from a lack of proper documentation, so it is not a soundness or completeness 

problem. 

 If the programmer-supplied invariant is false, then the code will be invalid (MW).  If 

invariant is omitted, it is assumed to be true.  In this case and in general, if the invariant is 

weaker than necessary to establish code correctness, we cannot prove the code but it is 

still valid.  Again, unprovability results from only from a lack of proper documentation 

because it is always possible to construct an invariant for correct code; so this is not a 

soundness or completeness problem either. 

 If the decreasing clause is wrong, then the code will be invalid (MW).  If it is omitted and 

the procedure is expected to terminate with an ensures clause, then the code is invalid 

(MW) as well.  The clause is not necessary if the code only ‗respects‘ its guarantees; here 

the semantics will become  and would be still valid.  There is no such thing as a too 

weak decreasing clause.  It is possible to construct a decreasing clause for every 

terminating loop.  
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To show this proof rule is sound and complete, we use the standard approach of reducing it to a 

version of the proof rule that has already been proved sound and complete. In many ways, this 

process is the reverse of the steps we just made to mechanize the proof rule. The following proof 

rule is the current version:  

C/ code; Confirm Inv; Change Vlist; Assume Inv ^ NQV(RP, 
P_Val)= P_Exp; If BE then body; Confirm Inv ^ P_Exp < NQV(RP, 
P_Val); else Confirm RP end_if; Confirm True; 
_________________________________ 
C/ code; While B maintaining Inv; decreasing P_Exp; changing 
VList; do Body end; Confirm RP 

 

By removing the Changing statement because that is simply an aid to simply the invariant and 

removing the decreasing clause which is only necessary if showing termination, the current proof 

rule reduces to the following proof rule. 

C/ code; Confirm Inv; Assume Inv; If BE then body; Confirm 
Inv; else Confirm RP end_if; Confirm True; 
_________________________________ 
C/ code; While B maintaining Inv; do Body end; Confirm RP; 
 
 

By applying the If/Else rule to the If/Else portion of the proof rule, our proof rule reduces to this 

more simplified version. 

C/ code; Confirm Inv; Assume Inv; Assume BE; body; Confirm 
Inv; 

C/ code; Assume Inv; Assume ¬BE; Confirm RP;  
_________________________________ 
C/ code; While B maintaining Inv; do Body end; Confirm RP; 

 

This is the classical version of the proof rule (modulo context and code preceding loop) which is 

already known to be sound and complete. 
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Function/Expression Assignment and Operation Call Rules 

Before we present the more complex operation call rule, we will first present a classical function 

assignment rule. The semantics for the reassignment statement, or function call statement, are 

below.  It is necessary to show that any pre-conditions of the function are true. This could include 

pre-conditions for multiple functions. For example ((X + Y) – Z) would need to show the pre-

condition to plus and minus are both true. Invk_Cond(f(y,exp)) will determine if all pre-

conditions for this function call are true. Unlike in a general operation call statement, function 

call parameters are not changeable. Thus, the only value that can change by an application of the 

function call statement is ‗x‘ the variable that is being assigned the value of f(y, exp). All other 

Ids in state T remain the same as in state S. T(x) is the value of f(y,exp) in the state S. 

Inductive Definition on code: Stmnt_Seq of  
(S: St) Sem_R[code] (T: St): B  is  

 i.  S Sem_R[] T  = ( T = S )  
 ii. if R Sem_R[code] S then if S  {MW, VC, } then T = S  

 else 
   (a) … 
    (c) R Sem_R[code; x : f(y, exp)] T  = (   
    If not Invk_Cond(f(y, exp)),  

then T = MW 

Else[ : Id, if   x then T() = S()  
and T(x) = Val(f(y, exp), S)]); 

  (d)… 
 

The corresponding proof rule is: 

 C\ code; Confirm Invk_Cond(exp)  RP[x⇝Math(exp)]; 
 _____________________________________________________________ 

 C\ code; x : exp; Confirm RP; 
 

As with our previous proofs of soundness we will show soundness through a proof by 

contradiction. We assume the code is invalid and we know that we end in the state MW. We 
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assume that state σ is prior to the reassignment statement. Because of our assumption, then we 

know that beneath the line the code is invalid. Then in σ either RP is false or Invk_Cond(f(y,exp)) 

is false in order to be in state MW. However this is a contradiction because we assumed that the 

assertive code above the line (Confirm Invk_Cond(exp)  RP[x⇝Math(exp)];)is provable.  

To show completeness with a proof by contradiction, we assume the assertive code below the line 

of the function assignment statement rule is valid but the assertive code above the line is not 

provable. We assume that state σ is prior to the function assignment statement. Because of our 

assumption, then we know that beneath the line the code is provable. Then in σ both RP is true 

and Invk_Cond(f(y,exp)) is true in order for this to be valid. However this is a contradiction 

because we assumed that the assertive code above the line (which is state σˊ) is provable.  

Now, let us consider the operation call rule. The semantics of the operation call statement 

exemplifies the need for relational semantics. RESOLVE permits a result of an operation to be 

within a set of acceptable choices instead of something particular. For example, an ensures clause 

could state that an operation ensures for an updated Integer ―I > 0‖. Any implementation that 

provides an I greater than zero will be a valid implementation. Another example is the alters 

parameter mode. When this parameter mode is used, no return value is specified of this value. 

Thus any value an implementation may supply is acceptable.  

The semantics for the operation call rule state that if the pre-condition of the operation is not true, 

then the state of T is MW. However, if the pre-condition is true, then all Ids in state T are the 

same, except any parameters to the operation. Op_Rel is used to define the relation between the 

value of y in state T and in state S. Op_Rel is based on the post-condition of the operation. 
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Inductive Definition on code: Stmnt_Seq of  
(S: St) Sem_R[code] (T: St): B  is  

 i.  S Sem_R[] T  = ( T = S )  
 ii. if R Sem_R[code] S then if S  {MW, VC, } then T = S  

 else 
   (a) … 
    (d) R Sem_R[code; op(updates y)] T  = (   
    If not Invk_Cond(op(y)),  

then T = MW 

Else[ : Id, if   y then T() = S()  
and T(y) Op_Rel S(y) )  ]); 

  (e) … 
 

From the pre-condition a VC to prove it is generated. The post-condition is assumed and is used 

to prove existing Confirm assertions. Variables that are changed by the operation will need to be 

updated in the existing VCs. This is done using NQV which works the same as explained earlier 

for the While Loop Rule. 

This is a simplified version of the operation invocation rule which processes an example 

operation with an updates and alters parameter. Note that the specification of operation P is 

already in the context. Before applying this rule, the assertive code needs to confirm RP which 

may contain the variables a and b which are arguments to the operation P. The rule will then 

confirm the pre-condition of P and assume the post-condition of P while updating each statement 

to use the actual variables instead of specification variables. To preserve the distinction between 

states, NQV will generate the next verification variable for the specified variable. 

CDP =  Operation P( updates t: T1; alters u: T2); 

  requires Pre/_t, u _\; 
  ensures Post/_ #t, #u, t _\; 
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Operation Invocation Rule: 

 C {CDP}\ code; Confirm Invk_Cond(P(a,b)); 
Assume Post[t⇝NQV(RP2, a), #t⇝a, #u⇝b]; 

Confirm RP[a⇝NQV(RP2, a)]; 
 _________________________________________________________________ 

 C {CDP}\ code; P( a, b); Confirm RP/_ a, b _\ ; 
 

Returning to the Flip example in Figure 15, we will apply the operation invocation rule to the 

following code. Note that the parameter modes in this example match the parameter modes for 

the push operation. 

Operation Push(alters E: Entry; updates S: Stack);  
requires |S| < Max_Depth; 
ensures  S = <#E> o #S; 

 

Assume (((min_int <= 0) and (0 < max_int)) and 
(Last_Char_Num > 0) and ((Max_Depth > 0) and 
(min_int <= Max_Depth) and (Max_Depth <= max_int)))); 

Assume (|S| <= Max_Depth); 
Remember; 
 Var S_Flipped:Stack; 
 Var Next_Entry:Entry; 
Confirm #S = (Reverse(S_Flipped) o S); 
Change S:Modified_String_Theory.Str(Entry),  

S_Flipped:Modified_String_Theory.Str(Entry), 
Next_Entry:Entry, 
S_Flipped:Modified_String_Theory.Str(Entry), 
Next_Entry:Entry; 

Assume (#S = (Reverse(S_Flipped) o S) and P_val' = |S|); 
Confirm true; 
Assume |S| /= 0; 
      Pop(Next_Entry, S); 
Confirm (|S_Flipped| < Max_Depth); 
Assume S_Flipped' = (<Next_Entry> o S_Flipped); 
Confirm (#S = (Reverse(S_Flipped') o S) and (|S| < P_val')); 

Figure 17: Flip Example (Version 4) 
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Assume Rule 

In the assertive code provided above, the next proof rule needed is a rule to process the Assume 

statement. The Assume rule is a basic rule that processes Assume statements generated by other 

proof rules. 

Assume Rule: 
  
 C\ code; Confirm exp => RP; 
 _____________________________________________ 
 C\ code; Assume exp; Confirm RP; 
 

The results of an application of the Assume rule to the assertive code in Figure 18 with minor 

simplifications follow. 

Assume (((min_int <= 0) and (0 < max_int)) and 
(Last_Char_Num > 0) and ((Max_Depth > 0) and 
(min_int <= Max_Depth) and (Max_Depth <= max_int)))); 

Assume (|S| <= Max_Depth); 
Remember; 
 Var S_Flipped:Stack; 
 Var Next_Entry:Entry; 
Confirm #S = (Reverse(S_Flipped) o S); 
Change S:Modified_String_Theory.Str(Entry),  

S_Flipped:Modified_String_Theory.Str(Entry), 
Next_Entry:Entry, 
S_Flipped:Modified_String_Theory.Str(Entry), 
Next_Entry:Entry; 

Assume (#S = (Reverse(S_Flipped) o S) and P_val' = |S|); 
Confirm true; 
Assume |S| /= 0; 
      Pop(Next_Entry, S); 
Confirm (|S_Flipped| < Max_Depth); 
Confirm (#S = (Reverse((<Next_Entry> o S_Flipped)) o S) and  

(|S| < P_val')); 
 

Figure 18: Assertive Code after the application of Assume Rule (Version 5) 

Notice that this Assume statement was not added as a given! This might be surprising based on 

the proof rule. However, because the assumption is an equality of the form variable = value, then 
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we are able to replace any instances of the variable with the value, if the variable exists in the 

goal. This is done in an effort to simplify the VCs and reduce the number of givens.  

The semantics state that the value of state T is the same as the value of state S except when Q is 

not valid in state S. In that case, the state T enters the VC state, because the assumption on which 

the code is based is not true. The proof rule for the Assume statement modifies the goal in the 

same manner as the semantics update the state. The assumption implies the current goal and if 

false, the code will be vacuously true. Otherwise, the assumption is used as an additional fact to 

prove the goals. 

Inductive Definition on code: Stmnt_Seq of  
(S: St) Sem_R[code] (T: St): B  is  

 i.  S Sem_R[] T  = ( T = S )  
 ii. if R Sem_R[code] S then if S  {MW, VC, } then T = S  

 else 
   (a) … 
    (f) R Sem_R[code; Assume Q] T = (  

Val(Q,S)

T= S





VC if

otherwise
  ); 

    (g) … 
    

Confirm Rule 

The semantics for the Confirm rule require that the Confirm statement be true or the state enters 

MW. Otherwise, the state stays the same. 

Inductive Definition on code: Stmnt_Seq of  
(S: St) Sem_R[code] (T: St): B  is  

 i.  S Sem_R[] T  = ( T = S )  
 ii. if R Sem_R[code] S then if S  {MW, VC, } then T = S  

 else 
   (a) … 

 (e) R Sem_R[code; Confirm Q] T = (  T = S Val(Q,S)

T =





if

MW otherwise

  ); 

    (f) … 
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These semantics align with the proof rule which adds the statement to be confirmed as another 

goal that must be true if the code is valid.  The Confirm rule is typically used to process Confirm 

statements generated by other proof rules, though a programmer may introduce explicit Confirm 

clauses in code occasionally as hints to assist an automated prover.   

Confirm Rule: 
  

 C\ code; Confirm IP  RP; 
 _____________________________________________ 
 C\ code; Confirm IP; Confirm RP; 
 
 

After applying the Assume rule for the post-condition of Push, the next rule to statement to be 

processed is the Confirm statement. The Confirm rule updates the Confirm statement with a 

new goal that must be proved. At this point in time, we cannot prove that |S_Flipped| < 

Max_Depth but after processing of the prior statements, this should be provable when the VCs 

are sent to the prover. 

Assume (((min_int <= 0) and (0 < max_int)) and 
(Last_Char_Num > 0) and ((Max_Depth > 0) and 
(min_int <= Max_Depth) and (Max_Depth <= max_int)))); 

Assume (|S| <= Max_Depth); 
Remember; 
 Var S_Flipped:Stack; 
 Var Next_Entry:Entry; 
Confirm #S = (Reverse(S_Flipped) o S); 
Change S:Modified_String_Theory.Str(Entry),  

S_Flipped:Modified_String_Theory.Str(Entry), 
Next_Entry:Entry, 
S_Flipped:Modified_String_Theory.Str(Entry), 
Next_Entry:Entry; 

Assume (#S = (Reverse(S_Flipped) o S) and P_val' = |S|); 
Confirm true; 
Assume |S| /= 0; 
      Pop(Next_Entry, S); 
Confirm ((|S_Flipped| < Max_Depth) and  

(#S = (Reverse((<Next_Entry> o S_Flipped)) o S) 
and (|S| < P_val'))); 

 

Figure 19: Assertive Code after the application of Confirm Rule (Version 6) 
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Variable Declaration Rule 

The Variable declaration rule processes each variable declaration. In general, a variable may be 

initialized to one of many values (i.e., its specification is relational).  So RESOLVE uses a 

predicate to capture whether a given value is an initial value.  For some types, there may be a 

single initial value (e.g., Stack). If the initial value is known, each instance of the Variable may be 

replaced in the Confirm statement.  

Variable Declaration Rule: 
 
C\ code; Assume T.is_initial(v); Confirm RP; 
______________________________________________ 
C\ code; code; Var v: T; Confirm RP;  

 

Once again, returning to the Flip example, we will use the variable declaration of S_Flipped as an 

example. The following assertive code assumes proof rules have been applied up until processing 

the variable declaration for S_Flipped. 

Assume (((min_int <= 0) and (0 < max_int)) and 
(Last_Char_Num > 0) and ((Max_Depth > 0) and 
(min_int <= Max_Depth) and (Max_Depth <= max_int)))); 

Assume (|S| <= Max_Depth); 
Remember; 
 Var S_Flipped:Stack; 
Confirm  (#S = (Reverse(S_Flipped) o S) and 

(#S = (Reverse(S_Flipped') o S'') implies  
(|S''| /= 0 implies  

    (|S''| /= 0 and 
(S'' = (<Next_Entry'> o S') implies  

    ((|S_Flipped'| < Max_Depth) and 
((Reverse(S_Flipped') o S'') =             
 (Reverse((<Next_Entry'> o S_Flipped')) o S') and 
(|S'| < |S''|)))))))) 

Figure 20: Assertive Code just before the Application of Variable Declaration Rule (Version 7) 
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After processing the variable declaration for S_Flipped, the assertive code in Figure 21 is 

generated. Note that every instance of S_Flipped in the final Confirm was replaced with 

empty_string.  

Assume (((min_int <= 0) and (0 < max_int)) and 
(Last_Char_Num > 0) and ((Max_Depth > 0) and 
(min_int <= Max_Depth) and (Max_Depth <= max_int)))); 

Assume (|S| <= Max_Depth); 
Remember; 
Confirm  (#S = (Reverse(empty_string) o S) and 

(#S = (Reverse(S_Flipped') o S'') implies  
(|S''| /= 0 implies  

    (|S''| /= 0 and 
(S'' = (<Next_Entry'> o S') implies  

      ((|S_Flipped'| < Max_Depth) and 
((Reverse(S_Flipped') o S'') =    
 (Reverse((<Next_Entry'> o S_Flipped')) o S') and 
(|S'| < |S''|)))))))) 
 

Figure 21: Assertive Code After the Application of Variable Declaration Rule (Version 8) 

Remember Rule 

The Remember rule is used to convert the old variables in the Confirm statement to the normal 

version. The old variables distinguish incoming and outgoing variables while processing the 

assertive code. The Remember rule is placed so that the variables no longer need that distinction 

for the remaining proof rules to be applied and the proofs to be completed.  

C\ code; Confirm RP[#s⇝s, #t⇝t];    
______________________________________________________________ 

C\ code; Remember; Confirm RP/_ s, #s, t, #t, ⋯ _\; 
 

After application of the Remember rule to the assertive code in Figure 21, the assertive code 

would appear as below. At this point, the VC generator will apply the Assume rule twice and 

then supply the final VCs to the prover. 
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Assume (((min_int <= 0) and (0 < max_int)) and 
(Last_Char_Num > 0) and ((Max_Depth > 0) and 
(min_int <= Max_Depth) and (Max_Depth <= max_int)))); 

Assume (|S| <= Max_Depth); 
Confirm  (S = (Reverse(empty_string) o S) and 

(S = (Reverse(S_Flipped') o S'') implies  
(|S''| /= 0 implies  

    (|S''| /= 0 and 
(S'' = (<Next_Entry'> o S') implies  

      ((|S_Flipped'| < Max_Depth) and 
((Reverse(S_Flipped') o S'') =    
 (Reverse((<Next_Entry'> o S_Flipped')) o S') and 
(|S'| < |S''|)))))))) 

 

Figure 22: Flip Example (Version 9) 

At this point, we have discussed all the rules for verifying the code for Flip procedure.  Repeated 

application of the rules leads to the VCs given in Appendix D. Each VC has a goal and one or 

more givens.  Some VCs are simple and some others are require knowledge of mathematical 

theorems to establish. Two interesting VCs follow. Both VCs rely on the definition of Reverse. In 

order to prove VC 0_1, the prover must be able to determine that Rev(empty_string) is still the 

empty_string that that the empty_string concatenated with S is the same as S. VC 0_3 also 

requires understanding of Reverse but in addition uses the givens to prove the correctness. If the 

goal is updated to apply the Reverse operator to <Next_Entry> o S_Flipped, the goal will become 

(Reverse(S_Flipped')  o S'') = (Reverse(S_Flipped‘) o <Next_Entry'>  o S'). Then because of the 

assumption that S‘‘ = <Next_Entry'>  o S', this VC can be proven true. 
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VC: 0_1:  
Base Case of the Invariant of While Statement in Procedure 
Flip modified by Variable Declaration rule: 
Obvious_Flip_Realiz.rb(10) 
 
Goal: 
S = (Reverse(empty_string)  o S) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Max_Depth  > 0) 
5: (min_int <= Max_Depth) and (Max_Depth <= max_int) 
6: (|S|  <= Max_Depth) 
 
 
VC: 0_4:  
Inductive Case of Invariant of While Statement in Procedure 
Flip modified by Variable Declaration rule: 
Obvious_Flip_Realiz.rb(10) 
 
Goal: 
(Reverse(S_Flipped')  o S'') = (Reverse((<Next_Entry'>  o 
S_Flipped'))  o S') 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Max_Depth  > 0) 
5: (min_int <= Max_Depth) and (Max_Depth <= max_int) 
6: (|S|  <= Max_Depth) 
7: S = (Reverse(S_Flipped')  o S'') 
8: |S''| /= 0 
9: S'' = (<Next_Entry'>  o S') 
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General Procedure Declaration and Call Rules 

We conclude this chapter with general rules for operation calls and procedure bodies, involving 

all different parameter modes.  The example operation P, defined by the name CDP, will be used 

to demonstrate these proof rules. 

CDP =  Operation P( updates t: T1; evaluates u: T2;  
replaces v: T3; restores w: T4; preserves x: T5;  
alters y: T6; clears z: T7); 

  requires Pre/_t, u, w, x, y, z, _\; 
  ensures Post/_ #t, u, w, x, #y, #z, t, v, _\; 

 

First let us consider the general operation realization rule. For the operation P each parameter has 

a different mode and the rule defines how each mode affects the VCs generated. This rule must 

assume the constraints of all the parameters to the operation (along with the pre-condition). In 

addition, for a parameter that is defined to use the replaces parameter as with parameter v, the 

incoming value is assumed to be the initial value of the type, T3. The Remember statement and 

body of the assertive code are generated in the same manner as with the simpler rule. The final 

Confirm must also take into account the different parameter mode. If the parameter mode is 

restores, as with w, the assertive code will confirm that the final value of w is the same as the 

starting value. For the parameter mode clears, the final value of z is assumed to be the initial 

value of type, T7. 
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Procedure Declaration Rule: 

 C {CDP}\ Assume Pre  T1.Constraint(t)  T2.Constraint(u)   
  T3.Is_Init(v)  T4.Constraint(w)  T5.Constraint(x)   

T6.Constraint(y)  T7.Constraint(z); 
Remember; 

body;  

Confirm Post  w  #w  T7.is_initial(z); 
 

 C {CDP}\ code; Confirm RP; 
 _________________________________________________________________ 

 C {CDP}\ Proc P(… ); body; end P; code;  
Confirm RP; 

 

The general operation call rule provides the same functionality as the simplified version of the 

call rule but defines the behavior for all parameter modes. For certain parameter modes, the pre-

condition or post-condition can be modified. For example, in P, z (of type T7) is cleared. The 

actual parameter in the operation call is g. Thus, the proof rule adds an additional Assume clause 

that T7.is_initial(NQV(RP, g)) after the operation call. Of course, the formal parameters must be 

replaced with the actual parameters.  In the post-condition, each parameter is replaced based on 

its parameter mode. Any parameter that may have a different final value than the initial value will 

use NQV (as defined for previous rules) to generate new variable names. So the resulting value of 

any parameter with updates and replaces mode are replaced by the NQV value of the actual 

arguments. The Assume statement (that assumes the post-condition) is also updated so that any 

instance of the actual parameter is replaced with the NQV value. For updates and replaces modes, 

any variables with the # sign (variables referring to the incoming values) are replaced by the 

actual parameter. This distinguishes the incoming and outgoing values of the operation. For 

example, if the actual variable is A and the formal parameter is T, then the specification may refer 

to #T and T, but the assertive code would updated those references to A and A‘. Any parameters 

that are evaluated are replaced by the mathematic equivalent of the expression. The other 
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parameters are replaced by the actual argument used when the operation is invoked. There is no 

need to use NQV since the variable does not change. Similar modifications must be made to the 

pre-condition (replacing the parameters used in the specification with the actual values) but this 

logic is handled by Invk_Cond. Invk_Cond, just as with the function call rule, will provide the 

combined pre-conditions of the operation being called in addition to any pre-conditions for 

functions being used as parameters to the operation. 

Operation Call Rule: 

 C {CDP}\ code; Confirm Invk_Cond(P(a,exp,b,c,d,e,f));  

Assume ( T1.Constraint(t)  T3.Constraint(v)  
T6.Constraint(y)  Post) [t⇝NQV(RP, a), #t⇝a, u⇝Math(exp), 

v⇝NQV(RP, b), w⇝c, x⇝d, #y⇝e, #z⇝f]  T7.is_initial(NQV(RP, 
f));  

Confirm RP[a⇝NQV(RP, a), b⇝NQV(RP, b), e⇝NQV(RP, e), 

f⇝NQV(RP, f)] ); 
 _________________________________________________________________ 

 C {CDP}\ code; P( a, exp, b, c, d, e, f);  

Confirm RP/_ a, b, c, d, e, f, g, h,  _\ ; 

 

One complication in verification of operation calls concerns repeated arguments. If an operation 

takes multiple parameters and the same variable is passed more than once, what is the behavior of 

the operation? An answer to this question is important in defining the behavior of the software 

under all circumstances. For RESOLVE, this behavior has been defined in [45]. To implement 

this semantics, the current compiler is being augmented with a pre-processor that introduces 

necessary intermediate variables so that the resulting code processed by the VC generator is such 

that there are no operation calls with repeated arguments.  This makes it possible to apply the 

proof rules in this section directly, and thus handle calls with repeated arguments indirectly.  
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VC Simplification 

The VC generator contains simplification rules for reducing the verification conditions. Between 

each application of a proof rule, the VC generator can simplify each VC if possible. A list of 

basic simplification rules is provided in Appendix B. While the rules do eliminate VCs, the VCs 

that are eliminated could be easily proved by the RESOLVE prover.  

The simplification process has to be done carefully, for otherwise incompleteness could be 

introduced.  Consider the following example where the VCs could be oversimplified to 

understand the reasoning for not adding additional simplification steps. At initial inspection, in 

the following example, it appears that we can simplify the following example. The fact that 

Max_Length > 0 seems to have no impact on proving the value of X is greater than -1. 

assertive_code;  
Assume Max_Length > 0; 
Confirm X > -1; 

 

However, because we do not know what facts the assertive_code that comes before the 

assumption contains (when processing the Assume rule), one must be careful in the simplification 

process. For example, if the assertive code stated: X > Max_Length, this fact is necessary to 

prove our goal. 

Assume X > Max_Length; 
Assume Max_Length > 0; 
Confirm X > -1; 

 

Thus, it is currently thought to be too risky to perform certain simplification until the entire VC 

generation process is completed. Sound simplifications are among the future directions for 

research.   
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CHAPTER FOUR 

COMPONENT-LEVEL VERIFICATION 

In order to build and verify a large software system, it is important to be able to verify each 

component independently. So this chapter builds on the previous discussion of verification of a 

procedure to complications of verification of components.  To illustrate how a component-based 

system can be designed and verified in RESOLVE, we consider a detailed example here. In the 

process, module-level proof rules required to verify each component of a software system are 

presented in this chapter. 

Object-Based Component Specification, Implementation, and VCs 

For software verification to be viable, it must be scalable.  Software implementations must be 

component-based and the components must be designed to allow for verification of one 

component at a time.  The verification process should not require re-verification of components, 

even when they are generic (i.e., parameterized).  Given that a component-based system often 

consists of several components, it is important for the verification to take place within an 

environment that uses only the specifications of other components to provide modularity.  

The diagram in Figure 23 demonstrates the idea of developing components using only the 

specification of the underlying components. For example, the selection sort code will not use 

details of the queue implementation but will rely only on the queue specification. The queue 

facility will actually choose which implementation of the queue and of the sort it needs. Although 

any implementation of the queue or sort should behave as specified, they may have different 

characteristics in regards to performance and memory usage. 
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Figure 23: A UML Diagram for a Simple Component-Based System 

The Queue_Template specification is in many ways similar to the Stack_Template specification 

that has already been discussed. Queue_Template requires two arguments, the type of item in the 

queue and the maximum size of the queue which must be provided whenever Queue_Template is 

instantiated. The mathematical model of the queue is a string of entries. It is specified that the 

queue is initialized to the empty string. In the version where Q is the exemplar, the length of Q, 

|Q|, is constrained to be no larger than the Max_Length parameter. These constraints must be 

maintained by the implementation of the queue but may be assumed by client code.  

Queue_Template provides the expected queue operations: Enqueue and Dequeue. In addition, the 

current size of the queue and the remaining capacity of the queue may be accessed with the 

Length and the Rem_Capacity operations.  

Concept Queue_Template(type Entry; evaluates Max_Length: 
Integer); 
    uses Std_Integer_Fac, Modified_String_Theory; 
    requires Max_Length > 0; 
  
    Type Family Queue is modeled by Str(Entry); 
    exemplar Q; 
    constraint |Q| <= Max_Length; 
    initialization ensures Q = empty_string; 
  
    Operation Enqueue(alters E: Entry; updates Q: Queue); 
        requires |Q| < Max_Length; 
        ensures Q = #Q o <#E>; 
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    Operation Dequeue(replaces R: Entry; updates Q: Queue); 
        requires |Q| /= 0; 
        ensures #Q = <R> o Q; 
 
    Operation Length(restores Q: Queue): Integer; 
     ensures Length = (|Q|); 
  
    Operation Rem_Capacity(restores Q: Queue): Integer; 
        ensures Rem_Capacity = (Max_Length - |Q|); 
  
    Operation Clear(clears Q: Queue); 
  
end Queue_Template; 

Figure 24: Queue Template 

Obviously in order to make use of Queue_Template, an actual implementation of the queue 

specification is necessary. The implementation of Queue_Template using arrays can be found in 

Figure 25. It is important to note that developers can provide an implementation for a new 

component prior to realizing underlying components because verification relies on just the 

specifications of used components. The implementation is fairly straight-forward. The array is of 

the same size as Max_Length, the maximum size of the queue. Two integers, front and length, 

keep track of the location of the queue in the array. The front variable defines the index into the 

array where the top entry in the queue is located. The length variable defines the size of the queue 

(or the number of consecutive elements in the array used for the queue). For efficiency sake, the 

queue will not always begin at the first element in the array. Thus the queue may loop around the 

end of the array. 
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Realization Circular_Array_Realiz for Queue_Template; 
Type Queue = Record 

            Contents: Array 0..Max_Length - 1 of Entry; 
            Front, Length: Integer; 

end; 
 

convention  
0 <= Q.Front < Max_Length and  
0 <= Q.Length <= Max_Length; 

correspondence 
Conc.Q = (Concatenation i: Integer 

where Q.Front <= i <= Q.Front + Q.Length - 1, 
<Q.Contents(i mod Max_Length)>); 

        
Procedure Enqueue(alters E: Entry; updates Q: Queue); 

        Q.Contents[(Q.Front + Q.Length) mod Max_Length] :=: E; 
        Q.Length := Q.Length + 1; 

end Enqueue; 
 

Procedure Dequeue(replaces R: Entry; updates Q: Queue); 
        Q.Contents[Q.Front] :=: R; 
        Q.Front := (Q.Front + 1) mod Max_Length; 
        Q.Length := Q.Length -1; 

end Dequeue; 
 

Procedure Length(restores Q: Queue): Integer; 
        Length := Q.Length; 

end Length; 
 

Procedure Rem_Capacity(restores Q: Queue): Integer; 
Rem_Capacity := Max_Length - Q.Length; 

end Rem_Capacity; 
 

Procedure Clear(clears Q: Queue); 
Q.Front := 0;  
Q.Length := 0; 

end Clear; 
 
end Circular_Array_Realiz; 

Figure 25: Queue Array Implementation 

 

In addition to the proof rules that must be generated to show each operation in the queue is 

correct, a few special concept-level proof rules are required. In order to understand these proof 

rules, we will use the example concept specification and implementation in Figure 26.  
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This is an example template only and includes nearly all possible characteristics of a concept 

template. In order to better understand this template, let us consider what it means. As in earlier 

example and rules, the following notation means that the ‗ExampleStatement‘ can possibly 

contain each variable within the brackets: ExampleStatement/_ ?, ? _\. The example template, 

CT, defines a component CN which has three arguments: T, a type; n, a variable of type U; and 

R, a mathematical definition. Within the template, additional definitions are provided: a global 

variable (gv), a math definition (s), and a math defines (f). Each of these (and other definitions) 

can be used in various statements throughout the specification. For example, the concept requires 

that CPC is true. CPC can refer to n and R. This template defines a new type, TF, which is 

exemplified with x and is constrained by TC. These example types, constraints, and requires can 

all be used in the proof rule to demonstrate the behavior. 
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Suppose a Concept Template is specified by:  

CT = Concept CN( type T; eval n: U; def R: TVB ); 
   uses AFac, BTh; 
   requires CPC/_ n, R _\; 

  Definition S: WB = ( DExp ); 

  Defines f: WT; 
  constraint DC/_ f, n, R _\; 
  Var gv: X1; 
  constraint VC/_ gv, f, n, R _\; 
 

Facility_Initialization  
   ensures GIC/_ gv, f, S, n, R _\; 
 
  Type Family TF is modeled by MTE; 
   exemplar x; 
   constraint TC/_ x, n, R, gv, f _\; 
   initialization  
    updates gv; 
    ensures IC/_ x, gv, f, n, R _\; 
   finalization1  

    updates gv; 
    ensures FC1/_#x, gv, f, n, R_\; 
 
  Oper P( updates x: TF; evaluates z: U ); 
   updates gv; 
   requires Pre/_x, y, gv, f, n, R_\; 
   ensures Post/_x, #x, y, gv, #gv, f, n, R_\; 
 end CN; 

 

First, the specifications provided in the concept declaration must be added to the context. The rule 

below shows that the definition of the concept is included in the context. 

