
Clemson University

TigerPrints

All Dissertations Dissertations

12-2011

Mechanical and Modular Verification Condition
Generation for Object-Based Software
Heather Harton
Clemson University, hkeown@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by

an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Harton, Heather, "Mechanical and Modular Verification Condition Generation for Object-Based Software" (2011). All Dissertations.
869.
https://tigerprints.clemson.edu/all_dissertations/869

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/869?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

MECHANICAL AND MODULAR VERIFICATION CONDITION GENERATION

FOR OBJECT-BASED SOFTWARE

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Science

by

Heather Keown Harton

December 2011

Accepted by:

Dr. Murali Sitaraman, Committee Chair

Dr. Jason Hallstorm

Dr. Joan Krone

Dr. David Jacobs

ii

ABSTRACT

The foundational goal of this work is the development of mechanizable proof rules and a

verification condition generator based on those rules for modern software. The verification

system will be modular so that it is possible to verify the implementation of a component relying

upon only the specifications of underlying components that are reused. The system must enable

full behavioral verification. The proof rules used to generate verification conditions (VCs) of

correctness must be amenable to automation. While automation requires software developers to

annotate implementations with assertions, it should not require assistance in the proofs. This

research has led to a VC generator that realizes these goals. The VC generator has been applied

to a range of benchmarks to show the viability of verified components. It has been used in

classrooms at multiple institutions to teach reasoning principles.

A fundamental problem in computing is the inability to show that a software system behaves as

required. Modern software systems are composed of numerous software components. The

fundamental goal of this work is to verify each independently in a modular fashion, resulting in

full behavioral verification and providing an assurance that components meet their specifications

and can be used with confidence to build verified software systems. Of course, to be practical,

such a system must be mechanical. Although the principles of verification have existed for

decades, the basis for a practical verification system for modern software components has

remained elusive.

iii

DEDICATION

To Mom, Dad, Billy, Robyn, and Levi for being there for me, and believing I could finish. I

couldn‘t have done it without you.

iv

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Murali Sitaraman, for his help and support in continuing

in school. Without his support and guidance, I would never have been able to finish this work. I

would also like to thank Bill Ogden and Joan Krone in working through each iteration of the

proof rules. I would never have arrived at the final versions which are so integral to this work

without their help. I would also like to thank my dissertation committee for providing me with

valuable feedback and for serving on my committee. This research has been funded in part by

NSF grants CCF0811748, DMS0701187, and DUE-1022941.

v

TABLE OF CONTENTS

Page

ABSTRACT ... ii

DEDICATION .. iii

ACKNOWLEDGMENTS ... iv

TABLE OF CONTENTS .. v

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

1. INTRODUCTION .. 1

Organization .. 2

Problem Statement ... 3

Research Approach and Contributions .. 3

Thesis ... 5

Scope of Research ... 13

2. RELATED RESEARCH .. 18

Verification Research .. 18

Alternative Verification Condition Generation Approaches 22

RESOLVE Background .. 29

3. MECHANIZATION AND SEMANTICS OF PROOF RULES ... 41

Semantic Foundations .. 42

Relational Semantics ... 44

Formal Semantics ... 46

Proof Rules for RESOLVE Language Constructs .. 48

VC Simplification... 82

4. COMPONENT-LEVEL VERIFICATION ... 83

Object-Based Component Specification, Implementation, and VCs 83

Enhancement Specification, Implementation, and VCs ... 100

Facility Declarations and VCs ... 103

vi

5. EXPERIMENTAL EVALUATION .. 109

Benchmarks ... 109

An Exercise with Auxiliary Variables .. 127

6. EDUCATIONAL USES .. 130

User Feedback... 136

7. CONCLUSIONS AND FUTURE DIRECTIONS .. 138

APPENDICES .. 141

A. Proof Rules -- 142

B. Simplification Rules -- 152

C. Additional Specifications -- 153

D. Alternate Stack Specifications with implementations and VCs ------------ 158

E. Examples of VCs from Component-Level Verification ----------------------- 164

F. Benchmark VCs --- 201

G. Recursive Educational Example Verification Conditions -------------------- 290

REFERENCES ... 301

vii

LIST OF TABLES

Page

Table 1: Related Works table ... 22

Table 2: Reasoning Table .. 24

Table 3: An application of the goal oriented approach ... 28

Table 4: VC Comparison when Using Auxiliary Code ... 289

viii

LIST OF FIGURES

Page

Figure 1. The architecture for a verifying compiler ... 3

Figure 2: Modularity of Verification.. 9

Figure 3: An example of Assertive Code .. 23

Figure 4: Stack Template ... 31

Figure 5: Relationship of Correspondence, Constraints, and Conventions 35

Figure 6: Array Based Stack Implementation ... 36

Figure 7: Stack Flip Specification and Realization .. 38

Figure 8: Stack Facility enhanced with Reversal Capability ... 39

Figure 9: Implications of Relational Operation and Correspondence Specifications 45

Figure 10: Semantics of Basic Statements .. 47

Figure 12: Flip Assertive Code after the Application of Procedure Declaration Rule

(Version 1) ... 50

Figure 13: Assertive Code after the Application of the Swap Rule (Version 2) 53 Figure 14: Hoare’s Original Proof Rule .. 58

Figure 15: Application of the Mechanizable While Loop Rule (Version 3 – Part 1) 65

Figure 16: Application of the Mechanizable While Loop Rule (Version 3 – Part 2) 65

Figure 17: Flip Example (Version 4) ... 71

Figure 18: Assertive Code after the application of Assume Rule (Version 5).............................. 72

Figure 19: Assertive Code after the application of Confirm Rule (Version 6) 74

Figure 20: Assertive Code just before the Application of Variable Declaration Rule

(Version 7) ... 75

Figure 21: Assertive Code After the Application of Variable Declaration Rule (Version 8) .. 76

Figure 22: Flip Example (Version 9) ... 77

Figure 24: Queue Template .. 85

Figure 25: Queue Array Implementation .. 86

Figure 26: Example Concept Specification and Realization .. 90

Figure 27: Sorting Capability for a Queue ... 100

Figure 28: Selection Sort of a Queue .. 103

Figure 29: Sort Facility .. 105

Figure 30: Two VCs for QF Facility Declaration .. 107

Figure 31: VCs to show Operation is valid for QF Facility Declaration 108

Figure 32: Add and Multiply Example ... 111

Figure 33: Wrong Binary Search Example .. 113

Figure 34: Binary Search Specification ... 115

Figure 35: Binary Search Implementation .. 116

ix

Figure 36: Search and Store Specification ... 118

Figure 38: Example Search and Store VC ... 120

Figure 39: Search and Store Implementation .. 121

Figure 40: Location Linking Template .. 124

Figure 41: Unbounded Queue ... 124

Figure 42: Queue Implementation with a Linked List .. 126

Figure 43: List Implementation of Unbounded Queue ... 127

Figure 44: Queue Rotate with Alternate Specification ... 128

Figure 45: Queue Rotate with Auxiliary Variables Specification and Implementation 129

Figure 46: Queue Recursive Append Specification and Implementation 132

Figure 47: Example VC for Recursive Append ... 134

Figure 48: Invalid Queue Recursive Append implementation .. 134

Figure 49: Example VC for Recursive Append with Wrong Decreasing Clause 135

Figure 50: Another Invalid Queue Recursive Append Implementation 135

Figure 51: Example VC for Recursive Append with wrong implementation 136

1

CHAPTER ONE

INTRODUCTION

A verification system to validate the correctness of software was first presented by James C. King

in 1969 [1] [2]. The same year, Tony Hoare introduced proof rules that formed a basis for

program verification [3] . Nearly 40 years later, no such verifier exists. Acknowledging this state

of computing, Tony Hoare has proposed a Grand Challenge to the Computer Science community

in 2003: development of a verifier that will automatically and mechanically prove through

mathematical logic a program's correctness [4].

Why verify? Because even with thorough testing, there is no guarantee that a program is error-

free. Most commercial software endures extensive testing until testing reveals no serious errors

and the customers choose to accept the reliability of the resulting code. However, unknown and

hidden errors remain. For example, in 2006, Joshua Bloch reports in a Google blog an error in the

binary search algorithm that arises in searching large arrays [5]. This algorithm that has been in

use for decades fails if the sum of the low value and the high value is greater than the value of the

maximum positive integer. Amazingly, this simple error has remained hidden in a common piece

of code. If this fairly simple and widely-used code has an error, it is likely that nearly all present-

day software—including safety-critical ones—have similar errors. Joshua Bloch notes that in his

class at CMU, Bentley (author of Programming Pearls) proved the binary search algorithm to be

correct. Actually, what Bentley did was give only a typical, ―informal‖ argument, not a formal

proof. If integer bounds are specified and the code undergoes verification through a verifier (such

as the one envisioned by Hoare and as shown through the generated proofs from my prototype

Verification Condition (VC) generator), the error would have been caught in a straightforward

manner. A key goal is to replace informal proofs with formal, automated proofs. The binary

2

search example shows that a verification system must consider all aspects of correctness –

including checking that variables stay within their specified bounds. My goal is to provide a VC

generator that will process modern object-oriented software systems and provide VCs that, if

proven, establish correctness of components, independently, to achieve scalability.

Organization

The rest of this chapter presents the motivation for this work and discusses the complexities of

generating verification conditions. Chapter 2 provides a detailed description of related research.

This includes work by other organizations in verification, other approaches to verification, and a

background of the RESOLVE language. Chapter 3 describes the semantics of RESOLVE and

provides proofs of soundness and completeness for key proof rules. Operation-level proof rules

are provided. Chapter 4 explains how RESOLVE VC generation provides modular and scalable

software design using module-level proof rules. Chapter 5 provides a listing of examples and

benchmarks demonstrating the capabilities of the VC generator. Chapter 6 briefly discusses

educational uses of the RESOLVE VC generator. Finally, Chapter 7 will provide a conclusion

and list future issues and directions to be researched.

There are also numerous appendices containing proof rules, source code, and generated VCs. The

proof rules are provided in Appendix A. Appendix B contains simplification rules that were

considered when implementing the VC generator. Appendix C, Appendix D, Appendix E,

Appendix F and Appendix G all contain source code and VCs for examples. These will be

detailed in later chapters.

3

Problem Statement

Overall, I see three challenges in developing a verification system (such as the one Hoare

envisions):

• It must be scalable so that each component can be proven correct independently using only the

specifications for any subcomponents that the given component relies on;

• It must enable full verification to guarantee that the implementation fulfills the completely

specified behavior; and

• It must be mechanical, requiring programmers to supply assertions, but developers should not

need to interact with the prover.

Research Approach and Contributions

To address the verification challenge, we envision an architecture for a verifier similar to the one

shown below.

Figure 1. The architecture for a verifying compiler

4

In Figure 1, the Verification Condition Generator (a prototype of which I have developed) applies

applicable proof rules to an implementation. To begin the process, a software specialist, who is

assumed to be a competent programmer, will write the specification and implementation

(annotated as necessary for generating the assertive code). The programmer may require

assistance from the mathematician in writing the specifications. Using the specification of the

new code and the specifications of components used by the implementation, the VC Generator

mechanically forms mathematical clauses equivalent to the correctness of the program. The

implementations will need to be annotated by internal assertions, such as loop invariants, progress

metrics, and representation invariants and abstraction relations for objects. These assertions are

not just annotations but are part of the language syntax that distinguishes RESOLVE from many

other languages. The requirement for additional annotations by the developer is not unique to the

RESOLVE verification system. In a recent set of benchmarks provided by various verification

systems at VSTTE 2010, every solution with a loop had a loop invariant supplied by the

programmer [6]. In addition, a recent paper has shown that when compared to a variety of

systems, RESOLVE requires only minimal assertions [7].

The verification conditions (VCs) are sent to the Automated Prover that uses pre-established

theorems from the mathematical units to prove the obligations correct. The mathematical units

exist in a library of theorems provided by the mathematical specialist. The theorems in the math

units must be supported by proofs which will be checked for correctness by the Proof Checker.

The expectation is that the proof of program obligations needs to be fully automated, but only the

ability to validate proofs provided by the mathematicians is necessary for non-trivial

mathematical theorems.

5

There are several research problems that concern general verification. These include techniques

for construction of specifications that allow for easy mechanization, yet are human-

understandable, handling of higher-ordered assertions (e.g., such as those that arise in proving

generic operations such as sorting), and mechanical handling of existential quantifiers using

suitable language mechanisms and adjunct variables in programs. These issues and others must be

considered when automating and implementing the proof rules used to generate the VCs. In order

to achieve the ultimate goal of a verifying compiler that is useful for substantial software in

languages like C++, Java or RESOLVE, my goal is to work towards modular verification of

imperative, object-oriented software that is scalable as a result of the verification of individual

components. This research will focus on the RESOLVE language because both C++ and Java are

highly dependent upon aliasing which make reasoning for verification more difficult. Because of

this design goal of modularity, additional research problems must be considered such as

extensions, minimization of aliasing, handling of unavoidable aliasing that occurs with pointers,

and the correct processing of global variables. My research will address these and other research

issues, and establish the basis for a scalable and automated verification system for full behavioral

correctness. A specific goal is to demonstrate the abilities of the VC generator by experimentally

validating the correctness of a set of benchmarks.

Thesis

Challenges and Complexities

If verification were a simple goal, automated verification systems would already exist and

verification would likely be a normal part of software development. The verification problem is

still an outstanding grand challenge because several research questions remain to be addressed.

Some of these challenges are common to all software systems. For example, as with any

6

programming language, a verification system must be scalable in order for it to be usable. There

are of course other challenges that are specific to the verification goal.

The generation of clauses equivalent to the full behavioral verification is the primary goal of our

VC generator. This goal, when achieved, will provide confidence that an implementation fulfills

the complete behavioral specification. It is to be noted that specifications can be provided in

varying levels of detail. If full verification is unnecessary, the specification can be written with

only the required details.

To provide any level of verification with confidence, the verification system must be sound and

complete. A sound and complete verification system is dependent upon these qualities also

existing in the proof rules used by the VC generator. With proper proof rules, the VC Generator

can create VCs that if proved will guarantee full behavioral correctness of a software system with

respect to its specification.

For a verification system to be practical, it must be scalable. This requires a mechanism for the

verification of components. It is important that the verification process can focus on verifying a

single component with the assumption that any supporting components have already been verified

or will be verified separately. Developers should be able to create generic components. This

allows data abstractions to be verified in such a way that they are correct independent of their

parameters. For example, the ability to implement and verify the operations on a list of generic

items as opposed to a list of integers will provide a more usable object. Component-based

verification requires an implementation of a component, a specification of the component, and the

specification of any used components to generate the VCs. Proving the generated VCs will also

require mathematical units to complete the proofs. Scalability in verification is based on the same

7

ideas as in the traditional object oriented programming languages – where scalability is a result of

component-based systems.

Mechanization is vital to the verifying compiler. In order for the verification system to be used by

software developers, it needs to work, in most ways, like a normal compiler. This is achieved by

modifying proof rules to be automatable and generating VCs that can be proved or disproved by a

prover with no human interaction. Previous proof rules were designed for a theoretical VC

generator that was not suitable for implementation and required modifications in order to

mechanically generate VCs. The automation of the proof rules while maintaining soundness and

completeness is an important contribution provided by this research. Of course, the VC generator

still requires the developer to write specifications that must describe the behavior of the

implementation. In addition, internal assertions may be required for more complex language

mechanisms – such as while loops and recursion. However, no human interaction should be

required for performing the proofs of the generated VCs. If the proofs are unable to be completed,

it may be that new mathematical theorems are required. A mathematician will be needed to

update the theorems. Of course, at other times, the VCs will be unproved as a result of flaws in

the implementation which the developer will need to correct.

Scalability, full verification, and mechanization are three major issues that must be addressed by

the RESOLVE verification system, and my work provides the clause generation for the system.

Scalability

Scalability is a necessary attribute of a language used to develop a large software system. Thus, in

order for RESOLVE to be a practical alternative to current languages, RESOLVE must be

scalable. RESOLVE is based on modular components. In object oriented languages, developers

8

build large systems by using components that they have not implemented and many times may

not even have access to the implementation. For example, Java has a large library of components

including lists, stacks, and queues which developers build upon in any major software system

with access only to the specification. Similarly, RESOLVE developers will use components that

have been implemented and verified previously and will build software in the already trusted

object oriented method, using built-in and user defined components. An important distinction is

that in RESOLVE developers will have formal specifications to use when building upon existing

components instead of relying upon information descriptions provided in some other languages.

Some developers may question whether the specifications will become overly complex and

difficult to create as components get more complicated. However, just as object oriented

languages today prevent excessive complexity by using previously written components,

RESOLVE specs will remain similarly understandable through the use of suitable mathematical

abstractions.

In order to provide scalable verification, the verification process must provide a method to reason

about and to verify individual components. Figure 2 demonstrates the elements of concern when

reasoning about correctness of components in a RESOLVE system. To prove the correctness of a

new component realization, it is only necessary to use the specs for the components used by the

new component, A and B. The corresponding implementations are not taken into consideration.

In order to provide this separation of concerns, it is necessary that the specifications for each

component contain enough information to reason about correctness. Each level of a software

system can be individually verified. This allows implementations to be written and proved

independently. The system as a whole is proved correct when each subsystem has been verified.

9

Figure 2: Modularity of Verification

Another element that is important to a verification system is the scalability of the proof rules

themselves. It is not possible to have a VC Generator that can handle the majority of code if it is

necessary to have a unique proof rule for each data type or different situation. It is important that

using a common set of proof rules, VCs can be generated for code that both uses built-in

components, like pointers and arrays, as well as user-built components. In order for this to be

plausible, built-in types must be specified similar to how user-defined components are specified.

Because of this requirement of built-in types, different implementations of pointers or arrays

could be plugged into the system without the need to re-verify any software built on these

specifications. Thus, in RESOLVE, the proof rules are uniformly applied to all data types. The

same proof rules are used independent of the type of module it is used in: a component, an

enhancement, or a facility.

Full Verification vs Verification of Properties

In order to provide full verification, the proof system for the RESOLVE language has been

designed to be both sound and complete. We distinguish full verification from ―lightweight

10

verification‖ that is based on lightweight specifications with the intent of checking only certain

characteristics of the code. Lightweight verification can be used to check for common,

specification-independent programming errors such as dereferencing null pointers [8] or

unexpected cycles in pointer-based data structures [9]. Lightweight verification does not require

specifications or internal assertions to prove the absence of these class of errors. Thus, other

errors may remain. So, to prove the correctness of software (that the realization implements a

complete specification of the behavior of the component), full specification and verification are

necessary.

However, full behavioral verification does not mean that the specifications and assertions are

going to be complicated. In fact, RESOLVE allows the specs to be as simple as the software

developer desires. For example, a developer could write a spec for an operation such that the

ensures clause is ―ensures true.‖ Then, no matter what is done within the operation, as long as the

pre-conditions to any operations that are called are provable (which could be non-existent) and

the procedure terminates, RESOLVE will verify that any implementation is correct. However,

this obviously reduces any benefits of using RESOLVE to verify software. Thus, a practical

method for developing specifications is to write them only as detailed as required. For example, a

developer could create an implementation of a stack which does not require that the actual stack

behavior is verified. It may be important however, that too many items are not added to the stack

removed from the stack (i.e., it may be important to show the bounds of the stack are respected).

In this example, as opposed to modeling the stack as a string of entries, the stack could be

modeled as a number which corresponds to the number of items in the stack. Details of how a

stack may be specified will be provided later.

11

Steps Toward Mechanization

In order for verification to be practical and reliable, it must be mechanical. As seen in the

example of the binary search algorithm, non-mechanical verification (because of the many details

it assumes that may or may not hold, when the ideas are mechanized) is prone to human error,

even though the central ideas behind the code may be correct "in principle". Given an

implementation annotated with suitable assertions, corresponding specifications, and appropriate

theorems from mathematics, an automated verification system will postulate a correctness

assertion, mechanically. The implementation will be deemed correct if and only if the correctness

assertion can be proved, also mechanically.

The "principles" for a verification condition generator have also been around for numerous years,

beginning with the work of Hoare [3] and King [1]. These principles have been enhanced in later

research for verification code beyond simple procedures, such as the work of Krone [10] and

Heym [11]. Just like there is a large gap between the idea of a binary search and its mechanical

verification, there is a large gap between the previously known principles of verification and

actual development of a mechanical VC generation system. Heym's dissertation that proposes the

forward reasoning system (a complementary approach to the one taken in this dissertation) goes

to considerable trouble just to establish the names of variables in different states, for example. So

the proof rules in the efforts of Hoare and Krone are useful starting points, mechanization of VC

generation practically requires re-development of every single rule. A significant contribution of

this dissertation is in development of mechanizable rules that are also sound and relatively

complete. This is an iterative process. For every rule, a new sound, mechanizable rule had to be

devised, and when that mechanization wasn't adequate the rule had to be revamped and

mechanized again.

12

There is a context in which every VC generation step takes place. For example, this context

contains type information, specification of all operations within scope, and mathematical

definitions (to be used by the prover). The proof rules and corresponding implementation must be

developed to provide access to all information within the context. Several iterations of each proof

rule were required for automation. The If/Else and While loop rules, for example, are discussed

in detail in a later chapter. Among others, the condition in these statements must be converted

from the condition statement in RESOLVE code to a mathematical statement in the VC, pre-

conditions for nested function calls must be generated, and termination of loops and recursion

must be proved all while maintaining soundness and completeness in the proof rules. In other

circumstances, verification variables must be generated to indicate different states, auxiliary

variables (specification variables defined by developers) must be processed to allow easier-to-

complete proofs, and generic objects allowed for maintaining re-usability. These are but some of

the complications involved in the automation of proof rules.

While there is no verification of the VC generator itself at this point and it is an important topic

for future research, the generator has gone through considerable experimentation by us and others

as detailed in this dissertation.

The RESOLVE VC generator expands upon a previously implemented RESOLVE-to-Java

translator. Both the translator and assertion generator are based upon the visitor pattern and

implemented in Java. RESOLVE is an object-based language and thus there are objects (concepts

and corresponding concept specifications). In addition, there are facilities (where objects are

instantiated) and enhancements (which allow a programmer to add extra operations to a concept

that do not require access to private variables). After performing special processing depending on

the source of the RESOLVE implementation and corresponding specification (concept versus

13

enhancement versus facility), the appropriate proof rules are applied in a goal-oriented fashion

until all code is processed and a list of assertions are generated.

Currently, the verification condition generator mechanically generates and outputs assertive code

that needs to be proved in order to show correctness. In addition to the generated assertions, an

automated prover will use theorems located in mathematical libraries to prove the assertions. An

earlier version of the VC generator produced Isabelle-friendly VCs. Isabelle is powerful and can

prove many of the VCs, but it is intended to be used as a proof assistant, not as an automated

prover. Thus, the focus of the current VC generator has been on the prover that has been

specialized to work with the RESOLVE VCs. The VC Generator will output the assertions in a

Goal-Given form that lists the Goal of the VC followed by all the assumptions that can be used in

the proof under a header Givens. This Goal/Givens format makes it easy to see what needs to be

proved. The VC generator also includes a verbose mode that shows each intermediate step in VC

generation.

Thesis Statement

It is possible to generate provable verification conditions of correctness mechanically for full

behavioral verification of object-based software in a modular fashion, one component at a time.

Scope of Research

The implementation of the VC generator has been a large effort and has included integrating

many subtle details into the system. The basis of the VC generator is the mechanized version of

proof rules for each language construct. Versions of these proof rules have been created from the

non-mechanized versions which have been modified and implemented to develop the VC

generator.

14

Although it is not a part of this work to attempt to verify the VC Generator, it is important to

show that the process is reliable. First, to ensure the technical validity of proposed mechanizable

proof rules we have shown the soundness and completeness of key proof rules in Chapter 3. To

evaluate the implementation of the VC generation system based on the rules, VCs have been

generated for a large library of reusable components, including a series of benchmarks

(benchmarks #1 - #5) for verification discussed in [12].

The focus of the current research is on the verification condition generation process. The diagram

in Figure 1 is the overall verification vision. However, this research will focus only on the VC

generation process. This process will apply proof rules to annotated code and corresponding

specifications to generate VCs of correctness. The VC Generator will be able to interface with the

prover to provide the VCs, but will otherwise not be involved in the details of the proof process.

The prover is specialized to process the VCs and currently the VCs that could be simplified by

the VC generator were already easily proved by the prover. The VC Generator should behave in a

similar way to a compiler in that it will provide details to allow the programmer to identify the

location of errors when the prover is unable to prove a VC.

This VC generation process is based on the creation of sound, complete, and mechanized proof

rules. This research will build upon the principles for creating proof rules for a RESOLVE-like

language in [10]. As previously discussed, there is a wide research gap between principles of VC

generation to the development of actual mechanizable proof rules for a language like RESOLVE.

The process of mechanizing the current proof rules is an iterative process which occurred for each

proof rule. The contributions of this dissertation are both research and development of

mechanizable proof rules for object-based software verification, through several iterations of

design and experimentation. Specifically, mechanizable proof rules for several specification and

15

implementation constructs, including the following, have been devised, implemented, and

employed on a wide range of software components.

o Module-Level Verification

 Handing of Generic Parameters

 Types

 Operations

 Mathematical Definitions

 Concept and Enhancement Specifications

 Conceptual requirements

 Provided types and constraints

 Conceptual global variables

 Operations

 Realizations

 Facility Declarations

 Type representations

 Global Variables

 Representation invariants

 Abstraction functions

 Local operations

 Facility Declarations

 Instantiations with and without enhancements

 Handling of different kinds of facility parameters

 Long facility declarations

16

o Specification-Based Operation-Level Verification

 Operation Implementation Declarations

 Various specification parameter modes

 Iterative and Recursive Procedures

 Object Declarations

 Control Constructs

 Auxiliary Variables and Code

 Calls to Operations with Functional and Relational Specifications

The remainder of this chapter contains a summary of research issues that arise for both module-

level and operation-level VC Generation. For module-level verification, one such issue involves

showing that the correspondence between the mathematical model and the implementation is

valid. Also it is important to show that any parameters to the realization meet requirements for the

parameter defined in the specification. At the operation level, some of the issues that are

encountered include the process of context enrichment and code annotated with specification-

only variables.

It is also important to handle global variables in the RESOLVE Verifier. As might be imagined

global variables do cause difficulty in modularizing component-based verification. However,

RESOLVE does permit the use of global variables. Each operation must specify if a global

variable is updated. A realization that uses pointers and exemplifies the use of global variables

will be shown in a later chapter. It is important that global variables are handled by the VC

Generator, but there are still some issues that need to be researched concerning the use of global

variables. The question of how best to handle global variables is still not resolved completely.

Some of the other complications that arise with verification are a result of how the specifications

are written. Ideally, suitable mathematical developments will make it possible to minimize or

avoid quantifiers in specifications. However, sometimes specifications may need to use

17

quantifiers. When existential quantifiers are unavoidable, there are programming constructs

provided by RESOLVE to make automated verification possible. Auxiliary variables (in

conjunction with auxiliary code) are specification-only variables (and non-executable code).

These programming variables coincide with the mathematical variable in the existential

quantification. The auxiliary code is used to set the value of the auxiliary variable which is then

used to generate easier-to-prove VCs. Thus, the VC prover will not have to ―guess‖ at the value

of the specification variable.

While this research will indeed cover a vast territory in object-based software verification, by no

means will it be exhaustive. For example, it will not cover all possible looping constructs or

mutual recursion. Nor does it cover object-oriented features such as subtype-supertype

relationships and related polymorphism. The treatment of global variables here is merely a

starting point.

18

CHAPTER TWO

RELATED RESEARCH

Verification Research

This chapter summarizes specification and verification efforts that share some of the goals of the

proposed research. A detailed survey of verification efforts may be found in [13] . Corresponding

specification languages have been surveyed in [14].

―Why‖ is a software verification tool [15]. It is directed towards construction of functional

programs with assertions, though imperative constructs such as iteration are available. ―Why‖

focuses on typically built-in types, such as arrays rather than modularization or generic data

abstractions. The ―Why‖ system provides a mechanism to verify C, ML, and Java programs. The

programs are converted into a ―Why‖ internal language which is similar to ML. For example,

Java programs annotated in JML are translated into ―Why‖ by a program called

Krakatoa. Krakatoa therefore represents another verification system for Java programs with JML

specs [16]. ―Why‖ generates VCs for various existing proof tools including Coq, PVS, Mizar,

and HOL Light. ―Why‖ also uses the Simplify [17] and haRVey [18] decision procedures to

perform proofs. In general, ―Why‖ disallows aliasing; however, Krakatoa models the Java heap

so that once converted to ―Why‖, there is no aliasing. There are portions of Java which are not

handled by Krakatoa [19]. ―Why‖ does not allow aliasing and only allows base types, arrays, and

pointers, but no user defined types.

Some verification efforts are integrated whereas some others address specific aspects of

verification. An integrated method of verification is based on refinement [20]. This process

consists of refinement between levels of abstraction that are based on abstraction relations.

19

Starting from higher levels of abstraction (written as a specification) through refinement a correct

lower level result (such as an implementable solution) is developed. Verification then becomes

the process of checking the correctness of the refinement steps. The Vienna Development Model

(VDM) is based on this process [20] [21]. Each step of refinement creates proof obligations that

show the refinement process does not alter the meaning of the original specification. PVS is both

a specification language and a theorem prover [22] [23]. The included specification language is

based on higher order logic and provides a type system. The specification language is closely

accompanied by an interactive proof system that together provides the ability to complete

verification of large systems.

Model checking is often used as an alternative to full verification of behavior. Typically, the goal

is to check whether (in the context of verification) the model (or implementation) has certain

properties (the specification) [24]. Property verification is an area of model checking that verifies

that certain specific characteristics (or properties) are evident in the implementation. An excellent

summary of model checking efforts as well a specific system for model checking Java programs

using JPF (Java Path Finder) can be found in [25]. Symbolic execution principles have been

employed in SLAM, a model checking system for C programs [26]. Verification of safety

specifications is an area of ongoing research in property verification.

Research into verification of existing languages must deal with situations, such as aliasing, that

greatly complicate modular reasoning. Using Isabelle, a theorem prover [27], Verisoft provides

an integrated system for full verification of C0 programs, a subset of the C language [28]. By

design, C0 precludes several inherent verification difficulties that exist with the C language, such

as aliasing. Correct pointer manipulation, on the other hand, is one of the goals of the ESC-Java

effort [8]. Because Verisoft uses Isabelle, the proof process is interactive.

20

There is also much research on modular verification of object-oriented programs. Leino and

Muller have both dealt with verification of pointer behavior for object-oriented programs [8] [29].

JML, short for Java Modeling Language, is a specification language for Java. In JML, subclasses

must have stronger specifications (stronger post-conditions, weaker pre-conditions) than those of

their superclass [30] [31]. Though the initial focus of JML has been on specification and run-time

assertion checking, more recent efforts include verification. ESC/Java2 is used to perform static

checks for JML [32]. In addition to ESC, there are other JML Static Verification Tools [33] [34]

[16]. In order to provide soundness and completeness while using Java and dealing with aliasing,

several approaches have been taken. ESC/Java discourages aliasing. JML, however, uses a model

that only allows the ―owner‖ of an object to modify the object. These approaches primarily result

in the software developer being limited to a subset of Java.

A precursor to JML is Larch. Larch provides a two-tiered style of specification that requires

specifications written in two languages: the Larch Interface Language and the Larch Shared

Language [35]. Some programs specified using Larch have been checked using LP, the Larch

Prover. LSL specifications are algebraic. The Larch project is no longer actively being

maintained.

Jahob is a verification system where programs are written in a subset of the Java programming

language using Isabelle as a specification language [36]. Jahob's goal is to provide static

verification and ensure that a class of errors will not occur. Jahob uses shape analysis to assist in

automatically determining invariants [37], [38]. Proofs are based on a variety of decision

procedures and automated provers. Jahob attempts to choose the best procedure or prover for the

proof at hand. As with other languages that use Isabelle, Jahob often requires interactive proofs.

21

A summary of many important verification efforts is given in Table 1. The table highlights how

the RESOLVE effort differs from other verification systems. It is important to notice that only

some of the languages allow for higher-order specifications. In order to reason about generic,

user-defined types, it is necessary for a language to allow higher-ordered specifications. This

allows specifications to take a mathematical function as a parameter and to be used in

specifications. Of the languages that do allow higher-order specifications and provide full

verification, none other than RESOLVE are automatic. In order to support full verification

without restricting the language, the language needs to be defined with verification in mind. The

characteristics of a language suitable for verification include maintaining efficiency and

performance while supporting verification, handling the complexities that generics introduce, and

the difficulties that come from aliasing. Many other languages that support verification have

difficulties handling some of these challenges because the language was not designed for

verification.

22

Effort Implementation
Language

Specification
Language

Verification
Type

Prover Automation Logic

Compcert Clight,
subset of C

Coq Restrictive* Coq Interactive Higher-
Order

Dafny Dafny (Research
Language)

Dafny Restrictive* Boogie/Z3 Automatic First-Order

Eiffel Eiffel Eiffel Verification

of Properties
(Currently only

runtime checks)
Automatic First-Order

ESC/Java Java JML Verification

of Properties
Simplify Automatic Higher-

Order
Jahob Subset of Java Subset of

Isabelle
Restrictive* Isabelle,

Others
Interactive Higher-

Order
JML/

FSPV

Java JML Restrictive* Isabelle/Simpl Interactive Higher-
Order

Larch Various
Languages

Larch Restrictive* Larch Prover Interactive First-Order

PVS PVS PVS Full PVS Interactive Higher-
Order

SPARK

Ada

Subset of Ada SPARK Verification

of Properties
SPADE Interactive Higher-

Order
Spec#/

Boogie

Spec #,
Extension of C#

Spec # Verification

of Properties
Boogie/Z3 Automatic First-Order

VDM-SL/

VDM++

Various
Languages

VDM Full VDM Interactive Higher-
Order

Verisoft Subset of C, C0 Isabelle Restrictive* Isabelle Interactive Higher-
Order

Why C, Java, ML Why Restrictive* Isabelle and
Coq

Interactive First-Order

πVC C-like language,
PI

πVC Restrictive* πVC Automatic First-Order

RESOLVE RESOLVE RESOLVE Full RESOLVE or
Isabelle auto

Automatic Higher-
Order

*These languages are listed as restrictive instead of full because they have restricted the
capabilities of the language in order to provide full verification.

Table 1: Related Works table

Alternative Verification Condition Generation Approaches

Two different approaches to generating VCs have been examined in the literature [10] [11]. Until

now the research has been primarily theoretical with no actual mechanized VC generator. A brief

discussion of the two approaches will follow.

The Hoare-style, goal-oriented, approach in [10] begins with the goal and modifies the goal with

each program statement until the ultimate the goal (or assertion) to be proved is generated. The

other method is a tabular method in which verification assumptions and obligations are

23

documented for each statement of code [11]. The VC generator described in this proposal

implements the goal-oriented approach. A RESOLVE verification system implementation in

development at The Ohio State University is based on the tabular generation method. [11]

The simple example in Figure 3 will be used to demonstrate the differences. The only explanation

that should be necessary to understand this code is to describe the :=: symbol. This symbol is the

‗swap‘ statement and will swap the values in the two variables. Further details on the swap

statement and the RESOLVE language will be explained later in this chapter.

Assume true;
If J > I then
 I:=:J
end;
If K > I then
 I:=:K
end;
Confirm I >= J ^ I >= K;

Figure 3: An example of Assertive Code

Tabular Reasoning Approach

The tabular reasoning approach forms as its name implies a table. The table is split into states and

shows how the variables change by numbering them in each state. As seen in Figure 3, the table is

formed to include the assumptions, requirements, and path conditions. One of the research

problems that develop from this approach is how to best eliminate unnecessary statements and

simplify out extra variables. The principles behind this approach are described in Heym‘s thesis

[11].

The tabular method is straight-forward and thus may be the preferred method to use when

introducing verification to students. When reading the table below the variable numbers are based

on the value of at a certain state (or line number) in the code. So, for example, 1 is the state of the

24

variable after the first line of code. At line two, the table shows that the assumption is ―I2=J1 and

J2=I1 and K2=K1.‖ This is because the value of K did not change but I and J were swapped.

These assumptions are key as they are used to prove the obligations. The obligations must be

proved to show correctness of the code. Obligations result from pre-conditions, invariants, and of

course as in this example, the final Confirm clause (or goal), ―I6 >= J6 ^ I6 >= K6‖.

State Path Conditions Assumptions Obligations

0 True

 If J > I then

1 J1 > I1 J1=J0 and I1 = I0 and
K1=K0

 I:=:J

2 J1 > I1 I2=J1 and J2=I1 and
K2=K1

 End;

3.1 J1 > I1 I3=K2 and K3=I2 and
J3=J2

3.2 ~(J1 > I1) I3=I0 and K3=K0and
J3=J0

 If K > I then

4 K4 > I4 J4=J3 and I4 = I3 and
K4=K3

 I:=:K

5 K4 > I4 J5=J4 and I5 = K4 and
K5=I4

 End;

6.1 K4 > I4 J6=J5 and I6 = I5 and
K6=K5

I6 >= J6 and
I6 >= K6

6.2 ~(K4 > I4) J6=J3 and I6 = I3 and
K6=K3

I6 >= J6 and
I6 >= K6

Table 2: Reasoning Table

The final assertions to be proved by the tabular method are as follows:

 (((J1 > I1) => (J1=J0 and I1 = I0 and K1=K0)) and ((J1 > I1)

=> (I2=J1 and J2=I1 and K2=K1)) ^ ((J1 > I1) => (I3=K2 and

K3=I2 and J3=J2)) and (~(J1 > I1) => (I3=I0 and K3=K0and

J3=J0)) and ((K4 > I4) => (J4=J3 and I4 = I3 and K4=K3)) and

((K4 > I4) => (J5=J4 and I5 = K4 and K5=I4)) and ((K4 > I4) =>

(J6=J5 and I6 = I5 and K6=K5))) => (I6 >= J6 and I6 >= K6)

25

 (((J1 > I1) => (J1=J0 and I1 = I0 and K1=K0)) and ((J1 > I1)

=> (I2=J1 and J2=I1 and K2=K1)) and ((J1 > I1) => (I3=K2 and

K3=I2 and J3=J2)) and (~(J1 > I1) => (I3=I0 and K3=K0 and

J3=J0)) and ((K4 > I4) => (J4=J3 and I4 = I3 and K4=K3)) and

((K4 > I4) => (J5=J4 and I5 = K4 and K5=I4)) and (~(K4 > I4)

=> (J6=J3 and I6 = I3 and K6=K3))) => (I6 >= J6 ^ I6 >= K6)

When using the tabular approach, there is no need to generate new names for variables that are

not affected by a certain statement. If this aspect is mechanized, then unnecessary names would

disappear, simplifying the VCs. This tabular approach appears ideal for teaching about

verification condition generation. It is easy to explain, understand, and perform manually.

However, as this approach is not focused on the actual goal to be proved, it does not simplify out

assumptions that will be unnecessary.

Goal-Oriented Reasoning Approach

The goal-oriented approach forms an assertion by modifying the goal based on each line of code

moving in the opposite order from which the code will be executed. A proof system consists of

proof rules for each statement or construct in a language. Given the goal and code of an

implementation, the verifier applies proof rules (which replace code with mathematical

assertions) and then simplifies the assertions with the objective of reducing the final assertion to

―true.‖ For example, consider the following piece of assertive code (a combination of code, facts,

and goals), also called a Hoare triple. In the example, S and T are two Stack variables. The swap

statement exchanges the values of the participating variables, without introducing aliasing. All

code is written and verified within a context, and the Context (indicated in the proof rule with C/)

26

here includes mathematical String_Theory, the Stack_Template specification, as well as

declarations of Stack variables. It is not explicitly listed in this proposal.