Concept Declaration Rule: 

 C {CT} \ code; Confirm RP; 
 ____________________________________ 

 C \ CT; code; Confirm RP; 

 

                                                             

 

1 The proof rules in this dissertation do not address variable finalization or facaility finalization 

clauses; straightforward extensions are necessary to handle them. 
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Suppose a concept implementation is specified by the following realization template. This 

template is setup similar to the concept template in that any of the variables or definitions that can 

be used in a statement are included within the brackets. The implementation, RN, takes four 

parameters: rn, of type RU; RR, a definition; F_Realiz, a realization of an operation; and RP, the 

specification of an operation. This example instantiates a facility, F, defines both implementation 

and auxiliary variables (rg1, and ra), and provides the correspondence (Cor_Fn_Exp), 

conventions (RC), and initialization (I_body) for type TF. 

RT = Realization RN( eval rn: RU; def RR: RTRVB;  
Realization F_Realiz(eval e:T3); 
Procedure RP( updates rx: RT2 ); 

    requires preRP/_ rx, rn _\; 
    ensures postRP/_ rx, #rx, rn _\) 

  for CN; 
  uses RAFac, RBTh, GTy, R_C; 
  requires RPC/_ rn, RR _\;) 

  Definition RS: RWB = ( RDExp ); 

  Definition f: WT = (F_Exp); 
  constraint RDC/_ rn, RR _\; 
 
Facility F is R_C( f_exp/_ rx, rn _\, GTy, RR, RS)   

realized_by F_Realiz(f_exp/_ rx, rn _\, RR, RS); 
 

(* Treatment of rules does not include realization globals *) 
(*  
Var rg1: RX; 
Aux_Var ra: Tm; 
 convention RGC//_ ra, rg, f, rn, RR, RS _\; 
 correspondence CR_Exprg//_ gv, ra, rg1, rn, RR, RS _\; 
 Facility_Initialization GI_body; end;  
*) 
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Type TF = RT; 
 conventions RC/_ x, rg1, f, rn, RR, RS_\; 
 correspondence2 conc.x = Cor_Fn_Exp/_x, gv, rg, rg, ra,  

f, n, rn, R, RR, S, 
RS_\; 

  Facility_Initialization I_body; end; 
 
 
Procedure P (updates x: TF; evaluates z: U); 
 p_body; 
end P; 
  

end RN; 

Figure 26: Example Concept Specification and Realization 

 

The current VC generator does not handle global variables in realizations. So, the realization 

declaration rule below is a simplified version.  

Realization Declaration Rule: 

 C {R_C}\ Fac_Instantiation_Hyp; 

C {CT}\ Well_Def_Corr_Hyp;  

C {CT}\ T_Init_Hyp; 

C {CT}\ Correct_Op_Hyp; 

 C {CT}{R_Heading}\ code; Confirm Q; 
 ___________________________________________________________ 

 C {CT}\ RT; code; Confirm Q; 

 

The facility instantiation hypothesis is discussed in the context of long facility declarations in the 

section titled Facility Declarations and VCs. It is necessary to show that the correspondence is 

well-defined. This rule will only handle a functional correspondence. We must show the 

                                                             

 

2 The correspondence may be a relation of the form Cor_Exp/_conc.x, x, …_\. In this case, instead of 

confirming TC[x ⇝ Cor_Fn_Exp] in the well defined correspondence hypothesis on the next page, we 

will assume Cor_Exp/_conc.x, x, …_\ and confirm TC[x ⇝ conc.x]. Similarly, the rules for type 

intialization hypothesis and correct operation hypothesis will also change. 
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convention is true when the exemplar is replaced with the correspondence expression. The VC 

will assume any concept specification or concept realization requires clauses in addition to any 

defined conventions. 

Well_Def_Corr_Hyp shows that the correspondence is well 
defined. 

 Assume CPC/_ n, R _\  RPC/_ rn, RR_\   
RC/_ rg, f, rn, RR, RS_\; 

// Assumes Concept Level Requires, Concept  
// Realization level requires and convention 

Confirm TC[x ⇝ Cor_Fn_Exp]; 
 

The VCs generated to show the correspondence of the queue is well defined follows. The 

correspondence defines the relationship between the conceptual (mathematical) space and the 

representational (implementation) space. We must show that the correspondence relates all 

legitimate representation values to legitimate abstract values. The VC is formed by generating 

assertive code that is then processed. The assertive code assumes any concept level requirements, 

concept realization requirements, and conventions. Then the constraints must be proved. The 

constraints are updated when generated to replace the conceptual value with the correspondence. 

This VC is showing that the constraints clause of the queue (|Q| <= Max_Length) is true for this 

implementation. The VC can be proved because of the givens providing information about the 

size of Q.Front and Q.Length. This goal will generate a string by concatenate the entry at 

Q.Contents(i%Max_Length) a total of Q.Length -1 times. Because Q.Length <= Max_Length, 

VC 1_1 is true. 
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VC: 1_1: Correspondence Rule for Queue: 
Circular_Array_Realiz.rb(49) 
 
Goal: 
(|Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|  
<= Max_Length) 
 
Given: 
1: (Max_Length  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Last_Char_Num  > 0) 
5: (0  <= (Max_Length - 1  + 1)) 
6: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
7: (min_int <= 0) and (0 <= max_int) 
8: (0 <= Q.Front) and (Q.Front < Max_Length) 
9: (0 <= Q.Length) and (Q.Length <= Max_Length) 
 
 

Now we will consider the type initialization. It must be shown that the initialization code in the 

realization initializes the type(s) according to the specification. The type initialization rule 

follows: 

T_Init_Hyp establishes that the type initialization is done 
correctly. 
 

Assume CPC  RPC; 
var x1: RT; 
I_Body; 
Confirm RC; 

Confirm IC/_ x ⇝ Cor_Func_Exp, gv, f, n, R _\; 

 

The VCs below are generated to show the type initialization for the queue concept. The assertive 

code for the initialization is generated by assuming the concept level requires clause and concept 

realization requires clause. Then a temp variable of the defining type is generated with the same 

name as the exemplar. The body of the initialization code is added to the assertive code. The 

conventions then added to the assertive code as a Confirm statement because the convention 

must be true after initialization.  Finally, the initialization clause must also be proved. Any 

instance of the exemplar in the initialization ensures clause are replaced by the functional 
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correspondence.  (If the correspondence is relational, this would become an Assume 

correspondence clause followed by an ensures Confirm clause.)  First it is necessary to show that 

the convention is true after initialization. VC 2_1 shows that Q.Front is less than Max_Length 

and greater than (or equal to) zero after initialization. VC 2_2 shows the same is true for 

Q.Length. VC 2_3 shows that the initialization statement Q = empty_string is true after 

initialization. Because the array is empty after initialization, this VC is also true. The string 

generated by the concatenation is empty because the ending index is less than the starting index. 

VC: 2_1:  
Convention for Queue generated by intialization rule: 
Circular_Array_Realiz.rb(9) 
 
Goal: (0 <= 0) and (0 < Max_Length) 
 
Given: 
1: for all i:Z, Entry.Is_Initial(Q.Contents(i)) 
2: (Max_Length  > 0) 
 
 
VC: 2_2:  
Convention for Queue generated by intialization rule: 
Circular_Array_Realiz.rb(9) 
 
Goal: (0 <= 0) and (0 <= Max_Length) 
 
Given: 
1: for all i:Z, Entry.Is_Initial(Q.Contents(i)) 
2: (Max_Length  > 0) 
 
 
VC: 2_3:  
Initialization Rule for Queue: Circular_Array_Realiz.rb(4) 
 
Goal: Concatenation i:Integer where (0 <= i) and  

(i <= ((0 + 0) - 1)),  
<Q.Contents((i mod Max_Length))> = empty_string 

 
Given: 
1: for all i:Z, Entry.Is_Initial(Q.Contents(i)) 
2: (Max_Length  > 0) 
3: Conc.Q = Concatenation i:Integer where  

 (0 <= i) and (i <= ((0 + 0) - 1)),  
 <Q.Contents((i mod Max_Length))> 
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In general, to show correctness of a component, it is also necessary to show the initialization of 

global variables is valid. This is not necessary for this example because there are no global 

variables. This rule can be found inAppendix A. 

Finally, VCs must be generated for each operation to verify the component. There is a key 

difference between verifying a external procedure (with its operation specification in the concept 

interface) in a component versus an internal procedure with a local operation specification. That 

the convention must be proved true at the end of the operation, assuming it is true at the start of 

the operation. 

Correct Operation Hypothesis Rule 
 

Assume CPC  DC  VC  RPC  RDC   
RC  TC  Pre[x ⇝ Cor_Fn_Exp]; 

Remember; 
Body; 
Confirm RC/_ x, rg, f, rn, RR, RS_\  

            Post[x ⇝ Cor_Fn_Exp]; 
 

 

If the procedure is local and its specification and code are both inside the realization, then the rule 

does not use the correspondence or conceptual constraints. It does not assume conventions at the 

beginning of the code or confirm conventions at the end. The rule is similar to the one given 

previously in Chapter 3. 

The VCs for the Dequeue Operation are provided on the next several pages. VC 4_1 and 4_2 

show that the pre-condition to Swap_Entry is true prior to the operation call. VC 4_3 shows that 

the pre-condition to the mod operation is true. VC 4_4 shows that the subtract pre-condition is 

true. In order to show that the queue convention is true at the end of the operation, VCs 4_5 and 

4_6 are generated. Finally VC 4_7 shows that post-condition to Dequeue is true at the end of the 
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operation. VC 4_7 is the most interesting and most difficult VC to prove. The string that is 

generated from the Q.Contents array must be equal to the concatenation of the first item in the 

Q.Contents array and the string generated from all but the first item in the Q‘.Contents array. This 

goal is true because of the 13th assumption which states that Q‘.Contents is equal to Q.Contents 

except at Q.Front where the value differs. 

VC: 4_1: Requires Clause of Swap_Entry in Procedure Dequeue: 
Circular_Array_Realiz.rb(22) 
 
Goal: (0  <= Q.Front) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: Entry.is_initial(R) 
13: |Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>| 
/= 0 
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VC: 4_2: Requires Clause of Swap_Entry in Procedure Dequeue: 
Circular_Array_Realiz.rb(22) 
 
Goal: (Q.Front  <= Max_Length - 1) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: Entry.is_initial(R) 
13: |Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>| 
/= 0 
 
 
VC: 4_3: Requires Clause of Q.Front + 1 % Max_Length in 
Procedure Dequeue: Circular_Array_Realiz.rb(23) 
 
Goal: Max_Length /= 0 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: Entry.is_initial(R) 
13: |Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>| 
/= 0 
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front 
Q.Contents(j) otherwise 
}}) 
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VC: 4_4: Requires Clause of Q.Length - 1 in Procedure Dequeue: 
Circular_Array_Realiz.rb(24) 
 
Goal: (min_int <= (Q.Length-1)) and ((Q.Length-1) <= max_int) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: Entry.is_initial(R) 
13: |Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>| 
/= 0 
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front 
Q.Contents(j) otherwise 
}}) 
 
 
VC: 4_5: Convention for Queue generated by intialization rule: 
Circular_Array_Realiz.rb(9) 
 
Goal: (0 <= ((Q.Front + 1) mod Max_Length)) and (((Q.Front + 
1) mod Max_Length) < Max_Length) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: Entry.is_initial(R) 
13: |Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>| 
/= 0 
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front 
Q.Contents(j) otherwise }}) 
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VC: 4_6: Convention for Queue generated by intialization rule: 
Circular_Array_Realiz.rb(9) 
 
Goal: (0 <= (Q.Length - 1)) and ((Q.Length - 1) <= Max_Length) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: Entry.is_initial(R) 
13: |Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>| 
/= 0 
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front 
Q.Contents(j) otherwise }}) 
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VC: 4_7: Ensures Clause of Dequeue: 
Circular_Array_Realiz.rb(25) 
 
Goal: Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))> 
= (<Q.Contents(Q.Front)>  o Concatenation i:Integer where 
(((Q.Front + 1) mod Max_Length) <= i) and (i <= ((((Q.Front + 
1) mod Max_Length) + (Q.Length - 1)) - 1)), <Q'.Contents((i 
mod Max_Length))>) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: Entry.is_initial(R) 
13: |Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>| 
/= 0 
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front 
Q.Contents(j) otherwise 
}}) 
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Enhancement Specification, Implementation, and VCs 

In order to sort the queue provided by Queue_Template, an enhancement to Queue_Template 

which provides the ability to sort is used. The Sorting_Capability has been provided in Figure 27. 

First, notice that the sorting spec does not define what sort algorithm must be used, just that the 

queue is sorted by the operation. Next, Queue_Template doesn‘t specify what sort order must be 

used in the implementation. Because Queue_Template could contain any type of object, it is 

impossible to sort based on an unknown type. Thus, the spec is parameterized. A definition, 

LEQV, which defines the sort order is required. The only requirement for the definition is that it 

is a total preordering (as stated by the Is_Total_Preording requirement). This requires that LEQV 

is both total and transitive. The sort is then specified to return a permutation of the incoming 

queue (Is_Permutation(#Q,Q)) that confirms to the ordering defined by the LEQV definition 

(Is_Conformal_With(LEQV, Q)).  

Enhancement Sorting_Capability(Definition LEQV(x,y : Entry):B)  
for Queue_Template; 

 uses Modified_String_Theory; 
 requires Is_Total_Preordering(LEQV); 
 

Operation Sort(updates Q : Queue); 
  ensures Is_Conformal_With(LEQV, Q) and  

Is_Permutation(#Q, Q); 
 
end Sorting_Capability; 

Figure 27: Sorting Capability for a Queue 

The enhancement declaration rule, similar to the concept declaration rule, simply adds the 

enhancement specification to the context. 

Enhancement Enh(..)  
for CT; 

 uses …; 
 requires …; 
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Operation Op(…); 

  ensures …; 
 

end Enh; 
 

Enhancement Declaration Rule: 

 C {Enh} \ 
 ____________________________________ 

 C \ Enh;  

 

An example sort implementation can be seen in Figure 28. The sort implementation is also 

parameterized for similar reasons. An operation, Compare, is required which ensures that the 

result of Compare is equal to the outcome of LEQV. An actual operation specific to the type of 

entries in the queue will need to be provided to perform an actual sort. The specification for the 

parameter operation will need to be at least as strong as the specification of Compare. The sort 

realization uses the selection sort algorithm based upon the operation provided. This 

implementation has a more complex loop invariant than we‘ve encountered thus far. The 

invariant for the sort loop states that in each iteration Q and Sorted_Queue are a permutation of 

the initial Q (stated via the Is_Permutation definition), Sorted_Queue is ordered based on LEQV 

(stated via the Is_Conformal_with definition), and the entirety of Sorted_Queue is less than (as 

defined by LEQV) Q (stated via the Is_Universally_Related definition).  These definitions are 

provided in the Modified_String_Theory math theory. Because sort is an enhancement and not an 

internal queue operation, the sort implementation cannot access the internal implementation 

variables. In fact, the actual realization of the queue concept which is used is not required by the 

sort enhancement code.  
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Realization Selection_Sort_Realization( 
Operation Compare(restores E1, E2 : Entry) : Boolean; 

ensures Compare = LEQV(E1, E2);) 
 for Sorting_Capability of Queue_Template; 
 uses Modified_String_Theory; 
 
 Procedure Sort(updates Q : Queue); 
  Var Sorted_Queue : Queue; 
  Var Lowest_Remaining : Entry; 
 
  While (Length(Q) > 0) 
   changing Q, Sorted_Queue, Lowest_Remaining; 
   maintaining  

Is_Permutation(Q o Sorted_Queue, #Q) and 
    Is_Conformal_With(LEQV, Sorted_Queue) and  
    Is_Universally_Related(LEQV, 

Sorted_Queue, Q); 
   decreasing |Q|; 
  do 
   Remove_Min(Q, Lowest_Remaining); 
   Enqueue(Lowest_Remaining, Sorted_Queue); 
  end; 
  Q :=: Sorted_Queue; 
 end Sort; 
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Operation Remove_Min(updates Q : Queue;  

replaces Min : Entry); 
  requires |Q| /= 0; 
  ensures Is_Permutation(Q o <Min>, #Q) and 
   Is_Universally_Related(LEQV, <Min>, Q) and 
   |Q| = |#Q| - 1; 

Procedure 
  Var Considered_Entry : Entry; 
  Var New_Queue : Queue; 
  Dequeue(Min, Q);   
  While (Length(Q) > 0) 
   changing Q, New_Queue, Min, Considered_Entry; 
   maintaining Is_Permutation( 
     New_Queue o Q o <Min>, #Q) and 
    Is_Universally_Related(LEQV,  

<Min>, New_Queue); 
   decreasing |Q|; 
  do 
   Dequeue(Considered_Entry, Q); 
   if (Compare(Considered_Entry, Min)) then 
    Min :=: Considered_Entry; 
   end;  
   Enqueue(Considered_Entry, New_Queue); 
  end; 
  New_Queue :=: Q; 
 end Remove_Min; 
 
end Selection_Sort_Realization; 

Figure 28: Selection Sort of a Queue 

A special enhancement realization rule is not necessary. For any procedure in the enhancement 

realization, the procedure declaration rule discussed in the last chapter is used. All of the 31VCs 

for this implementation are provable (actually, automatically, by the RESOLVE minimalist 

prover [46]) and can be found in Appendix E. 

Facility Declarations and VCs 

Now that VCs have been generated – and are all true – for the queue and sort code, a RESOLVE 

facility can instantiate and use these components. The following diagram depicts how this was 

implemented. 
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Consider the design for a system that must process a variety of prioritized jobs sequentially.  A 

container object will be required to hold and process the jobs.  A developer should first determine 

what kind of data type should be used to handle the jobs. For this example, let us assume the jobs 

will be processed in a first come first serve priority. Thus, a queue may make the most sense. 

Let‘s also remember that each job has a priority. Occasionally, the program should change the 

order of jobs to ensure high priority jobs are not held up behind low priority jobs. This will 

require the ability to sort the queue.  

Figure 29 shows a sample RESOLVE facility. In this code, a facility is created where the 

Queue_Template is realized by the Circular_Array_Realiz and enhanced by the 

Sorting_Capability which is realized by Selection_Sort_Realization. Sorting_Capability is 

parameterized with the Priority_LEQV which prioritizes the jobs based on their priority. The 

corresponding operation, Priority_Order, which orders the job based on the priority as well. 

Facility Sort_Job_Queue; 
uses Std_Boolean_Fac, Std_Integer_Fac,  

Std_Char_Str_Fac, Queue_Template; 
 
    Type Job_Info = Record 
        Name: Char_Str; 
        Priority: Integer; 
    end;  
 
    Definition Priority_LEQV(S1,S2: Job_Info):  

Boolean = (S1.Priority <= S2.Priority); 
 
    Operation Priority_Order(restores S1, S2: Job_Info):  

Boolean; 
        ensures Priority_Order = (Priority_LEQV(S1, S2)); 
      Procedure 
        Priority_Order := (S1.Priority <= S2.Priority); 
    end Priority_Order; 
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    Facility QF is Queue_Template(Job_Info, 10) 
       realized by Circular_Array_Realiz 
       enhanced by Sorting_Capability(Priority_LEQV) 
         realized by 
Selection_Sort_Realization(Priority_Order); 
         
    Operation Main(); 
    Procedure 
        Var S1, S2, S3, Temp: Job_Info; 
        Var Q: QF.Queue; 
 
        S1.Priority := 2; 
        S2.Priority := 3; 
        S3.Priority := 1; 
 
        Enqueue(S1, Q); 
        Enqueue(S2, Q); 
        Enqueue(S3, Q); 
        Sort(Q); 
        Dequeue(Temp, Q); 
        Write_Line(Temp.Priority); 
        Dequeue(Temp, Q); 
        Write_Line(Temp.Priority); 
        Dequeue(Temp, Q); 
        Write_Line(Temp.Priority); 
    end Main; 
end Sort_Job_Queue; 

Figure 29: Sort Facility 

There are a few interesting aspects in developing a proof rule and generating VCs for a facility 

declaration. When the queue facility is created, VCs must be created to show that the parameters 

provided to the facility meet the specifications.   The correctness of facility declaration must be 

verified.  So we present a facility declaration rule next.  In this rule, whereas the facility 

instantiation hypothesis ensures that the actual definitions and operations passed as arguments 

satisfy the requirements of the formals, the facility initial expression is concerned with assuming 

that the global variables in the declared facility, if any, are properly initialized. 
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Suppose a Facility instantiation takes the form: 
 
F_Instn = Facility FN is CN(IT, n_exp, IR) 
    realized_by RN(rn_exp, IRR, IRCR, IRP); 
  

where Operation IRP has the specification: 
Operation IRP (updates irx: RT2); 

  requires preIRP /_rn_exp, irx_\; 
  ensures postIRP /_rn_exp, #irx, irx _\; 

 

Facility Instantiation Rule: 

 Fac_Instantiation_Hyp; 

 C {CT, RT}  {F_I_Spec} \ Assume I_Exp; code; Confirm RP; 
 ___________________________________________________________ 

 C {CT, RT} \ F_Instn; code; Confirm RP; 
 
where 

F_I_Spec is Facility Instantiation Specification 
 

I_Exp is GIC[S⇝ DExp, f⇝ F_Exp[rn⇝ rn_exp, RR⇝ IRR] 

[ n⇝ n_exp, R⇝ IR, T⇝ IT]; 
 

Fac_Instantiation_Hyp is  

(RPC[rn⇝ rn_exp, RR⇝ IRR]  CPC)[ n⇝ n_exp, R⇝ IR] 

 ( preRP [rn⇝ rn_exp, rx⇝ irx] implies preIRP ) 

 ( postIRP implies postRP[rn⇝ rn_exp, #rx⇝ #irx,  

rx⇝ irx] ); 

 

For the present example, Max_Length must be greater than 0 (because of the requires clause in 

the concept Queue_Template), so a VC is generated to show that 10 > 0. A VC must also be 

generated to show that Priority_LEQV is a total pre-ordering (because of the requires clause in 

the Sorting_Capability enhancement). Figure 30 shows these two VCs. 
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VC: 3_1: Requirement for Facility Declaration Rule for QF: 
Sorting_Capability.en(5) 
 
Goal:Is_Total_Preordering(Priority_LEQV) 
Given: 
 
VC: 3_2: Facility Declaration Rule: Queue_Template.co(42) 
 
Goal: (10  > 0) 
Given: 
1: true 

Figure 30: Two VCs for QF Facility Declaration 

In the facility declaration, the Sorting_Capability enhancement is realized by 

Selection_Sort_Realization. For this realization, Priority_Order is passed as an argument. Thus 

VCs must be generated to show that the Priority _Order operation is strong enough to be used as 

the Compare operator (given in the realization of Selection_Sort_Realization). One VC must 

show that the requires clause of Compare is strong enough to show that the requires clause of 

Order is true. This is easy because both operations have no requires clause.  The resulting VC will 

simply have a goal that we need to prove ‗true‘ with an assumption ‗true‘. There will be another 

group of VCs that must show that the ensures clause of Priority_Order implies the ensures clause 

of Compare. These are more intricate to generate but simple to prove and require replacing the 

parameters with the actual values so that it can be proven. This must also take into account the 

parameter modes. Both Priority_Order and Compare restore their parameters and a VC must 

show that to be the case in Priority_Order since Compare restores the parameters.  These VCs are 

shown in Figure 31. The VCs generated are simple and all of them can be automatically proven 

by a minimalist prover. 
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VC: 2_1: Ensures from QF: Sort_Job_Queue.fa(13) 
 
Goal: Priority_LEQV(S1, S2) = Priority_LEQV(S1, S2) 
 
Given: 
1: Priority_Order = Priority_LEQV(S1, S2) 
2: #S1 = S1 
3: #S2 = S2 
 
 
VC: 2_2: Ensures from QF: Sort_Job_Queue.fa(13) 
 
Goal: S1 = S1 
 
Given: 
1: Priority_Order = Priority_LEQV(S1, S2) 
2: #S1 = S1 
3: #S2 = S2 
 
 
VC: 2_3: Ensures from QF: Sort_Job_Queue.fa(13) 
 
Goal: S2 = S2 
 
Given: 
1: Priority_Order = Priority_LEQV(S1, S2) 
2: #S1 = S1 
3: #S2 = S2 

Figure 31: VCs to show Operation is valid for QF Facility Declaration 
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CHAPTER FIVE 

EXPERIMENTAL EVALUATION 

In order to evaluate the VC generator, many VCs have been generated for a variety of component 

implementations. The evaluation process includes generating VCs and determining the 

provability of the generated VCs. The provability of the VCs has been checked both manually 

and, where possible, using the minimalist RESOLVE VC prover.  

Benchmarks 

Eight benchmarks are provided in [12]. Five of these benchmarks will be discussed in this 

chapter. Although various benchmarks for verification have been provided, this set of 

benchmarks was chosen because they show the ability to handle a variety of scenarios, including 

the ability to handle both built-in and user-defined types, and the ability to handle layered 

components to demonstrate the scalability of the system. The benchmarks that will not be 

presented involve topics not addressed in this dissertation, such as iterators (a construct that is not 

necessary and hence, absent in RESOLVE) and input/output formatting, specification of which 

requires further specification research.  For each of the benchmarks shown, VCs have been 

generated and manually checked for provability. 

Benchmark #1: Adding and Multiplying Numbers 

Problem Requirements: Verify an operation that adds two numbers by repeated incrementing. 

Verify an operation that multiplies two numbers by repeated addition, using the first operation to 

do the addition. Make one algorithm iterative, the other recursive. [12] 
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Solution: An add and multiple enhancement has been written in RESOLVE. The enhancement 

specification and enhancement realization follow. 

Enhancement Add_And_Multiply for Integer_Template; 
 
    Operation Add(evaluates i: Integer;  

evaluates j: Integer): Integer; 
        requires (min_int <= i + j) and (i + j <= max_int); 
        ensures  Add = ( i + j ); 
 
    Operation Multiply(evaluates I, J: Integer): Integer; 
  requires (min_int <= -I) and (-I <= max_int) and  

   (min_int <= I * J) and (I * J <= max_int); 
  ensures Multiply = I * J; 
 
 
end Add_And_Multiply; 

 

Realization Add_And_Multiply_Realiz for Add_And_Multiply of  
   Integer_Template; 
    uses Std_Boolean_Fac; 
 
 Recursive Procedure Add(evaluates i: Integer;  

evaluates j: Integer): Integer; 
  decreasing |j|; 
  Var zero:Integer; 
  Add := Replica(i); 
       If j > zero then 
            Increment(Add); 
            Decrement(j); 
            Add  := Add(Add, j); 
            Increment(j); 
       else 
           If zero > j then 
                Decrement(Add); 
                Increment(j); 
                Add := Add(i, j); 
                Decrement(j); 
           end; 
       end; 
 end Add; 
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   Procedure Multiply(evaluates I, J: Integer): Integer; 
  Var nj, zero: Integer; 
  Multiply := Replica(zero); 
  If (J >= zero) then 
   While (J > zero) 
    changing Multiply, nj, J; 
    maintaining Multiply + (I * J) = #I * #J   

and  nj + J = #J; 
    decreasing J; 
   do 
    Multiply := Add(Multiply, I); 
    Increment(nj); 
    Decrement(J); 
   end;  
  else 
   While (J /= zero) 
    changing Multiply, J, nj; 
    maintaining Multiply - (I*J) = - #I*#J   

and nj + J = #J  and J <= 0; 
    decreasing -J; 
   do 
    Multiply := Add(Multiply, I); 
    Decrement(nj); 
    Increment(J); 
   end;  
   Multiply := Negate(Multiply); 
  end; 
   
  J :=: nj; 
 end Multiply;  
end Add_And_Multiply_Realiz; 

Figure 32: Add and Multiply Example 

The VCs for this example have been generated and are located in Appendix F. 

Benchmark #2:Binary Search in an Array 

Problem Requirements: Verify an operation that uses binary search to find a given entry in an 

array of entries that are in sorted order. [12] 

Solution:  Two solutions are provided for this example. The first solution will demonstrate a 

basic binary search enhancement for a Static Array which has no post-condition. The VCs that 

will be generated here are VCs that are required to show that the pre-condition for each operation 
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call is true. This example will show that the VCs for the original binary search algorithm 

(mentioned to be erroneous in Bloch‘s blog [5] ) in the introduction are indeed not provable. 

Enhancement Simple_Search_Capability(definition LEQ(x,y: 
Entry): B) 
            for Static_Array_Template;     
    uses Std_Boolean_Fac; 

requires Is_Total_Preordering(LEQ); 
 
    Operation Is_Present(restores key: Entry;  

 restores A: Static_Array): Boolean; 
  ensures true; 
 
end Simple_Search_Capability; 
 
 
 
Realization Simple_Binary_Search_Realiz( 
      Operation Are_Ordered(restores x,y: Entry): Boolean; 
         ensures Are_Ordered = (LEQ(x,y)); 
      )for Simple_Search_Capability of Static_Array_Template; 
    uses Std_Boolean_Fac; 
 
    Operation Are_Equal(restores x, y: Entry): Boolean; 
     ensures Are_Equal = (x = y); 
    Procedure  
  Are_Equal := And(Are_Ordered(x, y),  

  Are_Ordered(y, x)); 
    end;  
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    Procedure Is_Present(restores key: Entry;  

 restores A: Static_Array): Boolean; 
  Var low, mid, high: Integer; 
  Var midVal, lowVal, highVal: Entry; 
 
 
  Is_Present := False(); 
  low := Replica(Lower_Bound); 
  high := Replica(Upper_Bound); 
  mid := low; 
  
  While (low <= high) 
   changing low, mid, high, A, midVal, Is_Present; 
   maintaining true; 
   decreasing (high - low); 
  do 
   mid := high + low; 
   Divide(mid, 2, mid);  
 
   Swap_Entry(A, midVal, mid); 
   if (Are_Equal(midVal, key)) then 
    Is_Present := True(); 
    low := high + 1; 
   else 
    if (Are_Ordered(midVal, key)) then 
     low := mid + 1; 
    else 
     high := mid - 1; 
    end; 
   end; 
   Swap_Entry(A, midVal, mid); 
  end; 
  
    end Is_Present; 
 
end Simple_Binary_Search_Realiz; 

Figure 33: Wrong Binary Search Example 

 

Full VCs for the valid binary search example will be provided later. However, for this example, 

let us just consider a VC that show this example is invalid. The following VC will need to be true 

before the call to mid := high + low. The pre-condition for plus is that the sum of the two 

numbers is not larger than max_int. However, we can‘t prove this. If high and low were for 

example both equal to max_int, this code would fail, because of the following unprovable VC. 
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VC: 1_1:  
Requires Clause of high + low in Procedure Is_Present: 
Simple_Binary_Search_Realiz.rb(30) 
 
Goal: 
(min_int <= (high' + low')) and ((high' + low') <= max_int) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: true 
8: (low'  <= high') 
 
 

A correct binary search enhancement for Static Arrays has been written in RESOLVE. The 

enhancement specification and enhancement realization follow in Figure 34 and Figure 35. The 

specification requires that an ordering is provided, LEQ. LEQ must be a total, transitive, and 

symmetric. This is a different requirement than was used in the sorting example, and it guarantees 

that LEQ(x, y) and LEQ(y, x) implies x = y.  The operation, Is_Present, returns a Boolean that is 

true if the key exists in the array and false if the key does not exist in the array. The array must be 

ordered based on LEQ. 
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Enhancement MySearch_Capability(definition LEQ(x,y: Entry): B) 
            for Static_Array_Template;     
    uses Std_Boolean_Fac; 
  requires Is_Total(LEQ) and Is_Transitive(LEQ) and  

Is_Symmetric(LEQ); 
 
    Definition Is_Ordered(A: Static_Array, From: Z,To: Z): B=  
  (For all i: Z, if (From <= i and i < To)  

then LEQ(A(i), A(i+1))); 
 

Definition Exists_Between(E: Entry, A: Static_Array,  
From: Z, To: Z): B =  

(There exists i: Z such that  
(From  <= i and i <= To) and A(i) = E); 

 
    Operation Is_Present(restores key: Entry;  

 restores A: Static_Array): Boolean; 
      requires Is_Ordered(A, Lower_Bound, Upper_Bound) and  

Upper_Bound + 1 <= max_int; 
      ensures Is_Present =  

Exists_Between(key, A, Lower_Bound,  
Upper_Bound); 

 
end MySearch_Capability; 

Figure 34: Binary Search Specification 
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Realization MyBinarySearchRealiz( 
      operation Are_Ordered(restores x,y: Entry): Boolean; 
         ensures Are_Ordered = (LEQ(x,y)); 
      )for MySearch_Capability of Static_Array_Template; 
    uses Std_Boolean_Fac; 
 
    Operation Are_Equal(restores x, y: Entry): Boolean; 
     ensures Are_Equal = (x = y); 
    Procedure  
  Are_Equal := And(Are_Ordered(x,y),Are_Ordered(y,x)); 
    end;  
  
    Definition Exists_Between(E: Entry, A: Static_Array,  

From: Z, To: Z): B = (There exists i: Z such that  
(From  <= i and i <= To) and A(i) = E); 

 
    Procedure Is_Present(restores key: Entry;  

 restores A: Static_Array): Boolean; 
  Var low, mid, high: Integer; 
  Var midVal, lowVal, highVal: Entry; 
  Is_Present := False(); 
  low := Replica(Lower_Bound); 
  high := Replica(Upper_Bound); 
  mid := low; 
  While (low <= high) 
   changing low, mid, high, A, midVal, Is_Present; 
   maintaining Is_Present =  
    (Exists_Between(key, A, Lower_Bound, low-1) or    

 Exists_Between(key, A, high+1, Upper_Bound))  
 and Lower_Bound <= low and high <= Upper_Bound  
 and A = #A;      
decreasing (high - low); 

  do 
   mid := high - low; 
   Divide(mid, 2, mid);  
   mid := low + mid; 
   Swap_Entry(A, midVal, mid); 
   if (Are_Equal(midVal, key)) then 
    Is_Present := True(); 
    low := high + 1; 
   else 
    if (Are_Ordered(midVal, key)) then 
     low := mid + 1; 
    else 
     high := mid - 1; 
    end; 
   end; 
   Swap_Entry(A, midVal, mid); 
  end; 

 
    end Is_Present; 
end MyBinarySearchRealiz; 

Figure 35: Binary Search Implementation 
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Benchmark #3:Sorting a Queue 

Problem Requirements: Specify a user-defined FIFO ADT that is generic (i.e., parameterized 

by the type of entries in a queue). Verify an operation that uses this component to sort the entries 

in a queue into some client-defined order. [12] 

Solution: An enhancement to sort a generic queue has already been provided and VCs generated 

in Chapter 4. 

Benchmark #4:Layered Implementation of a Map ADT 

Problem Requirements: Verify an implementation of a generic map ADT, where the data 

representation is layered on other built-in types and/or ADTs. [12] 

Solution: A search and store object has been specified and  implemented in RESOLVE. This 

concept is parameterized by a Key type, and it allows the user to store keys in the store. A Store is 

modeled mathematically as a function from Key to Booleans. The user can then check to see if a 

specific key exists, remove a specific key or remove any key. The user can also clear the store. 

The parameters to the template are the type of key in the store and the maximum size of the store. 

The constraints of the store state that the maximum number of keys that can be added to the store 

is the Max_Capacity of the store. The store is initialized to having no keys.  
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Concept Search_Store_Template  
(Type Key; evaluates Max_Capacity: Integer); 

 uses Std_Integer_Fac, Std_Boolean_Fac; 
 requires Max_Capacity > 0; 
 
 Definition Key_Ct (S: Store): N = ||{ k: Key, S(k)}||;  
 
 Type Family Store is modeled by (Key -> B);  
  exemplar S; 
  constraint Key_Ct (S) <= Max_Capacity; 
            initialization ensures Key_Ct (S) = 0; 
 
 Oper Add (restores k: Key; updates S: Store); 
  requires Key_Ct (S) < Max_Capacity and not S(k); 
  ensures  S(k) and  
   (for all k1: Key, if k1 /= k then  

S(k1) = #S(k1)); 
 
 Oper Remove (restores k: Key; updates S: Store); 
  requires  S(k); 
  ensures  not S(k) and 
   (for all k1: Key, if k1 /= k then  

S(k1) = #S(k1)); 
 
 Oper Remove_Any (replaces k: Key; updates S: Store); 
  requires  Key_Ct (S) > 0; 
  ensures  #S(k) and not S(k) and  
   (for all k1: Key, if k1 /= k then  

S(k1) = #S(k1)); 
 
 Oper Is_Present(restores k: Key; restores S: Store):  

Boolean; 
  ensures Is_Present= (S(k)); 
 
 Oper Key_Count (restores S: Store): Integer; 
  ensures  Key_Count = Key_Ct (S); 
 
 Oper Rem_Capacity (restores S: Store): Integer; 
  ensures  Rem_Capacity = Max_Capacity - Key_Ct (S); 
 
 Oper Clear (clears S: Store); 
end Search_Store_Template; 

Figure 36: Search and Store Specification 

The store is implemented with a preemptable queue (a variation that has additional operations to 

manipulate queues.), and a specification of this concept is given in Appendix C. Each key is 

entered in the queue. No key may be added to the store (or queue) more than once. This example 

was originally implemented by students in an undergraduate software engineering course. A 
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UML diagram depicting this implementation is shown in Figure 37.  Updates to the 

implementation to make the correspondence functional and remove the quantifiers in the 

conventions were made to the example. The conventions to the implementation of 

Search_Store_Template require that there are no duplicates in the queue. The correspondence 

maps each item that is in the preemptable queue to being in the store. 

 

Figure 37: A UML Diagram for the Search and Store System 

VCs for this example have been generated and manually checked to be correct. An VC from this 

example shows that the correspondence is well-defined and can be found in . All other expected 

VCs were also generated and can be located in Appendix F. This implementation uses an 

enhancement for the preemptable queue, which is also included in Appendix C. 
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VC: 1_1: Correspondence Rule for Store: 
Search_Store_Realiz.rb(25) 
 
Goal: 
(Key_Ct(lambda k: Key (Is_Substring(<k>, S.Contents)))  <= 
Max_Capacity) 
 
Given: 
1: (Max_Capacity  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Last_Char_Num  > 0) 
5: (Max_Capacity  > 0) 
6: (|S.Contents|  <= Max_Capacity) 
7: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
8: Is_Duplicate_Free(S.Contents) 

Figure 38: Example Search and Store VC 

 
 

Realization Search_Store_Realiz ( 
    operation Are_Equal_Keys(evaluates i, j: Key): Boolean; 
        ensures Are_Equal_Keys = (i = j);; 
    operation Copy_Key(replaces Copy: Key;restores Orig: Key); 
        ensures Copy = Orig;) 
    for Search_Store_Template; 
    uses Preemptable_Queue_Template, Std_Char_Str_Fac,  

Std_Integer_Fac, Std_Boolean_Fac, 
Modified_String_Theory; 

 
    Facility PQ_Fac is Preemptable_Queue_Template(Key,  

Max_Capacity) 
        realized by Stack_Based_Realiz 
      enhanced by Searching_Capability 
        realized by Searching_Realiz(Are_Equal_Keys); 

 
    Type Store is represented by Record 
        Contents: PQ_Fac.P_Queue; 
    end; 
    Conventions Is_Duplicate_Free(S.Contents); 
    Correspondence 
  Conc.S = lambda k2:Key.(Is_Substring(<k2>,  

S.Contents)); 
   
    Procedure Add (restores k: Key; updates S: Store); 
        Var t: Key; 
        Copy_Key(t,k); 
        Enqueue(t,S.Contents); 
    end Add; 
 
     
 

Procedure Remove (restores k: Key; updates S: Store); 
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        Var b: Boolean; 
        Search_and_Move(k,S.Contents,b); 
        Dequeue(k,S.Contents); 
    end Remove; 
 
    Procedure Remove_Any (replaces k: Key; updates S: Store); 
        Dequeue(k,S.Contents); 
    end Remove_Any; 
 
    Procedure Is_Present(restores k: Key;  

 restores S: Store): Boolean; 
        Var b: Boolean; 
        Search_and_Move(k,S.Contents,b); 
        Is_Present := b; 
    end Is_Present; 
 
    Procedure Key_Count (restores S: Store): Integer; 
        Key_Count := Length(S.Contents); 
    end Key_Count; 
 
    Procedure Rem_Capacity (restores S: Store): Integer; 
        Rem_Capacity := PQ_Fac.Rem_Capacity(S.Contents); 
    end Rem_Capacity; 
 
    Procedure Clear (clears S: Store); 
        PQ_Fac.Clear(S.Contents); 
    end Clear; 
end Search_Store_Realiz; 

Figure 39: Search and Store Implementation 

 

Benchmark #5:Linked-List Implementation of a Queue ADT 

Problem Requirements: Verify an implementation of the queue type specified in benchmark #3, 

using a linked data structure for the representation. [12] 

Solution: It is important that the VC Generator demonstrate the ability to generate VCs for 

commonly used structures, even if they are not the recommended development mechanism in the 

RESOLVE language. This ability will demonstrate that RESOLVE is not just a ‗toy‘ language 

and that VCs can be generated for complex concepts. Specifically, although pointers are not 

generally recommended in RESOLVE, there may be times when they are necessary. Thus, we 
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will consider how pointers could be specified and verified in RESOLVE. More details for how 

pointers can be handled in RESOLVE are provided in [47].   

The specification used to demonstrate how pointers can be handled in RESOLVE  is 

Location_Linking_Template_1. The technical aspects of this specification are detailed in [45] and 

summarized in [47].  The present specification is incomplete in many respects and is presented 

here only as a proof of concept example.  It is expected that the implementation of this concept 

will be hard-coded in the RESOLVE language, similar to arrays. Figure 40 specifies the behavior. 

Location_Linking_Template_1 has one parameter, a type that defines the type, Info, of 

information stored in each location. This is a simplified version of this template, in that only one 

link is permitted from each location. The more complex version would require a second 

parameter defining the number of links from a given location which would provide the ability to 

create more interesting data structures. This specification contains two global variables: Ref and 

Content. Ref is the link to the next Location. Contents is a variable of type Info which contains 

the data at the current Location. Each operation that updates one of these global variables must 

state then with the updates clause in the specification. Any operation that does not update is 

assumed to restore the global variable. 
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Concept Location_Linking_Template_1(type Info); 
 uses Std_Integer_Fac, Std_Boolean_Fac,  

Modified_String_Theory; 
 
 Definition Void: Z; 
 Var Content: Z -> Info; 
 Var Ref: Z -> Z; 
 Facility_Initialization ensures for all L: Z,  

Info.Is_Initial(Content(L)) and Ref(L) = Void; 
 
 Type Family Position is modeled by Z; 
  exemplar P; 
  initialization ensures P = Void; 
 
 Operation Take_New_Location(updates P: Position); 
  ensures P /= Void; 
 
 Operation Relocate_to(updates P: Position;  

 preserves Q: Position); 
  ensures (P = Q); 
 
 Operation Follow_Link(updates P: Position); 
  requires P /= Void; 
  ensures P = Ref(#P); 
 
 Operation Relocate_To_Target(updates P: Position;  
   preserves Q: Position); 
  requires Q /= Void; 
  ensures P = Ref(Q); 
 
 Operation Redirect_Link(preserves P: Position;  

updates Q: Position); 
  updates Ref; 
  requires P /= Void; 
  ensures Ref = lambda L:Z.( 
    {{#Q if L = P; #Ref(L) otherwise;}}) and 
    Q = #Ref(P); 
 
 Operation Redirect_To_Target(updates P: Position;  
    preserves Q: Position); 
  updates Ref; 
  requires P /= Void and Q /= Void; 
  ensures Ref = lambda L:Z.( 
    {{Ref(Q) if L = P; #Ref(L) otherwise;}}); 
 
 Operation Redirect_and_Update(preserves P: Position;  
   updates Q: Position); 
  updates Ref; 
  requires P /= Void; 
  ensures Ref = lambda L:Z.( 
   {{#Ref(#Q) if L = P; #Ref(L) otherwise;}}) and 
   Q = #Ref(P); 
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Operation Is_At_Void(preserves P: Position): Boolean; 
  ensures Is_At_Void = (P = Void); 
 
Operation Reset_To_Void(clears P: Position); 
 
Operation Swap_Info(preserves P: Position;  

  updates I: Info); 
  updates Content; 
  requires P /= Void; 
  ensures I = #Content(P)  
   and Content = lambda L:Z.( 
    {{#I if L = P;  
    #Content(L) otherwise;}}); 

end; 

Figure 40: Location Linking Template 

We consider code here that uses the Location_Linking_Template to implement Queue_Template. 

This queue specification is slightly modified from the previous queue specification. Figure 41 

shows a specification for an unbounded queue. This specification should not necessitate a detailed 

explanation. The only difference from the previous version is the lack of bounds. 

Concept Unbounded_Queue_Template(type Entry); 
    uses Std_Integer_Fac, Modified_String_Theory; 
 
    Type Family Queue is modeled by Str(Entry); 
    exemplar Q; 
    initialization ensures Q = empty_string; 
  
    Operation Enqueue(alters E: Entry; updates Q: Queue); 
        ensures Q = #Q o <#E>; 
  
    Operation Dequeue(replaces R: Entry; updates Q: Queue); 
        requires Q /= empty_string; 
        ensures #Q = <R> o Q; 
 
    Operation Is_Empty(restores Q: Queue): Boolean; 
     ensures Is_Empty = (Q = empty_string); 
 
    Operation Clear (clears Q: Queue); 
end Unbounded_Queue_Template; 

Figure 41: Unbounded Queue 

The following implementation of a queue uses the Location_Linking_Template. Because this 

realization defines the type of the queue as a position, a facility is used to instantiate the 
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Location_Linking_Template_1 with the type, Entry. The correspondence of this queue requires 

the string that represents the queue is equal to the string created by concatenation each entry of 

the linked list. The conversions require that there are no loops – that void is reachable.  This 

implementation is not complete in many respects [47].  For example, it is missing conventions, 

such as no two queues share locations.  It is mainly intended to show the use of global variables 

in VC generation and how the verification machinery is suitable for handling code with pointer 

behavior.  

Realization Queue_Location_Linking_Realiz for  
Unbounded_Queue_Template; 

 uses Location_Linking_Template_1; 
 
 definition Is_Reachable(first: Z, last: Z,  
  refContext : Z -> Z) : B = {{(true) if first = last;  
  Is_Reachable(refContext(first), last, refContext) 
    otherwise;}}; 
 
 definition Str_Info(first: Z, refContext : Z -> Z, 
   contentsContext : Z -> Entry): Str(Entry) =  
  {{empty_string if first = Void; 
    <contentsContext(first)> o  
     Str_Info(refContext(first), refContext,  

contentsContext) otherwise;}}; 
 

Facility Entry_Ptr_Fac is  
Location_Linking_Template_1(Entry)  

        realized by Std_Location_Linking_Realiz; 
 
    Type Queue is represented by Record 
  Front: Entry_Ptr_Fac.Position; 
  Back: Entry_Ptr_Fac.Position; 
  end; 
 
    convention Is_Reachable(Q.Front, Q.Back, Ref) and  
   (Ref(Q.Back) = Void) and 
   (Q.Back = Void iff Q.Front = Void); 
    correspondence Conc.Q = Str_Info(Q.Front, Content, Ref); 
  
    Procedure Dequeue(replaces R: Entry; updates Q: Queue); 
  Var Temp: Position; 
 
  Swap_Info(Q.Front, R); 

 Follow_Link(Q.Front); 
 If (Is_At_Void(Q.Front)) then 
  Reset_To_Void(Q.Back); 
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 end; 
    end Dequeue; 
 
    Procedure Enqueue(alters E: Entry; updates Q: Queue); 
  Var Temp: Position; 
 
  Take_New_Location(Temp); 

 Swap_Info(Temp, E); 
 If (Is_At_Void(Q.Front)) then 
        Relocate_to(Temp, Q.Back); 
    Relocate_to(Q.Back, Q.Front); 
     else  
        Redirect_Link(Q.Back, Temp); 

  end; 
    end Enqueue; 
 
    Procedure Is_Empty(restores Q: Queue) : Boolean; 
      Var Temp: Position; 
 
      Is_Empty := Is_At_Void(Q.Front); 
    end Is_Empty; 
 
    Procedure Clear(clears Q: Queue); 
        Reset_To_Void(Q.Front); 
        Reset_To_Void(Q.Back); 
    end Clear; 
end Queue_Location_Linking_Realiz; 

Figure 42: Queue Implementation with a Linked List 

VCs for each of these operations have been generated and are available in Appendix F. To further 

motivate why pointers are not the desired mechanism to implement data structures in RESOLVE, 

the following example demonstrates a much simpler realization of Unbounded_Queue_Template. 

The code in Figure 43 is much shorter than the linked implementation in Figure 42, allowing less  

opportunity for bugs to be introduced and less VCs that must be proved. The linked list 

implementation generated 39 VCs whereas the list implementation only generated 11. 
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Realization UnboundedQueue_List_Realiz for  
Unbounded_Queue_Template; 

    uses Unbounded_List_Template, Boolean_Template; 
 
    Facility List_Fac is Unbounded_List_Template(Entry)  
        realized by Std_Unbounded_List_Realiz; 
 
    Type Queue is represented by List_Fac.List; 
 
    convention true; 
    correspondence Conc.Q = Q.Prec o Q.Rem; 
 
    Procedure Dequeue(replaces R: Entry; updates Q: Queue); 
        Reset(Q); 
        Remove(R, Q); 
    end Dequeue; 
     
    Procedure Enqueue(alters E: Entry; updates Q: Queue); 
        Advance_to_End(Q);  
        Insert(E, Q); 
    end Enqueue; 
  
 Procedure Is_Empty(restores Q: Queue): Boolean; 
       Is_Empty := And(Is_Prec_Empty(Q), Is_Prec_Empty(Q)); 
    end Is_Empty; 
 
    Procedure Clear(clears Q: Queue); 
       Clear(Q); 
    end Clear; 
 
end UnboundedQueue_List_Realiz; 

Figure 43: List Implementation of Unbounded Queue 

An Exercise with Auxiliary Variables  

We conclude this chapter by considering an example that contains an existential quantifier in the 

specification of the operation. In general, developers should be able to write specifications 

without existential quantifiers so that auxiliary variables are not required in implementations. For 

example, if an operation was specified to move one element from the front of a queue to the back 

of a queue, an existential quantifier is not necessary. Rotating_Capability, an enhancement to 

Queue_Template, can be written using the Prt_Btwn definition. Prt_Btwn is defined in 

String_Theory and returns a portion of the string where the first argument indicates the starting 

position, the second argument indicates the ending position, and the third argument indicates the 
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source string. Prt_Btwn assumes the string is indexed beginning at 0. Figure 44 provides a 

specification with a simple ensures clause that would be a good option and would provide VCs 

that are easy to prove. However, to demonstrate the use of auxiliary variables, we will also 

consider how this could be specified with existential quantifiers. 

Enhancement Rotating_Capability for Queue_Template; 
 Operation Rotate( updates Q: Queue ); 
  requires |Q| /= 0; 
  ensures Q = Prt_Btwn(0,1,#Q) o Prt_Btwn(1,|#Q|,#Q) 
end Rotating_Capability; 

Figure 44: Queue Rotate with Alternate Specification 

So suppose instead that Rotate is specified using existential quantifiers as in Figure 45. In writing 

an implementation of a specification with such quantifiers, RESOLVE provides the ability to 

define verification variables or auxiliary variables; also, termed ghost or adjunct variables in [1], 

[2] and [10]. These are not used to translate and execute the code but are used to help the VC 

generator create VCs that are more easily proved. These auxiliary variables coincide with the 

mathematical variable in the existential quantification. The auxiliary code is used to set the value 

of the auxiliary variable which is then used to generate easier-to-prove VCs. Thus, the VC prover 

will know the value of the existential variables and won‘t have to ―guess‖ at the value. This can 

be most easily explained with an example.   

The specification in Figure 45 states that there exist two entries, E and R. There are also two 

auxiliary variables, the entry E and the Queue R. The auxiliary variables, E and R, are set using 

the auxiliary code (Queue_Replica and Entry_Replica). Auxiliary code is ignored by the 

translator but the VC generator treats the Auxiliary variables and Auxiliary code just like normal 

variables and code. The only difference is that there won‘t be actual realizations for the auxiliary 

operations! 
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Enhancement Rotating_Capability for Queue_Template; 
 
 Operation Rotate( updates Q: Queue ); 
  requires |Q| /= 0; 
  ensures there exists E: Entry,  

  there exists R: Str(Entry),    
 #Q = <E> o R and Q = R o <E>; 

 
end Rotating_Capability; 
 
Realization Obvious_Rotate_Realiz for  

Rotating_Capability of Queue_Template; 
 Aux Operation Entry_Replica (restores E: Entry): Entry; 
  ensures Entry_Replica = E; 
 
 Aux Operation Queue_Replica (restores P: Queue): Queue; 
  ensures Queue_Replica = P; 
 
 Procedure Rotate( updates Q: Queue ); 
  Var TE: Entry; 
  Aux_Var E: Entry; 
  Aux_Var R: Queue; 
  Dequeue( TE, Q ); 
  Aux_Code 
   E := Entry_Replica(TE); 
   R := Queue_Replica(Q); 
  end; 
  Enqueue( TE, Q ); 
 
 end Rotate; 
end Obvious_Rotate_Realiz; 

Figure 45: Queue Rotate with Auxiliary Variables Specification and Implementation 

Consider Appendix F that shows the VCs generated for Queue Rotate with the auxiliary code and 

without the auxiliary code. VC 1 and VC 2 contain only minor differences between the two 

versions. However VC 3 (and 4) are much simpler to prove in the example using auxiliary code. 

Each of the VCs for the auxiliary code were automatically proved by the RESOLVE prover.   
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CHAPTER SIX 

EDUCATIONAL USES 

One important use of the RESOLVE verifier is its value in the classroom. It has been used at 

multiple universities to provide a foundation for logical reasoning about software design. All too 

often students, just like other software developers, write bug-filled code with an attitude that most 

bugs will be found during the testing process. Often that wrong assumption leads to a lack of 

proper understanding of their own code. Using RESOLVE to teach students demonstrates both 

the need and viability of creating provably correct software and leads students to create software 

that has been properly designed based on the corresponding specifications. [48] 

There are several different ways the web interface for the RESOLVE verifier is currently being 

used in the classroom. The most obvious use of RESOLVE is in a software engineering course. 

However, it has also been used at a few schools in a theory and programming language course. 

Students interacted with the VC generator to varying degrees at different schools. The web-

interface for the VC generator was used by the students at the school in the list below. 

 Clemson University 
o Junior/Senior-Level Software Engineering Course 
o Graduate-Level Software Engineering Course 

 Cleveland State University 
o Junior/Senior-Level Software Engineering Course 
o Graduate-Level Software Engineering Course 

 Denison University 
o Junior/Senior-Level Software Engineering Course 
o Theory and Programming Language Course 

 Depauw university 
o Theory and Programming Language Course 

 Ramapo College 
o Theory and Programming Language Course 

 University of Alabama 
o Junior/Senior-Level Software Engineering Course 
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 VT Northern Virginia Campus 
o Junior/Senior-Level Software Engineering Course 
o Graduate-Level Software Engineering Course 

 Western Carolina University 
o Junior/Senior-Level Software Engineering Course 

 
To understand the educational benefits provided by the VC generator, let us consider how it has 

been used at Clemson in a junior-level software engineering course. The students have been 

assigned a team project for the past several semesters used to teach, by example, how helpful 

formal specifications and verification are in contract-based software design. With each group 

using the same specifications, the implementations from various groups were combined and 

executed. Because full verification was not yet possible, these did not always work perfectly, but 

students saw that most of the time the process worked. This demonstrated the feasibility of the 

using contracts to design and build software. 

At other universities (Clemson, Alabama, Western Carolina, DePauw, and Cleveland State) VCs 

were generated for examples using the web interface during classtime. Students were able to edit 

the code to attempt various ‗What If‘ scenarios. This allowed students to see and use a VC 

generator to understand the purpose and usefulness of verification. 

Recursive Queue Append Example 

This example shows the type of ‗What If‘ scenarios that can be demonstrated in undergraduate 

courses. RESOLVE provides support for recursion and thus must be able to generate VCs to 

show termination of the recursion in addition to the normal VCs required for showing that the 

post-condition holds. Similar to the While loop, recursive procedures require a decreasing clause 

to show termination. The example in Figure 46 shows an operation, Append, which accepts two 

queues as parameters and will append the second queue, Q, to the first queue, P. The queue, Q, 

will be empty after the operation completes. With each recursive call by append the queue, Q, 
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will decrease in length (by one) with Append removing one entry from Q and then recursively 

calling Append on the resulting Q. As can be seen, the implementation of Append defines the 

length of Q as the decreasing clause. So it must be shown that this is true before each recursive 

call. After the recursive call to Append, the entry removed from Q before the call is added to P. 

Enhancement Append_Capability for Queue_Template; 
    Operation Append(updates P: Queue; clears Q: Queue); 
        requires |P| + |Q| <= Max_Length; 
        ensures P = #P o #Q; 
end Append_Capability; 
 
Realization Recursive_Append_Realiz for Append_Capability  

of Queue_Template; 
        uses Std_Boolean_Fac; 
    Recursive Procedure Append(updates P: Queue;  

clears Q: Queue); 
        decreasing |Q|; 
 
      Var E: Entry; 
      If (Length (Q) /= 0) then 
          Dequeue(E,Q); 
          Enqueue(E,P); 
          Append(P,Q); 
      end; 
    end Append; 
end Recursive_Append_Realiz; 

Figure 46: Queue Recursive Append Specification and Implementation 

When generating VCs for recursive operations, it is necessary to update the operation call rule 

and procedure declaration rule. Each of these will be modified to use and maintain P_Val based 

on the decreasing clause (similar to the While loop). The procedure declaration and operation call 

rule with updates to support recursion follow. The italicized portions of the proof rules have been 

added to handle recursion. These proof rules will construct VCs such that there is an assumption 

that P_Val is equal to the decreasing statement at the start of the operation.  However, before the 

recursive call, we must show that the value the decreasing statement has decreased. 
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Assuming an example operation, P, with one parameter being updated and one parameter being 

cleared, the modified, recursive procedure declaration and call rules follow. 

CDP =  Operation P( updates t: T1; clears u: T2); 

  requires Pre/_t, u _\; 
  ensures Post/_ #t, #u, t _\; 

 

Recursive Procedure Declaration Rule: 

 C {CDP}\ Assume Pre  T1.Constraint(t)  T2.Constraint(u); 
  Remember; 

Assume P_Val = P_Exp;  
body;  

Confirm Post  T2.is_initial(u); 
 C {CDP}\ code; Confirm RP; 
 _________________________________________________________________ 

 C {CDP}\ Recursive Proc P(… ); decreasing P_Exp; body; end P;  
code; Confirm RP; 

 
Recursive Procedure Invocation Rule: 

 C {CDP}\ code; Confirm Invk_Cond(P(a,b)) and P_Exp < P_Val; 

Assume Post[t⇝NQV(RP, a), #t⇝a, #u⇝b] and T2.is_initial(b); 

Confirm RP[a⇝NQV(RP, a)]; 
 _________________________________________________________________ 

 C {CDP}\ code; P( a, b); Confirm RP/_ a, b _\ ; 
 

 

Each of the VCs generated by this example are provable. There are 8 generated VCs that are 

generated for the Append operation. Three VCs are generated from pre-conditions to operation 

calls, one will show the recursion terminates, and one will show the final goal is achieved. 

VC 0_3 is the most interesting of these VCs at it shows termination. The goal of the VCs is that 

the size of Q decreases before the recursive call. This VC is provable based on assumption 10 

which exists because of the Dequeue of E from Q. The other VCs are located in Appendix G. 
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VC: 0_3:  Show Termination of Recursive Call:  
Recursive_Append_Realiz.rb(5) 

Goal: (|Q'| < |Q|) 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |Q| 
11: |Q| /= 0 
12: Q = (<E'> o Q') 

Figure 47: Example VC for Recursive Append 

Another interesting example is one where a programmer supplies an incorrect decreasing clause. 

In that case, although the append will still work correctly, the code will be invalid since we 

cannot show termination. Consider Figure 47. In this example, we have indicated that the size of 

the Queue, P, is decreasing. However, the size of the Queue, P, is in fact increasing with each 

level of recursion. 

Realization Recursive_Append_Realiz for Append_Capability  
of Queue_Template; 

        uses Std_Boolean_Fac; 
    Procedure Append(updates P: Queue; clears Q: Queue); 
        decreasing |P|; 
 
      Var E: Entry; 
      If (Length (Q) /= 0) then 
          Dequeue(E,Q); 
          Enqueue(E,P); 
          Append(P,Q); 
      end; 
    end Append; 
 
end Recursive_Append_Realiz; 

Figure 48: Invalid Queue Recursive Append implementation 
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The VCs generated from the example in Figure 48 are nearly identical to the VCs generated from 

Figure 46 except for the VC that shows termination. The complete list of VCs are included in 

Appendix G. All of the VCs are still provable except for VC 0_3 shown in Figure 49 This VC is 

not provable because |(P o <E‘>)| is greater than |P| which is generated because we are appending 

an entry to P with each level of recursion. Thus we cannot show that the recursion ends. 

VC: 0_3:  
Show Termination of Recursive Call: 
Recursive_Append_Realiz.rb(5) 
 
Goal: 
(|(P o <E'>)| < |P|) 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |P| 
11: |Q| /= 0 
12: Q = (<E'> o Q') 

Figure 49: Example VC for Recursive Append with Wrong Decreasing Clause 

Let‘s consider another variation of the recursive Append example in Figure 50. 

Realization Recursive_Append_Realiz for Append_Capability of  
Queue_Template; 
        uses Std_Boolean_Fac; 
    Procedure Append(updates P: Queue; clears Q: Queue); 
        decreasing |Q|; 
  
      If (Length (Q) /= 0) then 
          Append(P,Q); 
      end; 
    end Append; 
 
end Recursive_Append_Realiz; 

Figure 50: Another Invalid Queue Recursive Append Implementation 
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As can be seen in this example, we have supplied the |Q| as the decreasing clause again. The 

previous example in Figure 48 was a correct implementation but invalid because of the wrong 

specification.  However, this is an example where the VCs are not going to be provable because 

it‘s simply a wrong implementation.  Similar to the previous example, only the VC that shows 

termination is unable to be proved. Because the size of Q does not decrease before calling 

Append, we cannot prove VC 0_1 in Figure 51 that would show the recursion is finite. These 

VCs are also located in Appendix G. 

VC: 0_1:  
Show Termination of Recursive Call: 
Recursive_Append_Realiz.rb(5) 
 
Goal: 
(|Q| < |Q|) 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |Q| 
11: |Q| /= 0 

Figure 51: Example VC for Recursive Append with wrong implementation 

User Feedback 

The VC generator also needs to be able to provide appropriate user feedback. Similar to a 

compiler, users should be able to identify which portions of code generated a VC so they 

know where to begin to debug. This can be done by relating line numbers to each VC. The 

current VC generator can specify where the goal of an assertion originates and thus 

debugging based on unprovable assertions will become an easier process. The current VC 
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generator can also relate each assumption to a line number, though it is currently unclear if 

that will be a commonly used option. When each assertion is formed, the line number of the 

code is connected to the related portion of the code. The current web interface, designed by 

Clemson University students, has made use of this information to create a very useful tool 

[48]. 
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CHAPTER SEVEN 

CONCLUSIONS AND FUTURE DIRECTIONS 

This research has shown that automated VC generation is not only possible but practical, by 

designing mechanizable proof rules and realizing them within a full-fledged object-based 

language, bridging the large gap between theoretical principles and actual verification. These 

proof rules are scalable, allowing verification of all data types in many data constructs. The 

system also allows for modular generation of VCs, verifying each component independently.  

VCs have been generated for a wide variety of examples in addition to a set of benchmarks 

demonstrating the goal of verification – the Grand Challenge provided by Tony Hoare [4]– is 

achievable.   

Several directions for further research remain.  The proof rules and the VC generator in this 

dissertation cover only a subset of RESOLVE, albeit a large subset.  Specifically, the treatment of 

global variables is minimal at best.  But the work here provides a solid theoretical and practical 

basis to build on.  Similarly, only initial semantics for the RESOLVE language have been 

formalized and only examples of the soundness of mechanizable rules have been presented in this 

dissertation. Ultimately, more complete semantics for the RESOLVE language are needed, 

including formal semantics for data abstraction. Additionally, details about the relational 

semantics need to be formalized. 

One reason to formalize the semantics is so that the VC generator itself can be verified. Much like 

Pascal once demonstrated that a compiler could be written in a high-level language and compiled, 

the verifier should be written in RESOLVE that supports full verification and verified. The 

present verifier can be used for this bootstrapping.  Many questions remain as to how this should 



139 

 

be done. It must be determined which components are best suited for this task and how each of 

these components should be specified and verified.  

There is much more work to be done to have a completely automated verification system. 