C\
Assume S = empty_string;
T :=: S;
Confirm T = empty_string;

To simplify the assertive code, a proof rule for the swap statement needs to be applied. In the rule

shown below, it is necessary and sufficient to prove what is above the line to prove what follows

below the line. This is the typical format of a formal proof rule. In the rule, C stands for Context.

The notation, RP[x⇝y, y⇝x], means that concurrently, every x is replaced with y and every y is

replaced with x. Intuitively, this rule means that to confirm what follows after the swap statement,

the same assertion needs to be confirmed before the swap statement, but with x and y exchanged

in the assertion. For the verifier to apply the rule mechanically, the swap statement in the rule is

preceded by ―code‖ which denotes 0 or more statements.

Proof Rule for the Swap Statement:

C\ code; Confirm RP[x⇝y, y⇝x];
——————————————————————
C\ code; x :=: y; Confirm RP;

After the application of the swap rule, the following assertive code remains:

Assume S = empty_string;
Confirm S = empty_string;

The next statements to be processed by the verifier are Assume and Confirm clauses. The rule

for removing the Assume clause has the effect of making the resulting assertion an implication.

The rule for handling the Confirm clause is simply syntactic: eliminate the keyword Confirm.

27

Assume Rule:
C\ code; Confirm IP implies RP;
——————————————————————
C\ code; Assume IP; Confirm RP;

Confirm Rule:
C\ RP;
——————————————————————
C\ Confirm RP;

In our example, after the application of the Assume rule, we have the following assertion:

Confirm S = empty_string implies S = empty_string.

Subsequently following the application of the Confirm rule produces the final assertion:

S = empty_string implies S = empty_string.

Since this implication is true based on mathematical logic, the assertion can be simplified to:

true.

Thus, we can see that our final assertion is true; therefore, assuming the soundness of the proof

rules we have employed, we can conclude that the original assertive code is correct.

To return to our previous example which we used to demonstrate the tabular method, the

following table shows the process of generating the VCs using the goal-oriented method.

28

Step 1: Apply If_Then Rule
Assume true;
If J > I then
 I:=:J
end If;

Assume K > I
 I:=:K
Confirm I >= J ^ I >= K;

Assume true;
If J > I then
 I:=:J
end If;

Assume ~(K > I)

Confirm I >= J ^ I >= K;

Step 2: Apply Swap and Assume
again

Assume true;

If J > I then
 I:=:J
end If;

Confirm (K > I) => (K >= J ^ K >=
I);

Assume true;

If J > I then
 I:=:J
end If;

Confirm ~(K > I) => (I >= J ^ I >=
K);

Step 2: Apply If_Then Rule again
Assume true;

Assume J > I
I:=:J

Confirm (K > I)
=>
(K >= J ^ K >=
I);

Assume true;

Assume ~(J > I)
I:=:J

Confirm (K > I)
=>
(K >= J ^ K >=
I);

Assume true;

Assume J > I
I:=:J

Confirm ~(K > I)
=>
(I >= J ^ I >= K);

Assume true;

Assume ~(J > I)
I:=:J

Confirm ~(K >
I) =>
(I >= J ^ I >=
K);

Step 3: Apply Swap Rule:

Assume true;

Assume J > I

Confirm (K > J)
=>
(K >= I ^ K >=
J);

Confirm true =>
(~(J > I) =>
((K > I) =>
(K >= J ^ K >=
I)));

Assume true;

Assume J > I

Confirm ~(K > J)
=>
(J >= I ^ J >= K);

Confirm true =>
(~(J > I) =>
(~(K > I) =>
(I >= J ^ I >=
K)));

Step 4: Apply Swap Rule:
Confirm true =>
((J > I) =>
((K > J) =>
(K >= I ^ K >=
J)));

 Confirm true =>
((J > I) =>
(~(K > J) =>
(J >= I ^ J >=
K)));

Table 3: An application of the goal oriented approach

29

The final assertions from the goal-oriented approach to be proved are as follows:

 true => ((J > I) => ((K > J) => (K >= I ^ K >= J)));

 true => (~(J > I) => ((K > I) => (K >= J ^ K >= I)));

 true => ((J > I) => (~(K > J) => (J >= I ^ J >= K)));

 true => (~(J > I) => (~(K > I) => (I >= J ^ I >= K)));

One advantage of the goal-oriented approach is in the cases where the goals that need to be

proved are weaker than what can be proved. The VCs can be generated in such a way as to

simplify the proof process based on possibly modifying the goal with each step leading to an

easier proof as opposed to appending more assumptions as in the tabular approach. Krone‘s

dissertation explains the principles behind this approach of VC Generation [10].

RESOLVE Background

The RESOLVE Verification Condition Generator has benefitted from many years of previous

verification research by the RESOLVE Research Community. RESOLVE is an object-based

language designed to support verification [39]. In order to verify software, the code includes

mathematical notations which specify the behavior of the software. There are several important

characteristics of RESOLVE which provide the ability to generate verification conditions which

are strong enough to provide full verification, yet not so complicated that they are too difficult for

a proof system to prove. These characteristics include the design of the specification language

and facilities for object-based design. RESOLVE also provides ―clean‖ semantics [40] which

allows programmers to avoid aliasing. To be clear the use of the term object-based instead of

object oriented is to distinguish RESOLVE in some specific aspects. Expressly, RESOLVE does

not claim to solve issues concerning inheritance or polymorphism. In addition, RESOLVE only

provides static typing.

30

RESOLVE allows (but does not require) programmers to provide a specification of the results of

every implementation. RESOLVE requires that these specifications are written in a formal

notation. The ultimate goal of writing the detailed specification is to prove that an implementation

meets the specification. With these formal specifications, the confusion that comes with informal

specifications can be avoided and mechanical methods can be used to process the specification

and an implementation.

Concept Specifications and Implementations

RESOLVE has been designed as an object-based specification and programming language to

provide a scalable verification solution. A few example modules are useful to demonstrate the

RESOLVE language. A commonly used object in many object-oriented languages is the stack, so

we begin with a specification of the Stack_Template concept in Figure 4 . An actual realization of

Stack_Template is in a different file and there could actually be multiple implementations that

could meet this specification. An array-based implementation of Stack_Template is also provided

below in Figure 6.

A concept specification provides a mathematical model for the type specified by the concept and

formally defines the behavior of each operation defined in the concept used to manipulate

variables of the defining type. In Figure 4, the Stack type is modeled by a mathematical string of

entries. In Stack_Template, S is introduced as an exemplar which is used to demonstrate the

behavior of a generic Stack variable in this type portion of the specification. A concept provides

initialization details, constraints for the variables of the type, and specifications for each

operation. The initialization statement defines the initial state of a variable of the concept‘s type.

The spec defines that a Stack is initially empty. Understanding that Stack is modeled as a string,

the concept defines the initial value of Stack as the empty string. The constraint clause formally

31

describes that every Stack will always be constrained to be within bounds. This bound is based on

the parameter Max_Depth which must be provided upon instantiation of the Stack_Template. The

constraint requires that the length of the string must be less than Max_Depth.

Concept Stack_Template(type Entry;
 evaluates Max_Depth: Integer);

 uses Std_Integer_Fac, String_Theory;
 requires Max_Depth > 0;

 Type Family Stack is modeled by Str(Entry);
 exemplar S;
 constraint |S| <= Max_Depth;
 initialization ensures S = empty_string;

 Operation Push(alters E: Entry; updates S: Stack);
 requires |S| < Max_Depth;
 ensures S = <#E> o #S;

 Operation Pop(replaces R: Entry; updates S: Stack);
 requires |S| /= 0;
 ensures #S = <R> o S;

 Operation Depth(restores S: Stack): Integer;
 ensures Depth = (|S|);

 Operation Rem_Capacity(restores S: Stack): Integer;
 ensures Rem_Capacity = (Max_Depth - |S|);

 Operation Clear(clears S: Stack);

end Stack_Template;

Figure 4: Stack Template

A Stack is specified as a mathematical string of entries and this is used to define the requirements

for the various Stack_Template operations. A few more details are useful in understanding the

specification. The pound (#) sign on a variable in the ensures clause indicates the value passed

into the operation. A variable without the pound sign refers to the variable when the operation

returns. The parameter modes (i.e., updates) which precede each variable type and name in the

operation definition is a part of the specification which describes how each parameter will (or will

not) change during the operation. The specifications are supported by mathematical theories.

32

RESOLVE requires a math library that provides the mathematical definitions needed to prove the

generated assertions. The specification of arrays can be found in Appendix B.

Appendix D contains the specification of a stack modeled as a natural number and a stack

specified as a string of entries. In addition, the code and the VCs generated for a stack reversal

based on a stack modeled as a natural number as well as the stack modeled as a string can be

found in this appendix. The VCs generated for the stack modeled as a natural number are much

easier to prove than the VCs generated for the stack modeled as a string.

One aspect of the specification that deserves a little more detailed explanation is the parameter

modes. RESOLVE supports several parameter modes each of which is useful in certain types of

specifications. These ease human comprehension, and in some cases they make specifications

simpler because proof obligations are automatically generated based on the modes of each

parameter without the programmer having to add additional conjuncts to the specifications. The

updates parameter mode is probably the most ‗general‘ parameter mode. It means that the value

of the parameter coming into the operation may be updated in some way. If important, the precise

manner in which the parameter is updated will be defined by the ensures clause. Other parameter

modes are evaluates, replaces, restores, preservers, alters, and clears. Restores and Preserves

seem initially to define the same behavior; the distinction is that preserves is a statically checked

mode that will prevent the variable from being modified by the implementation whereas restores

will allow the value to change as long as it is always restored back to the original value. Clears

requires that at the end of the operation the value is set to the initial value for the variable type.

Replaces indicates that the incoming value of the variable is not important and cannot be

guaranteed. Alters indicates that the outgoing value of the parameter is not important and cannot

33

be guaranteed. Finally, evaluates indicates that the incoming parameter is an expression that can

be evaluated. If no mode is specified alters will be assumed.

An operation‘s specification should be viewed as a contract between the client and implementer.

The pre-condition (or requires clause) must be true prior to a call of any operation. In this

example, the Push operation requires that there is room in the stack for another element.

Similarly, in order to guarantee correct functionality, the Pop operation requires that there is at

least one element in the Stack. The operation‘s implementation must satisfy the post-condition (or

ensures clause) at the end of the procedure if the pre-condition holds. In Stack_Template, the

ensures clause for Push provides the guarantee that S is updated so that it becomes the original

value of E (a parameter of Push) concatenated with the original value of S. Pop removes the top

entry from the parameter S and replaces the parameter R with the top entry.

An implementation of Stack_Template realized with static arrays follows in Figure 6. The array is

initialized to the maximum size of the stack and there is an additional variable, top, which indexes

the top of the stack in the array. The specification for the RESOLVE array is provided in

Appendix C. The :=: syntax in the realization is the swap operator. Operations to permit swapping

an entry with an entry that is in an array are provided in the Static_Array_Template. Although

these operations are indicated using the normal swapping syntax (:=:) these are actually replaced

by a call to Swap_Entry (also defined in the Static_Array_Template). Swap_Entry is then

processed as a normal operation with normal pre and post-conditions. This differs from the

behavior of the default swap operator which swaps any two objects of the same type.

Swapping is an important aspect of making RESOLVE a clean language. A clean language

allows users to reason about components modularly without the problems that come with aliasing.

Excluding references and aliasing from the semantics of a language simplifies the reasoning

34

process and allows for true abstraction. Kulczycki‘s dissertation details the use of clean semantics

in the RESOLVE language [40]. RESOLVE implements swapping which has allowed the

removal of pointers and references without losing the benefits of pointers. In addition, swapping

is the mechanism used for passing parameters to an operation. Primarily, pointers are used to

implement efficient copying of components in regards to both time and space. However, copying

pointers creates reasoning difficulties by changing values of other variables when only one

variable is modified. Often, programmers do not really want or need to copy an object, but need

to move it to a different location (into a different variable). Thus, RESOLVE incorporates

swapping. Swapping allows the programmer to swap two variables which maintains the

efficiency of pointers, but retains the ability to reason about the two variables as two distinct

entities, i.e. changing one will not change the other. Further discussion of the importance of

swapping in designing verified software can be found in [41].

The conventions clause of this realization of Stack_Template documents the representation

invariants. The invariants must be true at the boundary of each external operation (i.e., an

operation that is specified in the concept), including at the end of initialization and beginning of

finalization. For the inductive proof that the given conventions are indeed representation

invariants, the conventions are first proved to be true at the end of initialization for the base

case. For the inductive case, the conventions are assumed to be true at the start of each (external)

operation and will be verified to be true at the end. The VC generator will produce a proof

obligation to establish the conventions for each external operation as a part of the proof

process. The conventions for this implementation indicate that S.Top is less than Max_Depth.

Thus, S.Top must be a valid index into the array.

35

Given the conventions defining which representation values in the implementation are valid, the

correspondence, specified in the realization, relates them to the mathematical model. The

correspondence assertion may be an abstraction function or relation between the representation

space and the specification space.This relationship must be well founded. This means that the

correspondence must relate all legitimate representation values (i.e., values that satisfy to

conventions) to legitimate abstract values (i.e., values that satisfy the constraints on the abstract

model). Figure 5 models the conventions and correspondence relationship. The VC generator

will generate a proof obligation to establish that the correspondence is well founded. Here, the

correspondence specifies that the conceptual (specification) version of the Stack, Conc.S is equal

to the reverse of the concatenation of each element of the array from the first element to S.Top.

The implementation is intuitive in that push increments S.Top and then adds the element to that

index in the array. Pop removes the top entry from the array and then decrements S.Top.

Figure 5: Relationship of Correspondence, Constraints, and Conventions

Representation

Space
Conceptual Space

Conventions

Constraints
Correspondence

36

Realization Array_Realiz for Stack_Template;

 Type Stack is represented by Record
 Contents: Array 1..Max_Depth of Entry;
 Top: Integer;
 end;
 convention
 0 <= S.Top <= Max_Depth;
 correspondence
 Conc.S = Reverse(Concatenation i: Integer
 where 1 <= i <= S.Top, <S.Contents(i)>);

 Procedure Push(alters E: Entry; updates S: Stack);
 S.Top := S.Top + 1;
 E :=: S.Contents[S.Top];
 end Push;

 Procedure Pop(replaces R: Entry; updates S: Stack);
 R :=: S.Contents[S.Top];
 S.Top := S.Top - 1;
 end Pop;

 Procedure Depth(preserves S: Stack): Integer;
 Depth := S.Top;
 end Depth;

 Procedure Rem_Capacity(preserves S: Stack): Integer;
 Rem_Capacity := Max_Depth - S.Top;
 end Rem_Capacity;

 Procedure Clear(clears S: Stack);
 S.Top := 0;
 end Clear;

end Array_Realiz;

Figure 6: Array Based Stack Implementation

RESOLVE is an object-based language in that it provides a modular process to support

verification. Thus, with only the specification of a component, a programmer can implement a

second component relying only on the specification of the first component. This provides a

scalable way to verify software (just as object oriented languages provide a scalable manner to

implement large software systems).

37

Enhancement Specifications and Implementations

Another aspect of RESOLVE is the enhancement of a concept (or an object), which is a form of

specification inheritance. A language needs a mechanism to extend the primary or core set of

operations. Secondary operations are not integral to the concept and can be realized in terms of

the primary set of operations. Enhancements to a concept provide the ability to define secondary

operations.

An example enhancement is one for a stack reversal. The following implementation and

specification of a reversal builds upon the operation in the Stack_Template without requiring

knowledge of or allowing access to implementation details. VCs will be generated for this

Stack_Template enhancement. The verifier may assume the Stack constraints and requirements

but are not reliant on an actual implementation of Stack_Template. The specification contains the

signature for the operation Flip. Flip takes one Stack as parameter, S, and the ensures clause

states the resulting Stack is equal to the reverse of the incoming Stack.

This implementation of Flip contains a While loop in which the operation iteratively pops an item

off the incoming Stack, S, and pushes it onto S_Flipped, another Stack. In order to support full

verification, While loops require programmer-provided assertions in order to determine the

behavior of the loop and show termination of the loop. The loop invariant is provided in the

maintaining statement. In this example, the developer is stating that each time through the loop

the reverse of S_Flipped when concatenated with the current Stack, S, will be equal to the

original value of S. VCs will be generated to show the invariant is true in the base case (the first

time through the loop) and in subsequent cases. The changing statement is used to simply the

invariant. In a situation where some variables are not changed by the loop, by leaving these

variables out of the changing clause, the developer does not have include the fact that these

38

variables are not modified in the maintaining statement. The decreasing clause requires an ordinal

that will decrement each time through the loop. The decreasing clause is required to show

termination of the loop. A VC will be generated to show that the decreasing clause does decrease

with each iteration.

Enhancement Flipping_Capability for Stack_Template;
 Operation Flip(updates S: Stack);
 ensures S = reverse(#S);
end Flipping_Capability;

Realization Obvious_Flip_Realiz for Flipping_Capability of
Stack_Template;
 uses Std_Boolean_Fac;
 Procedure Flip(updates S: Stack);
 Var S_Flipped: Stack;
 Var Next_Entry: Entry;
 While (Depth(S) /= 0)
 changing S, S_Flipped, Next_Entry;
 maintaining #S = reverse(S_Flipped) o S;
 decreasing |S|;
 do
 Pop(Next_Entry, S);
 Push(Next_Entry, S_Flipped);
 end;
 S_Flipped :=: S;
 end Flip;
end Obvious_Flip_Realiz;

Figure 7: Stack Flip Specification and Realization

Facility Specifications and Implementations

Before a client can use the Stack_Template or an enhancement, they must first instantiate it.

Shown below is an example facility declaration. VCs must be generated for facility declarations

to show that parameters to the concepts, enhancements, and their realizations meet the defined

requirements.

39

 Facility Rev_Stack_Fac is Stack_Template(Integer, 4)
realized by Array_Realiz;

 enhanced by Reversal_Capability
 realized by Obvious_Rev_Realiz;

Figure 8: Stack Facility enhanced with Reversal Capability

In addition to facility declaration, RESOLVE has a facility construct that allows construction of

one-of-a-kind software modules (that combine specifications and implementations), and are not

designed for reuse. Such a construct is also useful to develop a ‗main‘ module found in other

languages. An example facility is below.

Facility Stack_Flip_Facility;
 uses Std_Boolean_Fac, Std_Character_Fac,

Std_Integer_Fac, Std_Char_Str_Fac;

 Facility Stack_Fac is Stack_Template(Integer, 4)
 realized by Array_Realiz
 enhanced by Flipping_Capability
 realized by Obvious_Flip_Realiz;

 Operation Main();
 Procedure
 Var S: Stack_Fac.Stack;
 Var C, D, E, F: Integer;

 C := 150;
 D := 300;
 E := 7;
 F := 9;

 Push(C, S);
 Push(D, S);
 Push(E, S);
 Push(F, S);

 Flip(S);

 Pop(C, S);
 Pop(D, S);
 Pop(E, S);
 Pop(F, S);

 end Main;
end Stack_Flip_Facility;

40

In this example, the ―long‖ facility Stack_Flip_Facility creates a (short) facility of stack of

Integers, enhanced with the stack Flip operation.

41

CHAPTER THREE

MECHANIZATION AND SEMANTICS OF PROOF RULES

In order to generate verification conditions (VCs), there must be mechanizable proof rules that

convert the RESOLVE software implementation and specification into assertions which

correspond to the correctness of the software. If all the VCs are provable, the software is correct.

If one of the VCs is unprovable, then software correctness is not established. It is important to

emphasize that the VC generation process for RESOLVE is unique, because unlike other

programming languages, RESOLVE includes mathematics as a part of the language and was

developed with verification and efficiency in mind using principles of software engineering. Also,

it handles modularity, generics, and typically built-in data abstractions such as arrays and pointers

in a unique component-centric way, so the challenges of generating VCs in RESOLVE are

different in comparison with other VC generators.

It is well known that the general verification problem of software correctness is undecidable.