Currently, work is continuing on the RESOLVE minimalist prover. The prover is now able to 

automatically prove many of the VCs generated by the VC generator. Many others cannot be 

proved. A key reason for this is simply the result of incomplete mathematical theories. As the 

theories are used and expanded and the prover is improved, the abilities to prove more software 

correct will also grow. Currently, the prover is a completely independent step which follows the 

VC generation process. It should be considered whether the two steps should be intertwined to 

provide a more efficient and capable verifier.  

Another area of research is verification of performance. Performance profiles can be written to 

complement the specifications of functional behavior (concepts). These profiles will specify the 

time and space requirements of the software. Thus, not only will the verifier be able to prove that 

the software is correct in functionality but can also prove that the software runs within the 

specified time constraints and resource constraints. These will be modular and scalable, and can 

be layered on the mechanizable proof rules and VC generator, conceived in this dissertation. 

In conjunction with the online RESOLVE web-interface, the VC generator has provided the 

ability to allow many students and researchers to use RESOLVE. This allows students to both 

learn to reason about the software and shows that verification is an attainable goal. For example, 

the VC generator has been used for a PayPal type system for research at Virginia Tech, Northern 

Virginia Center and for verifying a piece of sensor network code at Clemson University. Other 

software needs to be developed with the VC generator to test and demonstrate its ability to verify 

large software applications.  
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As the verifier develops into a fully automatic system, students should learn to use the verifier 

instead of a debugger to develop software. This will provide students with a better understanding 

of the code they have written, and should lead to stronger developers in the workplace, skilled in 

mathematical reasoning, even if they may never use a verifier. 
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Appendix A 

Proof Rules 

In the following rules,  

 RP is the result predicate 

 code refers to the statements preceding the construct 

 C is the context 

 Invk_Cond(exp) conjoins all pre-conditions for all the programming functions 

   in exp 

 Math(exp) composes the mathematical expressions for all the programming 

   functions in exp. 

 BE is a Boolean valued programming expression. 

 P_Exp is the ordinal valued progress metric expression, the system variables ?kP_Val hold 

progress metric values 

 NQV( RD, x ) produces a next question marked variable name of the form ?mx such that 

m is  the smallest value for which ?mx doesn’t occur in RD.  

 CExp/_t_\ is the constraint expression for T.  

 

Assume Rule: 

  
C\ code; Confirm exp => RP; 
_____________________________________________ 
C\ code; Assume exp; Confirm RP; 
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Swap Rule: 

 C\ code; Confirm RP[ x⇝y, y⇝x ];  
_____________________________________________________________ 

 C\ code; x :: y; Confirm RP; 
 

Function Call/Expression Reassignment Rule: 

 C\ code; Confirm Invk_Cond(exp)  RP[x⇝Math(exp)]; 
 _____________________________________________________________ 

 C\ code; x : exp; Confirm RP;    
 

If/Else Rule: 

 C\ code; Confirm Invk_Cond(BE); Assume Math(BE); code1;  
Confirm RP; 

 C\ code; Assume ¬ Math(BE); code2; Confirm RP; 
 _____________________________________________________________ 
 C\ code; If BE then code1 else code2 end_if; Confirm RP; 

 

If Rule: 

 C\ code; If BE then code1 else end_if; Confirm RP; 
 _____________________________________________________________
 C\ code; If BE then code1 end_if; Confirm RP;  

 

Confirm Rule: 

 C\ code; Confirm exp  RP; 
 _____________________________________________________________ 
 C\ code; Confirm exp; Confirm RP; 
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While Rule: 

C/ code; Confirm Inv; Change Vlist; Assume Inv ^  
NQV(RP, P_Val)= P_Exp;  
If BE then body; Confirm Inv ^ P_Exp < NQV(RP, P_Val);  
else Confirm RP end_if;  
Confirm True; 

_____________________________________________________________ 
C/ code; While B  

maintaining Inv;  
decreasing P_Exp;  
changing VList;  

   do  
body  

end;  
Confirm RP; 

   

Change Rule:  

(The context indicates that x is of type T.) 

C {NQV(RP, x): T}\ code;  
Confirm RP[x⇝NQV(RP, x)]; 
_____________________________________________________________ 
C\ code; Change x; Confirm RP; 

  

Remember Rule: 

C\ code; Confirm RP[#s⇝s, #t⇝t];    
 _____________________________________________________________ 

C\ code; Remember; Confirm PR/_ s, #s, t, #t, u, v, ⋯ _\; 
 

The following rules will use the example operation template for P given below. 

CDP =  Operation P( updates t: T1; evaluates u: T2;  
replaces v: T3; restores w: T4; preserves x: T5;  
alters y: T6; clears z: T7); 

  requires Pre/_t, u, w, x, y, z, _\; 
  ensures Post/_ #t, u, w, x, #y, #z, t, v, _\; 
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Operation Declaration Rule:  

 C {CDP} \ 
 _____________________________________________________________ 
 C \ CDP;  

 

Operation Invocation Rule: 

 C {CDP}\ code; Confirm Invk_Cond(P(a,exp,b,c,d,e,f));  

Assume ( T1.Constraint(t)  T3.Constraint(v)  
T6.Constraint(y)  Post) [t⇝NQV(RP, a), #t⇝a, u⇝Math(exp), 

v⇝NQV(RP, b), w⇝c, x⇝d, #y⇝e, #z⇝f]   
T7.is_initial(NQV(RP, f));  

Confirm RP[a⇝NQV(RP, a), b⇝NQV(RP, b), e⇝NQV(RP, e), 

f⇝NQV(RP, f)] ); 
 _____________________________________________________________ 

 C {CDP}\ code; P( a, exp, b, c, d, e, f);  

Confirm RP/_ a, b, c, d, e, f, g, h,  _\; 

 

Procedure Declaration Rule: 

 C {CDP}\ Assume Pre  T1.Constraint(t)  T2.Constraint(u)   
  T3.Is_Init(v)  T4.Constraint(w)  T5.Constraint(x)   

T6.Constraint(y)  T7.Constraint(z); 
Remember; 

body;  

Confirm Post  w  #w  T7.is_initial(z); 
 C {CDP}\ code; Confirm RP; 
 _________________________________________________________________ 

 C {CDP}\ Proc P(… ); body; end P; code;  
Confirm RP; 
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Suppose a Concept Template is specified by:  

CT = Concept CN( type T; eval n: U; def R: TVB ); 
   uses AFac, BTh; 
   requires CPC/_ n, R _\; 

  Definition S: WB = ( DExp ); 

  Defines f: WT; 
  constraint DC/_ f, n, R _\; 
  Var gv: X1; 
  constraint VC/_ gv, f, n, R _\; 
 

Facility_Initialization  
   ensures GIC/_ gv, f, S, n, R _\; 
 
  Type Family TF is modeled by MTE; 
   exemplar x; 
   constraint TC/_ x, n, R, gv, f _\; 
   initialization  
    updates gv; 
    ensures IC/_ x, gv, f, n, R _\; 
   finalization  
    updates gv; 
    ensures FC1/_#x, gv, f, n, R_\; 
 
  Oper P( updates x: TF; evaluates z: U ); 
   updates gv; 
   requires Pre/_x, y, gv, f, n, R_\; 
   ensures Post/_x, #x, y, gv, #gv, f, n, R_\; 
 end CN; 

 

Concept Declaration Rule: 

 C {CT}\ code; Confirm Q; 
 _________________________________________________________________ 
 C\ CT; code; Confirm Q; 
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Suppose a Concept implementation is specified by:  

RT = Realization RN( eval rn: RU; def RR: RTRVB;  
Realization F_Realiz(eval e:T3); 
Procedure RP( updates rx: RT2 ); 

    requires preRP/_ rx, rn _\; 
    ensures postRP/_ rx, #rx, rn _\) 

  for CN; 
  uses RAFac, RBTh, GTy, R_C; 
  requires RPC/_ rn, RR _\;) 

  Definition RS: RWB = ( RDExp ); 

  Definition f: WT = (F_Exp); 
  constraint RDC/_ rn, RR _\; 
 
Facility F is R_C( f_exp/_ rx, rn _\, GTy, RR, RS)   

realized_by F_Realiz(f_exp/_ rx, rn _\, RR, RS); 
 

(* Treatment of rules does not include realization globals *) 
(*  
Var rg1: RX; 
Aux_Var ra: Tm; 
 convention RGC//_ ra, rg, f, rn, RR, RS _\; 
 correspondence CR_Exprg//_ gv, ra, rg1, rn, RR, RS _\; 
 Facility_Initialization GI_body; end;  
*) 
 
Type TF = RT; 
 conventions RC/_ x, rg1, f, rn, RR, RS_\; 
 correspondence3 conc.x = Cor_Fn_Exp/_x, gv, rg, rg, ra,  

f, n, rn, R, RR, S, 
RS_\; 

  Facility_Initialization I_body; end; 
 
Procedure P (updates x: TF; evaluates z: U); 
 p_body; 
end P; 
  

end RN; 
  

                                                             

 

Please see footnote #1 for how the rule changes if the correspondence is relational. 
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Realization Declaration Rule: 

 C {R_C}\ Fac_Instantiation_Hyp; 

C {CT}\ Well_Def_Corr_Hyp;  

C {CT}\ T_Init_Hyp; 

C {CT}\ Correct_Op_Hyp; 

 C {CT}{R_Heading}\ code; Confirm Q; 
 _________________________________________________________________ 

 C {CT}\ RT; code; Confirm Q; 

 

Well_Def_Corr_Hyp  shows that the correspondence is well defined. 

 Assume CPC/_ n, R _\  RPC/_ rn, RR_\   
RC/_ rg, f, rn, RR, RS_\; 
// Assumes Concept Level Requires, Concept  
// Realization level requires and convention 

Confirm TC[x ⇝ Cor_Fn_Exp]; 

 

T_Init_Hyp establishes that the type initialization is done correctly. 

Assume CPC  RPC; 
var x1: RT; 
I_Body; 
Confirm RC; 

Confirm IC/_ x ⇝ Cor_Func_Exp, gv, f, n, R _\; 

 

Correct_Op_Hyp establishes the correctness of each procedure. 

Assume CPC  DC  VC  RPC  RDC   
RC  TC  Pre[x ⇝ Cor_Fn_Exp]; 

Remember; 
p_body; 

Confirm RC/_ x, rg, f, rn, RR, RS_\  

            Post[x ⇝ Cor_Fn_Exp]; 
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Suppose a Facility instantiation takes the form: 

F_Instn = Facility FN is CN(IT, n_exp, IR) 
    realized_by RN(rn_exp, IRR, IRCR, IRP); 
  

where Operation IRP has the specification: 
Operation IRP (updates irx: RT2); 

  requires preIRP /_rn_exp, irx_\; 
  ensures postIRP /_rn_exp, #irx, irx _\; 

 

Facility Instantiation Rule: 

 
 Fac_Instantiation_Hyp; 

 C {CT, RT}  {F_I_Spec} \ Assume I_Exp; code; Confirm RP; 
 _________________________________________________________________ 

 C {CT, RT} \ F_Instn; code; Confirm RP; 
 
where 

F_I_Spec is Facility Instantiation Specification 
 

I_Exp is GIC[S⇝ DExp, f⇝ F_Exp[rn⇝ rn_exp, RR⇝ IRR] 

[ n⇝ n_exp, R⇝ IR, T⇝ IT]; 
 

Fac_Instantiation_Hyp is  

(RPC[rn⇝ rn_exp, RR⇝ IRR]  CPC)[ n⇝ n_exp, R⇝ IR]   
( preRP [rn⇝ rn_exp, rx⇝ irx] implies preIRP )   
( postIRP implies postRP[rn⇝ rn_exp, #rx⇝ #irx, rx⇝ irx]); 
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Suppose an explicit facility is specified by: 

F = Facility FN; 
  uses AFac, BRealiz, CCon; 
 

 gv: X;

 XI/_ gv_\;








var

initialization

ensures

 Global_Info; 

procedure; 
 G_I_Body; 
end; 

 

 T = PTE;

      x;

     . D: W  B = ( DE /_ x, gv _\);

      TCE /_  x, gv_\;

     i

      TIE /_  x, gv_\;











Type

exemplar

Def

constraints

nitialization

ensures

 Type_Info; 

 procedure; 
T_I_Body; 

 end; 
  
  
                                          

         P    x       ;                                 P  t  x   x            ;                                Op_Info1 
  
procedure P1; 
  P1_body; 
 end P1; 

⋮ 

 

end FN; 
 

F_Spec = {Global_Info, Type_Info, Op_Info1, ⋯ } 
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Explicit Facility Declaration Rule: 

C \ G_I_F_Hyp; 

C {Global_Info} \ T_I_F_Hyp; 

C {Type_Info} \ Correct_Op_Hyp; 

C  F_Spec \ code; Confirm RP; 
 _________________________________________________________________ 

C \ F; code; Confirm RP; 
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Appendix B 

Simplification Rules 

Confirm X; 

Assume true; Confirm X; 
 
Confirm X; 

Confirm true -> X; 
 
Confirm X; 

Confirm X; Confirm true; 
 
Confirm true; 

Confirm A -> true; 
 
Confirm (A ^ B) -> C; 

Confirm A -> B -> C; 
 
Confirm A -> B; 

Confirm A -> (A ^ B); 
 
Confirm A -> B; 

Confirm A -> (B ^ A); 
 

Confirm A; 

Confirm A ^ true; 
 
Confirm A; 

Confirm true ^ A; 
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Appendix C 

Additional Specifications 

Array Specification 

Concept Static_Array_Template(type Entry; evaluates 
Lower_Bound, Upper_Bound: Integer); 
    uses Std_Integer_Fac; 
    requires (Lower_Bound <= Upper_Bound); 
 
    Type Family Static_Array is modeled by (Z -> Entry); 
        exemplar A; 
   constraint true; 
     initialization ensures  
  for all i: Z, Entry.Is_Initial(A(i)); 
 
    Operation Swap_Entry(updates A: Static_Array;  

updates E: Entry; evaluates i: Integer);  
requires Lower_Bound <= i  and i <= Upper_Bound; 

  ensures E = #A(i) and  
A = lambda j: Z.({{#E if j = i;  

#A(j) otherwise;}}); 
 
    Operation Swap_Two_Entries(updates A: Static_Array;  

 evaluates i, j: Integer);  
        requires Lower_Bound <= i  and i <= Upper_Bound and 
                    Lower_Bound <= j  and j <= Upper_Bound; 
        ensures A = lambda k: Z.({{#A(j) if k = i;  

  #A(i) if k = j;  
  #A(k) otherwise;}}); 

 
end Static_Array_Template; 
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Integer Specification 

 
 
Concept Integer_Template; 
    uses Integer_Theory, Std_Boolean_Fac; 
 
    defines min_int: Z; 
    defines max_int: Z; 
 
    Constraint min_int <= 0 and 0 < max_int; 
 
    Type Family Integer is modeled by Z; 
        exemplar i; 
        constraint min_int <= i <= max_int; 
        initialization ensures i = 0; 
 
    Operation Is_Zero(evaluates i: Integer): Boolean; 
        ensures Is_Zero = ( i = 0 ); 
 
    Operation Is_Not_Zero(evaluates i: Integer): Boolean; 
        ensures Is_Not_Zero = ( i /= 0 ); 
 
    Operation Increment(updates i: Integer); 
        requires i + 1 <= max_int; 
        ensures i = #i + 1; 
 
    Operation Decrement(updates i: Integer); 
        requires min_int <= i - 1; 
        ensures i = #i - 1; 
 
    Operation Less_Or_Equal(evaluates i, j: Integer): Boolean; 
        ensures Less_Or_Equal = ( i <= j ); 
 
    Operation Less(evaluates i, j: Integer): Boolean; 
        ensures Less = ( i < j ); 
 
    Operation Greater(evaluates i, j: Integer): Boolean; 
        ensures Greater = ( i > j ); 
 
    Operation Greater_Or_Equal( 

evaluates i, j: Integer): Boolean; 
        ensures Greater_Or_Equal = ( i >= j ); 
 
    Operation Sum(evaluates i, j: Integer): Integer; 
        requires min_int <= i + j <= max_int; 
        ensures Sum = ( i + j ); 
 
    Operation Negate(evaluates i: Integer): Integer; 
        requires min_int <= -i <= max_int; 
        ensures Negate = ( -i ); 
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    Operation Difference(evaluates i, j: Integer): Integer; 
        requires min_int <= i - j <= max_int; 
        ensures Difference = ( i - j ); 
 
    Operation Product(evaluates i, j: Integer): Integer; 
        requires min_int <= i * j <= max_int; 
        ensures Product = ( i * j ); 
 
    Operation Power(evaluates i, j: Integer): Integer; 
        requires min_int <= i**j <= max_int; 
        ensures Power = ( i**j ); 
 
    Operation Divide(evaluates i, j: Integer;  

replaces q: Integer); 
      requires if (j <= 0) then  

(j*(max_int + 1) < i and i < j*(min_int -1)); 
        ensures (|j*q| <= |i|) and (|i - j*q| < |j|); 
 
    Operation Mod(evaluates i, j: Integer): Integer; 
      requires j /= 0; 
        ensures Mod = ( i mod j ); 
 
    Operation Rem(evaluates i, j: Integer): Integer; 
 
    Operation Quotient(evaluates i, j: Integer): Integer; 
 
    Operation Div(evaluates i, j: Integer): Integer; 
      requires j /= 0; 
      ensures Div = ( i/j ); 
 
    Operation Are_Equal(evaluates i, j: Integer): Boolean; 
        ensures Are_Equal = (i = j); 
 
    Operation Are_Not_Equal(evaluates i, j: Integer): Boolean; 
        ensures Are_Not_Equal = (i /= j); 
 
    Operation Replica(restores i: Integer): Integer; 
        ensures Replica = (i); 
 
    Operation Read(replaces i: Integer); 
 
    Operation Write(evaluates i: Integer); 
 
    Operation Write_Line(evaluates i: Integer); 
 
    Operation Max_Int(): Integer; 
        ensures Max_Int = max_int; 
   
    Operation Min_Int(): Integer; 
        ensures Min_Int = min_int; 
 
    Operation Clear(clears i: Integer); 
 
end Integer_Template; 
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Preemptable Queue Specification 

Concept Preemptable_Queue_Template(type Entry;  
evaluates Max_Length: Integer); 

    uses Std_Integer_Fac, Modified_String_Theory; 
    requires Max_Length > 0; 
  
    Type Family P_Queue is modeled by Str(Entry); 
    exemplar Q; 
    constraint |Q| <= Max_Length; 
    initialization ensures Q = empty_string; 
  
    Operation Enqueue(alters E: Entry; reassigns Q: P_Queue); 
        requires |Q| < Max_Length; 
        ensures Q = #Q o <#E>; 
  
    Operation Inject(alters E: Entry; updates Q: P_Queue); 
        requires |Q| < Max_Length; 
        ensures Q = <#E> o #Q; 
 
    Operation Dequeue(replaces R: Entry; updates Q: P_Queue); 
        requires |Q| > 0; 
        ensures #Q = <R> o Q; 
 
    Operation Swap_Last_Entry(updates E: Entry;  

updates Q: P_Queue); 
        requires |Q| > 0; 
      ensures there exists Pre: Str(Entry) such that  
  #Q = Pre o <E> and Q = Pre o <#E>; 
 
    Operation Length(restores Q: P_Queue): Integer; 
        ensures Length = (|Q|); 
  
    Operation Rem_Capacity(restores Q: P_Queue): Integer; 
        ensures Rem_Capacity = (Max_Length - |Q|); 
  
    Operation Clear(clears Q: P_Queue); 
  
end Preemptable_Queue_Template; 
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Search Enhancement to Preemptable Queue 

Enhancement Searching_Capability for  
Preemptable_Queue_Template; 

 uses Std_Boolean_Fac; 
 
 Operation Search_and_Move(restores E: Entry;  

  updates Q: P_Queue;  
  replaces Result: Boolean); 

  ensures Is_Permutation(Q, #Q) and  
  (Is_Substring(<E>, #Q) iff Result = true) and  
  (Result = true implies Is_Prefix(<E>, Q)); 
end Searching_Capability; 
 
Realization Searching_Realiz  
( 
     Operation Entries_Are_Equal  

(restores E, F: Entry) : Boolean; 
          ensures Entries_Are_Equal = (E = F); 
) 
 for Searching_Capability of Preemptable_Queue_Template; 
     uses Std_Boolean_Fac; 
      
     Procedure Search_and_Move (restores E: Entry;  

updates Q: P_Queue;  
replaces Result: Boolean); 

          Var T: Entry; 
          Var R: P_Queue; 
          Result := False(); 
          While(Length(Q) > 0) 
               changing Q, Result, T, R; 
               maintaining Is_Permutation(Q o R, #Q) and  
     (Is_Substring(<E>, R) iff Result = true) and  
     (Result = true implies Is_Prefix(<E>, R)); 
               decreasing |Q|; 
          do 
               Dequeue(T, Q); 
               if (Entries_Are_Equal(E, T)) then  
                    Inject(T, R); 
                    Result := True(); 
               else Enqueue(T, R); 
               end; 
          end; 
          Q :=: R; 
     end Search_and_Move; 
 
end Searching_Realiz; 
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Appendix D 

Alternate Stack Specifications with implementations and VCs 

Example of a Stack Specified as a Natural Number 

Concept Stack_Template(type Entry; evaluates Max_Depth: 
Integer); 
    uses Std_Integer_Fac; 
    requires Max_Depth > 0; 
 
    Type Family Stack is modeled by N; 
        exemplar S; 
        constraint S <= Max_Depth; 
        initialization ensures S = 0; 
 
    Operation Push(alters E: Entry; updates S: Stack);  
        requires S < Max_Depth; 
        ensures  S = #S + 1; 
 
    Operation Pop(replaces R: Entry; updates S: Stack); 
        requires S /= 0; 
        ensures #S = S + 1; 
 
    Operation Depth(restores S: Stack): Integer; 
        ensures Depth = (S); 
 
    Operation Rem_Capacity(restores S: Stack): Integer; 
        ensures Rem_Capacity = (Max_Depth - S); 
 
    Operation Clear(clears S: Stack); 
 
end Stack_Template; 
 
Enhancement Reversal_Capability for Stack_Template; 
 Operation Reverse(updates S: Stack); 
  ensures S = #S; 
end Reversal_Capability; 
 
 
Realization Obvious_Rev_Realiz for Reversal_Capability of 
Stack_Template; 
 uses Std_Boolean_Fac, Std_Integer_Fac; 
 
 Procedure Reverse(updates S: Stack); 
  Var S_Reversed: Stack; 
  Var Next_Entry: Entry; 
 
  While (Is_Not_Zero(Depth(S))) 
   changing S, S_Reversed, Next_Entry; 



159 

 

   maintaining #S = S_Reversed + S; 
   decreasing S; 
  do 
   Pop(Next_Entry, S); 
   Push(Next_Entry, S_Reversed); 
  end; 
  S :=: S_Reversed; 
 end Reverse; 
end Obvious_Rev_Realiz; 
 

Stack Flip VCs generated with alternative Stack Spec: 

// 
// Generated by the RESOLVE Verifier, December 2011 version 
// from file:  Obvious_Rev_Realiz.rb 
// on:         Tue Mar 09 21:14:08 EST 2010 
// 
 
Free Variables: Max_Depth:Z, min_int:Z, max_int:Z, S:N, 
?Next_Entry:Entry, ?S_Reversed:N, ?S:N, ??S:N, 
Next_Entry:Entry, S_Reversed:N 
 
 
VC: 0_1 
 
(((min_int <= 0)and 
(0 < max_int) and 
(Max_Depth > 0)) and 
(S <= Max_Depth)) 
======================> 
S = (0 + S) 
 
 
VC: 0_2 
 
((((min_int <= 0)and 
(0 < max_int) and 
(Max_Depth > 0)) and 
(S <= Max_Depth)) and 
(S = (?S_Reversed + ??S) and 
(??S /= 0 and 
??S = (?S + 1)))) 
======================> 
(?S_Reversed < Max_Depth) 
 
 
VC: 0_3 
 
((((min_int <= 0)and 
(0 < max_int) and 
(Max_Depth > 0)) and 
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(S <= Max_Depth)) and 
(S = (?S_Reversed + ??S) and 
(??S /= 0 and 
??S = (?S + 1)))) 
======================> 
(?S_Reversed + ??S) = ((?S_Reversed + 1) + ?S) 
 
 
VC: 0_4 
 
((((min_int <= 0)and 
(0 < max_int) and 
(Max_Depth > 0)) and 
(S <= Max_Depth)) and 
(S = (?S_Reversed + ??S) and 
(??S /= 0 and 
??S = (?S + 1)))) 
======================> 
(?S < ??S) 
 
 
Free Variables: Max_Depth:Z, min_int:Z, max_int:Z, S:N, 
?P_val:N, ?S:N, ?S_Reversed:N, Next_Entry:Entry, S_Reversed:N 
 
 
VC: 1_1 
 
(((min_int <= 0)and 
(0 < max_int) and 
(Max_Depth > 0)) and 
((S <= Max_Depth) and 
(S = (?S_Reversed + ?S) and 
?S = 0))) 
======================> 
?S_Reversed = (?S_Reversed + ?S) 
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Example of a Stack Specified as a String of Entries 

Concept Stack_Template(type Entry; evaluates Max_Depth: 
Integer); 
    uses Std_Integer_Fac, String_Theory; 
    requires Max_Depth > 0; 
 
    Type Family Stack is modeled by Str(Entry); 
        exemplar S; 
        constraint |S| <= Max_Depth; 
        initialization ensures S = empty_string; 
 
    Operation Push(alters E: Entry; updates S: Stack);  
        requires |S| < Max_Depth; 
        ensures  S = <#E> o #S; 
 
    Operation Pop(replaces R: Entry; updates S: Stack); 
        requires |S| /= 0; 
        ensures #S = <R> o S; 
 
    Operation Depth(restores S: Stack): Integer; 
        ensures Depth = (|S|); 
 
    Operation Rem_Capacity(restores S: Stack): Integer; 
        ensures Rem_Capacity = (Max_Depth - |S|); 
 
    Operation Clear(clears S: Stack); 
 
end Stack_Template; 
 
 
Enhancement Flipping_Capability for Stack_Template; 
 
 Operation Flip(updates S: Stack); 
  ensures S = Reverse(#S); 
 
end Flipping_Capability; 
 
Realization Obvious_Flip_Realiz for Flipping_Capability of 
Stack_Template; 
 uses Std_Boolean_Fac; 
 
 Procedure Flip(updates S: Stack); 
  Var S_Flipped: Stack; 
  Var Next_Entry: Entry; 
  While (Depth(S) /= 0) 
   changing S, S_Flipped, Next_Entry; 
   maintaining #S = Reverse(S_Flipped) o S; 
   decreasing |S|; 
  do 
   Pop(Next_Entry, S); 
   Push(Next_Entry, S_Flipped); 
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  end; 
  S_Flipped :=: S; 
 end Flip; 
end Obvious_Flip_Realiz; 

Stack Flip VCs generated with normal Stack Spec: 

 
// 
// Generated by the RESOLVE Verifier, December 2011 version 
// from file:  Obvious_Rev_Realiz.rb 
// on:         Mon Mar 08 20:29:54 EST 2010 
// 
 
Free Variables: Max_Depth:Z, min_int:Z, max_int:Z, 
S:String_Theory.Str(Entry), ?Next_Entry:Entry, 
?S_Reversed:String_Theory.Str(Entry), 
?S:String_Theory.Str(Entry), ??S:String_Theory.Str(Entry), 
Next_Entry:Entry, S_Reversed:String_Theory.Str(Entry) 
 
 
 
VC: 0_1 
 
(((min_int <= 0)and 
(0 < max_int) and 
(Max_Depth > 0)) and 
(|S| <= Max_Depth)) 
======================> 
S = (Rev(empty_string) o S) 
 
 
VC: 0_2 
 
((((min_int <= 0)and 
(0 < max_int) and 
(Max_Depth > 0)) and 
(|S| <= Max_Depth)) and 
(S = (Rev(?S_Reversed) o ??S) and 
(|??S| /= 0 and 
??S = (<?Next_Entry> o ?S)))) 
======================> 
(|?S_Reversed| < Max_Depth) 
 
 
VC: 0_3 
 
((((min_int <= 0)and 
(0 < max_int) and 
(Max_Depth > 0)) and 
(|S| <= Max_Depth)) and 
(S = (Rev(?S_Reversed) o ??S) and 
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(|??S| /= 0 and 
??S = (<?Next_Entry> o ?S)))) 
======================> 
(Rev(?S_Reversed) o ??S) = (Rev((<?Next_Entry> o ?S_Reversed)) 
o ?S) 
 
 
VC: 0_4 
 
((((min_int <= 0)and 
(0 < max_int) and 
(Max_Depth > 0)) and 
(|S| <= Max_Depth)) and 
(S = (Rev(?S_Reversed) o ??S) and 
(|??S| /= 0 and 
??S = (<?Next_Entry> o ?S)))) 
======================> 
(|?S| < |??S|) 
 
 
Free Variables: Max_Depth:Z, min_int:Z, max_int:Z, 
S:String_Theory.Str(Entry), ?P_val:N, 
?S:String_Theory.Str(Entry), 
?S_Reversed:String_Theory.Str(Entry), Next_Entry:Entry, 
S_Reversed:String_Theory.Str(Entry) 
 
 
 
VC: 1_1 
 
(((min_int <= 0)and 
(0 < max_int) and 
(Max_Depth > 0)) and 
((|S| <= Max_Depth) and 
(S = (Rev(?S_Reversed) o ?S) and 
|?S| = 0))) 
======================> 
?S_Reversed = Rev((Rev(?S_Reversed) o ?S)) 
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Appendix E 

Examples of VCs from Component-Level Verification 

VCs for Circular_Array_Realiz of Queue_Template 

// 
// 
// Generated by the RESOLVE Verifier, December 2011 version 
// from file:  Circular_Array_Realiz.rb 
// on:         Mon Dec 05 12:22:25 EST 2011 
// 
 
Free Variables:  
Entry, Lower_Bound:Z, Upper_Bound:Z 
 
 
 
VC: 0_1:  
Requirement for Facility Declaration Rule for 
_Contents_Array_Fac_1: Circular_Array_Realiz.rb(5) 
 
Goal: 
(Lower_Bound  <= (Upper_Bound  + 1)) 
 
Given: 
 
1: (Lower_Bound  <= (Upper_Bound  + 1)) 
 
 
 
 
Free Variables:  
Q:(Contents:_Contents_Array_Fac_1.Static_Array; Front:Integer; 
Length:Integer), Lower_Bound:Z, Upper_Bound:Z, 
Last_Char_Num:N, min_int:Z, max_int:Z, Max_Char_Str_Len:N 
 
 
 
VC: 1_1:  
Correspondence Rule for Queue: Circular_Array_Realiz.rb(12) 
 
Goal: 
(|Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|  
<= Max_Length) 
 
Given: 
1: (Max_Length  > 0) 
2: (min_int  <= 0) 
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3: (0  < max_int) 
4: (Last_Char_Num  > 0) 
5: (0  <= (Max_Length - 1  + 1)) 
6: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
7: (min_int <= 0) and (0 <= max_int) 
8: (0 <= Q.Front) and (Q.Front < Max_Length) 
9: (0 <= Q.Length) and (Q.Length <= Max_Length) 
 
 
 
 
Free Variables:  
Q:(Contents:_Contents_Array_Fac_1.Static_Array; Front:Integer; 
Length:Integer), Conc.Q:Str(Entry), Q.Length:Z, Q.Front:Z, 
Q.Contents:Z -> Entry 
 
 
 
VC: 2_1:  
Convention for Queue generated by intialization rule: 
Circular_Array_Realiz.rb(9) 
 
Goal: 
(0 <= 0) and (0 < Max_Length) 
 
Given: 
1: for all i:Z, Entry.Is_Initial(Q.Contents(i)) 
2: (Max_Length  > 0) 
 
 
VC: 2_2:  
Convention for Queue generated by intialization rule: 
Circular_Array_Realiz.rb(9) 
 
Goal: 
(0 <= 0) and (0 <= Max_Length) 
 
Given: 
1: for all i:Z, Entry.Is_Initial(Q.Contents(i)) 
2: (Max_Length  > 0) 
 
 
VC: 2_3:  
Initialization Rule for Queue: Circular_Array_Realiz.rb(4) 
 
Goal: 
Concatenation i:Integer where (0 <= i) and (i <= ((0 + 0) - 
1)), <Q.Contents((i mod Max_Length))> = empty_string 
 