Provability of the VCs relies on mathematical theories that are undecidable. So the goal of

verification of correctness of all software is unachievable. However, in practice, the reason for

why verification of VCs generated to prove software fails has little to do with undecidability [42].

In fact, for much of the software we will ever write, verification fails because of poor code or

annotations, not because of undecidability; in the remaining chapters, we will demonstrate

practical verification condition generation on numerous examples over a variety of mathematical

spaces.

Two necessary characteristics of the verification system are soundness and completeness.

Soundness is defined to mean that if the verifier reports the code is correct, that the code is in fact

valid (where validity is defined by the semantics). Completeness means that if the code is valid,

42

the verifier will report that the code is correct. In our verification system, the actual goal can only

be relative completeness, because of the incompleteness of any non-trivial mathematical theory

upon which the proofs will rely. In order to show soundness and (relative) completeness for a

basic set of mechanized proof rules, the semantics of RESOLVE are presented in this chapter.

Semantic Foundations

The RESOLVE semantics formally describe the meaning of RESOLVE software beyond what

implementations do when they are executed. The semantics capture the behavior of the program

by describing transformations from one (or more) state(s) to other state(s). There are ―normal‖

states and special ―stuck‖ states. In a ―normal‖ state, the semantics provide a function from

variable names to their values. The ―stuck‖ states are special states from which the program

cannot move to a normal state. Thus, once in a ―stuck‖ state, the state is ―stuck‖ in the special

state. We use three stuck states, named, Manifestly Wrong (MW), Vacuously Correct (VC), and

Bottom (). To distinguish the abbreviation for Vacuously Correct from Verification Condition,

VC usage will be bold when indicating Vacuously Correct. For consistency, MW is a ―bad‖ state

that indicates the code is wrong. An example that would cause a transformation of a calling code

into the MW state is when a pre-condition of a called operation is violated in that code. VC is a

state where the code is correct because of, for example, a false assumption. This is because we are

assuming something that is false, so based on the principles of logic the result is true. For

example, in a calling code if a called operation‘s implementation does not satisfy its post-

condition, then the calling code will reach the VC state. The bottom state is entered when the

code does not terminate.

43

Another important concept to understand is what it means for code to be valid. This is based on

the type or strength of the post-condition defined in the operation. The semantics can either

respect or ensure the post-condition. If an operation respects the post-condition then if the code

terminates, it must satisfy the post-condition. In this case, code is defined as valid if the program

does not end in MW. Using the normal notion of validity, which requires that the code

terminates, validity is defined as not ending in either MW or . Now, we are ready to discuss

RESOLVE semantics in more formal terms.

 Def. St: Id→Set⊍{MW, VC, } =
 (Id(Var_Dom)) ⊍ {MW, VC, });

 Def. env: Id -> (Var_Dom  Oper_Dom  Facility_Dom 

Realization_Domain  Concept_Domain))
 …

In the description above, St is a state which provides a mapping from the variable names (the set

Id) to the corresponding set of values as well as the three special stuck states. ⊍ means the union

in which all sets are completely not intersecting.

The second definition in the semantics above defines the environment (env) which includes the

union of the domains of all variables, procedures, facilities, realizations, and concepts. In classical

semantics, only the domain of variables is included. Because RESOLVE uses the specifications

components and operations instead of the actual components and operations to define the

behavior of an operation, these extra domains are necessary. This allows the verification system

defined by RESOLVE to maintain modularity by not relying on implementation of underlying

components but only the specifications. The environment corresponds to the context that is

maintained by the proof rules.

44

Relational Semantics

Any language in which specifications of operations are allowed to be relational (i.e., one of many

outputs is possible for a given input), relational semantics are necessary. Because RESOLVE

allows operations with such relational specifications, each statement is potentially a relation that

relates a state (or set of states) to another state (or set of states). If any of the states in which a

piece of code may end in is MW, the code is invalid. The following example should demonstrate

why relations are necessary. In this example, the Push procedure call alters Next_Entry; the state

before and after the call to Push are connected by a relation. This is because the value of

Next_Entry varies based on the implementation of Pop and Push. Based on the specification,

Next_Entry can have any value. We have used the Push example here only because we have

already discussed its specification. Any operation that is specified to return one of several values

(e.g., one that captures an optimization problem) will serve the purpose.

 // Excerpt from a Stack Flip
 While (Depth(S) /= 0)
 ...
 do
 Pop(Next_Entry, S);
 Push(Next_Entry, S_Flipped);
 end;

In the same way operation specifications may be relational, the correspondence of a data

abstraction in RESOLVE may also be an abstraction relation [43] [44]. The correspondence

relation, specified in the implementation, relates the concrete representation space (in the

implementation) with the abstract conceptual space (in the specification). Figure 9 shows the

implications of relational correspondences and operation specifications on the semantics. In the

diagram, the value in the realization space, R, is a concrete value before the operation P is called.

In the conceptual space, there are multiple abstract values to which R may be related to,

45

according to the correspondence relation. All the related values in the conceptual space must meet

this pre-condition. The code for the operation may have relational behavior, denoted by

Sem_R[code] in the figure. So it is possible that R will be related to one of multiple

implementation values after the call. In this example, suppose that the actual value after execution

of the code for P is S. Once again, because the correspondence is relational, there may be multiple

corresponding values in the conceptual space. For the code to be correct, any possible value, say

D, after the operation is called must satisfy the post-condition of P. Furthermore, all such values

must be within the set of values that follow from the abstract pre-state of operation P; in

particular, the precursor for D should be C or C‘ that satisfies the precondition of P and is within

the envelope of values allowed by the correspondence from the concrete representation value R.

This dissertation does not attempt to formalize this relational semantics for RESOLVE, but it is

an important future direction.

Figure 9: Implications of Relational Operation and Correspondence Specifications

46

Formal Semantics

The semantics of RESOLVE are defined using an inductive definition on a sequence of

statements in the description below. The base case, case (i) below, considers the condition when

the sequence is empty. In this case, the state does not change; the state before the sequence of

statements, S, is the same as the state after the statements, T, and they are related by the semantic

relation, denoted by Sem_R. Next, we will consider the case when the sequence contains valid

RESOLVE statements.

Now we discuss case (ii). To be clear, the state R lies before all the assertive code. S is the state

before the statement of interest and T is the ‗current‘ state after the statement of interest. In the

case where valid assertive code lies between states R and S, if S is already a stuck state, then the

state T will be the same state as S. However, if S is not in stuck state, the modifications to the

state vary based upon the statement type. This is the focus of the rest of the discussion.

47

Inductive Definition on code: Stmnt_Seq of

(S: St) Sem_R[code] (T: St): B is

 i. S Sem_R[] T = (T = S)
 ii. if R Sem_R[code] S then if S  {MW, VC, } then T = S
else

(a) R Sem_R[code; x :: y] T = ( : Id, if   {x, y}
then

 T() = S() and
 T(x) = S(y) and

 T(y) = S(x));
 (b) R Sem_R[code; If BE then code1 else code2] T = (
 If not Invk_Cond(BEx),

then T = MW
 Else[Val(BE, S) and S Sem_R[code1] T or

¬Val(BE, S) and S Sem_R[code2] T]);

 (c) R Sem_R[code; x : f(y, exp)] T = (
 If not Invk_Cond(f(y, exp)),

then T = MW

Else[ : Id, if   x then T() = S()
and T(x) = Val(f(y, exp), S)]);

 (d) R Sem_R[code; op(updates y)] T = (
 If not Invk_Cond(op(y)),

then T = MW

Else[ : Id, if   y then T() = S()
and T(y) Op_Rel S(y)]);

 (e) R Sem_R[code; Confirm Q] T = (T = S Val(Q,S)

T =





if

MW otherwise

);

 (f) R Sem_R[code; Assume Q] T = (
Val(Q,S)

T= S





VC if

otherwise
);

 (g) R Sem_R[code; While BE do body end] T = (…);
 

Figure 10: Semantics of Basic Statements

In order to show that each proof rule of the RESOLVE verification system is sound and complete,

it is necessary to have proofs of soundness and completeness for the proof rule for each language

construct. A sample of the soundness and completeness proofs will be included in this chapter as

the semantics and proof rules are provided and explained.

48

Proof Rules for RESOLVE Language Constructs

Simple Operation and Procedure Declaration Rules

Before we discuss the semantics and rules for executable statements that affect the state, we first

discuss the basic operation and procedure declaration rules that serve as a useful starting point

that sets up the assertive code for processing. To illustrate the rules, we return to the simple

example to reverse a stack.

Enhancement Flipping_Capability for Stack_Template;
 Operation Flip(updates S: Stack);
 ensures S = reverse(#S);
end Flipping_Capability;

Realization Obvious_Flip_Realiz for Flipping_Capability of
Stack_Template;
 uses Std_Boolean_Fac;
 Procedure Flip(updates S: Stack);
 Var S_Flipped: Stack;
 Var Next_Entry: Entry;
 While (Depth(S) /= 0)
 changing S, S_Flipped, Next_Entry;
 maintaining #S = reverse(S_Flipped) o S;
 decreasing |S|;
 do
 Pop(Next_Entry, S);
 Push(Next_Entry, S_Flipped);
 end;
 S_Flipped :=: S;
 end Flip;
end Obvious_Flip_Realiz;

Figure 11: Stack Flip Specification and Realization

CDP = Operation P(updates t: T1);

 requires Pre/_t _\;
 ensures Post/_#t, t _\;

The Operation Declaration rule for the operation, P, will add the specification of P to the context.

 C {CDP} \

 C \ CDP;

49

The Procedure Declaration rule for the operation, P, will generate assertive code to check the

correctness of the implementation.

Procedure Declaration Rule:

 C {CDP}\ Assume Pre  T1.Constraint(t);
 Remember;

body;
 Confirm Post;

 C {CDP}\ code; Confirm RP;

 C {CDP}\ Proc P(updates t: T1); body; end P; code;
Confirm RP;

A simplified version of the operation declaration rule is above. This version of the rule only

contains one parameter with a parameter mode of updates. The rule adds the specification of the

parameter to the context and generates the assertive code that will be processed by the statement-

level rules. The rules assume the pre-condition and appropriate constraints. In Figure 12, the first

Assume statement includes the constraints and requires clauses from the included templates.

Specifically, the constraints from Integer_Template((min_int <= 0) and (0 < max_int)), the

constraints from Character_Template(Last_Char_Num > 0), and the requires from

Stack_Template (Max_Depth > 0). We also assume the constraint on the parameter to Flip, S,

from Stack_Template (|S| <= Max_Depth) is true. The body of the operation is inserted into the

assertive code after the pre-condition is assumed and before the post-condition is confirmed. One

new verification statement (that has no effect on the program state) that is introduced in this rule

is the Remember statement that simply is used to note that ―#‖ symbol denotes the value of the

variable at this place. This is inserted prior to the first line of code from the procedure and it

serves as a reminder to the verifier that variable values preceded by the distinguishing symbol (#)

are the same as their values without that prefix at the point of remembrance. Initially, only one

50

goal is created, the ensures clause of the operation. In addition, there are no givens (or

assumptions) that can be used to prove the goal. However, as the rest of the assertive code is

processed, givens will be generated. The context is not shown in this excerpt of assertive code.

Assume (((min_int <= 0) and (0 < max_int)) and
(Last_Char_Num > 0) and ((Max_Depth > 0) and
(min_int <= Max_Depth) and (Max_Depth <= max_int))));

Assume (|S| <= Max_Depth);
Remember;
 Var S_Flipped:Stack;
 Var Next_Entry:Entry;
 While (Depth(S) /= 0)
 maintaining #S = (Reverse(S_Flipped) o S);
 decreasing |S|;
 changing S, S_Flipped, Next_Entry;
 do
 Pop(Next_Entry, S);
 Push(Next_Entry, S_Flipped);
 end;
 S_Flipped :=: S;
Confirm S = Reverse(#S);

Figure 12: Flip Assertive Code after the Application of Procedure Declaration Rule (Version 1)

Swap Statement

Now, let us consider the semantics for swap, the very last statement in the Flip code. It is

necessary to understand the semantics of swap before proving that the swap proof rule used is

sound and complete. I have reproduced below the semantics for the swap statement. As noted

before, if the initial state is one of the stuck states, no statement will change the state. Otherwise,

the state transformation depends on the type of statement. Now, we will address the questions of

soundness and completeness for the swap rule.

51

Inductive Definition on code: Stmnt_Seq of
(S: St) Sem_R[code] (T: St): B is

 i. S Sem_R[] T = (T = S)
 ii. if R Sem_R[code] S then if S  {MW, VC, } then T = S

 else

(a) R Sem_R[code; x :: y] T = ( : Id,
if   {x, y} then

 T() = S() and
 T(x) = S(y) and T(y) = S(x));
 (b)…

In state T, all Ids other than x and y have the same value as in state S. However, for the Id x, in

state T, the value is equal to the value of Id y in state S. The value of Id y, in state T, is equal to

the value of Id x in state S. The swap rule has been supplied previously, but it is duplicated below

for understanding this proof. For the verifier to apply the rule mechanically, the swap statement in

the rule is preceded by ―code‖ which denotes 0 or more statements.

Semantics of Swap:

 if  = (x :: y), then  : Id{x, y}, U() = T()
 and U(x) = T(y) and U(y) = T(x)

Swap Rule:

 C\ code; Confirm RP[x⇝y, y⇝x];

 C\ code; x :: y; Confirm RP;

First, we will prove that the swap rule is sound. Soundness means that if the code is provable,

then it is valid. In the RESOLVE context, if the code is correct, the verifier will never report that

it is incorrect. We will do a proof by contradiction. Thus, we assume the code is invalid but the

generated VCs are provable.

Another way of saying this is that we assume the assertive code on the top line of the Swap

statement is provable but the assertive code underneath the line is not valid.

52

Because we assume the code is invalid, we know that we end in the state MW. We assume that

state σ is prior to the swap statement.

σ(y) if id = x
σˊ =  id:Id, { σ(x) if id = y

σ(id),otherwise

From the semantics, if σ is the state before the swap statement, then because of the semantics of

the Swap statement, RP[x⇝>y, y⇝x] is false in σ. But this is a contradiction because we

assumed that the assertive code above the line (which is state σ) ―code; Confirm RP[x⇝y,

y⇝x]” is provable.

Now, let us consider a proof to show completeness of the swap rule. Completeness means that if

the code is valid, the generated VCs must be provable. In the RESOLVE context, if the code is

incorrect, the verifier will never report that it is correct. One important caveat is that because of

the inherent incompleteness in any non-trivial mathematical theory, such as number theory, upon

which proofs of programs are based, completeness can be only relative. We will do a proof by

contradiction. Thus, we assume the code is valid but the generated VCs are not provable.

 Another way of saying this is that we assume the assertive code below the line of the Swap

statement rule is valid but the assertive code above the line is not provable.

We assume that state σ is prior to the swap statement.

σ(y) if id = x
σˊ =  id:Id, { σ(x) if id = y

σ(id),otherwise

53

From the semantics, if σ is the state before the swap statement, then because of the semantics of

the Swap statement, RP[x⇝>y, y⇝x] is true in σ. But this is a contradiction because we

assumed that the assertive code above the line (which is state σ) ―code; Confirm RP[x⇝y,

y⇝x]‖ is not provable.

We conclude this discussion with an application of the Swap proof rule. In the assertive code

generated for the Flip procedure (as shown in Figure 12), the last statement in the assertive code

was a swap statement, so we apply the swap statement proof rule to this assertive code. Figure 13

shows the modified assertive code after an application of the swap rule. Note that in the final

Confirm statement, S was modified to S_Flipped. If any instances of S_Flipped had existed in

the goal, they would have become S.

Assume (((min_int <= 0) and (0 < max_int)) and
(Last_Char_Num > 0) and ((Max_Depth > 0) and
(min_int <= Max_Depth) and (Max_Depth <= max_int))));

Assume (|S| <= Max_Depth);
Remember;
 Var S_Flipped:Stack;
 Var Next_Entry:Entry;
 While (Depth(S) /= 0)
 maintaining #S = (Reverse(S_Flipped) o S);
 decreasing |S|;
 changing S, S_Flipped, Next_Entry;
 do
 Pop(Next_Entry, S);
 Push(Next_Entry, S_Flipped);
 end;
Confirm S_Flipped = Reverse(#S);

Figure 13: Assertive Code after the Application of the Swap Rule (Version 2)

If Statement

Next we consider the proof rule for the If/Else construct. Because of the complexity of this proof

rule and the many changes that were necessary to mechanize the rule, let‘s consider the original,

54

simple version of the rule first. Then, we will explain the steps that were necessary to create the

current version of the proof rule. The initial version of the rule follows. The If/Else proof rule

will generate assertive code that first confirms any pre-conditions to the condition. The assertive

code will be split into two sections. One section will process the If section of Code. The second

will process the Else section of code. Several updates are necessary to mechanize the classical

version of the rule that looks something like the one below:

Version 1:

Assume BE; code1; Confirm RP;
Assume ¬ BE; code2; Confirm RP;

If BE then code1 else code2 end_if;

Confirm RP;

An important aspect of this rule that is missing is the context (often abbreviated to C\ in the proof

rules). The If/Else statement does not occur in isolation. There is a context around it that is

needed by the proof system to attempt verification of the code. The context includes the

mathematical model (that is described in the specification) which describes the mathematical

version of each variable and the specifications for the operation used in the code. For example,

arrays and queues are often modeled as mathematical strings. In the Stack_Template

specification, our stacks are modeled as strings and that is a necessity in order to understand the

syntax (e.g., concatenation = o) and the mathematical meanings of the assertions. The context

also includes relevant concept and enhancement specifications (added through the application of

declaration proof rules). This observation leads us to following proof rule:

55

Version 2:

 Context\ code; Assume BE; code1; Confirm RP;
 Context\ code; Assume ¬ BE; code2; Confirm RP;

 Context\ code; If BE then code1 else code2 end_if;

Confirm RP;

Another aspect of this proof rule that is necessary is the conversion from programming notation

to mathematical notation. This provides proper processing of the conditional statement in the If

condition. We cannot simply assume that the If condition statement true because the statement is

in code not in a mathematical form. The proof system will not understand programmatic function

calls. Consider an example (like the stack reversal) where we have an If statement that is based on

the depth of a stack. Depth(S) > 0 does not have any mathematical meaning. Thus, this needs to

be converted to its proper mathematical form that can be used by the VC generator. This is

denoted with Math(BE). Math(BE) in this case would result in |S| > 0. Thus we need to convert

our condition statements into a mathematical form before sending them to a mathematical proof

system. Math(BE) will generate the mathematical statements that must be true to enter the If

portion of the code.

Version 3:

Context\ code; Assume Math(BE);
code1; Confirm RP;

 Context\ code; Assume ¬ Math(BE); code2; Confirm RP;

 Context\ code; If BE then code1 else code2 end_if;

Confirm RP;

In the example of Flip, neither Depth(S) nor the greater than operation have a pre-condition.

However, it is possible that the code in the condition could have a pre-condition. If there is a pre-

56

condition for the condition statement, Invk_Cond(BE) will generate the goal that must be proved.

Let us assume that BE is a complex statement that could include pre-conditions. Thus, prior to

each iteration of the loop, we must also confirm that the pre-condition (or possibly multiple pre-

conditions depending on the complexity of the condition) are true. For example, if the condition

was (I * ((I + 1) – J)) > 0, there would be several conditions to prove. First, the addition operator

requires that I + 1 is within the bounds of integer (greater than or equal to min_int and less than

or equal to max_int). The subtraction operation requires that (I+1) – J is not greater than max_int

or less than min_int. Finally, the multiplication operator requires that (I * ((I + 1) – J)) is also

within integer bounds. Thus, all of these pre-conditions must be proved and will be generated by

the Invk_Cond statement. The final version of the If/Else rule follows:

Version 4:

Context\ code; Confirm Invk_Cond(BE); Assume Math(BE);

code1; Confirm RP;
 Context\ code; Assume ¬ Math(BE); code2; Confirm RP;

 Context\ code; If BE then code1 else code2 end_if;

Confirm RP;

An example demonstrating the behavior of the If/Else rule will be shown in the discussion of the

While Loop Rule.

The If/Else proof rule aligns closely with the semantics. The semantics for the If Statement

describe the behavior of the RESOLVE language when processing an If/Else statement. If the

condition has a pre-condition and if that condition is false, then the transformation will move into

the MW state. Otherwise, depending on the condition, S and T are related according to the code

in either the If or the Else section based on the value of BE in S.

57

Inductive Definition on code: Stmnt_Seq of
(S: St) Sem_R[code] (T: St): B is

 i. S Sem_R[] T = (T = S)
 ii. if R Sem_R[code] S then if S  {MW, VC, } then T = S
else
 (a) …
 (b) R Sem_R[code; If BE then code1 else code2] T = (
 If not Invk_Cond(BEx),

then T = MW
 Else[Val(BE, S) and S Sem_R[code1] T or

¬Val(BE, S) and S Sem_R[code2] T]);
 (c) …

To show soundness through a proof by contradiction, we assume the code is invalid but the

generated VCs are provable. Another way of saying this is that we assume the assertive code on

the top line of the If/Else statement is provable but the assertive code underneath the line is not

valid. Because we assume the code is invalid, we know that we end in the state MW. We assume

that state σ is prior to the If/Else statement. Because of our assumption, then we know that

beneath the line the code is invalid. Then in σ either RP is false or Invk_Cond(BE) is false in

order to be in state MW. However this is a contradiction because we assumed that the assertive

code above the line (which is state σˊ) is provable. This means that Invk_Cond(BE) is true and

that RP is true.

To show completeness, i.e., for proving that if the code is valid, the generated VCs must be

provable, we do a proof by contradiction. Thus, we assume the code is valid but the generated

VCs are not provable. Another way of saying this is that we assume the assertive code below the

line of the If/Else statement rule is valid but the assertive code above the line is not provable.

We assume that state σ is prior to the If/Else statement. Because of our assumption, then we

know that beneath the line the code is provable. Then in σ both RP is true and Invk_Cond(BE) is

true in order for this to be valid. However this is a contradiction because we assumed that the

58

assertive code above the line (which is state σˊ) is probable. This means that Invk_Cond(BE) is

false or that RP is false.

Developmental Steps for a While Loop Proof Rule

In 1969, Hoare put forth rules that have provided a basis for showing the correctness of software.

Hoare‘s proof rules however are not mechanical. Thus the conversion from Hoare‘s original proof

rules to automatable rules that can be used to create a verifier is an important process. Hoare‘s

original rules are significantly different from the mechanical versions. The following will

demonstrate the process of converting an example proof rule, the While loop, from Hoare‘s

original rule to the implementable version. Following the same approach as was used for the

If/Else statement, I will introduce the While loop rule by describing the conversion from the

original rule, one modification at a time. This example helps highlight the iterative process for

mechanizing a proof rule. Most importantly, the iterative process must maintain soundness and

completeness.

Inv ^ B {S} Inv

Inv {While B do S} not(B) ^ Inv

 for the while loop code with the invariant “inv”:

While B
do
 S;
end;

Figure 14: Hoare’s Original Proof Rule

Hoare‘s rule attempts to prove the invariant is true after the completion of the While loop rule

(when it is true before the loop). In order to prove an invariant true, we will assume that the

59

invariant and conditional statement are true before an iteration of the loop and prove (based on

that assumption and the body of the loop) that the invariant is true at the end of an iteration. If we

can prove this invariant is true after an iteration of the loop, the proof rule shows that the

invariant is true after all iterations.

Proof Rule: Version 2

In order to use this rule in a mechanical system, a few initial modifications are needed. First, a

mechanical verification system needs to be able to prove (or try to prove) generic assertions, i.e.

The invariant may be more specific than the general assertion the verification system may be

attempting to prove. Thus, we need to modify our rule to prove assertions other than the invariant.

Secondly, we need to add a syntactic slot for our invariant in the While statement. The

programmer will include the invariant when writing the code. The invariant should be detailed

enough to capture the ―reason‖ for the While loop. If not provided, the invariant will be assumed

true.

The second iteration of the While loop rule follows:

code; Confirm Inv;
Assume Inv ^ B; body; Confirm Inv;
Assume Inv ^ not(B); Confirm RP;

code; While B maintaining Inv; do Body end; Confirm RP

This version of the proof rule will convert the previous example into three assertions. In order to

do this, however, we must first know what we are trying to prove.

60

Proof Rule: Version 3

As discussed when the If/Else rule was introduced, the context is necessary to perform proofs and

reason about the VCs. Thus, this version includes the context in the proof rule.

Context/ code; Confirm Inv;
Context/ Assume Inv ^ B; body; Confirm Inv;
Context/ Assume Inv ^ not(B); Confirm RP;

Context/ code; While B maintaining Inv; do Body end;

Confirm RP

Proof Rule: Version 4

Another aspect of this proof rule that needs modification is the handling of the conditional

statement in the While loop. This is the same statements that were used in the If/Else rule. The

proof system would not understand the calls to Depth(S). Thus we will convert our condition

statements into a mathematical form before sending them to a mathematical proof system.

Actually, this was necessary for the first multiplication example, as well. For the condition X >

Y, The ‗>‘ sign in the code is actually a call to a ―Greater Than‖ operation from the Integer

facility. On the other hand, the ‗>‘ sign when it‘s shown in the assertion, is a math symbol.

Thus the following proof rule becomes the next iteration of our mechanical While loop proof

rule:

C/ code; Confirm Inv;
C/ Assume Inv ^ Math(B); body; Confirm RP;
C/ Assume Inv ^ not(Math(B)); Confirm RP;

C/ code; While B maintaining Inv; do Body end; Confirm RP

61

Proof Rule: Version 5

In order to motivate the next rule modifications, we will use an excerpt from the Stack Flip

example.

 Var S_Reversed: Stack;
 Var Next_Entry: Entry;
 While (Is_Not_Zero(Depth(S)))
 maintaining #S = Rev(S_Reversed) o S;
 do
 Pop(Next_Entry, S);
 Push(Next_Entry, S_Reversed);
 end;

The three assertions created by the above version of the While proof rule are as follows:

1) Assume (((min_int <= 0) and (0 < max_int)) and
(Last_Char_Num > 0) and ((Max_Depth > 0) and
(min_int <= Max_Depth) and (Max_Depth <= max_int))));

Assume (|S| <= Max_Depth);
Var S_Reversed: Stack;
Var Next_Entry: Entry;

 Confirm #S = Rev(S_Reversed) o S;

2) Assume #S = Rev(S_Reversed) o S ^ (Depth(S) != 0)
 Pop(Next_Entry, S);
 Push(Next_Entry, S_Reversed);
 Confirm #S = Rev(S_Reversed) o S;

3) Assume #S = Rev(S_Reversed) o S ^ not(Depth(S) != 0)
 Confirm S_Reversed = Reverse(S);

It can be observed that by splitting the rule into three parts, we lose assumptions (seen in #1

above) found in the beginning of the assertive code that may be needed to prove the VCs.

previous code. Assertive code two and three do not assume the constraints. Assumptions about

the constraints of the various variables are placed prior to the implementations by the procedure

declaration rule. These constraints originate from the specification of the variable type. Thus,

62

when proving the invariant, we will assume the constraints on the various variables are true. As

can be seen in this reversal example when trying to prove the assertion created by the While loop

rule, we call both the Push and Pop operations. The VCs need be able to show the pre-condition

of Push and Pop are true.

Thus, in this example, to prove the pre-condition of push (|S| < Max_Depth), we will need the

constraint |S| <= Max_Depth (in addition to the fact that we just popped an element off the top of

the stack) to prove the pre-condition of push. The pre-condition of pop, does not require the

constraints to prove. It can be shown by the assumption of the condition of the While loop. Thus,

the new version of the While loop rule is:

C/ code; Confirm Inv;
C/ Assume Inv ^Math(B) ^ Are_Constraints_Compliant(P, T);

body; Confirm RP;
C/ Assume Inv ^ not(Math(B)); Confirm RP;

C Var P:Type1, Var T:Type2/ code; While B maintaining Inv; do
Body end; Confirm RP;

Proof Rule: Version 6

There is a distinction between proofs that show partial and total correctness. If code is only

partially correct, there is a guarantee of correctness only if the code terminates. Total correctness

additionally requires a proof that the code will terminate. In order to guarantee total correctness

with our proof rules, we must also show that the While loop terminates. The code can be

modified to include an ordinal that is will decrease every time through the loop. The proof rule

can, then, be modified to make use of that ordinal to show total correctness. The rule making use

of that ordinal is shown below:

63

C/ code; Confirm Inv;
C/ Assume Inv ^Math(B) ^ Are_Constraints_Compliant(P, T) ^

P_Val=P_Exp; body; Confirm P_Exp < P_Val ^ RP;
C/ Assume Inv ^ not(Math(B)); Confirm RP;

C Var P:Type1, Var T:Type2/ code; While B maintaining Inv;
decreasing P_Exp; do Body end; Confirm RP;

Proof Rule: Version 7

Another modification to the While rule concerns the pre-conditions of function operations

invoked in condition B in the code, as discussed in the case of the If-then-else statement.

C/ code; Confirm Inv;
C/ Confirm Invk_Cond(B); Assume Inv ^Math(B) ^
Are_Constraints_Compliant(P, T) ^ P_Val=P_Exp; body;

Confirm P_Exp < P_Val ^ RP;
Context/ Assume Inv ^ not(Math(B)); Confirm RP;

C Var P:Type1, Var T:Type2/ code; While B maintaining Inv;
decreasing P_Exp; do Body end; Confirm RP;

Proof Rule: Version 8

The final iteration of the rule is primarily to simplify the rule. This rule converts a While loop to

an If statement. This obviously allows for reuse of the If/Else rule which reduces the possibility

of implementation errors and ideally makes the rule more ―understandable.‖ Positive side-effects

of converting the While loop to an If/Else statement include the removal of

Are_Constraints_compliant, Invk_Cond(conditional statement), and Math(conditional statement)

forming a much simpler rule.

64

C/ code; Confirm Inv; Change Vlist; Assume Inv ^ NQV(RP,
P_Val)= P_Exp; If BE then body; Confirm Inv ^ P_Exp < NQV(RP,
P_Val); else Confirm RP end_if; Confirm True;

C/ code; While B maintaining Inv; decreasing P_Exp; changing
VList; do Body end; Confirm RP

In addition with this simplification, we will add another annotation to the While loop

implementation. A list of all variables that the loop may change can be listing in changing. As a

result of the formation of the rule as one unit (instead of the three previously discussed) and to

simplify invariants, the verifier-introduced Change statement is necessary. The Change statement

differentiates between variables that are altered in the loop and variables that the loop leaves

unaltered. Without it, the verifier would assume that in the inductive case, when the ―Assume inv

and BE‖ clause is processed, that each of these are unaltered variables that are modifiable by the

application of rules on the code prior to the While loop. The statement has the effect of

introducing new names for each of the variables listed in the changing clause by aging them with

the Next Quotation Mark (NQV) variable and by replacing each variable X with X‘ in

subsequent assertions. In the case when a variable has been already aged and X‘ is found in

subsequent assertions, the verifier will introduce X‘‘ and so on, as necessary. So, all verification-

introduced variables will be preceded by one or more question marks and they are all universally

quantified. The proof rule uses NQV(RP, X) to state the need to find the instance of X in RP

preceded by the most question marks and use one more question mark where NQV is used. NQV

is also used with P_Val to insure that nested loops do not try to ―use‖ the same P_Val.

After applying the While rule and the If/Else rule to the example in Figure 13, the following

assertive code is generated.

65

Part One of Assertive Code after Loop Rule:
Assume (((min_int <= 0) and (0 < max_int)) and

(Last_Char_Num > 0) and ((Max_Depth > 0) and
(min_int <= Max_Depth) and (Max_Depth <= max_int))));

Assume (|S| <= Max_Depth);
Remember;
 Var S_Flipped:Stack;
 Var Next_Entry:Entry;
Confirm #S = (Reverse(S_Flipped) o S);
Change S:Modified_String_Theory.Str(Entry),

S_Flipped:Modified_String_Theory.Str(Entry),
Next_Entry:Entry,
S_Flipped:Modified_String_Theory.Str(Entry),
Next_Entry:Entry;

Assume (#S = (Reverse(S_Flipped) o S) and P_val' = |S|);
Confirm true;
Assume |S| /= 0;
 Pop(Next_Entry, S);
 Push(Next_Entry, S_Flipped);
Confirm (#S = (Reverse(S_Flipped') o S) and (|S| < P_val'));

Figure 15: Application of the Mechanizable While Loop Rule (Version 3 – Part 1)

Part Two of Assertive Code after Loop Rule:
Assume (((min_int <= 0) and (0 < max_int)) and

(Last_Char_Num > 0) and ((Max_Depth > 0) and
(min_int <= Max_Depth) and (Max_Depth <= max_int))));

Assume (|S| <= Max_Depth);
Remember;
 Var S_Flipped:Stack;
 Var Next_Entry:Entry;
Change S:Modified_String_Theory.Str(Entry),

S_Flipped:Modified_String_Theory.Str(Entry),
Next_Entry:Entry,
S_Flipped:Modified_String_Theory.Str(Entry),
Next_Entry:Entry;

Assume #S = (Reverse(S_Flipped) o S);
Confirm true;
Assume |S| = 0;
Confirm S_Flipped = Reverse(#S);

Figure 16: Application of the Mechanizable While Loop Rule (Version 3 – Part 2)

66

While Statement

The following list explains the semantics of the While loop annotations in RESOLVE.

 If a variable that is not in the ―changing‖ list is used in a way it might be changes (e.g., a

non-restores mode argument of an operation or a swap statement), then the program is

syntactically incorrect. If the changing list is omitted, then all variables in scope are

considered to be ―changing‖. In this case, and in general, if the changing list has

something listed that doesn‘t change, then the implicit invariant may be too weak and we

may not be able prove the VCs, but the code would still be valid. Here, unprovability

results from a lack of proper documentation, so it is not a soundness or completeness

problem.

 If the programmer-supplied invariant is false, then the code will be invalid (MW). If

invariant is omitted, it is assumed to be true. In this case and in general, if the invariant is

weaker than necessary to establish code correctness, we cannot prove the code but it is

still valid. Again, unprovability results from only from a lack of proper documentation

because it is always possible to construct an invariant for correct code; so this is not a

soundness or completeness problem either.

 If the decreasing clause is wrong, then the code will be invalid (MW). If it is omitted and

the procedure is expected to terminate with an ensures clause, then the code is invalid

(MW) as well. The clause is not necessary if the code only ‗respects‘ its guarantees; here

the semantics will become  and would be still valid. There is no such thing as a too

weak decreasing clause. It is possible to construct a decreasing clause for every

terminating loop.

67

To show this proof rule is sound and complete, we use the standard approach of reducing it to a

version of the proof rule that has already been proved sound and complete. In many ways, this

process is the reverse of the steps we just made to mechanize the proof rule. The following proof

rule is the current version:

C/ code; Confirm Inv; Change Vlist; Assume Inv ^ NQV(RP,
P_Val)= P_Exp; If BE then body; Confirm Inv ^ P_Exp < NQV(RP,
P_Val); else Confirm RP end_if; Confirm True;

C/ code; While B maintaining Inv; decreasing P_Exp; changing
VList; do Body end; Confirm RP

By removing the Changing statement because that is simply an aid to simply the invariant and

removing the decreasing clause which is only necessary if showing termination, the current proof

rule reduces to the following proof rule.

C/ code; Confirm Inv; Assume Inv; If BE then body; Confirm
Inv; else Confirm RP end_if; Confirm True;

C/ code; While B maintaining Inv; do Body end; Confirm RP;

By applying the If/Else rule to the If/Else portion of the proof rule, our proof rule reduces to this

more simplified version.

C/ code; Confirm Inv; Assume Inv; Assume BE; body; Confirm
Inv;

C/ code; Assume Inv; Assume ¬BE; Confirm RP;

C/ code; While B maintaining Inv; do Body end; Confirm RP;

This is the classical version of the proof rule (modulo context and code preceding loop) which is

already known to be sound and complete.

68

Function/Expression Assignment and Operation Call Rules

Before we present the more complex operation call rule, we will first present a classical function

assignment rule. The semantics for the reassignment statement, or function call statement, are

below. It is necessary to show that any pre-conditions of the function are true. This could include

pre-conditions for multiple functions. For example ((X + Y) – Z) would need to show the pre-

condition to plus and minus are both true. Invk_Cond(f(y,exp)) will determine if all pre-

conditions for this function call are true. Unlike in a general operation call statement, function

call parameters are not changeable. Thus, the only value that can change by an application of the

function call statement is ‗x‘ the variable that is being assigned the value of f(y, exp). All other

Ids in state T remain the same as in state S. T(x) is the value of f(y,exp) in the state S.

Inductive Definition on code: Stmnt_Seq of
(S: St) Sem_R[code] (T: St): B is

 i. S Sem_R[] T = (T = S)
 ii. if R Sem_R[code] S then if S  {MW, VC, } then T = S

 else
 (a) …
 (c) R Sem_R[code; x : f(y, exp)] T = (
 If not Invk_Cond(f(y, exp)),

then T = MW

Else[ : Id, if   x then T() = S()
and T(x) = Val(f(y, exp), S)]);

 (d)…

The corresponding proof rule is:

 C\ code; Confirm Invk_Cond(exp)  RP[x⇝Math(exp)];

 C\ code; x : exp; Confirm RP;

As with our previous proofs of soundness we will show soundness through a proof by

contradiction. We assume the code is invalid and we know that we end in the state MW. We

69

assume that state σ is prior to the reassignment statement. Because of our assumption, then we

know that beneath the line the code is invalid. Then in σ either RP is false or Invk_Cond(f(y,exp))

is false in order to be in state MW. However this is a contradiction because we assumed that the

assertive code above the line (Confirm Invk_Cond(exp)  RP[x⇝Math(exp)];)is provable.

To show completeness with a proof by contradiction, we assume the assertive code below the line

of the function assignment statement rule is valid but the assertive code above the line is not

provable. We assume that state σ is prior to the function assignment statement. Because of our

assumption, then we know that beneath the line the code is provable. Then in σ both RP is true

and Invk_Cond(f(y,exp)) is true in order for this to be valid. However this is a contradiction

because we assumed that the assertive code above the line (which is state σˊ) is provable.

Now, let us consider the operation call rule. The semantics of the operation call statement

exemplifies the need for relational semantics. RESOLVE permits a result of an operation to be

within a set of acceptable choices instead of something particular. For example, an ensures clause

could state that an operation ensures for an updated Integer ―I > 0‖. Any implementation that

provides an I greater than zero will be a valid implementation. Another example is the alters

parameter mode. When this parameter mode is used, no return value is specified of this value.

Thus any value an implementation may supply is acceptable.

The semantics for the operation call rule state that if the pre-condition of the operation is not true,

then the state of T is MW. However, if the pre-condition is true, then all Ids in state T are the

same, except any parameters to the operation. Op_Rel is used to define the relation between the

value of y in state T and in state S. Op_Rel is based on the post-condition of the operation.

70

Inductive Definition on code: Stmnt_Seq of
(S: St) Sem_R[code] (T: St): B is

 i. S Sem_R[] T = (T = S)
 ii. if R Sem_R[code] S then if S  {MW, VC, } then T = S

 else
 (a) …
 (d) R Sem_R[code; op(updates y)] T = (
 If not Invk_Cond(op(y)),

then T = MW

Else[ : Id, if   y then T() = S()
and T(y) Op_Rel S(y))]);

 (e) …

From the pre-condition a VC to prove it is generated. The post-condition is assumed and is used

to prove existing Confirm assertions. Variables that are changed by the operation will need to be

updated in the existing VCs. This is done using NQV which works the same as explained earlier

for the While Loop Rule.