Given: 
1: for all i:Z, Entry.Is_Initial(Q.Contents(i)) 
2: (Max_Length  > 0) 
3: Conc.Q = Concatenation i:Integer where (0 <= i) and (i <= 
((0 + 0) - 1)), <Q.Contents((i mod Max_Length))> 
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Free Variables:  
Max_Length:Z, Lower_Bound:Z, Upper_Bound:Z, Last_Char_Num:N, 
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.Q:Str(Entry), 
E:Entry, Q:(Contents:_Contents_Array_Fac_1.Static_Array; 
Front:Integer; Length:Integer), 
Q':(Contents:_Contents_Array_Fac_1.Static_Array; 
Front:Integer; Length:Integer), E':Entry 
 
 
 
VC: 3_1:  
Requires Clause of Swap_Entry in Procedure Enqueue: 
Circular_Array_Realiz.rb(17) 
 
Goal: 
(0  <= (Q.Front  + Q.Length) mod Max_Length)) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: (|Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|  
< Max_Length) 
 
 
VC: 3_2:  
Requires Clause of Swap_Entry in Procedure Enqueue: 
Circular_Array_Realiz.rb(17) 
 
Goal: 
(Q.Front  + Q.Length) mod Max_Length) <= Max_Length - 1) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
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7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: (|Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|  
< Max_Length) 
 
 
VC: 3_3:  
Requires Clause of Q.Length + 1 in Procedure Enqueue: 
Circular_Array_Realiz.rb(18) 
 
Goal: 
(min_int <= (Q.Length + 1)) and ((Q.Length + 1) <= max_int) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: (|Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|  
< Max_Length) 
13: E' = Q.Contents(((Q.Front  + Q.Length)  mod Max_Length)) 
14: Q'.Contents = lambda j: Z ({{E if j = (Q.Front  + 
Q.Length) mod Max_Length) 
Q.Contents(j) otherwise 
}}) 
 
 
VC: 3_4:  
Convention for Queue generated by intialization rule: 
Circular_Array_Realiz.rb(9) 
 
Goal: 
(0 <= Q.Front) and (Q.Front < Max_Length) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
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4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: (|Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|  
< Max_Length) 
13: E' = Q.Contents(((Q.Front  + Q.Length)  mod Max_Length)) 
14: Q'.Contents = lambda j: Z ({{E if j = (Q.Front  + 
Q.Length) mod Max_Length) 
Q.Contents(j) otherwise 
}}) 
 
 
VC: 3_5:  
Convention for Queue generated by intialization rule: 
Circular_Array_Realiz.rb(9) 
 
Goal: 
(0 <= (Q.Length + 1)) and ((Q.Length + 1) <= Max_Length) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: (|Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|  
< Max_Length) 
13: E' = Q.Contents(((Q.Front  + Q.Length)  mod Max_Length)) 
14: Q'.Contents = lambda j: Z ({{E if j = (Q.Front  + 
Q.Length) mod Max_Length) 
Q.Contents(j) otherwise 
}}) 
 
 
VC: 3_6:  
Ensures Clause of Enqueue: Circular_Array_Realiz.rb(19) 
 



169 

 

Goal: 
Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + (Q.Length + 1)) - 1)), <Q'.Contents((i mod 
Max_Length))> = (Concatenation i:Integer where (Q.Front <= i) 
and (i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))>  o <E>) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: (|Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|  
< Max_Length) 
13: E' = Q.Contents(((Q.Front  + Q.Length)  mod Max_Length)) 
14: Q'.Contents = lambda j: Z ({{E if j = (Q.Front  + 
Q.Length) mod Max_Length) 
Q.Contents(j) otherwise 
}}) 
 
 
 
 
Free Variables:  
Max_Length:Z, Lower_Bound:Z, Upper_Bound:Z, Last_Char_Num:N, 
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.Q:Str(Entry), 
R:Entry, Q:(Contents:_Contents_Array_Fac_1.Static_Array; 
Front:Integer; Length:Integer), 
Q':(Contents:_Contents_Array_Fac_1.Static_Array; 
Front:Integer; Length:Integer), R':Entry 
 
 
 
VC: 4_1:  
Requires Clause of Swap_Entry in Procedure Dequeue: 
Circular_Array_Realiz.rb(22) 
 
Goal: 
(0  <= Q.Front) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
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4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: Entry.is_initial(R) 
13: |Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>| 
/= 0 
 
 
VC: 4_2:  
Requires Clause of Swap_Entry in Procedure Dequeue: 
Circular_Array_Realiz.rb(22) 
 
Goal: 
(Q.Front  <= Max_Length - 1) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: Entry.is_initial(R) 
13: |Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>| 
/= 0 
 
 
VC: 4_3:  
Requires Clause of Q.Front + 1 % Max_Length in Procedure 
Dequeue: Circular_Array_Realiz.rb(23) 
 
Goal: 
Max_Length /= 0 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
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4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: Entry.is_initial(R) 
13: |Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>| 
/= 0 
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front 
Q.Contents(j) otherwise 
}}) 
 
 
VC: 4_4:  
Requires Clause of Q.Length - 1 in Procedure Dequeue: 
Circular_Array_Realiz.rb(24) 
 
Goal: 
(min_int <= (Q.Length - 1)) and ((Q.Length - 1) <= max_int) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: Entry.is_initial(R) 
13: |Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>| 
/= 0 
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front 
Q.Contents(j) otherwise 
}}) 
 
 
VC: 4_5:  
Convention for Queue generated by intialization rule: 
Circular_Array_Realiz.rb(9) 
 
Goal: 
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(0 <= ((Q.Front + 1) mod Max_Length)) and (((Q.Front + 1) mod 
Max_Length) < Max_Length) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: Entry.is_initial(R) 
13: |Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>| 
/= 0 
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front 
Q.Contents(j) otherwise 
}}) 
 
 
VC: 4_6:  
Convention for Queue generated by intialization rule: 
Circular_Array_Realiz.rb(9) 
 
Goal: 
(0 <= (Q.Length - 1)) and ((Q.Length - 1) <= Max_Length) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: Entry.is_initial(R) 
13: |Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>| 
/= 0 
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front 
Q.Contents(j) otherwise 
}}) 
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VC: 4_7:  
Ensures Clause of Dequeue: Circular_Array_Realiz.rb(25) 
 
Goal: 
Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))> 
= (<Q.Contents(Q.Front)>  o Concatenation i:Integer where 
(((Q.Front + 1) mod Max_Length) <= i) and (i <= ((((Q.Front + 
1) mod Max_Length) + (Q.Length - 1)) - 1)), <Q'.Contents((i 
mod Max_Length))>) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: Entry.is_initial(R) 
13: |Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>| 
/= 0 
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front 
Q.Contents(j) otherwise 
}}) 
 
 
 
 
Free Variables:  
Max_Length:Z, Lower_Bound:Z, Upper_Bound:Z, Last_Char_Num:N, 
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.Q:Str(Entry), 
Q:(Contents:_Contents_Array_Fac_1.Static_Array; Front:Integer; 
Length:Integer), Length:Z 
 
 
 
VC: 5_1:  
Convention for Queue generated by intialization rule modified 
by Variable Declaration rule: Circular_Array_Realiz.rb(9) 
 
Goal: 
(0 <= Q.Front) and (Q.Front < Max_Length) 
 
Given: 
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1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: (min_int <= Length) and (Length <= max_int) 
 
 
VC: 5_2:  
Convention for Queue generated by intialization rule modified 
by Variable Declaration rule: Circular_Array_Realiz.rb(9) 
 
Goal: 
(0 <= Q.Length) and (Q.Length <= Max_Length) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: (min_int <= Length) and (Length <= max_int) 
 
 
VC: 5_3:  
Ensures Clause of Length modified by Variable Declaration 
rule: Circular_Array_Realiz.rb(30) 
 
Goal: 
Q.Length = |Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))>| 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
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5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: (min_int <= Length) and (Length <= max_int) 
 
 
VC: 5_4:  
Ensures Clause of Length modified by Variable Declaration 
rule: Circular_Array_Realiz.rb(30) 
 
Goal: 
Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))> 
= Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))> 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
12: (min_int <= Length) and (Length <= max_int) 
 
 
 
 
Free Variables:  
Max_Length:Z, Lower_Bound:Z, Upper_Bound:Z, Last_Char_Num:N, 
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.Q:Str(Entry), 
Q:(Contents:_Contents_Array_Fac_1.Static_Array; Front:Integer; 
Length:Integer), Rem_Capacity:Z 
 
 
 
VC: 6_1:  
Requires Clause of Max_Length - Q.Length in Procedure 
Rem_Capacity: Circular_Array_Realiz.rb(33) 
 
Goal: 
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(min_int <= (Max_Length - Q.Length)) and ((Max_Length - 
Q.Length) <= max_int) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
 
 
VC: 6_2:  
Convention for Queue generated by intialization rule modified 
by Variable Declaration rule: Circular_Array_Realiz.rb(9) 
 
Goal: 
(0 <= Q.Front) and (Q.Front < Max_Length) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
 
 
VC: 6_3:  
Convention for Queue generated by intialization rule modified 
by Variable Declaration rule: Circular_Array_Realiz.rb(9) 
 
Goal: 
(0 <= Q.Length) and (Q.Length <= Max_Length) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
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5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
 
 
VC: 6_4:  
Ensures Clause of Rem_Capacity: Circular_Array_Realiz.rb(34) 
 
Goal: 
(Max_Length  - Q.Length) = (Max_Length  - |Concatenation 
i:Integer where (Q.Front <= i) and (i <= ((Q.Front + Q.Length) 
- 1)), <Q.Contents((i mod Max_Length))>|) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
 
 
VC: 6_5:  
Ensures Clause of Rem_Capacity: Circular_Array_Realiz.rb(34) 
 
Goal: 
Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))> 
= Concatenation i:Integer where (Q.Front <= i) and (i <= 
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))> 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
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10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and 
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod 
Max_Length))> 
 
 
 
 
Free Variables:  
Max_Length:Z, Lower_Bound:Z, Upper_Bound:Z, Last_Char_Num:N, 
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.Q:Str(Entry), 
Q:(Contents:_Contents_Array_Fac_1.Static_Array; Front:Integer; 
Length:Integer) 
 
 
 
VC: 7_1:  
Convention for Queue generated by intialization rule modified 
by Variable Declaration rule: Circular_Array_Realiz.rb(9) 
 
Goal: 
(0 <= 0) and (0 < Max_Length) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
 
 
VC: 7_2:  
Convention for Queue generated by intialization rule modified 
by Variable Declaration rule: Circular_Array_Realiz.rb(9) 
 
Goal: 
(0 <= 0) and (0 <= Max_Length) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
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VC: 7_3:  
Ensures Clause of Clear: Circular_Array_Realiz.rb(38) 
 
Goal: 
true 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
 
 
VC: 7_4:  
Ensures Clause of Clear: Circular_Array_Realiz.rb(38) 
 
Goal: 
Concatenation i:Integer where (0 <= i) and (i <= ((0 + 0) - 
1)), <Q.Contents((i mod Max_Length))> = empty_string 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (0  <= (Max_Length - 1  + 1)) 
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int) 
6: (min_int <= 0) and (0 <= max_int) 
7: (Max_Length  > 0) 
8: (min_int <= Max_Length) and (Max_Length <= max_int) 
9: (0 <= Q.Front) and (Q.Front < Max_Length) 
10: (0 <= Q.Length) and (Q.Length <= Max_Length) 
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VCs for Selection_Sort_Realization for Sorting_Capability of Queue_Template 

// 
// Generated by the RESOLVE Verifier, December 2011 version 
// from file:  Selection_Sort_Realization.rb 
// on:         Sat Oct 15 19:28:23 EDT 2011 
// 
 
Free Variables:  
Max_Length:Z, min_int:Z, max_int:Z, Last_Char_Num:N, 
Max_Char_Str_Len:N, Q:Modified_String_Theory.Str(Entry), 
Min:Entry, Considered_Entry:Entry, 
New_Queue:Modified_String_Theory.Str(Entry), 
Considered_Entry':Entry, 
New_Queue':Modified_String_Theory.Str(Entry), 
Q':Modified_String_Theory.Str(Entry), 
Q'':Modified_String_Theory.Str(Entry), Min':Entry, 
Min'':Entry, Q''':Modified_String_Theory.Str(Entry) 
 
 
 
VC: 0_1:  
Requires Clause of Dequeue in Procedure Remove_Min modified by 
Variable Declaration rule: Selection_Sort_Realization.rb(18) 
 
Goal: 
|Q| /= 0 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
 
 
VC: 0_2:  
Base Case of the Invariant of While Statement in Procedure 
Remove_Min modified by Variable Declaration rule: 
Selection_Sort_Realization.rb(22) 
 
Goal: 
Is_Permutation(((empty_string o Q''') o <Min''>), Q) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
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4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
10: Q = (<Min''> o Q''') 
 
 
VC: 0_3:  
Base Case of the Invariant of While Statement in Procedure 
Remove_Min modified by Variable Declaration rule: 
Selection_Sort_Realization.rb(22) 
 
Goal: 
Is_Universally_Related(LEQV, <Min''>, empty_string) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
10: Q = (<Min''> o Q''') 
 
 
VC: 0_4:  
Requires Clause of Dequeue in Procedure Remove_Min modified by 
Variable Declaration rule: Selection_Sort_Realization.rb(26) 
 
Goal: 
|Q''| /= 0 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
10: Q = (<Min''> o Q''') 
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q) 
12: Is_Universally_Related(LEQV, <Min'>, New_Queue') 
13: (|Q''| > 0) 
 
 
VC: 0_5:  
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Requires Clause of Enqueue in Procedure Remove_Min , If "if" 
condition at Selection_Sort_Realization.rb(28) is true 
modified by Variable Declaration rule: 
Selection_Sort_Realization.rb(32) 
 
Goal: 
(|New_Queue'| < Max_Length) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
10: Q = (<Min''> o Q''') 
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q) 
12: Is_Universally_Related(LEQV, <Min'>, New_Queue') 
13: (|Q''| > 0) 
14: Q'' = (<Considered_Entry'> o Q') 
15: LEQV(Considered_Entry', Min') 
 
 
VC: 0_6:  
Inductive Case of Invariant of While Statement in Procedure 
Remove_Min , If "if" condition at 
Selection_Sort_Realization.rb(28) is true modified by Variable 
Declaration rule: Selection_Sort_Realization.rb(22) 
 
Goal: 
Is_Permutation((((New_Queue' o <Min'>) o Q') o 
<Considered_Entry'>), Q) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
10: Q = (<Min''> o Q''') 
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q) 
12: Is_Universally_Related(LEQV, <Min'>, New_Queue') 
13: (|Q''| > 0) 
14: Q'' = (<Considered_Entry'> o Q') 
15: LEQV(Considered_Entry', Min') 
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VC: 0_7:  
Inductive Case of Invariant of While Statement in Procedure 
Remove_Min , If "if" condition at 
Selection_Sort_Realization.rb(28) is true modified by Variable 
Declaration rule: Selection_Sort_Realization.rb(22) 
 
Goal: 
Is_Universally_Related(LEQV, <Considered_Entry'>, (New_Queue' 
o <Min'>)) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
10: Q = (<Min''> o Q''') 
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q) 
12: Is_Universally_Related(LEQV, <Min'>, New_Queue') 
13: (|Q''| > 0) 
14: Q'' = (<Considered_Entry'> o Q') 
15: LEQV(Considered_Entry', Min') 
 
 
VC: 0_8:  
Termination of While Statement in Procedure Remove_Min , If 
"if" condition at Selection_Sort_Realization.rb(28) is true 
modified by Variable Declaration rule: 
Selection_Sort_Realization.rb(24) 
 
Goal: 
(|Q'| < |Q''|) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
10: Q = (<Min''> o Q''') 
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q) 
12: Is_Universally_Related(LEQV, <Min'>, New_Queue') 
13: (|Q''| > 0) 
14: Q'' = (<Considered_Entry'> o Q') 
15: LEQV(Considered_Entry', Min') 
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Free Variables:  
Max_Length:Z, min_int:Z, max_int:Z, Last_Char_Num:N, 
Max_Char_Str_Len:N, Q:Modified_String_Theory.Str(Entry), 
Min:Entry, Considered_Entry:Entry, 
New_Queue:Modified_String_Theory.Str(Entry), 
Considered_Entry':Entry, 
New_Queue':Modified_String_Theory.Str(Entry), 
Q':Modified_String_Theory.Str(Entry), 
Q'':Modified_String_Theory.Str(Entry), Min':Entry, 
Min'':Entry, Q''':Modified_String_Theory.Str(Entry) 
 
 
 
VC: 1_1:  
Requires Clause of Dequeue in Procedure Remove_Min modified by 
Variable Declaration rule: Selection_Sort_Realization.rb(18) 
 
Goal: 
|Q| /= 0 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
 
 
VC: 1_2:  
Base Case of the Invariant of While Statement in Procedure 
Remove_Min modified by Variable Declaration rule modified by 
Variable Declaration rule: Selection_Sort_Realization.rb(22) 
 
Goal: 
Is_Permutation(((empty_string o Q''') o <Min''>), Q) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
10: Q = (<Min''> o Q''') 
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VC: 1_3:  
Base Case of the Invariant of While Statement in Procedure 
Remove_Min modified by Variable Declaration rule modified by 
Variable Declaration rule: Selection_Sort_Realization.rb(22) 
 
Goal: 
Is_Universally_Related(LEQV, <Min''>, empty_string) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
10: Q = (<Min''> o Q''') 
 
 
VC: 1_4:  
Requires Clause of Dequeue in Procedure Remove_Min modified by 
Variable Declaration rule: Selection_Sort_Realization.rb(26) 
 
Goal: 
|Q''| /= 0 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
10: Q = (<Min''> o Q''') 
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q) 
12: Is_Universally_Related(LEQV, <Min'>, New_Queue') 
13: (|Q''| > 0) 
 
 
VC: 1_5:  
Requires Clause of Enqueue in Procedure Remove_Min , If "if" 
condition at Selection_Sort_Realization.rb(28) is false 
modified by Variable Declaration rule: 
Selection_Sort_Realization.rb(32) 
 
Goal: 
(|New_Queue'| < Max_Length) 
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Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
10: Q = (<Min''> o Q''') 
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q) 
12: Is_Universally_Related(LEQV, <Min'>, New_Queue') 
13: (|Q''| > 0) 
14: Q'' = (<Considered_Entry'> o Q') 
15: not(LEQV(Considered_Entry', Min')) 
 
 
VC: 1_6:  
Inductive Case of Invariant of While Statement in Procedure 
Remove_Min , If "if" condition at 
Selection_Sort_Realization.rb(28) is true modified by Variable 
Declaration rule , If "if" condition at 
Selection_Sort_Realization.rb(28) is false modified by 
Variable Declaration rule: Selection_Sort_Realization.rb(22) 
 
Goal: 
Is_Permutation((((New_Queue' o <Considered_Entry'>) o Q') o 
<Min'>), Q) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
10: Q = (<Min''> o Q''') 
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q) 
12: Is_Universally_Related(LEQV, <Min'>, New_Queue') 
13: (|Q''| > 0) 
14: Q'' = (<Considered_Entry'> o Q') 
15: not(LEQV(Considered_Entry', Min')) 
 
 
VC: 1_7:  
Inductive Case of Invariant of While Statement in Procedure 
Remove_Min , If "if" condition at 
Selection_Sort_Realization.rb(28) is true modified by Variable 
Declaration rule , If "if" condition at 
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Selection_Sort_Realization.rb(28) is false modified by 
Variable Declaration rule: Selection_Sort_Realization.rb(22) 
 
Goal: 
Is_Universally_Related(LEQV, <Min'>, (New_Queue' o 
<Considered_Entry'>)) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
10: Q = (<Min''> o Q''') 
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q) 
12: Is_Universally_Related(LEQV, <Min'>, New_Queue') 
13: (|Q''| > 0) 
14: Q'' = (<Considered_Entry'> o Q') 
15: not(LEQV(Considered_Entry', Min')) 
 
 
VC: 1_8:  
Termination of While Statement in Procedure Remove_Min , If 
"if" condition at Selection_Sort_Realization.rb(28) is false 
modified by Variable Declaration rule: 
Selection_Sort_Realization.rb(24) 
 
Goal: 
(|Q'| < |Q''|) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
10: Q = (<Min''> o Q''') 
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q) 
12: Is_Universally_Related(LEQV, <Min'>, New_Queue') 
13: (|Q''| > 0) 
14: Q'' = (<Considered_Entry'> o Q') 
15: not(LEQV(Considered_Entry', Min')) 
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Free Variables:  
Max_Length:Z, min_int:Z, max_int:Z, Last_Char_Num:N, 
Max_Char_Str_Len:N, Q:Modified_String_Theory.Str(Entry), 
Min:Entry, Considered_Entry:Entry, 
New_Queue:Modified_String_Theory.Str(Entry), P_val':N, 
Q':Modified_String_Theory.Str(Entry), Min':Entry, 
New_Queue':Modified_String_Theory.Str(Entry), Min'':Entry, 
Q'':Modified_String_Theory.Str(Entry) 
 
 
 
VC: 2_1:  
Requires Clause of Dequeue in Procedure Remove_Min: 
Selection_Sort_Realization.rb(18) 
 
Goal: 
|Q| /= 0 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
 
 
VC: 2_2:  
Ensures Clause of Remove_Min: 
Selection_Sort_Realization.rb(12) 
 
Goal: 
Is_Permutation((New_Queue' o <Min'>), Q) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
10: Q = (<Min''> o Q'') 
11: Is_Permutation(((New_Queue' o Q') o <Min'>), Q) 
12: Is_Universally_Related(LEQV, <Min'>, New_Queue') 
13: not((|Q'| > 0)) 
 
 
VC: 2_3:  
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Ensures Clause of Remove_Min: 
Selection_Sort_Realization.rb(12) 
 
Goal: 
Is_Universally_Related(LEQV, <Min'>, New_Queue') 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
10: Q = (<Min''> o Q'') 
11: Is_Permutation(((New_Queue' o Q') o <Min'>), Q) 
12: Is_Universally_Related(LEQV, <Min'>, New_Queue') 
13: not((|Q'| > 0)) 
 
 
VC: 2_4:  
Ensures Clause of Remove_Min: 
Selection_Sort_Realization.rb(12) 
 
Goal: 
|New_Queue'| = (|Q| - 1) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: Is_Total_Preordering(LEQV) 
7: Entry.is_initial(Min) 
8: (|Q| <= Max_Length) 
9: |Q| /= 0 
10: Q = (<Min''> o Q'') 
11: Is_Permutation(((New_Queue' o Q') o <Min'>), Q) 
12: Is_Universally_Related(LEQV, <Min'>, New_Queue') 
13: not((|Q'| > 0)) 
 
 
 
 
Free Variables:  
Max_Length:Z, min_int:Z, max_int:Z, Last_Char_Num:N, 
Max_Char_Str_Len:N, Q:Modified_String_Theory.Str(Entry), 
Sorted_Queue:Modified_String_Theory.Str(Entry), 
Lowest_Remaining:Entry, Lowest_Remaining':Entry, 
Sorted_Queue':Modified_String_Theory.Str(Entry), 
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Q':Modified_String_Theory.Str(Entry), 
Q'':Modified_String_Theory.Str(Entry) 
 
 
 
VC: 3_1:  
Base Case of the Invariant of While Statement in Procedure 
Sort modified by Variable Declaration rule: 
Selection_Sort_Realization.rb(45) 
 
Goal: 
Is_Permutation((Q o empty_string), Q) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: (|Q| <= Max_Length) 
 
 
VC: 3_2:  
Base Case of the Invariant of While Statement in Procedure 
Sort modified by Variable Declaration rule: 
Selection_Sort_Realization.rb(45) 
 
Goal: 
Is_Conformal_With(LEQV, empty_string) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: (|Q| <= Max_Length) 
 
 
VC: 3_3:  
Base Case of the Invariant of While Statement in Procedure 
Sort modified by Variable Declaration rule: 
Selection_Sort_Realization.rb(45) 
 
Goal: 
Is_Universally_Related(LEQV, empty_string, Q) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: (|Q| <= Max_Length) 
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VC: 3_4:  
Requires Clause of Remove_Min in Procedure Sort modified by 
Variable Declaration rule: Selection_Sort_Realization.rb(49) 
 
Goal: 
|Q''| /= 0 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: (|Q| <= Max_Length) 
7: Is_Permutation((Q'' o Sorted_Queue'), Q) 
8: Is_Conformal_With(LEQV, Sorted_Queue') 
9: Is_Universally_Related(LEQV, Sorted_Queue', Q'') 
10: (|Q''| > 0) 
 
 
VC: 3_5:  
Requires Clause of Enqueue in Procedure Sort modified by 
Variable Declaration rule: Selection_Sort_Realization.rb(50) 
 
Goal: 
(|Sorted_Queue'| < Max_Length) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: (|Q| <= Max_Length) 
7: Is_Permutation((Q'' o Sorted_Queue'), Q) 
8: Is_Conformal_With(LEQV, Sorted_Queue') 
9: Is_Universally_Related(LEQV, Sorted_Queue', Q'') 
10: (|Q''| > 0) 
11: Is_Permutation((Q' o <Lowest_Remaining'>), Q'') 
12: Is_Universally_Related(LEQV, <Lowest_Remaining'>, Q') 
13: |Q'| = (|Q''| - 1) 
 
 
VC: 3_6:  
Inductive Case of Invariant of While Statement in Procedure 
Sort modified by Variable Declaration rule: 
Selection_Sort_Realization.rb(45) 
 
Goal: 
Is_Permutation((Q' o (Sorted_Queue' o <Lowest_Remaining'>)), 
Q) 
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Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: (|Q| <= Max_Length) 
7: Is_Permutation((Q'' o Sorted_Queue'), Q) 
8: Is_Conformal_With(LEQV, Sorted_Queue') 
9: Is_Universally_Related(LEQV, Sorted_Queue', Q'') 
10: (|Q''| > 0) 
11: Is_Permutation((Q' o <Lowest_Remaining'>), Q'') 
12: Is_Universally_Related(LEQV, <Lowest_Remaining'>, Q') 
13: |Q'| = (|Q''| - 1) 
 
 
VC: 3_7:  
Inductive Case of Invariant of While Statement in Procedure 
Sort modified by Variable Declaration rule: 
Selection_Sort_Realization.rb(45) 
 
Goal: 
Is_Conformal_With(LEQV, (Sorted_Queue' o <Lowest_Remaining'>)) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: (|Q| <= Max_Length) 
7: Is_Permutation((Q'' o Sorted_Queue'), Q) 
8: Is_Conformal_With(LEQV, Sorted_Queue') 
9: Is_Universally_Related(LEQV, Sorted_Queue', Q'') 
10: (|Q''| > 0) 
11: Is_Permutation((Q' o <Lowest_Remaining'>), Q'') 
12: Is_Universally_Related(LEQV, <Lowest_Remaining'>, Q') 
13: |Q'| = (|Q''| - 1) 
 
 
VC: 3_8:  
Inductive Case of Invariant of While Statement in Procedure 
Sort modified by Variable Declaration rule: 
Selection_Sort_Realization.rb(45) 
 
Goal: 
Is_Universally_Related(LEQV, (Sorted_Queue' o 
<Lowest_Remaining'>), Q') 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
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5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: (|Q| <= Max_Length) 
7: Is_Permutation((Q'' o Sorted_Queue'), Q) 
8: Is_Conformal_With(LEQV, Sorted_Queue') 
9: Is_Universally_Related(LEQV, Sorted_Queue', Q'') 
10: (|Q''| > 0) 
11: Is_Permutation((Q' o <Lowest_Remaining'>), Q'') 
12: Is_Universally_Related(LEQV, <Lowest_Remaining'>, Q') 
13: |Q'| = (|Q''| - 1) 
 
 
VC: 3_9:  
Termination of While Statement in Procedure Sort modified by 
Variable Declaration rule: Selection_Sort_Realization.rb(47) 
 
Goal: 
(|Q'| < |Q''|) 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: (|Q| <= Max_Length) 
7: Is_Permutation((Q'' o Sorted_Queue'), Q) 
8: Is_Conformal_With(LEQV, Sorted_Queue') 
9: Is_Universally_Related(LEQV, Sorted_Queue', Q'') 
10: (|Q''| > 0) 
11: Is_Permutation((Q' o <Lowest_Remaining'>), Q'') 
12: Is_Universally_Related(LEQV, <Lowest_Remaining'>, Q') 
13: |Q'| = (|Q''| - 1) 
 
 
 
 
Free Variables:  
Max_Length:Z, min_int:Z, max_int:Z, Last_Char_Num:N, 
Max_Char_Str_Len:N, Q:Modified_String_Theory.Str(Entry), 
Sorted_Queue:Modified_String_Theory.Str(Entry), 
Lowest_Remaining:Entry, P_val':N, 
Q':Modified_String_Theory.Str(Entry), 
Sorted_Queue':Modified_String_Theory.Str(Entry) 
 
 
 
VC: 4_1:  
Ensures Clause of Sort: Selection_Sort_Realization.rb(54) 
 
Goal: 
Is_Conformal_With(LEQV, Sorted_Queue') 
 
Given: 
1: (Last_Char_Num > 0) 
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2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: (|Q| <= Max_Length) 
7: Is_Permutation((Q' o Sorted_Queue'), Q) 
8: Is_Conformal_With(LEQV, Sorted_Queue') 
9: Is_Universally_Related(LEQV, Sorted_Queue', Q') 
10: not((|Q'| > 0)) 
 
 
VC: 4_2:  
Ensures Clause of Sort: Selection_Sort_Realization.rb(54) 
 
Goal: 
Is_Permutation(Q, Sorted_Queue') 
 
Given: 
1: (Last_Char_Num > 0) 
2: (min_int <= 0) 
3: (0 < max_int) 
4: (Max_Length > 0) 
5: (min_int <= Max_Length) and (Max_Length <= max_int) 
6: (|Q| <= Max_Length) 
7: Is_Permutation((Q' o Sorted_Queue'), Q) 
8: Is_Conformal_With(LEQV, Sorted_Queue') 
9: Is_Universally_Related(LEQV, Sorted_Queue', Q') 
10: not((|Q'| > 0)) 
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VCs for Selection_Sort_Realization for Sorting_Capability of Queue_Template 

// 
// Generated by the RESOLVE Verifier, December 2011 version 
// from file:  Sort_Job_Queue.fa 
// on:         Fri Nov 11 11:49:10 EST 2011 
// 
 
Free Variables:  
min_int:Z, max_int:Z, Last_Char_Num:N, Max_Char_Str_Len:N, 
S1:(Name:Char_Str; Priority:Integer), S2:(Name:Char_Str; 
Priority:Integer) 
 
 
 
VC: 0_1:  
Ensures Clause of Priority_Order: Sort_Job_Queue.fa(15) 
 
Goal: 
(S1.Priority  <= S2.Priority) = Priority_LEQV(S1, S2) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
 
 
VC: 0_2:  
Ensures Clause of Priority_Order: Sort_Job_Queue.fa(15) 
 
Goal: 
S1 = S1 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
 
 
VC: 0_3:  
Ensures Clause of Priority_Order: Sort_Job_Queue.fa(15) 
 
Goal: 
S2 = S2 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
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Free Variables:  
 
 
 
 
VC: 1_1:  
Requires from Compare: Selection_Sort_Realization.rb(3) 
 
Goal: 
true 
 
Given: 
 
 
 
 
 
Free Variables:  
 
 
 
 
VC: 2_1:  
Ensures from QF: Sort_Job_Queue.fa(13) 
 
Goal: 
Priority_LEQV(S1, S2) = Priority_LEQV(S1, S2) 
 
Given: 
1: Priority_Order = Priority_LEQV(S1, S2) 
2: #S1 = S1 
3: #S2 = S2 
 
 
VC: 2_2:  
Ensures from QF: Sort_Job_Queue.fa(13) 
 
Goal: 
S1 = S1 
 
Given: 
1: Priority_Order = Priority_LEQV(S1, S2) 
2: #S1 = S1 
3: #S2 = S2 
 
 
VC: 2_3:  
Ensures from QF: Sort_Job_Queue.fa(13) 
 
Goal: 
S2 = S2 
 
Given: 
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1: Priority_Order = Priority_LEQV(S1, S2) 
2: #S1 = S1 
3: #S2 = S2 
 
 
 
 
Free Variables:  
Entry, Max_Length:Z 
 
 
 
VC: 3_1:  
Requirement for Facility Declaration Rule for QF: 
Sorting_Capability.en(5) 
 
Goal: 
Is_Total_Preordering(Priority_LEQV) 
 
Given: 
 
 
 