This is a simplified version of the operation invocation rule which processes an example

operation with an updates and alters parameter. Note that the specification of operation P is

already in the context. Before applying this rule, the assertive code needs to confirm RP which

may contain the variables a and b which are arguments to the operation P. The rule will then

confirm the pre-condition of P and assume the post-condition of P while updating each statement

to use the actual variables instead of specification variables. To preserve the distinction between

states, NQV will generate the next verification variable for the specified variable.

CDP = Operation P(updates t: T1; alters u: T2);

 requires Pre/_t, u _\;
 ensures Post/_ #t, #u, t _\;

71

Operation Invocation Rule:

 C {CDP}\ code; Confirm Invk_Cond(P(a,b));
Assume Post[t⇝NQV(RP2, a), #t⇝a, #u⇝b];

Confirm RP[a⇝NQV(RP2, a)];

 C {CDP}\ code; P(a, b); Confirm RP/_ a, b _\ ;

Returning to the Flip example in Figure 15, we will apply the operation invocation rule to the

following code. Note that the parameter modes in this example match the parameter modes for

the push operation.

Operation Push(alters E: Entry; updates S: Stack);
requires |S| < Max_Depth;
ensures S = <#E> o #S;

Assume (((min_int <= 0) and (0 < max_int)) and
(Last_Char_Num > 0) and ((Max_Depth > 0) and
(min_int <= Max_Depth) and (Max_Depth <= max_int))));

Assume (|S| <= Max_Depth);
Remember;
 Var S_Flipped:Stack;
 Var Next_Entry:Entry;
Confirm #S = (Reverse(S_Flipped) o S);
Change S:Modified_String_Theory.Str(Entry),

S_Flipped:Modified_String_Theory.Str(Entry),
Next_Entry:Entry,
S_Flipped:Modified_String_Theory.Str(Entry),
Next_Entry:Entry;

Assume (#S = (Reverse(S_Flipped) o S) and P_val' = |S|);
Confirm true;
Assume |S| /= 0;
 Pop(Next_Entry, S);
Confirm (|S_Flipped| < Max_Depth);
Assume S_Flipped' = (<Next_Entry> o S_Flipped);
Confirm (#S = (Reverse(S_Flipped') o S) and (|S| < P_val'));

Figure 17: Flip Example (Version 4)

72

Assume Rule

In the assertive code provided above, the next proof rule needed is a rule to process the Assume

statement. The Assume rule is a basic rule that processes Assume statements generated by other

proof rules.

Assume Rule:

 C\ code; Confirm exp => RP;

 C\ code; Assume exp; Confirm RP;

The results of an application of the Assume rule to the assertive code in Figure 18 with minor

simplifications follow.

Assume (((min_int <= 0) and (0 < max_int)) and
(Last_Char_Num > 0) and ((Max_Depth > 0) and
(min_int <= Max_Depth) and (Max_Depth <= max_int))));

Assume (|S| <= Max_Depth);
Remember;
 Var S_Flipped:Stack;
 Var Next_Entry:Entry;
Confirm #S = (Reverse(S_Flipped) o S);
Change S:Modified_String_Theory.Str(Entry),

S_Flipped:Modified_String_Theory.Str(Entry),
Next_Entry:Entry,
S_Flipped:Modified_String_Theory.Str(Entry),
Next_Entry:Entry;

Assume (#S = (Reverse(S_Flipped) o S) and P_val' = |S|);
Confirm true;
Assume |S| /= 0;
 Pop(Next_Entry, S);
Confirm (|S_Flipped| < Max_Depth);
Confirm (#S = (Reverse((<Next_Entry> o S_Flipped)) o S) and

(|S| < P_val'));

Figure 18: Assertive Code after the application of Assume Rule (Version 5)

Notice that this Assume statement was not added as a given! This might be surprising based on

the proof rule. However, because the assumption is an equality of the form variable = value, then

73

we are able to replace any instances of the variable with the value, if the variable exists in the

goal. This is done in an effort to simplify the VCs and reduce the number of givens.

The semantics state that the value of state T is the same as the value of state S except when Q is

not valid in state S. In that case, the state T enters the VC state, because the assumption on which

the code is based is not true. The proof rule for the Assume statement modifies the goal in the

same manner as the semantics update the state. The assumption implies the current goal and if

false, the code will be vacuously true. Otherwise, the assumption is used as an additional fact to

prove the goals.

Inductive Definition on code: Stmnt_Seq of
(S: St) Sem_R[code] (T: St): B is

 i. S Sem_R[] T = (T = S)
 ii. if R Sem_R[code] S then if S  {MW, VC, } then T = S

 else
 (a) …
 (f) R Sem_R[code; Assume Q] T = (

Val(Q,S)

T= S





VC if

otherwise
);

 (g) …

Confirm Rule

The semantics for the Confirm rule require that the Confirm statement be true or the state enters

MW. Otherwise, the state stays the same.

Inductive Definition on code: Stmnt_Seq of
(S: St) Sem_R[code] (T: St): B is

 i. S Sem_R[] T = (T = S)
 ii. if R Sem_R[code] S then if S  {MW, VC, } then T = S

 else
 (a) …

 (e) R Sem_R[code; Confirm Q] T = (T = S Val(Q,S)

T =





if

MW otherwise

);

 (f) …

74

These semantics align with the proof rule which adds the statement to be confirmed as another

goal that must be true if the code is valid. The Confirm rule is typically used to process Confirm

statements generated by other proof rules, though a programmer may introduce explicit Confirm

clauses in code occasionally as hints to assist an automated prover.

Confirm Rule:

 C\ code; Confirm IP  RP;

 C\ code; Confirm IP; Confirm RP;

After applying the Assume rule for the post-condition of Push, the next rule to statement to be

processed is the Confirm statement. The Confirm rule updates the Confirm statement with a

new goal that must be proved. At this point in time, we cannot prove that |S_Flipped| <

Max_Depth but after processing of the prior statements, this should be provable when the VCs

are sent to the prover.

Assume (((min_int <= 0) and (0 < max_int)) and
(Last_Char_Num > 0) and ((Max_Depth > 0) and
(min_int <= Max_Depth) and (Max_Depth <= max_int))));

Assume (|S| <= Max_Depth);
Remember;
 Var S_Flipped:Stack;
 Var Next_Entry:Entry;
Confirm #S = (Reverse(S_Flipped) o S);
Change S:Modified_String_Theory.Str(Entry),

S_Flipped:Modified_String_Theory.Str(Entry),
Next_Entry:Entry,
S_Flipped:Modified_String_Theory.Str(Entry),
Next_Entry:Entry;

Assume (#S = (Reverse(S_Flipped) o S) and P_val' = |S|);
Confirm true;
Assume |S| /= 0;
 Pop(Next_Entry, S);
Confirm ((|S_Flipped| < Max_Depth) and

(#S = (Reverse((<Next_Entry> o S_Flipped)) o S)
and (|S| < P_val')));

Figure 19: Assertive Code after the application of Confirm Rule (Version 6)

75

Variable Declaration Rule

The Variable declaration rule processes each variable declaration. In general, a variable may be

initialized to one of many values (i.e., its specification is relational). So RESOLVE uses a

predicate to capture whether a given value is an initial value. For some types, there may be a

single initial value (e.g., Stack). If the initial value is known, each instance of the Variable may be

replaced in the Confirm statement.

Variable Declaration Rule:

C\ code; Assume T.is_initial(v); Confirm RP;
__
C\ code; code; Var v: T; Confirm RP;

Once again, returning to the Flip example, we will use the variable declaration of S_Flipped as an

example. The following assertive code assumes proof rules have been applied up until processing

the variable declaration for S_Flipped.

Assume (((min_int <= 0) and (0 < max_int)) and
(Last_Char_Num > 0) and ((Max_Depth > 0) and
(min_int <= Max_Depth) and (Max_Depth <= max_int))));

Assume (|S| <= Max_Depth);
Remember;
 Var S_Flipped:Stack;
Confirm (#S = (Reverse(S_Flipped) o S) and

(#S = (Reverse(S_Flipped') o S'') implies
(|S''| /= 0 implies

 (|S''| /= 0 and
(S'' = (<Next_Entry'> o S') implies

 ((|S_Flipped'| < Max_Depth) and
((Reverse(S_Flipped') o S'') =
 (Reverse((<Next_Entry'> o S_Flipped')) o S') and
(|S'| < |S''|))))))))

Figure 20: Assertive Code just before the Application of Variable Declaration Rule (Version 7)

76

After processing the variable declaration for S_Flipped, the assertive code in Figure 21 is

generated. Note that every instance of S_Flipped in the final Confirm was replaced with

empty_string.

Assume (((min_int <= 0) and (0 < max_int)) and
(Last_Char_Num > 0) and ((Max_Depth > 0) and
(min_int <= Max_Depth) and (Max_Depth <= max_int))));

Assume (|S| <= Max_Depth);
Remember;
Confirm (#S = (Reverse(empty_string) o S) and

(#S = (Reverse(S_Flipped') o S'') implies
(|S''| /= 0 implies

 (|S''| /= 0 and
(S'' = (<Next_Entry'> o S') implies

 ((|S_Flipped'| < Max_Depth) and
((Reverse(S_Flipped') o S'') =
 (Reverse((<Next_Entry'> o S_Flipped')) o S') and
(|S'| < |S''|))))))))

Figure 21: Assertive Code After the Application of Variable Declaration Rule (Version 8)

Remember Rule

The Remember rule is used to convert the old variables in the Confirm statement to the normal

version. The old variables distinguish incoming and outgoing variables while processing the

assertive code. The Remember rule is placed so that the variables no longer need that distinction

for the remaining proof rules to be applied and the proofs to be completed.

C\ code; Confirm RP[#s⇝s, #t⇝t];
__

C\ code; Remember; Confirm RP/_ s, #s, t, #t, ⋯ _\;

After application of the Remember rule to the assertive code in Figure 21, the assertive code

would appear as below. At this point, the VC generator will apply the Assume rule twice and

then supply the final VCs to the prover.

77

Assume (((min_int <= 0) and (0 < max_int)) and
(Last_Char_Num > 0) and ((Max_Depth > 0) and
(min_int <= Max_Depth) and (Max_Depth <= max_int))));

Assume (|S| <= Max_Depth);
Confirm (S = (Reverse(empty_string) o S) and

(S = (Reverse(S_Flipped') o S'') implies
(|S''| /= 0 implies

 (|S''| /= 0 and
(S'' = (<Next_Entry'> o S') implies

 ((|S_Flipped'| < Max_Depth) and
((Reverse(S_Flipped') o S'') =
 (Reverse((<Next_Entry'> o S_Flipped')) o S') and
(|S'| < |S''|))))))))

Figure 22: Flip Example (Version 9)

At this point, we have discussed all the rules for verifying the code for Flip procedure. Repeated

application of the rules leads to the VCs given in Appendix D. Each VC has a goal and one or

more givens. Some VCs are simple and some others are require knowledge of mathematical

theorems to establish. Two interesting VCs follow. Both VCs rely on the definition of Reverse. In

order to prove VC 0_1, the prover must be able to determine that Rev(empty_string) is still the

empty_string that that the empty_string concatenated with S is the same as S. VC 0_3 also

requires understanding of Reverse but in addition uses the givens to prove the correctness. If the

goal is updated to apply the Reverse operator to <Next_Entry> o S_Flipped, the goal will become

(Reverse(S_Flipped') o S'') = (Reverse(S_Flipped‘) o <Next_Entry'> o S'). Then because of the

assumption that S‘‘ = <Next_Entry'> o S', this VC can be proven true.

78

VC: 0_1:
Base Case of the Invariant of While Statement in Procedure
Flip modified by Variable Declaration rule:
Obvious_Flip_Realiz.rb(10)

Goal:
S = (Reverse(empty_string) o S)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Depth > 0)
5: (min_int <= Max_Depth) and (Max_Depth <= max_int)
6: (|S| <= Max_Depth)

VC: 0_4:
Inductive Case of Invariant of While Statement in Procedure
Flip modified by Variable Declaration rule:
Obvious_Flip_Realiz.rb(10)

Goal:
(Reverse(S_Flipped') o S'') = (Reverse((<Next_Entry'> o
S_Flipped')) o S')

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Depth > 0)
5: (min_int <= Max_Depth) and (Max_Depth <= max_int)
6: (|S| <= Max_Depth)
7: S = (Reverse(S_Flipped') o S'')
8: |S''| /= 0
9: S'' = (<Next_Entry'> o S')

79

General Procedure Declaration and Call Rules

We conclude this chapter with general rules for operation calls and procedure bodies, involving

all different parameter modes. The example operation P, defined by the name CDP, will be used

to demonstrate these proof rules.

CDP = Operation P(updates t: T1; evaluates u: T2;
replaces v: T3; restores w: T4; preserves x: T5;
alters y: T6; clears z: T7);

 requires Pre/_t, u, w, x, y, z, _\;
 ensures Post/_ #t, u, w, x, #y, #z, t, v, _\;

First let us consider the general operation realization rule. For the operation P each parameter has

a different mode and the rule defines how each mode affects the VCs generated. This rule must

assume the constraints of all the parameters to the operation (along with the pre-condition). In

addition, for a parameter that is defined to use the replaces parameter as with parameter v, the

incoming value is assumed to be the initial value of the type, T3. The Remember statement and

body of the assertive code are generated in the same manner as with the simpler rule. The final

Confirm must also take into account the different parameter mode. If the parameter mode is

restores, as with w, the assertive code will confirm that the final value of w is the same as the

starting value. For the parameter mode clears, the final value of z is assumed to be the initial

value of type, T7.

80

Procedure Declaration Rule:

 C {CDP}\ Assume Pre  T1.Constraint(t)  T2.Constraint(u) 
 T3.Is_Init(v)  T4.Constraint(w)  T5.Constraint(x) 

T6.Constraint(y)  T7.Constraint(z);
Remember;

body;

Confirm Post  w  #w  T7.is_initial(z);

 C {CDP}\ code; Confirm RP;

 C {CDP}\ Proc P(…); body; end P; code;
Confirm RP;

The general operation call rule provides the same functionality as the simplified version of the

call rule but defines the behavior for all parameter modes. For certain parameter modes, the pre-

condition or post-condition can be modified. For example, in P, z (of type T7) is cleared. The

actual parameter in the operation call is g. Thus, the proof rule adds an additional Assume clause

that T7.is_initial(NQV(RP, g)) after the operation call. Of course, the formal parameters must be

replaced with the actual parameters. In the post-condition, each parameter is replaced based on

its parameter mode. Any parameter that may have a different final value than the initial value will

use NQV (as defined for previous rules) to generate new variable names. So the resulting value of

any parameter with updates and replaces mode are replaced by the NQV value of the actual

arguments. The Assume statement (that assumes the post-condition) is also updated so that any

instance of the actual parameter is replaced with the NQV value. For updates and replaces modes,

any variables with the # sign (variables referring to the incoming values) are replaced by the

actual parameter. This distinguishes the incoming and outgoing values of the operation. For

example, if the actual variable is A and the formal parameter is T, then the specification may refer

to #T and T, but the assertive code would updated those references to A and A‘. Any parameters

that are evaluated are replaced by the mathematic equivalent of the expression. The other

81

parameters are replaced by the actual argument used when the operation is invoked. There is no

need to use NQV since the variable does not change. Similar modifications must be made to the

pre-condition (replacing the parameters used in the specification with the actual values) but this

logic is handled by Invk_Cond. Invk_Cond, just as with the function call rule, will provide the

combined pre-conditions of the operation being called in addition to any pre-conditions for

functions being used as parameters to the operation.

Operation Call Rule:

 C {CDP}\ code; Confirm Invk_Cond(P(a,exp,b,c,d,e,f));

Assume (T1.Constraint(t)  T3.Constraint(v) 
T6.Constraint(y)  Post) [t⇝NQV(RP, a), #t⇝a, u⇝Math(exp),

v⇝NQV(RP, b), w⇝c, x⇝d, #y⇝e, #z⇝f]  T7.is_initial(NQV(RP,
f));

Confirm RP[a⇝NQV(RP, a), b⇝NQV(RP, b), e⇝NQV(RP, e),

f⇝NQV(RP, f)]);

 C {CDP}\ code; P(a, exp, b, c, d, e, f);

Confirm RP/_ a, b, c, d, e, f, g, h,  _\ ;

One complication in verification of operation calls concerns repeated arguments. If an operation

takes multiple parameters and the same variable is passed more than once, what is the behavior of

the operation? An answer to this question is important in defining the behavior of the software

under all circumstances. For RESOLVE, this behavior has been defined in [45]. To implement

this semantics, the current compiler is being augmented with a pre-processor that introduces

necessary intermediate variables so that the resulting code processed by the VC generator is such

that there are no operation calls with repeated arguments. This makes it possible to apply the

proof rules in this section directly, and thus handle calls with repeated arguments indirectly.

82

VC Simplification

The VC generator contains simplification rules for reducing the verification conditions. Between

each application of a proof rule, the VC generator can simplify each VC if possible. A list of

basic simplification rules is provided in Appendix B. While the rules do eliminate VCs, the VCs

that are eliminated could be easily proved by the RESOLVE prover.

The simplification process has to be done carefully, for otherwise incompleteness could be

introduced. Consider the following example where the VCs could be oversimplified to

understand the reasoning for not adding additional simplification steps. At initial inspection, in

the following example, it appears that we can simplify the following example. The fact that

Max_Length > 0 seems to have no impact on proving the value of X is greater than -1.

assertive_code;
Assume Max_Length > 0;
Confirm X > -1;

However, because we do not know what facts the assertive_code that comes before the

assumption contains (when processing the Assume rule), one must be careful in the simplification

process. For example, if the assertive code stated: X > Max_Length, this fact is necessary to

prove our goal.

Assume X > Max_Length;
Assume Max_Length > 0;
Confirm X > -1;

Thus, it is currently thought to be too risky to perform certain simplification until the entire VC

generation process is completed. Sound simplifications are among the future directions for

research.

83

CHAPTER FOUR

COMPONENT-LEVEL VERIFICATION

In order to build and verify a large software system, it is important to be able to verify each

component independently. So this chapter builds on the previous discussion of verification of a

procedure to complications of verification of components. To illustrate how a component-based

system can be designed and verified in RESOLVE, we consider a detailed example here. In the

process, module-level proof rules required to verify each component of a software system are

presented in this chapter.

Object-Based Component Specification, Implementation, and VCs

For software verification to be viable, it must be scalable. Software implementations must be

component-based and the components must be designed to allow for verification of one

component at a time. The verification process should not require re-verification of components,

even when they are generic (i.e., parameterized). Given that a component-based system often

consists of several components, it is important for the verification to take place within an

environment that uses only the specifications of other components to provide modularity.

The diagram in Figure 23 demonstrates the idea of developing components using only the

specification of the underlying components. For example, the selection sort code will not use

details of the queue implementation but will rely only on the queue specification. The queue

facility will actually choose which implementation of the queue and of the sort it needs. Although

any implementation of the queue or sort should behave as specified, they may have different

characteristics in regards to performance and memory usage.

84

Figure 23: A UML Diagram for a Simple Component-Based System

The Queue_Template specification is in many ways similar to the Stack_Template specification

that has already been discussed. Queue_Template requires two arguments, the type of item in the

queue and the maximum size of the queue which must be provided whenever Queue_Template is

instantiated. The mathematical model of the queue is a string of entries. It is specified that the

queue is initialized to the empty string. In the version where Q is the exemplar, the length of Q,

|Q|, is constrained to be no larger than the Max_Length parameter. These constraints must be

maintained by the implementation of the queue but may be assumed by client code.

Queue_Template provides the expected queue operations: Enqueue and Dequeue. In addition, the

current size of the queue and the remaining capacity of the queue may be accessed with the

Length and the Rem_Capacity operations.

Concept Queue_Template(type Entry; evaluates Max_Length:
Integer);
 uses Std_Integer_Fac, Modified_String_Theory;
 requires Max_Length > 0;

 Type Family Queue is modeled by Str(Entry);
 exemplar Q;
 constraint |Q| <= Max_Length;
 initialization ensures Q = empty_string;

 Operation Enqueue(alters E: Entry; updates Q: Queue);
 requires |Q| < Max_Length;
 ensures Q = #Q o <#E>;

85

 Operation Dequeue(replaces R: Entry; updates Q: Queue);
 requires |Q| /= 0;
 ensures #Q = <R> o Q;

 Operation Length(restores Q: Queue): Integer;
 ensures Length = (|Q|);

 Operation Rem_Capacity(restores Q: Queue): Integer;
 ensures Rem_Capacity = (Max_Length - |Q|);

 Operation Clear(clears Q: Queue);

end Queue_Template;

Figure 24: Queue Template

Obviously in order to make use of Queue_Template, an actual implementation of the queue

specification is necessary. The implementation of Queue_Template using arrays can be found in

Figure 25. It is important to note that developers can provide an implementation for a new

component prior to realizing underlying components because verification relies on just the

specifications of used components. The implementation is fairly straight-forward. The array is of

the same size as Max_Length, the maximum size of the queue. Two integers, front and length,

keep track of the location of the queue in the array. The front variable defines the index into the

array where the top entry in the queue is located. The length variable defines the size of the queue

(or the number of consecutive elements in the array used for the queue). For efficiency sake, the

queue will not always begin at the first element in the array. Thus the queue may loop around the

end of the array.

86

Realization Circular_Array_Realiz for Queue_Template;
Type Queue = Record

 Contents: Array 0..Max_Length - 1 of Entry;
 Front, Length: Integer;

end;

convention
0 <= Q.Front < Max_Length and
0 <= Q.Length <= Max_Length;

correspondence
Conc.Q = (Concatenation i: Integer

where Q.Front <= i <= Q.Front + Q.Length - 1,
<Q.Contents(i mod Max_Length)>);

Procedure Enqueue(alters E: Entry; updates Q: Queue);

 Q.Contents[(Q.Front + Q.Length) mod Max_Length] :=: E;
 Q.Length := Q.Length + 1;

end Enqueue;

Procedure Dequeue(replaces R: Entry; updates Q: Queue);
 Q.Contents[Q.Front] :=: R;
 Q.Front := (Q.Front + 1) mod Max_Length;
 Q.Length := Q.Length -1;

end Dequeue;

Procedure Length(restores Q: Queue): Integer;
 Length := Q.Length;

end Length;

Procedure Rem_Capacity(restores Q: Queue): Integer;
Rem_Capacity := Max_Length - Q.Length;

end Rem_Capacity;

Procedure Clear(clears Q: Queue);
Q.Front := 0;
Q.Length := 0;

end Clear;

end Circular_Array_Realiz;

Figure 25: Queue Array Implementation

In addition to the proof rules that must be generated to show each operation in the queue is

correct, a few special concept-level proof rules are required. In order to understand these proof

rules, we will use the example concept specification and implementation in Figure 26.

87

This is an example template only and includes nearly all possible characteristics of a concept

template. In order to better understand this template, let us consider what it means. As in earlier

example and rules, the following notation means that the ‗ExampleStatement‘ can possibly

contain each variable within the brackets: ExampleStatement/_ ?, ? _\. The example template,

CT, defines a component CN which has three arguments: T, a type; n, a variable of type U; and

R, a mathematical definition. Within the template, additional definitions are provided: a global

variable (gv), a math definition (s), and a math defines (f). Each of these (and other definitions)

can be used in various statements throughout the specification. For example, the concept requires

that CPC is true. CPC can refer to n and R. This template defines a new type, TF, which is

exemplified with x and is constrained by TC. These example types, constraints, and requires can

all be used in the proof rule to demonstrate the behavior.

88

Suppose a Concept Template is specified by:

CT = Concept CN(type T; eval n: U; def R: TVB);
 uses AFac, BTh;
 requires CPC/_ n, R _\;

 Definition S: WB = (DExp);

 Defines f: WT;
 constraint DC/_ f, n, R _\;
 Var gv: X1;
 constraint VC/_ gv, f, n, R _\;

Facility_Initialization
 ensures GIC/_ gv, f, S, n, R _\;

 Type Family TF is modeled by MTE;
 exemplar x;
 constraint TC/_ x, n, R, gv, f _\;
 initialization
 updates gv;
 ensures IC/_ x, gv, f, n, R _\;
 finalization1

 updates gv;
 ensures FC1/_#x, gv, f, n, R_\;

 Oper P(updates x: TF; evaluates z: U);
 updates gv;
 requires Pre/_x, y, gv, f, n, R_\;
 ensures Post/_x, #x, y, gv, #gv, f, n, R_\;
 end CN;

First, the specifications provided in the concept declaration must be added to the context. The rule

below shows that the definition of the concept is included in the context.

Concept Declaration Rule:

 C {CT} \ code; Confirm RP;

 C \ CT; code; Confirm RP;

1 The proof rules in this dissertation do not address variable finalization or facaility finalization

clauses; straightforward extensions are necessary to handle them.

89

Suppose a concept implementation is specified by the following realization template. This

template is setup similar to the concept template in that any of the variables or definitions that can

be used in a statement are included within the brackets. The implementation, RN, takes four

parameters: rn, of type RU; RR, a definition; F_Realiz, a realization of an operation; and RP, the

specification of an operation. This example instantiates a facility, F, defines both implementation

and auxiliary variables (rg1, and ra), and provides the correspondence (Cor_Fn_Exp),

conventions (RC), and initialization (I_body) for type TF.

RT = Realization RN(eval rn: RU; def RR: RTRVB;
Realization F_Realiz(eval e:T3);
Procedure RP(updates rx: RT2);

 requires preRP/_ rx, rn _\;
 ensures postRP/_ rx, #rx, rn _\)

 for CN;
 uses RAFac, RBTh, GTy, R_C;
 requires RPC/_ rn, RR _\;)

 Definition RS: RWB = (RDExp);

 Definition f: WT = (F_Exp);
 constraint RDC/_ rn, RR _\;

Facility F is R_C(f_exp/_ rx, rn _\, GTy, RR, RS)

realized_by F_Realiz(f_exp/_ rx, rn _\, RR, RS);

(* Treatment of rules does not include realization globals *)
(*
Var rg1: RX;
Aux_Var ra: Tm;
 convention RGC//_ ra, rg, f, rn, RR, RS _\;
 correspondence CR_Exprg//_ gv, ra, rg1, rn, RR, RS _\;
 Facility_Initialization GI_body; end;
*)

90

Type TF = RT;
 conventions RC/_ x, rg1, f, rn, RR, RS_\;
 correspondence2 conc.x = Cor_Fn_Exp/_x, gv, rg, rg, ra,

f, n, rn, R, RR, S,
RS_\;

 Facility_Initialization I_body; end;

Procedure P (updates x: TF; evaluates z: U);
 p_body;
end P;

end RN;

Figure 26: Example Concept Specification and Realization

The current VC generator does not handle global variables in realizations. So, the realization

declaration rule below is a simplified version.

Realization Declaration Rule:

 C {R_C}\ Fac_Instantiation_Hyp;

C {CT}\ Well_Def_Corr_Hyp;

C {CT}\ T_Init_Hyp;

C {CT}\ Correct_Op_Hyp;

 C {CT}{R_Heading}\ code; Confirm Q;

 C {CT}\ RT; code; Confirm Q;

The facility instantiation hypothesis is discussed in the context of long facility declarations in the

section titled Facility Declarations and VCs. It is necessary to show that the correspondence is

well-defined. This rule will only handle a functional correspondence. We must show the

2 The correspondence may be a relation of the form Cor_Exp/_conc.x, x, …_\. In this case, instead of

confirming TC[x ⇝ Cor_Fn_Exp] in the well defined correspondence hypothesis on the next page, we

will assume Cor_Exp/_conc.x, x, …_\ and confirm TC[x ⇝ conc.x]. Similarly, the rules for type

intialization hypothesis and correct operation hypothesis will also change.

91

convention is true when the exemplar is replaced with the correspondence expression. The VC

will assume any concept specification or concept realization requires clauses in addition to any

defined conventions.

Well_Def_Corr_Hyp shows that the correspondence is well
defined.

 Assume CPC/_ n, R _\  RPC/_ rn, RR_\ 
RC/_ rg, f, rn, RR, RS_\;

// Assumes Concept Level Requires, Concept
// Realization level requires and convention

Confirm TC[x ⇝ Cor_Fn_Exp];

The VCs generated to show the correspondence of the queue is well defined follows. The

correspondence defines the relationship between the conceptual (mathematical) space and the

representational (implementation) space. We must show that the correspondence relates all

legitimate representation values to legitimate abstract values. The VC is formed by generating

assertive code that is then processed. The assertive code assumes any concept level requirements,

concept realization requirements, and conventions. Then the constraints must be proved. The

constraints are updated when generated to replace the conceptual value with the correspondence.

This VC is showing that the constraints clause of the queue (|Q| <= Max_Length) is true for this

implementation. The VC can be proved because of the givens providing information about the

size of Q.Front and Q.Length. This goal will generate a string by concatenate the entry at

Q.Contents(i%Max_Length) a total of Q.Length -1 times. Because Q.Length <= Max_Length,

VC 1_1 is true.

92

VC: 1_1: Correspondence Rule for Queue:
Circular_Array_Realiz.rb(49)

Goal:
(|Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
<= Max_Length)

Given:
1: (Max_Length > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Last_Char_Num > 0)
5: (0 <= (Max_Length - 1 + 1))
6: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
7: (min_int <= 0) and (0 <= max_int)
8: (0 <= Q.Front) and (Q.Front < Max_Length)
9: (0 <= Q.Length) and (Q.Length <= Max_Length)

Now we will consider the type initialization. It must be shown that the initialization code in the

realization initializes the type(s) according to the specification. The type initialization rule

follows:

T_Init_Hyp establishes that the type initialization is done
correctly.

Assume CPC  RPC;
var x1: RT;
I_Body;
Confirm RC;

Confirm IC/_ x ⇝ Cor_Func_Exp, gv, f, n, R _\;

The VCs below are generated to show the type initialization for the queue concept. The assertive

code for the initialization is generated by assuming the concept level requires clause and concept

realization requires clause. Then a temp variable of the defining type is generated with the same

name as the exemplar. The body of the initialization code is added to the assertive code. The

conventions then added to the assertive code as a Confirm statement because the convention

must be true after initialization. Finally, the initialization clause must also be proved. Any

instance of the exemplar in the initialization ensures clause are replaced by the functional

93

correspondence. (If the correspondence is relational, this would become an Assume

correspondence clause followed by an ensures Confirm clause.) First it is necessary to show that

the convention is true after initialization. VC 2_1 shows that Q.Front is less than Max_Length

and greater than (or equal to) zero after initialization. VC 2_2 shows the same is true for

Q.Length. VC 2_3 shows that the initialization statement Q = empty_string is true after

initialization. Because the array is empty after initialization, this VC is also true. The string

generated by the concatenation is empty because the ending index is less than the starting index.

VC: 2_1:
Convention for Queue generated by intialization rule:
Circular_Array_Realiz.rb(9)

Goal: (0 <= 0) and (0 < Max_Length)

Given:
1: for all i:Z, Entry.Is_Initial(Q.Contents(i))
2: (Max_Length > 0)

VC: 2_2:
Convention for Queue generated by intialization rule:
Circular_Array_Realiz.rb(9)

Goal: (0 <= 0) and (0 <= Max_Length)

Given:
1: for all i:Z, Entry.Is_Initial(Q.Contents(i))
2: (Max_Length > 0)

VC: 2_3:
Initialization Rule for Queue: Circular_Array_Realiz.rb(4)

Goal: Concatenation i:Integer where (0 <= i) and

(i <= ((0 + 0) - 1)),
<Q.Contents((i mod Max_Length))> = empty_string

Given:
1: for all i:Z, Entry.Is_Initial(Q.Contents(i))
2: (Max_Length > 0)
3: Conc.Q = Concatenation i:Integer where

 (0 <= i) and (i <= ((0 + 0) - 1)),
 <Q.Contents((i mod Max_Length))>

94

In general, to show correctness of a component, it is also necessary to show the initialization of

global variables is valid. This is not necessary for this example because there are no global

variables. This rule can be found inAppendix A.

Finally, VCs must be generated for each operation to verify the component. There is a key

difference between verifying a external procedure (with its operation specification in the concept

interface) in a component versus an internal procedure with a local operation specification. That

the convention must be proved true at the end of the operation, assuming it is true at the start of

the operation.

Correct Operation Hypothesis Rule

Assume CPC  DC  VC  RPC  RDC 
RC  TC  Pre[x ⇝ Cor_Fn_Exp];

Remember;
Body;
Confirm RC/_ x, rg, f, rn, RR, RS_\

  Post[x ⇝ Cor_Fn_Exp];

If the procedure is local and its specification and code are both inside the realization, then the rule

does not use the correspondence or conceptual constraints. It does not assume conventions at the

beginning of the code or confirm conventions at the end. The rule is similar to the one given

previously in Chapter 3.

The VCs for the Dequeue Operation are provided on the next several pages. VC 4_1 and 4_2

show that the pre-condition to Swap_Entry is true prior to the operation call. VC 4_3 shows that

the pre-condition to the mod operation is true. VC 4_4 shows that the subtract pre-condition is

true. In order to show that the queue convention is true at the end of the operation, VCs 4_5 and

4_6 are generated. Finally VC 4_7 shows that post-condition to Dequeue is true at the end of the

95

operation. VC 4_7 is the most interesting and most difficult VC to prove. The string that is

generated from the Q.Contents array must be equal to the concatenation of the first item in the

Q.Contents array and the string generated from all but the first item in the Q‘.Contents array. This

goal is true because of the 13th assumption which states that Q‘.Contents is equal to Q.Contents

except at Q.Front where the value differs.

VC: 4_1: Requires Clause of Swap_Entry in Procedure Dequeue:
Circular_Array_Realiz.rb(22)

Goal: (0 <= Q.Front)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: Entry.is_initial(R)
13: |Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
/= 0

96

VC: 4_2: Requires Clause of Swap_Entry in Procedure Dequeue:
Circular_Array_Realiz.rb(22)

Goal: (Q.Front <= Max_Length - 1)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: Entry.is_initial(R)
13: |Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
/= 0

VC: 4_3: Requires Clause of Q.Front + 1 % Max_Length in
Procedure Dequeue: Circular_Array_Realiz.rb(23)

Goal: Max_Length /= 0

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: Entry.is_initial(R)
13: |Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
/= 0
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front
Q.Contents(j) otherwise
}})

97

VC: 4_4: Requires Clause of Q.Length - 1 in Procedure Dequeue:
Circular_Array_Realiz.rb(24)

Goal: (min_int <= (Q.Length-1)) and ((Q.Length-1) <= max_int)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: Entry.is_initial(R)
13: |Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
/= 0
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front
Q.Contents(j) otherwise
}})

VC: 4_5: Convention for Queue generated by intialization rule:
Circular_Array_Realiz.rb(9)

Goal: (0 <= ((Q.Front + 1) mod Max_Length)) and (((Q.Front +
1) mod Max_Length) < Max_Length)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: Entry.is_initial(R)
13: |Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
/= 0
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front
Q.Contents(j) otherwise }})

98

VC: 4_6: Convention for Queue generated by intialization rule:
Circular_Array_Realiz.rb(9)

Goal: (0 <= (Q.Length - 1)) and ((Q.Length - 1) <= Max_Length)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: Entry.is_initial(R)
13: |Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
/= 0
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front
Q.Contents(j) otherwise }})

99

VC: 4_7: Ensures Clause of Dequeue:
Circular_Array_Realiz.rb(25)

Goal: Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>
= (<Q.Contents(Q.Front)> o Concatenation i:Integer where
(((Q.Front + 1) mod Max_Length) <= i) and (i <= ((((Q.Front +
1) mod Max_Length) + (Q.Length - 1)) - 1)), <Q'.Contents((i
mod Max_Length))>)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: Entry.is_initial(R)
13: |Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
/= 0
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front
Q.Contents(j) otherwise
}})

100

Enhancement Specification, Implementation, and VCs

In order to sort the queue provided by Queue_Template, an enhancement to Queue_Template

which provides the ability to sort is used. The Sorting_Capability has been provided in Figure 27.

First, notice that the sorting spec does not define what sort algorithm must be used, just that the

queue is sorted by the operation. Next, Queue_Template doesn‘t specify what sort order must be

used in the implementation. Because Queue_Template could contain any type of object, it is

impossible to sort based on an unknown type. Thus, the spec is parameterized. A definition,

LEQV, which defines the sort order is required. The only requirement for the definition is that it

is a total preordering (as stated by the Is_Total_Preording requirement). This requires that LEQV

is both total and transitive. The sort is then specified to return a permutation of the incoming

queue (Is_Permutation(#Q,Q)) that confirms to the ordering defined by the LEQV definition

(Is_Conformal_With(LEQV, Q)).

Enhancement Sorting_Capability(Definition LEQV(x,y : Entry):B)
for Queue_Template;

 uses Modified_String_Theory;
 requires Is_Total_Preordering(LEQV);

Operation Sort(updates Q : Queue);
 ensures Is_Conformal_With(LEQV, Q) and

Is_Permutation(#Q, Q);

end Sorting_Capability;

Figure 27: Sorting Capability for a Queue

The enhancement declaration rule, similar to the concept declaration rule, simply adds the

enhancement specification to the context.

Enhancement Enh(..)
for CT;

 uses …;
 requires …;

101

Operation Op(…);

 ensures …;

end Enh;

Enhancement Declaration Rule:

 C {Enh} \

 C \ Enh;

An example sort implementation can be seen in Figure 28. The sort implementation is also

parameterized for similar reasons. An operation, Compare, is required which ensures that the

result of Compare is equal to the outcome of LEQV. An actual operation specific to the type of

entries in the queue will need to be provided to perform an actual sort. The specification for the

parameter operation will need to be at least as strong as the specification of Compare. The sort

realization uses the selection sort algorithm based upon the operation provided. This

implementation has a more complex loop invariant than we‘ve encountered thus far. The

invariant for the sort loop states that in each iteration Q and Sorted_Queue are a permutation of

the initial Q (stated via the Is_Permutation definition), Sorted_Queue is ordered based on LEQV

(stated via the Is_Conformal_with definition), and the entirety of Sorted_Queue is less than (as

defined by LEQV) Q (stated via the Is_Universally_Related definition). These definitions are

provided in the Modified_String_Theory math theory. Because sort is an enhancement and not an

internal queue operation, the sort implementation cannot access the internal implementation

variables. In fact, the actual realization of the queue concept which is used is not required by the

sort enhancement code.

102

Realization Selection_Sort_Realization(
Operation Compare(restores E1, E2 : Entry) : Boolean;

ensures Compare = LEQV(E1, E2);)
 for Sorting_Capability of Queue_Template;
 uses Modified_String_Theory;

 Procedure Sort(updates Q : Queue);
 Var Sorted_Queue : Queue;
 Var Lowest_Remaining : Entry;

 While (Length(Q) > 0)
 changing Q, Sorted_Queue, Lowest_Remaining;
 maintaining

Is_Permutation(Q o Sorted_Queue, #Q) and
 Is_Conformal_With(LEQV, Sorted_Queue) and
 Is_Universally_Related(LEQV,

Sorted_Queue, Q);
 decreasing |Q|;
 do
 Remove_Min(Q, Lowest_Remaining);
 Enqueue(Lowest_Remaining, Sorted_Queue);
 end;
 Q :=: Sorted_Queue;
 end Sort;

103

Operation Remove_Min(updates Q : Queue;

replaces Min : Entry);
 requires |Q| /= 0;
 ensures Is_Permutation(Q o <Min>, #Q) and
 Is_Universally_Related(LEQV, <Min>, Q) and
 |Q| = |#Q| - 1;

Procedure
 Var Considered_Entry : Entry;
 Var New_Queue : Queue;
 Dequeue(Min, Q);
 While (Length(Q) > 0)
 changing Q, New_Queue, Min, Considered_Entry;
 maintaining Is_Permutation(
 New_Queue o Q o <Min>, #Q) and
 Is_Universally_Related(LEQV,

<Min>, New_Queue);
 decreasing |Q|;
 do
 Dequeue(Considered_Entry, Q);
 if (Compare(Considered_Entry, Min)) then
 Min :=: Considered_Entry;
 end;
 Enqueue(Considered_Entry, New_Queue);
 end;
 New_Queue :=: Q;
 end Remove_Min;

end Selection_Sort_Realization;

Figure 28: Selection Sort of a Queue

A special enhancement realization rule is not necessary. For any procedure in the enhancement

realization, the procedure declaration rule discussed in the last chapter is used. All of the 31VCs

for this implementation are provable (actually, automatically, by the RESOLVE minimalist

prover [46]) and can be found in Appendix E.