VC: 3_2:  
Facility Declaration Rule: Queue_Template.co(42) 
 
Goal: 
(10  > 0) 
 
Given: 
 
1: true 
 
 
 
 
Free Variables:  
min_int:Z, max_int:Z, Last_Char_Num:N, Max_Char_Str_Len:N, 
S1:(Name:Char_Str; Priority:Integer), S2:(Name:Char_Str; 
Priority:Integer), S3:(Name:Char_Str; Priority:Integer), 
Temp:(Name:Char_Str; Priority:Integer), 
Q:Modified_String_Theory.Str(Entry), Temp':(Name:Char_Str; 
Priority:Integer), Q':Modified_String_Theory.Str(Entry), 
Temp'':(Name:Char_Str; Priority:Integer), 
Q'':Modified_String_Theory.Str(Entry), Temp''':(Name:Char_Str; 
Priority:Integer), Q''':Modified_String_Theory.Str(Entry), 
Q'''':Modified_String_Theory.Str(Entry), S3':(Name:Char_Str; 
Priority:Integer), Q''''':Modified_String_Theory.Str(Entry), 
S2':(Name:Char_Str; Priority:Integer), S1':(Name:Char_Str; 
Priority:Integer) 
 
 
 
VC: 4_1:  
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Requires Clause of Enqueue in Procedure Main modified by 
Variable Declaration rule: Sort_Job_Queue.fa(34) 
 
Goal: 
(|empty_string|  < 10) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: Job_Info.is_initial(S1) 
5: Job_Info.is_initial(S2) 
6: Job_Info.is_initial(S3) 
 
 
VC: 4_2:  
Requires Clause of Enqueue in Procedure Main modified by 
Variable Declaration rule: Sort_Job_Queue.fa(35) 
 
Goal: 
(|(empty_string  o <S1>)|  < 10) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: Job_Info.is_initial(S1) 
5: Job_Info.is_initial(S2) 
6: Job_Info.is_initial(S3) 
 
 
VC: 4_3:  
Requires Clause of Enqueue in Procedure Main modified by 
Variable Declaration rule: Sort_Job_Queue.fa(36) 
 
Goal: 
(|(empty_string  o <S1>) o <S2>)|  < 10) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: Job_Info.is_initial(S1) 
5: Job_Info.is_initial(S2) 
6: Job_Info.is_initial(S3) 
 
 
VC: 4_4:  
Requires Clause of Dequeue in Procedure Main modified by 
Variable Declaration rule: Sort_Job_Queue.fa(38) 
 
Goal: 
|Q''''| /= 0 
 



199 

 

Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: Job_Info.is_initial(S1) 
5: Job_Info.is_initial(S2) 
6: Job_Info.is_initial(S3) 
7: Is_Conformal_With(LEQV, Q'''') 
8: Is_Permutation((((empty_string  o <S1>)  o <S2>)  o <S3>), 
Q'''') 
 
 
VC: 4_5:  
Requires Clause of Dequeue in Procedure Main modified by 
Variable Declaration rule: Sort_Job_Queue.fa(40) 
 
Goal: 
|Q'''| /= 0 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: Job_Info.is_initial(S1) 
5: Job_Info.is_initial(S2) 
6: Job_Info.is_initial(S3) 
7: Is_Conformal_With(LEQV, Q'''') 
8: Is_Permutation((((empty_string  o <S1>)  o <S2>)  o <S3>), 
Q'''') 
9: Q'''' = (<Temp'''>  o Q''') 
 
 
VC: 4_6:  
Requires Clause of Dequeue in Procedure Main modified by 
Variable Declaration rule: Sort_Job_Queue.fa(42) 
 
Goal: 
|Q''| /= 0 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: Job_Info.is_initial(S1) 
5: Job_Info.is_initial(S2) 
6: Job_Info.is_initial(S3) 
7: Is_Conformal_With(LEQV, Q'''') 
8: Is_Permutation((((empty_string  o <S1>)  o <S2>)  o <S3>), 
Q'''') 
9: Q'''' = (<Temp'''>  o Q''') 
10: Q''' = (<Temp''>  o Q'') 
 
 
VC: 4_7:  
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Ensures Clause of Main modified by Variable Declaration rule: 
Sort_Job_Queue.fa(25) 
 
Goal: 
true 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: Job_Info.is_initial(S1) 
5: Job_Info.is_initial(S2) 
6: Job_Info.is_initial(S3) 
7: Is_Conformal_With(LEQV, Q'''') 
8: Is_Permutation((((empty_string  o <S1>)  o <S2>)  o <S3>), 
Q'''') 
9: Q'''' = (<Temp'''>  o Q''') 
10: Q''' = (<Temp''>  o Q'') 
11: Q'' = (<Temp'>  o Q') 
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Appendix F 

Benchmark VCs 

Benchmark #1: Adding and Multiplying Numbers 

// 
// Generated by the RESOLVE Verifier, December 2011 version 
// from file:  Add_And_Multiply_Realiz.rb 
// on:         Fri Oct 21 11:52:13 EDT 2011 
// 
 
Free Variables:  
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Last_Char_Num:N, 
i:Z, j:Z, Add:Z, zero:Z, P_val:N, j':Z, j'':Z, Add':Z 
 
 
 
VC: 0_1:  
Requires Clause of Increment in Procedure Add modified by 
Variable Declaration rule: Add_And_Multiply_Realiz.rb(9) 
 
Goal: 
(i  + 1) <= max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= j) and (j <= max_int) 
5: (min_int <= i) and (i <= max_int) 
6: (min_int  <= (i  + j)) 
7: (i  + j) <= max_int) 
8: P_val = |j| 
9: (j  > 0) 
 
 
VC: 0_2:  
Requires Clause of Decrement in Procedure Add modified by 
Variable Declaration rule: Add_And_Multiply_Realiz.rb(10) 
 
Goal: 
(min_int  <= (j  - 1)) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= j) and (j <= max_int) 
5: (min_int <= i) and (i <= max_int) 
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6: (min_int  <= (i  + j)) 
7: (i  + j) <= max_int) 
8: P_val = |j| 
9: (j  > 0) 
 
 
VC: 0_3:  
Requires Clause of Add in Procedure Add modified by Variable 
Declaration rule: Add_And_Multiply_Realiz.rb(11) 
 
Goal: 
(min_int  <= (i  + 1) + (j  - 1))) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= j) and (j <= max_int) 
5: (min_int <= i) and (i <= max_int) 
6: (min_int  <= (i  + j)) 
7: (i  + j) <= max_int) 
8: P_val = |j| 
9: (j  > 0) 
 
 
VC: 0_4:  
Requires Clause of Add in Procedure Add modified by Variable 
Declaration rule: Add_And_Multiply_Realiz.rb(11) 
 
Goal: 
(i  + 1) + (j  - 1)) <= max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= j) and (j <= max_int) 
5: (min_int <= i) and (i <= max_int) 
6: (min_int  <= (i  + j)) 
7: (i  + j) <= max_int) 
8: P_val = |j| 
9: (j  > 0) 
 
 
VC: 0_5:  
Requires Clause of Increment in Procedure Add modified by 
Variable Declaration rule: Add_And_Multiply_Realiz.rb(12) 
 
Goal: 
(j  - 1) + 1) <= max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
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3: (0  < max_int) 
4: (min_int <= j) and (j <= max_int) 
5: (min_int <= i) and (i <= max_int) 
6: (min_int  <= (i  + j)) 
7: (i  + j) <= max_int) 
8: P_val = |j| 
9: (j  > 0) 
 
 
VC: 0_6:  
Ensures Clause of Add , If "if" condition at 
Add_And_Multiply_Realiz.rb(8) is true modified by Variable 
Declaration rule: Add_And_Multiply_Realiz.rb(19) 
 
Goal: 
(i  + 1) + (j  - 1)) = (i  + j) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= j) and (j <= max_int) 
5: (min_int <= i) and (i <= max_int) 
6: (min_int  <= (i  + j)) 
7: (i  + j) <= max_int) 
8: P_val = |j| 
9: (j  > 0) 
10: j' = (j  - 1) + 1) 
 
 
 
 
Free Variables:  
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Last_Char_Num:N, 
i:Z, j:Z, Add:Z, zero:Z, P_val:N, j':Z, j'':Z, Add':Z 
 
 
 
VC: 1_1:  
Requires Clause of Decrement in Procedure Add modified by 
Variable Declaration rule: Add_And_Multiply_Realiz.rb(15) 
 
Goal: 
(min_int  <= (i  - 1)) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= j) and (j <= max_int) 
5: (min_int <= i) and (i <= max_int) 
6: (min_int  <= (i  + j)) 
7: (i  + j) <= max_int) 
8: P_val = |j| 
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9: not((j  > 0)) 
10: (0  > j) 
 
 
VC: 1_2:  
Requires Clause of Increment in Procedure Add modified by 
Variable Declaration rule: Add_And_Multiply_Realiz.rb(16) 
 
Goal: 
(j  + 1) <= max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= j) and (j <= max_int) 
5: (min_int <= i) and (i <= max_int) 
6: (min_int  <= (i  + j)) 
7: (i  + j) <= max_int) 
8: P_val = |j| 
9: not((j  > 0)) 
10: (0  > j) 
11: Add' = (i  - 1) 
 
 
VC: 1_3:  
Requires Clause of Add in Procedure Add modified by Variable 
Declaration rule: Add_And_Multiply_Realiz.rb(17) 
 
Goal: 
(min_int  <= (i  + (j  + 1))) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= j) and (j <= max_int) 
5: (min_int <= i) and (i <= max_int) 
6: (min_int  <= (i  + j)) 
7: (i  + j) <= max_int) 
8: P_val = |j| 
9: not((j  > 0)) 
10: (0  > j) 
11: Add' = (i  - 1) 
 
 
VC: 1_4:  
Requires Clause of Add in Procedure Add modified by Variable 
Declaration rule: Add_And_Multiply_Realiz.rb(17) 
 
Goal: 
(i  + (j  + 1)) <= max_int) 
 
Given: 
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1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= j) and (j <= max_int) 
5: (min_int <= i) and (i <= max_int) 
6: (min_int  <= (i  + j)) 
7: (i  + j) <= max_int) 
8: P_val = |j| 
9: not((j  > 0)) 
10: (0  > j) 
11: Add' = (i  - 1) 
 
 
VC: 1_5:  
Requires Clause of Decrement in Procedure Add modified by 
Variable Declaration rule: Add_And_Multiply_Realiz.rb(18) 
 
Goal: 
(min_int  <= (j  + 1) - 1)) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= j) and (j <= max_int) 
5: (min_int <= i) and (i <= max_int) 
6: (min_int  <= (i  + j)) 
7: (i  + j) <= max_int) 
8: P_val = |j| 
9: not((j  > 0)) 
10: (0  > j) 
11: Add' = (i  - 1) 
 
 
VC: 1_6:  
Ensures Clause of Add , If "if" condition at 
Add_And_Multiply_Realiz.rb(8) is false , If "if" condition at 
Add_And_Multiply_Realiz.rb(14) is true modified by Variable 
Declaration rule: Add_And_Multiply_Realiz.rb(19) 
 
Goal: 
(i  + (j  + 1)) = (i  + j) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= j) and (j <= max_int) 
5: (min_int <= i) and (i <= max_int) 
6: (min_int  <= (i  + j)) 
7: (i  + j) <= max_int) 
8: P_val = |j| 
9: not((j  > 0)) 
10: (0  > j) 
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11: Add' = (i  - 1) 
12: j' = (j  + 1) - 1) 
 
 
 
 
Free Variables:  
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Last_Char_Num:N, 
i:Z, j:Z, Add:Z, zero:Z, P_val:N 
 
 
 
VC: 2_1:  
Ensures Clause of Add , If "if" condition at 
Add_And_Multiply_Realiz.rb(8) is false , If "if" condition at 
Add_And_Multiply_Realiz.rb(14) is false modified by Variable 
Declaration rule: Add_And_Multiply_Realiz.rb(19) 
 
Goal: 
i = (i  + j) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= j) and (j <= max_int) 
5: (min_int <= i) and (i <= max_int) 
6: (min_int  <= (i  + j)) 
7: (i  + j) <= max_int) 
8: P_val = |j| 
9: not((j  > 0)) 
10: not((0  > j)) 
 
 
 
 
Free Variables:  
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Last_Char_Num:N, 
I:Z, J:Z, Multiply:Z, nj:Z, zero:Z, J':Z, nj':Z, Multiply':Z 
 
 
 
VC: 3_1:  
Base Case of the Invariant of While Statement in Procedure 
Multiply modified by Variable Declaration rule modified by 
Variable Declaration rule: Add_And_Multiply_Realiz.rb(31) 
 
Goal: 
(0  + (I  * J)) = (I  * J) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 



207 

 

4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: (J  >= 0) 
 
 
VC: 3_2:  
Base Case of the Invariant of While Statement in Procedure 
Multiply modified by Variable Declaration rule modified by 
Variable Declaration rule: Add_And_Multiply_Realiz.rb(31) 
 
Goal: 
(0  + J) = J 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: (J  >= 0) 
 
 
VC: 3_3:  
Requires Clause of Add in Procedure Multiply modified by 
Variable Declaration rule modified by Variable Declaration 
rule: Add_And_Multiply_Realiz.rb(34) 
 
Goal: 
(min_int  <= (Multiply'  + I)) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: (J  >= 0) 
11: (Multiply'  + (I  * J')) = (I  * J) 
12: (nj'  + J') = J 
13: (J'  > 0) 
 
 



208 

 

VC: 3_4:  
Requires Clause of Add in Procedure Multiply modified by 
Variable Declaration rule modified by Variable Declaration 
rule: Add_And_Multiply_Realiz.rb(34) 
 
Goal: 
(Multiply'  + I) <= max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: (J  >= 0) 
11: (Multiply'  + (I  * J')) = (I  * J) 
12: (nj'  + J') = J 
13: (J'  > 0) 
 
 
VC: 3_5:  
Requires Clause of Increment in Procedure Multiply modified by 
Variable Declaration rule modified by Variable Declaration 
rule: Add_And_Multiply_Realiz.rb(35) 
 
Goal: 
(nj'  + 1) <= max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: (J  >= 0) 
11: (Multiply'  + (I  * J')) = (I  * J) 
12: (nj'  + J') = J 
13: (J'  > 0) 
 
 
VC: 3_6:  
Requires Clause of Decrement in Procedure Multiply modified by 
Variable Declaration rule modified by Variable Declaration 
rule: Add_And_Multiply_Realiz.rb(36) 
 
Goal: 
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(min_int  <= (J'  - 1)) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: (J  >= 0) 
11: (Multiply'  + (I  * J')) = (I  * J) 
12: (nj'  + J') = J 
13: (J'  > 0) 
 
 
VC: 3_7:  
Inductive Case of Invariant of While Statement in Procedure 
Multiply modified by Variable Declaration rule modified by 
Variable Declaration rule: Add_And_Multiply_Realiz.rb(31) 
 
Goal: 
(Multiply'  + I) + (I  * (J'  - 1))) = (I  * J) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: (J  >= 0) 
11: (Multiply'  + (I  * J')) = (I  * J) 
12: (nj'  + J') = J 
13: (J'  > 0) 
 
 
VC: 3_8:  
Inductive Case of Invariant of While Statement in Procedure 
Multiply modified by Variable Declaration rule modified by 
Variable Declaration rule: Add_And_Multiply_Realiz.rb(31) 
 
Goal: 
(nj'  + 1) + (J'  - 1)) = J 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
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4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: (J  >= 0) 
11: (Multiply'  + (I  * J')) = (I  * J) 
12: (nj'  + J') = J 
13: (J'  > 0) 
 
 
VC: 3_9:  
Termination of While Statement in Procedure Multiply modified 
by Variable Declaration rule modified by Variable Declaration 
rule: Add_And_Multiply_Realiz.rb(32) 
 
Goal: 
(J'  - 1) < J') 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: (J  >= 0) 
11: (Multiply'  + (I  * J')) = (I  * J) 
12: (nj'  + J') = J 
13: (J'  > 0) 
 
 
 
 
Free Variables:  
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Last_Char_Num:N, 
I:Z, J:Z, Multiply:Z, nj:Z, zero:Z, P_val':N, J':Z, 
Multiply':Z, nj':Z 
 
 
 
VC: 4_1:  
Ensures Clause of Multiply , If "if" condition at 
Add_And_Multiply_Realiz.rb(28) is true modified by Variable 
Declaration rule: Add_And_Multiply_Realiz.rb(52) 
 
Goal: 
Multiply' = (I  * J) 
 
Given: 
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1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: (J  >= 0) 
11: (Multiply'  + (I  * J')) = (I  * J) 
12: (nj'  + J') = J 
13: not((J'  > 0)) 
 
 
 
 
Free Variables:  
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Last_Char_Num:N, 
I:Z, J:Z, Multiply:Z, nj:Z, zero:Z, J':Z, nj':Z, Multiply':Z 
 
 
 
VC: 5_1:  
Base Case of the Invariant of While Statement in Procedure 
Multiply modified by Variable Declaration rule modified by 
Variable Declaration rule: Add_And_Multiply_Realiz.rb(41) 
 
Goal: 
(0  - (I  * J)) = (-(I)  * J) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: not((J  >= 0)) 
 
 
VC: 5_2:  
Base Case of the Invariant of While Statement in Procedure 
Multiply modified by Variable Declaration rule modified by 
Variable Declaration rule: Add_And_Multiply_Realiz.rb(41) 
 
Goal: 
(0  + J) = J 
 
Given: 
1: (Last_Char_Num  > 0) 
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2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: not((J  >= 0)) 
 
 
VC: 5_3:  
Base Case of the Invariant of While Statement in Procedure 
Multiply modified by Variable Declaration rule modified by 
Variable Declaration rule: Add_And_Multiply_Realiz.rb(41) 
 
Goal: 
(J  <= 0) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: not((J  >= 0)) 
 
 
VC: 5_4:  
Requires Clause of Add in Procedure Multiply modified by 
Variable Declaration rule modified by Variable Declaration 
rule: Add_And_Multiply_Realiz.rb(44) 
 
Goal: 
(min_int  <= (Multiply'  + I)) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: not((J  >= 0)) 
11: (Multiply'  - (I  * J')) = (-(I)  * J) 
12: (nj'  + J') = J 
13: (J'  <= 0) 
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14: J' /= 0 
 
 
VC: 5_5:  
Requires Clause of Add in Procedure Multiply modified by 
Variable Declaration rule modified by Variable Declaration 
rule: Add_And_Multiply_Realiz.rb(44) 
 
Goal: 
(Multiply'  + I) <= max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: not((J  >= 0)) 
11: (Multiply'  - (I  * J')) = (-(I)  * J) 
12: (nj'  + J') = J 
13: (J'  <= 0) 
14: J' /= 0 
 
 
VC: 5_6:  
Requires Clause of Decrement in Procedure Multiply modified by 
Variable Declaration rule modified by Variable Declaration 
rule: Add_And_Multiply_Realiz.rb(45) 
 
Goal: 
(min_int  <= (nj'  - 1)) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: not((J  >= 0)) 
11: (Multiply'  - (I  * J')) = (-(I)  * J) 
12: (nj'  + J') = J 
13: (J'  <= 0) 
14: J' /= 0 
 
 
VC: 5_7:  
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Requires Clause of Increment in Procedure Multiply modified by 
Variable Declaration rule modified by Variable Declaration 
rule: Add_And_Multiply_Realiz.rb(46) 
 
Goal: 
(J'  + 1) <= max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: not((J  >= 0)) 
11: (Multiply'  - (I  * J')) = (-(I)  * J) 
12: (nj'  + J') = J 
13: (J'  <= 0) 
14: J' /= 0 
 
 
VC: 5_8:  
Inductive Case of Invariant of While Statement in Procedure 
Multiply modified by Variable Declaration rule modified by 
Variable Declaration rule: Add_And_Multiply_Realiz.rb(41) 
 
Goal: 
(Multiply'  + I) - (I  * (J'  + 1))) = (-(I)  * J) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: not((J  >= 0)) 
11: (Multiply'  - (I  * J')) = (-(I)  * J) 
12: (nj'  + J') = J 
13: (J'  <= 0) 
14: J' /= 0 
 
 
VC: 5_9:  
Inductive Case of Invariant of While Statement in Procedure 
Multiply modified by Variable Declaration rule modified by 
Variable Declaration rule: Add_And_Multiply_Realiz.rb(41) 
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Goal: 
(nj'  - 1) + (J'  + 1)) = J 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: not((J  >= 0)) 
11: (Multiply'  - (I  * J')) = (-(I)  * J) 
12: (nj'  + J') = J 
13: (J'  <= 0) 
14: J' /= 0 
 
 
VC: 5_10:  
Inductive Case of Invariant of While Statement in Procedure 
Multiply modified by Variable Declaration rule modified by 
Variable Declaration rule: Add_And_Multiply_Realiz.rb(41) 
 
Goal: 
(J'  + 1) <= 0) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: not((J  >= 0)) 
11: (Multiply'  - (I  * J')) = (-(I)  * J) 
12: (nj'  + J') = J 
13: (J'  <= 0) 
14: J' /= 0 
 
 
VC: 5_11:  
Termination of While Statement in Procedure Multiply modified 
by Variable Declaration rule modified by Variable Declaration 
rule: Add_And_Multiply_Realiz.rb(42) 
 
Goal: 
(-((J'  + 1))  < -) 
 
Given: 
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1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: not((J  >= 0)) 
11: (Multiply'  - (I  * J')) = (-(I)  * J) 
12: (nj'  + J') = J 
13: (J'  <= 0) 
14: J' /= 0 
 
 
 
 
Free Variables:  
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Last_Char_Num:N, 
I:Z, J:Z, Multiply:Z, nj:Z, zero:Z, P_val':N, J':Z, 
Multiply':Z, nj':Z 
 
 
 
VC: 6_1:  
Requires Clause of Negate in Procedure Multiply modified by 
Variable Declaration rule: Add_And_Multiply_Realiz.rb(48) 
 
Goal: 
(min_int <= -) and (- <= max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: not((J  >= 0)) 
11: (Multiply'  - (I  * J')) = (-(I)  * J) 
12: (nj'  + J') = J 
13: (J'  <= 0) 
14: J' = 0 
 
 
VC: 6_2:  
Ensures Clause of Multiply , If "if" condition at 
Add_And_Multiply_Realiz.rb(28) is false modified by Variable 
Declaration rule: Add_And_Multiply_Realiz.rb(52) 
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Goal: 
- = (I  * J) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (min_int <= J) and (J <= max_int) 
5: (min_int <= I) and (I <= max_int) 
6: (min_int  <= -(I)) 
7: (-(I)  <= max_int) 
8: (min_int  <= (I  * J)) 
9: (I  * J) <= max_int) 
10: not((J  >= 0)) 
11: (Multiply'  - (I  * J')) = (-(I)  * J) 
12: (nj'  + J') = J 
13: (J'  <= 0) 
14: J' = 0 
 
 
 

Benchmark #2:Binary Search in an Array 

 
// 
// Generated by the RESOLVE Verifier, December 2011 version 
// from file:  MyBinarySearchRealiz.rb 
// on:         Fri Nov 11 10:27:28 EST 2011 
// 
 
Free Variables:  
Lower_Bound:Z, Upper_Bound:Z, Max_Char_Str_Len:N, min_int:Z, 
max_int:Z, Last_Char_Num:N, x:Entry, y:Entry 
 
 
 
VC: 0_1:  
Ensures Clause of Are_Equal: MyBinarySearchRealiz.rb(8) 
 
Goal: 
1: LEQ(x, y) and LEQ(y, x) = x = y 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Total(LEQ) 
8: Is_Transitive(LEQ) 
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9: Is_Symmetric(LEQ) 
 
 
VC: 0_2:  
Ensures Clause of Are_Equal: MyBinarySearchRealiz.rb(8) 
 
Goal: 
x = x 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Total(LEQ) 
8: Is_Transitive(LEQ) 
9: Is_Symmetric(LEQ) 
 
 
VC: 0_3:  
Ensures Clause of Are_Equal: MyBinarySearchRealiz.rb(8) 
 
Goal: 
y = y 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Total(LEQ) 
8: Is_Transitive(LEQ) 
9: Is_Symmetric(LEQ) 
 
 
 
 
Free Variables:  
Lower_Bound:Z, Upper_Bound:Z, Max_Char_Str_Len:N, min_int:Z, 
max_int:Z, Last_Char_Num:N, key:Entry, A:Z -> Entry, 
Is_Present:Boolean.B, low:Z, mid:Z, high:Z, midVal:Entry, 
lowVal:Entry, highVal:Entry, A':Z -> Entry, midVal':Entry, 
A'':Z -> Entry, midVal'':Entry, mid':Z, A''':Z -> Entry, 
Is_Present':Boolean.B, low':Z, high':Z 
 
 
 
VC: 1_1:  
Base Case of the Invariant of While Statement in Procedure 
Is_Present: MyBinarySearchRealiz.rb(30) 
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Goal: 
false = (Exists_Between(key, A, Lower_Bound, (Lower_Bound  - 
1))  or Exists_Between(key, A, (Upper_Bound  + 1), 
Upper_Bound)) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
 
 
VC: 1_2:  
Base Case of the Invariant of While Statement in Procedure 
Is_Present: MyBinarySearchRealiz.rb(30) 
 
Goal: 
(Lower_Bound  <= Lower_Bound) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
 
 
VC: 1_3:  
Base Case of the Invariant of While Statement in Procedure 
Is_Present: MyBinarySearchRealiz.rb(30) 
 
Goal: 
(Upper_Bound  <= Upper_Bound) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
 
 
VC: 1_4:  
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Base Case of the Invariant of While Statement in Procedure 
Is_Present: MyBinarySearchRealiz.rb(30) 
 
Goal: 
A = A 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
 
 
VC: 1_5:  
Requires Clause of high - low in Procedure Is_Present: 
MyBinarySearchRealiz.rb(33) 
 
Goal: 
(min_int <= (high' - low')) and ((high' - low') <= max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
 
 
VC: 1_6:  
Requires Clause of Divide in Procedure Is_Present: 
MyBinarySearchRealiz.rb(34) 
 
Goal: 
If (2 <= 0) then ((((2 * (max_int + 1)) < (high' - low')) and 
((high' - low') < (2 * (min_int - 1))))) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
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4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
 
 
VC: 1_7:  
Requires Clause of low + mid in Procedure Is_Present: 
MyBinarySearchRealiz.rb(35) 
 
Goal: 
(min_int <= (low' + mid')) and ((low' + mid') <= max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
 
 
VC: 1_8:  
Requires Clause of Swap_Entry in Procedure Is_Present: 
MyBinarySearchRealiz.rb(36) 
 
Goal: 
(Lower_Bound  <= (low'  + mid')) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
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6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
 
 
VC: 1_9:  
Requires Clause of Swap_Entry in Procedure Is_Present: 
MyBinarySearchRealiz.rb(36) 
 
Goal: 
(low'  + mid') <= Upper_Bound) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
 
 
VC: 1_10:  
Requires Clause of high + 1 in Procedure Is_Present: 
MyBinarySearchRealiz.rb(39) 
 
Goal: 
(min_int <= (high' + 1)) and ((high' + 1) <= max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
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6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) = key 
 
 
VC: 1_11:  
Requires Clause of Swap_Entry in Procedure Is_Present , If 
"if" condition at MyBinarySearchRealiz.rb(37) is true: 
MyBinarySearchRealiz.rb(47) 
 
Goal: 
(Lower_Bound  <= (low'  + mid')) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) = key 
 
 
VC: 1_12:  
Requires Clause of Swap_Entry in Procedure Is_Present , If 
"if" condition at MyBinarySearchRealiz.rb(37) is true: 
MyBinarySearchRealiz.rb(47) 
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Goal: 
(low'  + mid') <= Upper_Bound) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) = key 
 
 
VC: 1_13:  
Inductive Case of Invariant of While Statement in Procedure 
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37) 
is true: MyBinarySearchRealiz.rb(30) 
 
Goal: 
true = (Exists_Between(key, lambda j: Z ({{key if j = (low'  + 
mid') 
A''(j) otherwise 
}}), Lower_Bound, ((high'  + 1)  - 1))  or Exists_Between(key, 
lambda j: Z ({{key if j = (low'  + mid') 
A''(j) otherwise 
}}), (high'  + 1), Upper_Bound)) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
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10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) = key 
18: midVal' = A''((low'  + mid')) 
19: A' = lambda j: Z ({{key if j = (low'  + mid') 
A''(j) otherwise 
}}) 
 
 
VC: 1_14:  
Inductive Case of Invariant of While Statement in Procedure 
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37) 
is true: MyBinarySearchRealiz.rb(30) 
 
Goal: 
(Lower_Bound  <= (high'  + 1)) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) = key 
18: midVal' = A''((low'  + mid')) 
19: A' = lambda j: Z ({{key if j = (low'  + mid') 
A''(j) otherwise 
}}) 
 
 
VC: 1_15:  
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Inductive Case of Invariant of While Statement in Procedure 
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37) 
is true: MyBinarySearchRealiz.rb(30) 
 
Goal: 
(high'  <= Upper_Bound) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) = key 
18: midVal' = A''((low'  + mid')) 
19: A' = lambda j: Z ({{key if j = (low'  + mid') 
A''(j) otherwise 
}}) 
 
 
VC: 1_16:  
Inductive Case of Invariant of While Statement in Procedure 
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37) 
is true: MyBinarySearchRealiz.rb(30) 
 
Goal: 
lambda j: Z ({{key if j = (low'  + mid') 
A''(j) otherwise 
}}) = A 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
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9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) = key 
18: midVal' = A''((low'  + mid')) 
19: A' = lambda j: Z ({{key if j = (low'  + mid') 
A''(j) otherwise 
}}) 
 
 
VC: 1_17:  
Termination of While Statement in Procedure Is_Present , If 
"if" condition at MyBinarySearchRealiz.rb(37) is true: 
MyBinarySearchRealiz.rb(31) 
 
Goal: 
(high'  - (high'  + 1)) < (high'  - low')) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) = key 
18: midVal' = A''((low'  + mid')) 
19: A' = lambda j: Z ({{key if j = (low'  + mid') 
A''(j) otherwise 
}}) 
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Free Variables:  
Lower_Bound:Z, Upper_Bound:Z, Max_Char_Str_Len:N, min_int:Z, 
max_int:Z, Last_Char_Num:N, key:Entry, A:Z -> Entry, 
Is_Present:Boolean.B, low:Z, mid:Z, high:Z, midVal:Entry, 
lowVal:Entry, highVal:Entry, A':Z -> Entry, midVal':Entry, 
A'':Z -> Entry, midVal'':Entry, mid':Z, A''':Z -> Entry, 
Is_Present':Boolean.B, low':Z, high':Z 
 
 
 
VC: 2_1:  
Base Case of the Invariant of While Statement in Procedure 
Is_Present: MyBinarySearchRealiz.rb(30) 
 
Goal: 
false = (Exists_Between(key, A, Lower_Bound, (Lower_Bound  - 
1))  or Exists_Between(key, A, (Upper_Bound  + 1), 
Upper_Bound)) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
 
 
VC: 2_2:  
Base Case of the Invariant of While Statement in Procedure 
Is_Present: MyBinarySearchRealiz.rb(30) 
 
Goal: 
(Lower_Bound  <= Lower_Bound) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
 
 
VC: 2_3:  
Base Case of the Invariant of While Statement in Procedure 
Is_Present: MyBinarySearchRealiz.rb(30) 
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Goal: 
(Upper_Bound  <= Upper_Bound) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
 
 
VC: 2_4:  
Base Case of the Invariant of While Statement in Procedure 
Is_Present: MyBinarySearchRealiz.rb(30) 
 
Goal: 
A = A 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
 
 
VC: 2_5:  
Requires Clause of high - low in Procedure Is_Present: 
MyBinarySearchRealiz.rb(33) 
 
Goal: 
(min_int <= (high' - low')) and ((high' - low') <= max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
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12: A''' = A 
13: (low'  <= high') 
 
 
VC: 2_6:  
Requires Clause of Divide in Procedure Is_Present: 
MyBinarySearchRealiz.rb(34) 
 
Goal: 
If (2 <= 0) then ((((2 * (max_int + 1)) < (high' - low')) and 
((high' - low') < (2 * (min_int - 1))))) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
 
 
VC: 2_7:  
Requires Clause of low + mid in Procedure Is_Present: 
MyBinarySearchRealiz.rb(35) 
 
Goal: 
(min_int <= (low' + mid')) and ((low' + mid') <= max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
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15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
 
 
VC: 2_8:  
Requires Clause of Swap_Entry in Procedure Is_Present: 
MyBinarySearchRealiz.rb(36) 
 
Goal: 
(Lower_Bound  <= (low'  + mid')) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
 
 
VC: 2_9:  
Requires Clause of Swap_Entry in Procedure Is_Present: 
MyBinarySearchRealiz.rb(36) 
 
Goal: 
(low'  + mid') <= Upper_Bound) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 



232 

 

15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
 
 
VC: 2_10:  
Requires Clause of mid + 1 in Procedure Is_Present: 
MyBinarySearchRealiz.rb(42) 
 
Goal: 
(min_int <= ((low' + mid') + 1)) and (((low' + mid') + 1) <= 
max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) /= key 
18: LEQ(A'''((low'  + mid')), key) 
 
 
VC: 2_11:  
Requires Clause of Swap_Entry in Procedure Is_Present , If 
"if" condition at MyBinarySearchRealiz.rb(37) is false , If 
"if" condition at MyBinarySearchRealiz.rb(41) is true: 
MyBinarySearchRealiz.rb(47) 
 
Goal: 
(Lower_Bound  <= (low'  + mid')) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
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9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) /= key 
18: LEQ(A'''((low'  + mid')), key) 
 
 
VC: 2_12:  
Requires Clause of Swap_Entry in Procedure Is_Present , If 
"if" condition at MyBinarySearchRealiz.rb(37) is false , If 
"if" condition at MyBinarySearchRealiz.rb(41) is true: 
MyBinarySearchRealiz.rb(47) 
 
Goal: 
(low'  + mid') <= Upper_Bound) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) /= key 
18: LEQ(A'''((low'  + mid')), key) 
 
 
VC: 2_13:  
Inductive Case of Invariant of While Statement in Procedure 
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37) 
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is false , If "if" condition at MyBinarySearchRealiz.rb(41) is 
true: MyBinarySearchRealiz.rb(30) 
 
Goal: 
(Exists_Between(key, A, Lower_Bound, (low'  - 1))  or 
Exists_Between(key, A, (high'  + 1), Upper_Bound)) = 
(Exists_Between(key, lambda j: Z ({{A'''((low'  + mid')) if j 
= (low'  + mid') 
A''(j) otherwise 
}}), Lower_Bound, (((low'  + mid')  + 1)  - 1))  or 
Exists_Between(key, lambda j: Z ({{A'''((low'  + mid')) if j = 
(low'  + mid') 
A''(j) otherwise 
}}), (high'  + 1), Upper_Bound)) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) /= key 
18: LEQ(A'''((low'  + mid')), key) 
19: midVal' = A''((low'  + mid')) 
20: A' = lambda j: Z ({{A'''((low'  + mid')) if j = (low'  + 
mid') 
A''(j) otherwise 
}}) 
 
 
VC: 2_14:  
Inductive Case of Invariant of While Statement in Procedure 
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37) 
is false , If "if" condition at MyBinarySearchRealiz.rb(41) is 
true: MyBinarySearchRealiz.rb(30) 
 
Goal: 
(Lower_Bound  <= (low'  + mid') + 1)) 
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Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) /= key 
18: LEQ(A'''((low'  + mid')), key) 
19: midVal' = A''((low'  + mid')) 
20: A' = lambda j: Z ({{A'''((low'  + mid')) if j = (low'  + 
mid') 
A''(j) otherwise 
}}) 
 
 
VC: 2_15:  
Inductive Case of Invariant of While Statement in Procedure 
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37) 
is false , If "if" condition at MyBinarySearchRealiz.rb(41) is 
true: MyBinarySearchRealiz.rb(30) 
 
Goal: 
(high'  <= Upper_Bound) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
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13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) /= key 
18: LEQ(A'''((low'  + mid')), key) 
19: midVal' = A''((low'  + mid')) 
20: A' = lambda j: Z ({{A'''((low'  + mid')) if j = (low'  + 
mid') 
A''(j) otherwise 
}}) 
 
 
VC: 2_16:  
Inductive Case of Invariant of While Statement in Procedure 
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37) 
is false , If "if" condition at MyBinarySearchRealiz.rb(41) is 
true: MyBinarySearchRealiz.rb(30) 
 
Goal: 
lambda j: Z ({{A'''((low'  + mid')) if j = (low'  + mid') 
A''(j) otherwise 
}}) = A 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) /= key 
18: LEQ(A'''((low'  + mid')), key) 
19: midVal' = A''((low'  + mid')) 
20: A' = lambda j: Z ({{A'''((low'  + mid')) if j = (low'  + 
mid') 
A''(j) otherwise 
}}) 
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VC: 2_17:  
Termination of While Statement in Procedure Is_Present , If 
"if" condition at MyBinarySearchRealiz.rb(37) is false , If 
"if" condition at MyBinarySearchRealiz.rb(41) is true: 
MyBinarySearchRealiz.rb(31) 
 
Goal: 
(high'  - (low'  + mid') + 1)) < (high'  - low')) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) /= key 
18: LEQ(A'''((low'  + mid')), key) 
19: midVal' = A''((low'  + mid')) 
20: A' = lambda j: Z ({{A'''((low'  + mid')) if j = (low'  + 
mid') 
A''(j) otherwise 
}}) 
 
 
 
 
Free Variables:  
Lower_Bound:Z, Upper_Bound:Z, Max_Char_Str_Len:N, min_int:Z, 
max_int:Z, Last_Char_Num:N, key:Entry, A:Z -> Entry, 
Is_Present:Boolean.B, low:Z, mid:Z, high:Z, midVal:Entry, 
lowVal:Entry, highVal:Entry, A':Z -> Entry, midVal':Entry, 
A'':Z -> Entry, midVal'':Entry, mid':Z, A''':Z -> Entry, 
Is_Present':Boolean.B, low':Z, high':Z 
 
 
 
VC: 3_1:  
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Base Case of the Invariant of While Statement in Procedure 
Is_Present: MyBinarySearchRealiz.rb(30) 
 
Goal: 
false = (Exists_Between(key, A, Lower_Bound, (Lower_Bound  - 
1))  or Exists_Between(key, A, (Upper_Bound  + 1), 
Upper_Bound)) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
 
 
VC: 3_2:  
Base Case of the Invariant of While Statement in Procedure 
Is_Present: MyBinarySearchRealiz.rb(30) 
 
Goal: 
(Lower_Bound  <= Lower_Bound) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
 
 
VC: 3_3:  
Base Case of the Invariant of While Statement in Procedure 
Is_Present: MyBinarySearchRealiz.rb(30) 
 
Goal: 
(Upper_Bound  <= Upper_Bound) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
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VC: 3_4:  
Base Case of the Invariant of While Statement in Procedure 
Is_Present: MyBinarySearchRealiz.rb(30) 
 
Goal: 
A = A 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
 
 
VC: 3_5:  
Requires Clause of high - low in Procedure Is_Present: 
MyBinarySearchRealiz.rb(33) 
 
Goal: 
(min_int <= (high' - low')) and ((high' - low') <= max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
 
 
VC: 3_6:  
Requires Clause of Divide in Procedure Is_Present: 
MyBinarySearchRealiz.rb(34) 
 
Goal: 
If (2 <= 0) then ((((2 * (max_int + 1)) < (high' - low')) and 
((high' - low') < (2 * (min_int - 1))))) 
 
Given: 
1: (Last_Char_Num  > 0) 
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2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
 
 
VC: 3_7:  
Requires Clause of low + mid in Procedure Is_Present: 
MyBinarySearchRealiz.rb(35) 
 
Goal: 
(min_int <= (low' + mid')) and ((low' + mid') <= max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
 
 
VC: 3_8:  
Requires Clause of Swap_Entry in Procedure Is_Present: 
MyBinarySearchRealiz.rb(36) 
 
Goal: 
(Lower_Bound  <= (low'  + mid')) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 



241 

 

4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
 
 
VC: 3_9:  
Requires Clause of Swap_Entry in Procedure Is_Present: 
MyBinarySearchRealiz.rb(36) 
 
Goal: 
(low'  + mid') <= Upper_Bound) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
 
 
VC: 3_10:  
Requires Clause of mid - 1 in Procedure Is_Present: 
MyBinarySearchRealiz.rb(44) 
 
Goal: 
(min_int <= ((low' + mid') - 1)) and (((low' + mid') - 1) <= 
max_int) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
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3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) /= key 
18: not(LEQ(A'''((low'  + mid')), key)) 
 
 
VC: 3_11:  
Requires Clause of Swap_Entry in Procedure Is_Present , If 
"if" condition at MyBinarySearchRealiz.rb(37) is false , If 
"if" condition at MyBinarySearchRealiz.rb(41) is false: 
MyBinarySearchRealiz.rb(47) 
 
Goal: 
(Lower_Bound  <= (low'  + mid')) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) /= key 
18: not(LEQ(A'''((low'  + mid')), key)) 
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VC: 3_12:  
Requires Clause of Swap_Entry in Procedure Is_Present , If 
"if" condition at MyBinarySearchRealiz.rb(37) is false , If 
"if" condition at MyBinarySearchRealiz.rb(41) is false: 
MyBinarySearchRealiz.rb(47) 
 
Goal: 
(low'  + mid') <= Upper_Bound) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) /= key 
18: not(LEQ(A'''((low'  + mid')), key)) 
 
 
VC: 3_13:  
Inductive Case of Invariant of While Statement in Procedure 
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37) 
is false , If "if" condition at MyBinarySearchRealiz.rb(41) is 
false: MyBinarySearchRealiz.rb(30) 
 
Goal: 
(Exists_Between(key, A, Lower_Bound, (low'  - 1))  or 
Exists_Between(key, A, (high'  + 1), Upper_Bound)) = 
(Exists_Between(key, lambda j: Z ({{A'''((low'  + mid')) if j 
= (low'  + mid') 
A''(j) otherwise 
}}), Lower_Bound, (low'  - 1))  or Exists_Between(key, lambda 
j: Z ({{A'''((low'  + mid')) if j = (low'  + mid') 
A''(j) otherwise 
}}), (((low'  + mid')  - 1)  + 1), Upper_Bound)) 
 
Given: 
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1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) /= key 
18: not(LEQ(A'''((low'  + mid')), key)) 
19: midVal' = A''((low'  + mid')) 
20: A' = lambda j: Z ({{A'''((low'  + mid')) if j = (low'  + 
mid') 
A''(j) otherwise 
}}) 
 
 
VC: 3_14:  
Inductive Case of Invariant of While Statement in Procedure 
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37) 
is false , If "if" condition at MyBinarySearchRealiz.rb(41) is 
false: MyBinarySearchRealiz.rb(30) 
 
Goal: 
(Lower_Bound  <= low') 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
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14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) /= key 
18: not(LEQ(A'''((low'  + mid')), key)) 
19: midVal' = A''((low'  + mid')) 
20: A' = lambda j: Z ({{A'''((low'  + mid')) if j = (low'  + 
mid') 
A''(j) otherwise 
}}) 
 
 
VC: 3_15:  
Inductive Case of Invariant of While Statement in Procedure 
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37) 
is false , If "if" condition at MyBinarySearchRealiz.rb(41) is 
false: MyBinarySearchRealiz.rb(30) 
 
Goal: 
(low'  + mid') - 1) <= Upper_Bound) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) /= key 
18: not(LEQ(A'''((low'  + mid')), key)) 
19: midVal' = A''((low'  + mid')) 
20: A' = lambda j: Z ({{A'''((low'  + mid')) if j = (low'  + 
mid') 
A''(j) otherwise 
}}) 
 
 
VC: 3_16:  
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Inductive Case of Invariant of While Statement in Procedure 
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37) 
is false , If "if" condition at MyBinarySearchRealiz.rb(41) is 
false: MyBinarySearchRealiz.rb(30) 
 
Goal: 
lambda j: Z ({{A'''((low'  + mid')) if j = (low'  + mid') 
A''(j) otherwise 
}}) = A 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) /= key 
18: not(LEQ(A'''((low'  + mid')), key)) 
19: midVal' = A''((low'  + mid')) 
20: A' = lambda j: Z ({{A'''((low'  + mid')) if j = (low'  + 
mid') 
A''(j) otherwise 
}}) 
 
 
VC: 3_17:  
Termination of While Statement in Procedure Is_Present , If 
"if" condition at MyBinarySearchRealiz.rb(37) is false , If 
"if" condition at MyBinarySearchRealiz.rb(41) is false: 
MyBinarySearchRealiz.rb(31) 
 
Goal: 
(low'  + mid') - 1) - low') < (high'  - low')) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
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5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A''', (high'  + 1), 
Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A''' = A 
13: (low'  <= high') 
14: (|(2  * (high'  - low'))|  <= |(high'  - low')|) 
15: (|(high'  - low') - (2  * (high'  - low')))|  < |2|) 
16: A'' = lambda j: Z ({{midVal'' if j = (low'  + mid') 
A'''(j) otherwise 
}}) 
17: A'''((low'  + mid')) /= key 
18: not(LEQ(A'''((low'  + mid')), key)) 
19: midVal' = A''((low'  + mid')) 
20: A' = lambda j: Z ({{A'''((low'  + mid')) if j = (low'  + 
mid') 
A''(j) otherwise 
}}) 
 
 
 
 
Free Variables:  
Lower_Bound:Z, Upper_Bound:Z, Max_Char_Str_Len:N, min_int:Z, 
max_int:Z, Last_Char_Num:N, key:Entry, A:Z -> Entry, 
Is_Present:Boolean.B, low:Z, mid:Z, high:Z, midVal:Entry, 
lowVal:Entry, highVal:Entry, P_val':N, A':Z -> Entry, 
Is_Present':Boolean.B, low':Z, high':Z 
 
 
 
VC: 4_1:  
Ensures Clause of Is_Present: MyBinarySearchRealiz.rb(48) 
 
Goal: 
(Exists_Between(key, A, Lower_Bound, (low'  - 1))  or 
Exists_Between(key, A, (high'  + 1), Upper_Bound)) = 
Exists_Between(key, A, Lower_Bound, Upper_Bound) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
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9: Is_Present' = (Exists_Between(key, A', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A', (high'  + 1), Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A' = A 
13: not((low'  <= high')) 
 
 
VC: 4_2:  
Ensures Clause of Is_Present: MyBinarySearchRealiz.rb(48) 
 
Goal: 
key = key 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A', (high'  + 1), Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A' = A 
13: not((low'  <= high')) 
 
 
VC: 4_3:  
Ensures Clause of Is_Present: MyBinarySearchRealiz.rb(48) 
 
Goal: 
A = A 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Lower_Bound  <= (Upper_Bound  + 1)) 
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int) 
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int) 
7: Is_Ordered(A, Lower_Bound, Upper_Bound) 
8: (Upper_Bound  + 1) <= max_int) 
9: Is_Present' = (Exists_Between(key, A', Lower_Bound, (low'  
- 1))  or Exists_Between(key, A', (high'  + 1), Upper_Bound)) 
10: (Lower_Bound  <= low') 
11: (high'  <= Upper_Bound) 
12: A' = A 
13: not((low'  <= high')) 
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Benchmark #4:Layered implementation of a Map ADT 

// 
// Generated by the RESOLVE Verifier, December 2011 version 
// from file:  Search_Store_Realiz.rb 
// on:         Mon Dec 05 07:40:37 EST 2011 
// 
 
Free Variables:  
Entry, Max_Length:Z 
 
 
 
VC: 0_1:  
Requirement for Facility Declaration Rule for PQ_Fac: 
Search_Store_Realiz.rb(10) 
 
Goal: 
(Max_Length  > 0) 
 
Given: 
 
1: (Max_Length  > 0) 
 
 
 
 
Free Variables:  
S:(Contents:PQ_Fac.P_Queue), Max_Length:Z, Last_Char_Num:N, 
min_int:Z, max_int:Z, Max_Char_Str_Len:N 
 
 
 
VC: 1_1:  
Correspondence Rule for Store: Search_Store_Realiz.rb(20) 
 
Goal: 
(Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))  <= 
Max_Capacity) 
 
Given: 
1: (Max_Capacity  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: (Last_Char_Num  > 0) 
5: (Max_Capacity  > 0) 
6: (|S.Contents|  <= Max_Capacity) 
7: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
8: Is_Duplicate_Free(S.Contents) 
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Free Variables:  
S:(Contents:PQ_Fac.P_Queue), Conc.S:Key -> Boolean.B, 
S.Contents:Modified_String_Theory.Str(Entry) 
 
 
 
VC: 2_1:  
Convention for Store generated by intialization rule: 
Search_Store_Realiz.rb(18) 
 
Goal: 
Is_Duplicate_Free(empty_string) 
 
Given: 
 
1: (Max_Capacity  > 0) 
 
 
VC: 2_2:  
Initialization Rule for Store: Search_Store_Realiz.rb(15) 
 
Goal: 
Key_Ct(lambda k2: Key (Is_Substring(<k2>, empty_string))) = 0 
 
Given: 
1: (Max_Capacity  > 0) 
2: Conc.S = lambda k2: Key (Is_Substring(<k2>, empty_string)) 
 
 
 
 
Free Variables:  
Max_Capacity:Z, Key_Ct:N, Max_Length:Z, Last_Char_Num:N, 
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.S:Key -> 
Boolean.B, k:Key, S:(Contents:PQ_Fac.P_Queue), t:Key, t':Key, 
S':(Contents:PQ_Fac.P_Queue) 
 
 
 
VC: 3_1:  
Requires Clause of Enqueue in Procedure Add: 
Search_Store_Realiz.rb(25) 
 
Goal: 
(|S.Contents|  < Max_Capacity) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
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7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))  
< Max_Capacity) 
12: not(Conc.S(k)) 
 
 
VC: 3_2:  
Convention for Search_Store_Realiz: Search_Store_Realiz.rb(25) 
 
Goal: 
Is_Duplicate_Free((S.Contents  o <k>)) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))  
< Max_Capacity) 
12: not(Conc.S(k)) 
 
 
VC: 3_3:  
Ensures Clause of Add: Search_Store_Realiz.rb(26) 
 
Goal: 
Conc.S'(k) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))  
< Max_Capacity) 
12: not(Conc.S(k)) 
13: Conc.S' = lambda k2: Key (Is_Substring(<k2>, (S.Contents  
o <k>))) 
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VC: 3_4:  
Ensures Clause of Add: Search_Store_Realiz.rb(26) 
 
Goal: 
for all k1:Key, If k1 /= k then (Conc.S'(k1) = Conc.S(k1)) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))  
< Max_Capacity) 
12: not(Conc.S(k)) 
13: Conc.S' = lambda k2: Key (Is_Substring(<k2>, (S.Contents  
o <k>))) 
 
 
VC: 3_5:  
Ensures Clause of Add: Search_Store_Realiz.rb(26) 
 
Goal: 
k = k 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))  
< Max_Capacity) 
12: not(Conc.S(k)) 
13: Conc.S' = lambda k2: Key (Is_Substring(<k2>, (S.Contents  
o <k>))) 
 
 
 
 
Free Variables:  
Max_Capacity:Z, Key_Ct:N, Max_Length:Z, Last_Char_Num:N, 
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.S:Key -> 
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Boolean.B, k:Key, S:(Contents:PQ_Fac.P_Queue), b:Boolean.B, 
k':Key, S':(Contents:PQ_Fac.P_Queue), 
S'':(Contents:PQ_Fac.P_Queue), b':Boolean.B 
 
 
 
VC: 4_1:  
Requires Clause of Dequeue in Procedure Remove: 
Search_Store_Realiz.rb(31) 
 
Goal: 
(|S''.Contents|  > 0) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: Conc.S(k) 
12: Is_Permutation(S''.Contents, S.Contents) 
13: (Is_Substring(<k>, S.Contents)  iff b' = true) 
14: b' = true 
15: Is_Prefix(<k>, S''.Contents) 
 
 
VC: 4_2:  
Convention for Search_Store_Realiz: Search_Store_Realiz.rb(31) 
 
Goal: 
Is_Duplicate_Free(S'.Contents) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: Conc.S(k) 
12: Is_Permutation(S''.Contents, S.Contents) 
13: (Is_Substring(<k>, S.Contents)  iff b' = true) 
14: b' = true 
15: Is_Prefix(<k>, S''.Contents) 
16: S''.Contents = (<k'>  o S'.Contents) 
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VC: 4_3:  
Ensures Clause of Remove: Search_Store_Realiz.rb(32) 
 
Goal: 
not(Conc.S'(k')) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: Conc.S(k) 
12: Is_Permutation(S''.Contents, S.Contents) 
13: (Is_Substring(<k>, S.Contents)  iff b' = true) 
14: b' = true 
15: Is_Prefix(<k>, S''.Contents) 
16: S''.Contents = (<k'>  o S'.Contents) 
17: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents)) 
 
 
VC: 4_4:  
Ensures Clause of Remove: Search_Store_Realiz.rb(32) 
 
Goal: 
for all k1:Key, If k1 /= k' then (Conc.S'(k1) = Conc.S(k1)) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: Conc.S(k) 
12: Is_Permutation(S''.Contents, S.Contents) 
13: (Is_Substring(<k>, S.Contents)  iff b' = true) 
14: b' = true 
15: Is_Prefix(<k>, S''.Contents) 
16: S''.Contents = (<k'>  o S'.Contents) 
17: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents)) 
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VC: 4_5:  
Ensures Clause of Remove: Search_Store_Realiz.rb(32) 
 
Goal: 
k = k' 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: Conc.S(k) 
12: Is_Permutation(S''.Contents, S.Contents) 
13: (Is_Substring(<k>, S.Contents)  iff b' = true) 
14: b' = true 
15: Is_Prefix(<k>, S''.Contents) 
16: S''.Contents = (<k'>  o S'.Contents) 
17: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents)) 
 
 
 
 
Free Variables:  
Max_Capacity:Z, Key_Ct:N, Max_Length:Z, Last_Char_Num:N, 
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.S:Key -> 
Boolean.B, k:Key, S:(Contents:PQ_Fac.P_Queue), k':Key, 
S':(Contents:PQ_Fac.P_Queue) 
 
 
 
VC: 5_1:  
Requires Clause of Dequeue in Procedure Remove_Any: 
Search_Store_Realiz.rb(35) 
 
Goal: 
(|S.Contents|  > 0) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
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11: Key.is_initial(k) 
12: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))  
> 0) 
 
 
VC: 5_2:  
Convention for Search_Store_Realiz: Search_Store_Realiz.rb(35) 
 
Goal: 
Is_Duplicate_Free(S'.Contents) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: Key.is_initial(k) 
12: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))  
> 0) 
13: S.Contents = (<k'>  o S'.Contents) 
 
 
VC: 5_3:  
: Search_Store_Template.co(63) 
 
Goal: 
Conc.S(k') 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: Key.is_initial(k) 
12: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))  
> 0) 
13: S.Contents = (<k'>  o S'.Contents) 
14: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents)) 
 
 
VC: 5_4:  
Ensures Clause of Remove_Any: Search_Store_Realiz.rb(36) 
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Goal: 
not(Conc.S'(k')) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: Key.is_initial(k) 
12: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))  
> 0) 
13: S.Contents = (<k'>  o S'.Contents) 
14: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents)) 
 
 
VC: 5_5:  
Ensures Clause of Remove_Any: Search_Store_Realiz.rb(36) 
 
Goal: 
for all k1:Key, If k1 /= k' then (Conc.S'(k1) = Conc.S(k1)) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: Key.is_initial(k) 
12: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))  
> 0) 
13: S.Contents = (<k'>  o S'.Contents) 
14: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents)) 
 
 
 
 
Free Variables:  
Max_Capacity:Z, Key_Ct:N, Max_Length:Z, Last_Char_Num:N, 
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.S:Key -> 
Boolean.B, k:Key, S:(Contents:PQ_Fac.P_Queue), 
Is_Present:Boolean.B, b:Boolean.B, 
S':(Contents:PQ_Fac.P_Queue), b':Boolean.B 
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VC: 6_1:  
Convention for Search_Store_Realiz: Search_Store_Realiz.rb(41) 
 
Goal: 
Is_Duplicate_Free(S'.Contents) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: Is_Permutation(S'.Contents, S.Contents) 
12: (Is_Substring(<k>, S.Contents)  iff b' = true) 
13: b' = true 
14: Is_Prefix(<k>, S'.Contents) 
 
 
VC: 6_2:  
Ensures Clause of Is_Present: Search_Store_Realiz.rb(42) 
 
Goal: 
b' = Conc.S'(k) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: Is_Permutation(S'.Contents, S.Contents) 
12: (Is_Substring(<k>, S.Contents)  iff b' = true) 
13: b' = true 
14: Is_Prefix(<k>, S'.Contents) 
15: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents)) 
 
 
VC: 6_3:  
Ensures Clause of Is_Present: Search_Store_Realiz.rb(42) 
 
Goal: 
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k = k 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: Is_Permutation(S'.Contents, S.Contents) 
12: (Is_Substring(<k>, S.Contents)  iff b' = true) 
13: b' = true 
14: Is_Prefix(<k>, S'.Contents) 
15: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents)) 
 
 
VC: 6_4:  
Ensures Clause of Is_Present: Search_Store_Realiz.rb(42) 
 
Goal: 
lambda k2: Key (Is_Substring(<k2>, S.Contents)) = lambda k2: 
Key (Is_Substring(<k2>, S'.Contents)) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
11: Is_Permutation(S'.Contents, S.Contents) 
12: (Is_Substring(<k>, S.Contents)  iff b' = true) 
13: b' = true 
14: Is_Prefix(<k>, S'.Contents) 
15: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents)) 
 
 
 
 
Free Variables:  
Max_Capacity:Z, Key_Ct:N, Max_Length:Z, Last_Char_Num:N, 
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.S:Key -> 
Boolean.B, S:(Contents:PQ_Fac.P_Queue), Key_Count:Z 
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VC: 7_1:  
Convention for Search_Store_Realiz: Search_Store_Realiz.rb(45) 
 
Goal: 
Is_Duplicate_Free(S.Contents) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
 
 
VC: 7_2:  
Ensures Clause of Key_Count: Search_Store_Realiz.rb(46) 
 
Goal: 
|S.Contents| = Key_Ct(lambda k2: Key (Is_Substring(<k2>, 
S.Contents))) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
 
 
VC: 7_3:  
Ensures Clause of Key_Count: Search_Store_Realiz.rb(46) 
 
Goal: 
lambda k2: Key (Is_Substring(<k2>, S.Contents)) = lambda k2: 
Key (Is_Substring(<k2>, S.Contents)) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
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8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
 
 
 
 
Free Variables:  
Max_Capacity:Z, Key_Ct:N, Max_Length:Z, Last_Char_Num:N, 
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.S:Key -> 
Boolean.B, S:(Contents:PQ_Fac.P_Queue), Rem_Capacity:Z 
 
 
 
VC: 8_1:  
Convention for Search_Store_Realiz: Search_Store_Realiz.rb(49) 
 
Goal: 
Is_Duplicate_Free(S.Contents) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
 
 
VC: 8_2:  
Ensures Clause of Rem_Capacity: Search_Store_Realiz.rb(50) 
 
Goal: 
(Max_Capacity  - |S.Contents|) = (Max_Capacity  - 
Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
 
 
VC: 8_3:  
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Ensures Clause of Rem_Capacity: Search_Store_Realiz.rb(50) 
 
Goal: 
lambda k2: Key (Is_Substring(<k2>, S.Contents)) = lambda k2: 
Key (Is_Substring(<k2>, S.Contents)) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents)) 
 
 
 
 
Free Variables:  
Max_Capacity:Z, Key_Ct:N, Max_Length:Z, Last_Char_Num:N, 
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.S:Key -> 
Boolean.B, S:(Contents:PQ_Fac.P_Queue), 
S':(Contents:PQ_Fac.P_Queue) 
 
 
 
VC: 9_1:  
Convention for Search_Store_Realiz: Search_Store_Realiz.rb(53) 
 
Goal: 
Is_Duplicate_Free(empty_string) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
 
 
VC: 9_2:  
Ensures Clause of Clear: Search_Store_Realiz.rb(54) 
 
Goal: 
true 
 
Given: 
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1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
 
 
VC: 9_3:  
Ensures Clause of Clear: Search_Store_Realiz.rb(54) 
 
Goal: 
Key_Ct(lambda k2: Key (Is_Substring(<k2>, empty_string))) = 0 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: (Max_Capacity  > 0) 
5: (|S.Contents|  <= Max_Capacity) 
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
7: (Max_Capacity  > 0) 
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int) 
9: Is_Duplicate_Free(S.Contents) 
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Benchmark #5:Linked-List Implementation of a Queue ADT 

// 
// Generated by the RESOLVE Verifier, December 2011 version 
// from file:  Queue_Location_Linking_Realiz.rb 
// on:         Mon Dec 05 17:39:20 EST 2011 
// 
 
Free Variables:  
Info 
 
 
 
VC: 0_1:  
Requirement for Facility Declaration Rule for Entry_Ptr_Fac: 
Queue_Location_Linking_Realiz.rb(15) 
 
Goal: 
true 
 
Given: 
 
 
 
 
 
Free Variables:  
Q:(Front:Entry_Ptr_Fac.Position; Back:Entry_Ptr_Fac.Position), 
Void:Z, Max_Char_Str_Len:N, Last_Char_Num:N, min_int:Z, 
max_int:Z 
 
 
 
VC: 1_1:  
Correspondence Rule for Queue: 
Queue_Location_Linking_Realiz.rb(26) 
 
Goal: 
true 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
 
 
 
 
Free Variables:  
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Q:(Front:Entry_Ptr_Fac.Position; Back:Entry_Ptr_Fac.Position), 
Conc.Q:Str(Entry), Content:Z -> Info, Ref:Z -> Z, Q.Back:Z, 
Q.Front:Z 
 
 
 
VC: 2_1:  
Convention for Queue generated by intialization rule: 
Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
Is_Reachable(Void, Void, Ref) 
 
Given: 
 
 
 
VC: 2_2:  
Convention for Queue generated by intialization rule: 
Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
Ref(Void) = Void 
 
Given: 
 
 
 
VC: 2_3:  
Convention for Queue generated by intialization rule generated 
by intialization rule generated by intialization rule: 
Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
(Void = Void  iff Void = Void) 
 
Given: 
 
1: true 
 
 
VC: 2_4:  
Initialization Rule for Queue: 
Queue_Location_Linking_Realiz.rb(18) 
 
Goal: 
Str_Info(Void, Content, Ref) = empty_string 
 
Given: 
 
1: Conc.Q = Str_Info(Void, Content, Ref) 
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Free Variables:  
Void:Z, Max_Char_Str_Len:N, Last_Char_Num:N, min_int:Z, 
max_int:Z, Conc.Q:Str(Entry), R:Entry, 
Q:(Front:Entry_Ptr_Fac.Position; Back:Entry_Ptr_Fac.Position), 
Content:Z -> Info, Ref:Z -> Z, Temp:Z, 
Q':(Front:Entry_Ptr_Fac.Position; 
Back:Entry_Ptr_Fac.Position), R':Entry 
 
 
 
VC: 3_1:  
Requires Clause of Swap_Info in Procedure Dequeue: 
Queue_Location_Linking_Realiz.rb(31) 
 
Goal: 
Q.Front /= Void 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Entry.is_initial(R) 
9: Str_Info(Q.Front, Content, Ref) /= empty_string 
 
 
VC: 3_2:  
Requires Clause of Follow_Link in Procedure Dequeue: 
Queue_Location_Linking_Realiz.rb(32) 
 
Goal: 
Q.Front /= Void 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Entry.is_initial(R) 
9: Str_Info(Q.Front, Content, Ref) /= empty_string 
10: Content' = lambda L: Z ({{R if L = Q.Front 
Content(L) otherwise 
}}) 
 
 
VC: 3_3:  



267 

 

Convention for Queue generated by intialization rule , If "if" 
condition at Queue_Location_Linking_Realiz.rb(33) is true: 
Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
Is_Reachable(Void, Void, Ref) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Entry.is_initial(R) 
9: Str_Info(Q.Front, Content, Ref) /= empty_string 
10: Content' = lambda L: Z ({{R if L = Q.Front 
Content(L) otherwise 
}}) 
11: Ref(Q.Front) = Void 
 
 
VC: 3_4:  
Convention for Queue generated by intialization rule , If "if" 
condition at Queue_Location_Linking_Realiz.rb(33) is true: 
Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
Ref(Void) = Void 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Entry.is_initial(R) 
9: Str_Info(Q.Front, Content, Ref) /= empty_string 
10: Content' = lambda L: Z ({{R if L = Q.Front 
Content(L) otherwise 
}}) 
11: Ref(Q.Front) = Void 
 
 
VC: 3_5:  
Convention for Queue generated by intialization rule generated 
by intialization rule generated by intialization rule , If 
"if" condition at Queue_Location_Linking_Realiz.rb(33) is 
true: Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
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(Void = Void  iff Void = Void) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Entry.is_initial(R) 
9: Str_Info(Q.Front, Content, Ref) /= empty_string 
10: Content' = lambda L: Z ({{R if L = Q.Front 
Content(L) otherwise 
}}) 
11: Ref(Q.Front) = Void 
 
 
VC: 3_6:  
Ensures Clause of Dequeue , If "if" condition at 
Queue_Location_Linking_Realiz.rb(33) is true: 
Queue_Location_Linking_Realiz.rb(35) 
 
Goal: 
Str_Info(Q.Front, Content, Ref) = (<Content(Q.Front)>  o 
Str_Info(Void, lambda L: Z ({{R if L = Q.Front 
Content(L) otherwise 
}}), Ref)) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Entry.is_initial(R) 
9: Str_Info(Q.Front, Content, Ref) /= empty_string 
10: Content' = lambda L: Z ({{R if L = Q.Front 
Content(L) otherwise 
}}) 
11: Ref(Q.Front) = Void 
 
 
 
 
Free Variables:  
Void:Z, Max_Char_Str_Len:N, Last_Char_Num:N, min_int:Z, 
max_int:Z, Conc.Q:Str(Entry), R:Entry, 
Q:(Front:Entry_Ptr_Fac.Position; Back:Entry_Ptr_Fac.Position), 
Content:Z -> Info, Ref:Z -> Z, Temp:Z, 
Q':(Front:Entry_Ptr_Fac.Position; 
Back:Entry_Ptr_Fac.Position), R':Entry 
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VC: 4_1:  
Requires Clause of Swap_Info in Procedure Dequeue: 
Queue_Location_Linking_Realiz.rb(31) 
 
Goal: 
Q.Front /= Void 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Entry.is_initial(R) 
9: Str_Info(Q.Front, Content, Ref) /= empty_string 
 
 
VC: 4_2:  
Requires Clause of Follow_Link in Procedure Dequeue: 
Queue_Location_Linking_Realiz.rb(32) 
 
Goal: 
Q.Front /= Void 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Entry.is_initial(R) 
9: Str_Info(Q.Front, Content, Ref) /= empty_string 
10: Content' = lambda L: Z ({{R if L = Q.Front 
Content(L) otherwise 
}}) 
 
 
VC: 4_3:  
Convention for Queue generated by intialization rule , If "if" 
condition at Queue_Location_Linking_Realiz.rb(33) is true , If 
"if" condition at Queue_Location_Linking_Realiz.rb(33) is 
false: Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
Is_Reachable(Ref(Q.Front), Q.Back, Ref) 
 
Given: 



270 

 

1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Entry.is_initial(R) 
9: Str_Info(Q.Front, Content, Ref) /= empty_string 
10: Content' = lambda L: Z ({{R if L = Q.Front 
Content(L) otherwise 
}}) 
11: Ref(Q.Front) /= Void 
 
 
VC: 4_4:  
Convention for Queue generated by intialization rule , If "if" 
condition at Queue_Location_Linking_Realiz.rb(33) is false: 
Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
Ref(Q.Back) = Void 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Entry.is_initial(R) 
9: Str_Info(Q.Front, Content, Ref) /= empty_string 
10: Content' = lambda L: Z ({{R if L = Q.Front 
Content(L) otherwise 
}}) 
11: Ref(Q.Front) /= Void 
 
 
VC: 4_5:  
Convention for Queue generated by intialization rule generated 
by intialization rule generated by intialization rule , If 
"if" condition at Queue_Location_Linking_Realiz.rb(33) is 
false: Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
(Q.Back = Void  iff Ref(Q.Front) = Void) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
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6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Entry.is_initial(R) 
9: Str_Info(Q.Front, Content, Ref) /= empty_string 
10: Content' = lambda L: Z ({{R if L = Q.Front 
Content(L) otherwise 
}}) 
11: Ref(Q.Front) /= Void 
 
 
VC: 4_6:  
Ensures Clause of Dequeue , If "if" condition at 
Queue_Location_Linking_Realiz.rb(33) is false: 
Queue_Location_Linking_Realiz.rb(35) 
 
Goal: 
Str_Info(Q.Front, Content, Ref) = (<Content(Q.Front)>  o 
Str_Info(Ref(Q.Front), lambda L: Z ({{R if L = Q.Front 
Content(L) otherwise 
}}), Ref)) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Entry.is_initial(R) 
9: Str_Info(Q.Front, Content, Ref) /= empty_string 
10: Content' = lambda L: Z ({{R if L = Q.Front 
Content(L) otherwise 
}}) 
11: Ref(Q.Front) /= Void 
 
 
 
 
Free Variables:  
Void:Z, Max_Char_Str_Len:N, Last_Char_Num:N, min_int:Z, 
max_int:Z, Conc.Q:Str(Entry), E:Entry, 
Q:(Front:Entry_Ptr_Fac.Position; Back:Entry_Ptr_Fac.Position), 
Content:Z -> Info, Ref:Z -> Z, Temp:Z, 
Q':(Front:Entry_Ptr_Fac.Position; 
Back:Entry_Ptr_Fac.Position), E':Entry, Temp':Z 
 
 
 
VC: 5_1:  
Requires Clause of Swap_Info in Procedure Enqueue: 
Queue_Location_Linking_Realiz.rb(42) 
 
Goal: 
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Temp' /= Void 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Temp' /= Void 
 
 
VC: 5_2:  
Convention for Queue generated by intialization rule , If "if" 
condition at Queue_Location_Linking_Realiz.rb(33) is true , If 
"if" condition at Queue_Location_Linking_Realiz.rb(33) is 
false , If "if" condition at 
Queue_Location_Linking_Realiz.rb(43) is true: 
Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
Is_Reachable(Temp', Temp', Ref) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Temp' /= Void 
9: E' = Content(Temp') 
10: Content' = lambda L: Z ({{E if L = Temp' 
Content(L) otherwise 
}}) 
11: Q.Front = Void 
 
 
VC: 5_3:  
Convention for Queue generated by intialization rule , If "if" 
condition at Queue_Location_Linking_Realiz.rb(43) is true: 
Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
Ref(Temp') = Void 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
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6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Temp' /= Void 
9: E' = Content(Temp') 
10: Content' = lambda L: Z ({{E if L = Temp' 
Content(L) otherwise 
}}) 
11: Q.Front = Void 
 
 
VC: 5_4:  
Convention for Queue generated by intialization rule generated 
by intialization rule generated by intialization rule , If 
"if" condition at Queue_Location_Linking_Realiz.rb(43) is 
true: Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
(Temp' = Void  iff Temp' = Void) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Temp' /= Void 
9: E' = Content(Temp') 
10: Content' = lambda L: Z ({{E if L = Temp' 
Content(L) otherwise 
}}) 
11: Q.Front = Void 
 
 
VC: 5_5:  
Ensures Clause of Enqueue , If "if" condition at 
Queue_Location_Linking_Realiz.rb(43) is true: 
Queue_Location_Linking_Realiz.rb(48) 
 
Goal: 
Str_Info(Temp', lambda L: Z ({{E if L = Temp' 
Content(L) otherwise 
}}), Ref) = (Str_Info(Q.Front, Content, Ref)  o <E>) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Temp' /= Void 
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9: E' = Content(Temp') 
10: Content' = lambda L: Z ({{E if L = Temp' 
Content(L) otherwise 
}}) 
11: Q.Front = Void 
 
 
 
 
Free Variables:  
Void:Z, Max_Char_Str_Len:N, Last_Char_Num:N, min_int:Z, 
max_int:Z, Conc.Q:Str(Entry), E:Entry, 
Q:(Front:Entry_Ptr_Fac.Position; Back:Entry_Ptr_Fac.Position), 
Content:Z -> Info, Ref:Z -> Z, Temp:Z, Temp':Z, E':Entry, 
Temp'':Z 
 
 
 
VC: 6_1:  
Requires Clause of Swap_Info in Procedure Enqueue: 
Queue_Location_Linking_Realiz.rb(42) 
 
Goal: 
Temp'' /= Void 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Temp'' /= Void 
 
 
VC: 6_2:  
Requires Clause of Redirect_Link in Procedure Enqueue: 
Queue_Location_Linking_Realiz.rb(47) 
 
Goal: 
Q.Back /= Void 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Temp'' /= Void 
9: E' = Content(Temp'') 
10: Content' = lambda L: Z ({{E if L = Temp'' 
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Content(L) otherwise 
}}) 
11: Q.Front /= Void 
 
 
VC: 6_3:  
Convention for Queue generated by intialization rule , If "if" 
condition at Queue_Location_Linking_Realiz.rb(33) is true , If 
"if" condition at Queue_Location_Linking_Realiz.rb(33) is 
false , If "if" condition at 
Queue_Location_Linking_Realiz.rb(43) is true , If "if" 
condition at Queue_Location_Linking_Realiz.rb(43) is false: 
Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
Is_Reachable(Q.Front, Q.Back, lambda L: Z ({{Temp'' if L = 
Q.Back 
Ref(L) otherwise 
}})) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Temp'' /= Void 
9: E' = Content(Temp'') 
10: Content' = lambda L: Z ({{E if L = Temp'' 
Content(L) otherwise 
}}) 
11: Q.Front /= Void 
12: Ref' = lambda L: Z ({{Temp'' if L = Q.Back 
Ref(L) otherwise 
}}) 
13: Temp' = Ref(Q.Back) 
 
 
VC: 6_4:  
Convention for Queue generated by intialization rule , If "if" 
condition at Queue_Location_Linking_Realiz.rb(43) is false: 
Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
Ref'(Q.Back) = Void 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
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6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Temp'' /= Void 
9: E' = Content(Temp'') 
10: Content' = lambda L: Z ({{E if L = Temp'' 
Content(L) otherwise 
}}) 
11: Q.Front /= Void 
12: Ref' = lambda L: Z ({{Temp'' if L = Q.Back 
Ref(L) otherwise 
}}) 
13: Temp' = Ref(Q.Back) 
 
 
VC: 6_5:  
Convention for Queue generated by intialization rule generated 
by intialization rule generated by intialization rule , If 
"if" condition at Queue_Location_Linking_Realiz.rb(43) is 
false: Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
(Q.Back = Void  iff Q.Front = Void) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Temp'' /= Void 
9: E' = Content(Temp'') 
10: Content' = lambda L: Z ({{E if L = Temp'' 
Content(L) otherwise 
}}) 
11: Q.Front /= Void 
12: Ref' = lambda L: Z ({{Temp'' if L = Q.Back 
Ref(L) otherwise 
}}) 
13: Temp' = Ref(Q.Back) 
 
 
VC: 6_6:  
Ensures Clause of Enqueue , If "if" condition at 
Queue_Location_Linking_Realiz.rb(43) is false: 
Queue_Location_Linking_Realiz.rb(48) 
 
Goal: 
Str_Info(Q.Front, lambda L: Z ({{E if L = Temp'' 
Content(L) otherwise 
}}), lambda L: Z ({{Temp'' if L = Q.Back 
Ref(L) otherwise 
}})) = (Str_Info(Q.Front, Content, Ref)  o <E>) 
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Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
8: Temp'' /= Void 
9: E' = Content(Temp'') 
10: Content' = lambda L: Z ({{E if L = Temp'' 
Content(L) otherwise 
}}) 
11: Q.Front /= Void 
12: Ref' = lambda L: Z ({{Temp'' if L = Q.Back 
Ref(L) otherwise 
}}) 
13: Temp' = Ref(Q.Back) 
 
 
 
 
Free Variables:  
Void:Z, Max_Char_Str_Len:N, Last_Char_Num:N, min_int:Z, 
max_int:Z, Conc.Q:Str(Entry), Q:(Front:Entry_Ptr_Fac.Position; 
Back:Entry_Ptr_Fac.Position), Content:Z -> Info, Ref:Z -> Z, 
Is_Empty:Boolean.B, Temp:Z 
 
 
 
VC: 7_1:  
Convention for Queue generated by intialization rule , If "if" 
condition at Queue_Location_Linking_Realiz.rb(33) is true , If 
"if" condition at Queue_Location_Linking_Realiz.rb(33) is 
false , If "if" condition at 
Queue_Location_Linking_Realiz.rb(43) is true , If "if" 
condition at Queue_Location_Linking_Realiz.rb(43) is false: 
Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
Is_Reachable(Q.Front, Q.Back, Ref) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
 
 
VC: 7_2:  
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Convention for Queue generated by intialization rule: 
Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
Ref(Q.Back) = Void 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
 
 
VC: 7_3:  
Convention for Queue generated by intialization rule generated 
by intialization rule generated by intialization rule: 
Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
(Q.Back = Void  iff Q.Front = Void) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
 
 
VC: 7_4:  
Ensures Clause of Is_Empty: 
Queue_Location_Linking_Realiz.rb(55) 
 
Goal: 
Q.Front = Void = Str_Info(Q.Front, Content, Ref) = 
empty_string 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
 
 
VC: 7_5:  
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Ensures Clause of Is_Empty: 
Queue_Location_Linking_Realiz.rb(55) 
 
Goal: 
Str_Info(Q.Front, Content, Ref) = Str_Info(Q.Front, Content, 
Ref) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
7: Conc.Q = Str_Info(Q.Front, Content, Ref) 
 
 
 
 
Free Variables:  
Void:Z, Max_Char_Str_Len:N, Last_Char_Num:N, min_int:Z, 
max_int:Z, Conc.Q:Str(Entry), Q:(Front:Entry_Ptr_Fac.Position; 
Back:Entry_Ptr_Fac.Position), Content:Z -> Info, Ref:Z -> Z, 
Q':(Front:Entry_Ptr_Fac.Position; Back:Entry_Ptr_Fac.Position) 
 
 
 
VC: 8_1:  
Convention for Queue generated by intialization rule , If "if" 
condition at Queue_Location_Linking_Realiz.rb(33) is true , If 
"if" condition at Queue_Location_Linking_Realiz.rb(33) is 
false , If "if" condition at 
Queue_Location_Linking_Realiz.rb(43) is true , If "if" 
condition at Queue_Location_Linking_Realiz.rb(43) is false: 
Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
Is_Reachable(Void, Void, Ref) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
 
 
VC: 8_2:  
Convention for Queue generated by intialization rule: 
Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
Ref(Void) = Void 
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Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
 
 
VC: 8_3:  
Convention for Queue generated by intialization rule generated 
by intialization rule generated by intialization rule: 
Queue_Location_Linking_Realiz.rb(24) 
 
Goal: 
(Void = Void  iff Void = Void) 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
 
 
VC: 8_4:  
Ensures Clause of Clear: Queue_Location_Linking_Realiz.rb(60) 
 
Goal: 
true 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
6: (Q.Back = Void  iff Q.Front = Void) 
 
 
VC: 8_5:  
Ensures Clause of Clear: Queue_Location_Linking_Realiz.rb(60) 
 
Goal: 
Str_Info(Void, Content, Ref) = empty_string 
 
Given: 
1: (min_int  <= 0) 
2: (0  < max_int) 
3: (Last_Char_Num  > 0) 
4: Is_Reachable(Q.Front, Q.Back, Ref) 
5: Ref(Q.Back) = Void 
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6: (Q.Back = Void  iff Q.Front = Void) 
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Alternate Queue Implementation VCs 

// 
// Generated by the RESOLVE Verifier, December 2011 version 
// from file:  UnboundedQueue_List_Realiz.rb 
// on:         Fri Nov 11 09:40:00 EST 2011 
// 
 
Free Variables:  
Entry 
 
 
 
VC: 0_1:  
Requirement for Facility Declaration Rule for List_Fac: 
UnboundedQueue_List_Realiz.rb(4) 
 
Goal: 
true 
 
Given: 
 
 
 
 
 
Free Variables:  
Q:List_Fac.List, Max_Char_Str_Len:N, min_int:Z, max_int:Z, 
Last_Char_Num:N 
 
 
 
VC: 1_1:  
Correspondence Rule for Queue: 
UnboundedQueue_List_Realiz.rb(10) 
 
Goal: 
true 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
 
 
 
 
Free Variables:  
Q:List_Fac.List, Conc.Q:Str(Entry) 
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VC: 2_1:  
Initialization Rule for Queue: 
UnboundedQueue_List_Realiz.rb(7) 
 
Goal: 
(Q.Prec  o Q.Rem) = empty_string 
 
Given: 
1: Q.Prec = empty_string 
2: Q.Rem = empty_string 
3: Conc.Q = (Q.Prec  o Q.Rem) 
 
 
 
 
Free Variables:  
Max_Char_Str_Len:N, min_int:Z, max_int:Z, Last_Char_Num:N, 
Conc.Q:Str(Entry), R:Entry, Q:List_Fac.List, R':Entry, 
Q':List_Fac.List, Q'':List_Fac.List 
 
 
 
VC: 3_1:  
Requires Clause of Remove in Procedure Dequeue: 
UnboundedQueue_List_Realiz.rb(14) 
 
Goal: 
(Q.Prec  o Q.Rem) /= empty_string 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: Entry.is_initial(R) 
5: (Q.Prec  o Q.Rem) /= empty_string 
6: Conc.Q = (Q.Prec  o Q.Rem) 
 
 
VC: 3_2:  
Ensures Clause of Dequeue: UnboundedQueue_List_Realiz.rb(15) 
 
Goal: 
(Q.Prec  o Q.Rem) = (<R'>  o (empty_string  o Q'.Rem)) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: Entry.is_initial(R) 
5: (Q.Prec  o Q.Rem) /= empty_string 
6: Conc.Q = (Q.Prec  o Q.Rem) 
7: (Q.Prec  o Q.Rem) = (<R'>  o Q'.Rem) 
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Free Variables:  
Max_Char_Str_Len:N, min_int:Z, max_int:Z, Last_Char_Num:N, 
Conc.Q:Str(Entry), E:Entry, Q:List_Fac.List, E':Entry, 
Q':List_Fac.List 
 
 
 
VC: 4_1:  
Ensures Clause of Enqueue: UnboundedQueue_List_Realiz.rb(20) 
 
Goal: 
(Q.Prec  o Q.Rem) o (<E>  o empty_string)) = (Q.Prec  o Q.Rem) 
o <E>) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: Conc.Q = (Q.Prec  o Q.Rem) 
 
 
 
 
Free Variables:  
Max_Char_Str_Len:N, min_int:Z, max_int:Z, Last_Char_Num:N, 
Conc.Q:Str(Entry), Q:List_Fac.List, Is_Empty:Boolean.B 
 
 
 
VC: 5_1:  
Ensures Clause of Is_Empty: UnboundedQueue_List_Realiz.rb(24) 
 
Goal: 
1: Q.Prec = empty_string and Q.Prec = empty_string = (Q.Prec  
o Q.Rem) = empty_string 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
4: Conc.Q = (Q.Prec  o Q.Rem) 
 
 
VC: 5_2:  
Ensures Clause of Is_Empty: UnboundedQueue_List_Realiz.rb(24) 
 
Goal: 
(Q.Prec  o Q.Rem) = (Q.Prec  o Q.Rem) 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
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3: (0  < max_int) 
4: Conc.Q = (Q.Prec  o Q.Rem) 
 
 
 
 
Free Variables:  
Max_Char_Str_Len:N, min_int:Z, max_int:Z, Last_Char_Num:N, 
Conc.Q:Str(Entry), Q:List_Fac.List, Q':List_Fac.List 
 
 
 
VC: 6_1:  
Ensures Clause of Clear: UnboundedQueue_List_Realiz.rb(28) 
 
Goal: 
true 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
 
 
VC: 6_2:  
Ensures Clause of Clear: UnboundedQueue_List_Realiz.rb(28) 
 
Goal: 
empty_string = empty_string 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
 
 
VC: 6_3:  
Ensures Clause of Clear: UnboundedQueue_List_Realiz.rb(28) 
 
Goal: 
empty_string = empty_string 
 
Given: 
1: (Last_Char_Num  > 0) 
2: (min_int  <= 0) 
3: (0  < max_int) 
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Auxiliary Code Rotate VCs 

VC Number With Auxiliary Code Without Auxiliary Code 

1  

Requires Clause of Dequeue 

in Procedure Rotate: 

Obvious_Rotate_Realiz.rb 

Goal: 

|Q| /= 0 

 

Given: 

1: (min_int <= 0) 

2: (0 < max_int) 

3: (Last_Char_Num > 0) 

4: (Max_Length > 0) 

5: (min_int <= 

Max_Length) and 

(Max_Length <= max_int) 

6: (|Q| <= Max_Length) 

7: |Q| /= 0 

 

 Proved in 453 

milliseconds.   

 Overall, 1 proofs 

were directly 

considered and 0 

useful backtracks 

were performed. 

Goal: 

|Q| /= 0 

 

Given: 

1: (min_int <= 0) 

2: (0 < max_int) 

3: (Last_Char_Num > 0) 

4: (Max_Length > 0) 

5: (min_int <= 

Max_Length) and 

(Max_Length <= max_int) 

6: (|Q| <= Max_Length) 

7: |Q| /= 0 
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2 

Requires Clause of Enqueue 

in Procedure Rotate: 

Obvious_Rotate_Realiz.rb(1

7) 

Goal: 

(|Q'| < Max_Length) 

 

Given: 

1: (min_int <= 0) 

2: (0 < max_int) 

3: (Last_Char_Num > 0) 

4: (Max_Length > 0) 

5: (min_int <= 

Max_Length) and 

(Max_Length <= max_int) 

6: (|Q| <= Max_Length) 

7: |Q| /= 0 

8: Q = (<TE'> o Q')  

 

 Proved in 171 

milliseconds.   

 Overall, 1 proofs 

were directly 

considered and 0 

useful backtracks 

were performed. 

Goal: 

(|Q''| < Max_Length) 

 

Given: 

1: (min_int <= 0) 

2: (0 < max_int) 

3: (Last_Char_Num > 0) 

4: (Max_Length > 0) 

5: (min_int <= 

Max_Length) and 

(Max_Length <= max_int) 

6: (|Q| <= Max_Length) 

7: |Q| /= 0 

8: Q = (<TE'> o Q'') 
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3 

Ensures Clause of Rotate: 

Rotating_Capability.en(5) 

 

Goal: 

Q = (<TE'> o Q') 

 

Given: 

1: (min_int <= 0) 

2: (0 < max_int) 

3: (Last_Char_Num > 0) 

4: (Max_Length > 0) 

5: (min_int <= 

Max_Length) and 

(Max_Length <= max_int) 

6: (|Q| <= Max_Length) 

7: |Q| /= 0 

8: Q = (<TE'> o Q') 

 

 Proved in 63 

milliseconds.   

 Overall, 1 proofs 

were directly 

considered and 0 

useful backtracks 

were performed. 

Goal: 

there exists E:Entry, 

there exists 

R:Str(Entry), (Q = (<E> o 

R) and (Q'' o <TE'>) = (R 

o <E>)) 

 

Given: 

1: (min_int <= 0) 

2: (0 < max_int) 

3: (Last_Char_Num > 0) 

4: (Max_Length > 0) 

5: (min_int <= 

Max_Length) and 

(Max_Length <= max_int) 

6: (|Q| <= Max_Length) 

7: |Q| /= 0 

8: Q = (<TE'> o Q'') 

9: Q' = (Q'' o <TE'>) 
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4 

Ensures Clause of Rotate: 

Rotating_Capability.en(5) 

Goal: 

(Q' o <TE'>) = (Q' o 

<TE'>) 

 

Given: 

1: (min_int <= 0) 

2: (0 < max_int) 

3: (Last_Char_Num > 0) 

4: (Max_Length > 0) 

5: (min_int <= 

Max_Length) and 

(Max_Length <= max_int) 

6: (|Q| <= Max_Length) 

7: |Q| /= 0 

8: Q = (<TE'> o Q') 

 

 Proved in 62 

milliseconds. 

 Overall, 1 proofs 

were directly 

considered and 0 

useful backtracks 

were performed. 

 

Table 4: VC Comparison when Using Auxiliary Code 
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Appendix G 

Recursive Educational Example Verification Conditions 

// 
// Generated by the RESOLVE Verifier, December 2011 version 
// from file:  Recursive_Append_Realiz.rb 
// on:         Sat Jul 02 08:19:38 EDT 2011 
// 
 
Free Variables:  
Max_Length:Z, min_int:Z, max_int:Z, 
P:Modified_String_Theory.Str(Entry), 
Q:Modified_String_Theory.Str(Entry), P_val:N, 
P':Modified_String_Theory.Str(Entry), 
Q':Modified_String_Theory.Str(Entry), E':Entry, E:Entry 
 
 
 
VC: 0_1:  
Requires Clause of Dequeue in Procedure Append: 
Recursive_Append_Realiz.rb(9) 
 
Goal: 
|Q| /= 0 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |Q| 
11: |Q| /= 0 
 
 
VC: 0_2:  
Requires Clause of Enqueue in Procedure Append: 
Recursive_Append_Realiz.rb(10) 
 
Goal: 
(|P| < Max_Length) 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
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4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |Q| 
11: |Q| /= 0 
12: Q = (<E'> o Q') 
 
 
VC: 0_3:  
Show Termination of Recursive Call: 
Recursive_Append_Realiz.rb(5) 
 
Goal: 
(|Q'| < |Q|) 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |Q| 
11: |Q| /= 0 
12: Q = (<E'> o Q') 
 
 
VC: 0_4:  
Requires Clause of Append in Procedure Append: 
Recursive_Append_Realiz.rb(11) 
 
Goal: 
(|(P o <E'>)| + |Q'|)<= Max_Length) 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |Q| 
11: |Q| /= 0 
12: Q = (<E'> o Q') 
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VC: 0_5:  
Ensures Clause of Append , If "if" condition at 
Recursive_Append_Realiz.rb(8) is true: Append_Capability.en(4) 
 
Goal: 
(P o <E'>)o Q') = (P o Q) 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |Q| 
11: |Q| /= 0 
12: Q = (<E'> o Q') 
 
 
VC: 0_6:  
Ensures Clause of Append , If "if" condition at 
Recursive_Append_Realiz.rb(8) is true: Append_Capability.en(4) 
 
Goal: 
empty_string = empty_string 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |Q| 
11: |Q| /= 0 
12: Q = (<E'> o Q') 
 
 
 
 
Free Variables:  
Max_Length:Z, min_int:Z, max_int:Z, 
P:Modified_String_Theory.Str(Entry), 
Q:Modified_String_Theory.Str(Entry), P_val:N, E:Entry 
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VC: 1_1:  
Ensures Clause of Append , If "if" condition at 
Recursive_Append_Realiz.rb(8) is false: 
Append_Capability.en(4) 
 
Goal: 
P = (P o Q) 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |Q| 
11: |Q| = 0 
 
 
VC: 1_2:  
Ensures Clause of Append , If "if" condition at 
Recursive_Append_Realiz.rb(8) is false: 
Append_Capability.en(4) 
 
Goal: 
Q = empty_string 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |Q| 
11: |Q| = 0 
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VCs for Recursive Append with wrong decreasing clause: 

// 
// Generated by the RESOLVE Verifier, December 2011 version 
// from file:  Recursive_Append_Realiz.rb 
// on:         Sat Jul 09 08:20:12 EDT 2011 
// 
 
Free Variables:  
Max_Length:Z, min_int:Z, max_int:Z, 
P:Modified_String_Theory.Str(Entry), 
Q:Modified_String_Theory.Str(Entry), P_val:N, 
P':Modified_String_Theory.Str(Entry), 
Q':Modified_String_Theory.Str(Entry), E':Entry, E:Entry 
 
 
 
VC: 0_1:  
Requires Clause of Dequeue in Procedure Append: 
Recursive_Append_Realiz.rb(9) 
 
Goal: 
|Q| /= 0 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |P| 
11: |Q| /= 0 
 
 
VC: 0_2:  
Requires Clause of Enqueue in Procedure Append: 
Recursive_Append_Realiz.rb(10) 
 
Goal: 
(|P| < Max_Length) 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 



295 

 

7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |P| 
11: |Q| /= 0 
12: Q = (<E'> o Q') 
 
 
VC: 0_3:  
Show Termination of Recursive Call: 
Recursive_Append_Realiz.rb(5) 
 
Goal: 
(|(P o <E'>)| < |P|) 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |P| 
11: |Q| /= 0 
12: Q = (<E'> o Q') 
 
 
VC: 0_4:  
Requires Clause of Append in Procedure Append: 
Recursive_Append_Realiz.rb(11) 
 
Goal: 
(|(P o <E'>)| + |Q'|)<= Max_Length) 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |P| 
11: |Q| /= 0 
12: Q = (<E'> o Q') 
 
 
VC: 0_5:  
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Ensures Clause of Append , If "if" condition at 
Recursive_Append_Realiz.rb(8) is true: Append_Capability.en(4) 
 
Goal: 
(P o <E'>)o Q') = (P o Q) 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |P| 
11: |Q| /= 0 
12: Q = (<E'> o Q') 
 
 
VC: 0_6:  
Ensures Clause of Append , If "if" condition at 
Recursive_Append_Realiz.rb(8) is true: Append_Capability.en(4) 
 
Goal: 
empty_string = empty_string 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |P| 
11: |Q| /= 0 
12: Q = (<E'> o Q') 
 
 
 
 
Free Variables:  
Max_Length:Z, min_int:Z, max_int:Z, 
P:Modified_String_Theory.Str(Entry), 
Q:Modified_String_Theory.Str(Entry), P_val:N, E:Entry 
 
 
 
VC: 1_1:  
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Ensures Clause of Append , If "if" condition at 
Recursive_Append_Realiz.rb(8) is false: 
Append_Capability.en(4) 
 
Goal: 
P = (P o Q) 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |P| 
11: |Q| = 0 
 
 
VC: 1_2:  
Ensures Clause of Append , If "if" condition at 
Recursive_Append_Realiz.rb(8) is false: 
Append_Capability.en(4) 
 
Goal: 
Q = empty_string 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |P| 
11: |Q| = 0 
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VCs for Recursive Append with incorrect implementation : 

 
// 
// Generated by the RESOLVE Verifier, December 2011 version 
// from file:  Recursive_Append_Realiz.rb 
// on:         Sat Jul 09 08:50:00 EDT 2011 
// 
 
Free Variables:  
Max_Length:Z, min_int:Z, max_int:Z, 
P:Modified_String_Theory.Str(Entry), 
Q:Modified_String_Theory.Str(Entry), P_val:N, 
P':Modified_String_Theory.Str(Entry), 
Q':Modified_String_Theory.Str(Entry) 
 
 
 
VC: 0_1:  
Show Termination of Recursive Call: 
Recursive_Append_Realiz.rb(5) 
 
Goal: 
(|Q| < |Q|) 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |Q| 
11: |Q| /= 0 
 
 
VC: 0_2:  
Requires Clause of Append in Procedure Append: 
Recursive_Append_Realiz.rb(8) 
 
Goal: 
(|P| + |Q|)<= Max_Length) 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
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6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |Q| 
11: |Q| /= 0 
 
 
VC: 0_3:  
Ensures Clause of Append , If "if" condition at 
Recursive_Append_Realiz.rb(7) is true: Append_Capability.en(4) 
 
Goal: 
(P o Q) = (P o Q) 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |Q| 
11: |Q| /= 0 
 
 
VC: 0_4:  
Ensures Clause of Append , If "if" condition at 
Recursive_Append_Realiz.rb(7) is true: Append_Capability.en(4) 
 
Goal: 
empty_string = empty_string 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |Q| 
11: |Q| /= 0 
 
 
 
 
Free Variables:  
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Max_Length:Z, min_int:Z, max_int:Z, 
P:Modified_String_Theory.Str(Entry), 
Q:Modified_String_Theory.Str(Entry), P_val:N 
 
 
 
VC: 1_1:  
Ensures Clause of Append , If "if" condition at 
Recursive_Append_Realiz.rb(7) is false: 
Append_Capability.en(4) 
 
Goal: 
P = (P o Q) 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |Q| 
11: |Q| = 0 
 
 
VC: 1_2:  
Ensures Clause of Append , If "if" condition at 
Recursive_Append_Realiz.rb(7) is false: 
Append_Capability.en(4) 
 
Goal: 
Q = empty_string 
 
Given: 
1: (min_int <= 0) 
2: (0 < max_int) 
3: (min_int <= 0) 
4: (0 < max_int) 
5: (Max_Length > 0) 
6: (min_int <= Max_Length) and (Max_Length <= max_int) 
7: (|Q| <= Max_Length) 
8: (|P| <= Max_Length) 
9: (|P| + |Q|)<= Max_Length) 
10: P_val = |Q| 
11: |Q| = 0 
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