Facility Declarations and VCs

Now that VCs have been generated – and are all true – for the queue and sort code, a RESOLVE

facility can instantiate and use these components. The following diagram depicts how this was

implemented.

104

Consider the design for a system that must process a variety of prioritized jobs sequentially. A

container object will be required to hold and process the jobs. A developer should first determine

what kind of data type should be used to handle the jobs. For this example, let us assume the jobs

will be processed in a first come first serve priority. Thus, a queue may make the most sense.

Let‘s also remember that each job has a priority. Occasionally, the program should change the

order of jobs to ensure high priority jobs are not held up behind low priority jobs. This will

require the ability to sort the queue.

Figure 29 shows a sample RESOLVE facility. In this code, a facility is created where the

Queue_Template is realized by the Circular_Array_Realiz and enhanced by the

Sorting_Capability which is realized by Selection_Sort_Realization. Sorting_Capability is

parameterized with the Priority_LEQV which prioritizes the jobs based on their priority. The

corresponding operation, Priority_Order, which orders the job based on the priority as well.

Facility Sort_Job_Queue;
uses Std_Boolean_Fac, Std_Integer_Fac,

Std_Char_Str_Fac, Queue_Template;

 Type Job_Info = Record
 Name: Char_Str;
 Priority: Integer;
 end;

 Definition Priority_LEQV(S1,S2: Job_Info):

Boolean = (S1.Priority <= S2.Priority);

 Operation Priority_Order(restores S1, S2: Job_Info):

Boolean;
 ensures Priority_Order = (Priority_LEQV(S1, S2));
 Procedure
 Priority_Order := (S1.Priority <= S2.Priority);
 end Priority_Order;

105

 Facility QF is Queue_Template(Job_Info, 10)
 realized by Circular_Array_Realiz
 enhanced by Sorting_Capability(Priority_LEQV)
 realized by
Selection_Sort_Realization(Priority_Order);

 Operation Main();
 Procedure
 Var S1, S2, S3, Temp: Job_Info;
 Var Q: QF.Queue;

 S1.Priority := 2;
 S2.Priority := 3;
 S3.Priority := 1;

 Enqueue(S1, Q);
 Enqueue(S2, Q);
 Enqueue(S3, Q);
 Sort(Q);
 Dequeue(Temp, Q);
 Write_Line(Temp.Priority);
 Dequeue(Temp, Q);
 Write_Line(Temp.Priority);
 Dequeue(Temp, Q);
 Write_Line(Temp.Priority);
 end Main;
end Sort_Job_Queue;

Figure 29: Sort Facility

There are a few interesting aspects in developing a proof rule and generating VCs for a facility

declaration. When the queue facility is created, VCs must be created to show that the parameters

provided to the facility meet the specifications. The correctness of facility declaration must be

verified. So we present a facility declaration rule next. In this rule, whereas the facility

instantiation hypothesis ensures that the actual definitions and operations passed as arguments

satisfy the requirements of the formals, the facility initial expression is concerned with assuming

that the global variables in the declared facility, if any, are properly initialized.

106

Suppose a Facility instantiation takes the form:

F_Instn = Facility FN is CN(IT, n_exp, IR)
 realized_by RN(rn_exp, IRR, IRCR, IRP);

where Operation IRP has the specification:
Operation IRP (updates irx: RT2);

 requires preIRP /_rn_exp, irx_\;
 ensures postIRP /_rn_exp, #irx, irx _\;

Facility Instantiation Rule:

 Fac_Instantiation_Hyp;

 C {CT, RT}  {F_I_Spec} \ Assume I_Exp; code; Confirm RP;

 C {CT, RT} \ F_Instn; code; Confirm RP;

where

F_I_Spec is Facility Instantiation Specification

I_Exp is GIC[S⇝ DExp, f⇝ F_Exp[rn⇝ rn_exp, RR⇝ IRR]

[n⇝ n_exp, R⇝ IR, T⇝ IT];

Fac_Instantiation_Hyp is

(RPC[rn⇝ rn_exp, RR⇝ IRR]  CPC)[n⇝ n_exp, R⇝ IR]

 (preRP [rn⇝ rn_exp, rx⇝ irx] implies preIRP)

 (postIRP implies postRP[rn⇝ rn_exp, #rx⇝ #irx,

rx⇝ irx]);

For the present example, Max_Length must be greater than 0 (because of the requires clause in

the concept Queue_Template), so a VC is generated to show that 10 > 0. A VC must also be

generated to show that Priority_LEQV is a total pre-ordering (because of the requires clause in

the Sorting_Capability enhancement). Figure 30 shows these two VCs.

107

VC: 3_1: Requirement for Facility Declaration Rule for QF:
Sorting_Capability.en(5)

Goal:Is_Total_Preordering(Priority_LEQV)
Given:

VC: 3_2: Facility Declaration Rule: Queue_Template.co(42)

Goal: (10 > 0)
Given:
1: true

Figure 30: Two VCs for QF Facility Declaration

In the facility declaration, the Sorting_Capability enhancement is realized by

Selection_Sort_Realization. For this realization, Priority_Order is passed as an argument. Thus

VCs must be generated to show that the Priority _Order operation is strong enough to be used as

the Compare operator (given in the realization of Selection_Sort_Realization). One VC must

show that the requires clause of Compare is strong enough to show that the requires clause of

Order is true. This is easy because both operations have no requires clause. The resulting VC will

simply have a goal that we need to prove ‗true‘ with an assumption ‗true‘. There will be another

group of VCs that must show that the ensures clause of Priority_Order implies the ensures clause

of Compare. These are more intricate to generate but simple to prove and require replacing the

parameters with the actual values so that it can be proven. This must also take into account the

parameter modes. Both Priority_Order and Compare restore their parameters and a VC must

show that to be the case in Priority_Order since Compare restores the parameters. These VCs are

shown in Figure 31. The VCs generated are simple and all of them can be automatically proven

by a minimalist prover.

108

VC: 2_1: Ensures from QF: Sort_Job_Queue.fa(13)

Goal: Priority_LEQV(S1, S2) = Priority_LEQV(S1, S2)

Given:
1: Priority_Order = Priority_LEQV(S1, S2)
2: #S1 = S1
3: #S2 = S2

VC: 2_2: Ensures from QF: Sort_Job_Queue.fa(13)

Goal: S1 = S1

Given:
1: Priority_Order = Priority_LEQV(S1, S2)
2: #S1 = S1
3: #S2 = S2

VC: 2_3: Ensures from QF: Sort_Job_Queue.fa(13)

Goal: S2 = S2

Given:
1: Priority_Order = Priority_LEQV(S1, S2)
2: #S1 = S1
3: #S2 = S2

Figure 31: VCs to show Operation is valid for QF Facility Declaration

109

CHAPTER FIVE

EXPERIMENTAL EVALUATION

In order to evaluate the VC generator, many VCs have been generated for a variety of component

implementations. The evaluation process includes generating VCs and determining the

provability of the generated VCs. The provability of the VCs has been checked both manually

and, where possible, using the minimalist RESOLVE VC prover.

Benchmarks

Eight benchmarks are provided in [12]. Five of these benchmarks will be discussed in this

chapter. Although various benchmarks for verification have been provided, this set of

benchmarks was chosen because they show the ability to handle a variety of scenarios, including

the ability to handle both built-in and user-defined types, and the ability to handle layered

components to demonstrate the scalability of the system. The benchmarks that will not be

presented involve topics not addressed in this dissertation, such as iterators (a construct that is not

necessary and hence, absent in RESOLVE) and input/output formatting, specification of which

requires further specification research. For each of the benchmarks shown, VCs have been

generated and manually checked for provability.

Benchmark #1: Adding and Multiplying Numbers

Problem Requirements: Verify an operation that adds two numbers by repeated incrementing.

Verify an operation that multiplies two numbers by repeated addition, using the first operation to

do the addition. Make one algorithm iterative, the other recursive. [12]

110

Solution: An add and multiple enhancement has been written in RESOLVE. The enhancement

specification and enhancement realization follow.

Enhancement Add_And_Multiply for Integer_Template;

 Operation Add(evaluates i: Integer;

evaluates j: Integer): Integer;
 requires (min_int <= i + j) and (i + j <= max_int);
 ensures Add = (i + j);

 Operation Multiply(evaluates I, J: Integer): Integer;
 requires (min_int <= -I) and (-I <= max_int) and

 (min_int <= I * J) and (I * J <= max_int);
 ensures Multiply = I * J;

end Add_And_Multiply;

Realization Add_And_Multiply_Realiz for Add_And_Multiply of
 Integer_Template;
 uses Std_Boolean_Fac;

 Recursive Procedure Add(evaluates i: Integer;

evaluates j: Integer): Integer;
 decreasing |j|;
 Var zero:Integer;
 Add := Replica(i);
 If j > zero then
 Increment(Add);
 Decrement(j);
 Add := Add(Add, j);
 Increment(j);
 else
 If zero > j then
 Decrement(Add);
 Increment(j);
 Add := Add(i, j);
 Decrement(j);
 end;
 end;
 end Add;

111

 Procedure Multiply(evaluates I, J: Integer): Integer;
 Var nj, zero: Integer;
 Multiply := Replica(zero);
 If (J >= zero) then
 While (J > zero)
 changing Multiply, nj, J;
 maintaining Multiply + (I * J) = #I * #J

and nj + J = #J;
 decreasing J;
 do
 Multiply := Add(Multiply, I);
 Increment(nj);
 Decrement(J);
 end;
 else
 While (J /= zero)
 changing Multiply, J, nj;
 maintaining Multiply - (I*J) = - #I*#J

and nj + J = #J and J <= 0;
 decreasing -J;
 do
 Multiply := Add(Multiply, I);
 Decrement(nj);
 Increment(J);
 end;
 Multiply := Negate(Multiply);
 end;

 J :=: nj;
 end Multiply;
end Add_And_Multiply_Realiz;

Figure 32: Add and Multiply Example

The VCs for this example have been generated and are located in Appendix F.

Benchmark #2:Binary Search in an Array

Problem Requirements: Verify an operation that uses binary search to find a given entry in an

array of entries that are in sorted order. [12]

Solution: Two solutions are provided for this example. The first solution will demonstrate a

basic binary search enhancement for a Static Array which has no post-condition. The VCs that

will be generated here are VCs that are required to show that the pre-condition for each operation

112

call is true. This example will show that the VCs for the original binary search algorithm

(mentioned to be erroneous in Bloch‘s blog [5]) in the introduction are indeed not provable.

Enhancement Simple_Search_Capability(definition LEQ(x,y:
Entry): B)
 for Static_Array_Template;
 uses Std_Boolean_Fac;

requires Is_Total_Preordering(LEQ);

 Operation Is_Present(restores key: Entry;

 restores A: Static_Array): Boolean;
 ensures true;

end Simple_Search_Capability;

Realization Simple_Binary_Search_Realiz(
 Operation Are_Ordered(restores x,y: Entry): Boolean;
 ensures Are_Ordered = (LEQ(x,y));
)for Simple_Search_Capability of Static_Array_Template;
 uses Std_Boolean_Fac;

 Operation Are_Equal(restores x, y: Entry): Boolean;
 ensures Are_Equal = (x = y);
 Procedure
 Are_Equal := And(Are_Ordered(x, y),

 Are_Ordered(y, x));
 end;

113

 Procedure Is_Present(restores key: Entry;

 restores A: Static_Array): Boolean;
 Var low, mid, high: Integer;
 Var midVal, lowVal, highVal: Entry;

 Is_Present := False();
 low := Replica(Lower_Bound);
 high := Replica(Upper_Bound);
 mid := low;

 While (low <= high)
 changing low, mid, high, A, midVal, Is_Present;
 maintaining true;
 decreasing (high - low);
 do
 mid := high + low;
 Divide(mid, 2, mid);

 Swap_Entry(A, midVal, mid);
 if (Are_Equal(midVal, key)) then
 Is_Present := True();
 low := high + 1;
 else
 if (Are_Ordered(midVal, key)) then
 low := mid + 1;
 else
 high := mid - 1;
 end;
 end;
 Swap_Entry(A, midVal, mid);
 end;

 end Is_Present;

end Simple_Binary_Search_Realiz;

Figure 33: Wrong Binary Search Example

Full VCs for the valid binary search example will be provided later. However, for this example,

let us just consider a VC that show this example is invalid. The following VC will need to be true

before the call to mid := high + low. The pre-condition for plus is that the sum of the two

numbers is not larger than max_int. However, we can‘t prove this. If high and low were for

example both equal to max_int, this code would fail, because of the following unprovable VC.

114

VC: 1_1:
Requires Clause of high + low in Procedure Is_Present:
Simple_Binary_Search_Realiz.rb(30)

Goal:
(min_int <= (high' + low')) and ((high' + low') <= max_int)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: true
8: (low' <= high')

A correct binary search enhancement for Static Arrays has been written in RESOLVE. The

enhancement specification and enhancement realization follow in Figure 34 and Figure 35. The

specification requires that an ordering is provided, LEQ. LEQ must be a total, transitive, and

symmetric. This is a different requirement than was used in the sorting example, and it guarantees

that LEQ(x, y) and LEQ(y, x) implies x = y. The operation, Is_Present, returns a Boolean that is

true if the key exists in the array and false if the key does not exist in the array. The array must be

ordered based on LEQ.

115

Enhancement MySearch_Capability(definition LEQ(x,y: Entry): B)
 for Static_Array_Template;
 uses Std_Boolean_Fac;
 requires Is_Total(LEQ) and Is_Transitive(LEQ) and

Is_Symmetric(LEQ);

 Definition Is_Ordered(A: Static_Array, From: Z,To: Z): B=
 (For all i: Z, if (From <= i and i < To)

then LEQ(A(i), A(i+1)));

Definition Exists_Between(E: Entry, A: Static_Array,
From: Z, To: Z): B =

(There exists i: Z such that
(From <= i and i <= To) and A(i) = E);

 Operation Is_Present(restores key: Entry;

 restores A: Static_Array): Boolean;
 requires Is_Ordered(A, Lower_Bound, Upper_Bound) and

Upper_Bound + 1 <= max_int;
 ensures Is_Present =

Exists_Between(key, A, Lower_Bound,
Upper_Bound);

end MySearch_Capability;

Figure 34: Binary Search Specification

116

Realization MyBinarySearchRealiz(
 operation Are_Ordered(restores x,y: Entry): Boolean;
 ensures Are_Ordered = (LEQ(x,y));
)for MySearch_Capability of Static_Array_Template;
 uses Std_Boolean_Fac;

 Operation Are_Equal(restores x, y: Entry): Boolean;
 ensures Are_Equal = (x = y);
 Procedure
 Are_Equal := And(Are_Ordered(x,y),Are_Ordered(y,x));
 end;

 Definition Exists_Between(E: Entry, A: Static_Array,

From: Z, To: Z): B = (There exists i: Z such that
(From <= i and i <= To) and A(i) = E);

 Procedure Is_Present(restores key: Entry;

 restores A: Static_Array): Boolean;
 Var low, mid, high: Integer;
 Var midVal, lowVal, highVal: Entry;
 Is_Present := False();
 low := Replica(Lower_Bound);
 high := Replica(Upper_Bound);
 mid := low;
 While (low <= high)
 changing low, mid, high, A, midVal, Is_Present;
 maintaining Is_Present =
 (Exists_Between(key, A, Lower_Bound, low-1) or

 Exists_Between(key, A, high+1, Upper_Bound))
 and Lower_Bound <= low and high <= Upper_Bound
 and A = #A;
decreasing (high - low);

 do
 mid := high - low;
 Divide(mid, 2, mid);
 mid := low + mid;
 Swap_Entry(A, midVal, mid);
 if (Are_Equal(midVal, key)) then
 Is_Present := True();
 low := high + 1;
 else
 if (Are_Ordered(midVal, key)) then
 low := mid + 1;
 else
 high := mid - 1;
 end;
 end;
 Swap_Entry(A, midVal, mid);
 end;

 end Is_Present;
end MyBinarySearchRealiz;

Figure 35: Binary Search Implementation

117

Benchmark #3:Sorting a Queue

Problem Requirements: Specify a user-defined FIFO ADT that is generic (i.e., parameterized

by the type of entries in a queue). Verify an operation that uses this component to sort the entries

in a queue into some client-defined order. [12]

Solution: An enhancement to sort a generic queue has already been provided and VCs generated

in Chapter 4.

Benchmark #4:Layered Implementation of a Map ADT

Problem Requirements: Verify an implementation of a generic map ADT, where the data

representation is layered on other built-in types and/or ADTs. [12]

Solution: A search and store object has been specified and implemented in RESOLVE. This

concept is parameterized by a Key type, and it allows the user to store keys in the store. A Store is

modeled mathematically as a function from Key to Booleans. The user can then check to see if a

specific key exists, remove a specific key or remove any key. The user can also clear the store.

The parameters to the template are the type of key in the store and the maximum size of the store.

The constraints of the store state that the maximum number of keys that can be added to the store

is the Max_Capacity of the store. The store is initialized to having no keys.

118

Concept Search_Store_Template
(Type Key; evaluates Max_Capacity: Integer);

 uses Std_Integer_Fac, Std_Boolean_Fac;
 requires Max_Capacity > 0;

 Definition Key_Ct (S: Store): N = ||{ k: Key, S(k)}||;

 Type Family Store is modeled by (Key -> B);
 exemplar S;
 constraint Key_Ct (S) <= Max_Capacity;
 initialization ensures Key_Ct (S) = 0;

 Oper Add (restores k: Key; updates S: Store);
 requires Key_Ct (S) < Max_Capacity and not S(k);
 ensures S(k) and
 (for all k1: Key, if k1 /= k then

S(k1) = #S(k1));

 Oper Remove (restores k: Key; updates S: Store);
 requires S(k);
 ensures not S(k) and
 (for all k1: Key, if k1 /= k then

S(k1) = #S(k1));

 Oper Remove_Any (replaces k: Key; updates S: Store);
 requires Key_Ct (S) > 0;
 ensures #S(k) and not S(k) and
 (for all k1: Key, if k1 /= k then

S(k1) = #S(k1));

 Oper Is_Present(restores k: Key; restores S: Store):

Boolean;
 ensures Is_Present= (S(k));

 Oper Key_Count (restores S: Store): Integer;
 ensures Key_Count = Key_Ct (S);

 Oper Rem_Capacity (restores S: Store): Integer;
 ensures Rem_Capacity = Max_Capacity - Key_Ct (S);

 Oper Clear (clears S: Store);
end Search_Store_Template;

Figure 36: Search and Store Specification

The store is implemented with a preemptable queue (a variation that has additional operations to

manipulate queues.), and a specification of this concept is given in Appendix C. Each key is

entered in the queue. No key may be added to the store (or queue) more than once. This example

was originally implemented by students in an undergraduate software engineering course. A

119

UML diagram depicting this implementation is shown in Figure 37. Updates to the

implementation to make the correspondence functional and remove the quantifiers in the

conventions were made to the example. The conventions to the implementation of

Search_Store_Template require that there are no duplicates in the queue. The correspondence

maps each item that is in the preemptable queue to being in the store.

Figure 37: A UML Diagram for the Search and Store System

VCs for this example have been generated and manually checked to be correct. An VC from this

example shows that the correspondence is well-defined and can be found in . All other expected

VCs were also generated and can be located in Appendix F. This implementation uses an

enhancement for the preemptable queue, which is also included in Appendix C.

120

VC: 1_1: Correspondence Rule for Store:
Search_Store_Realiz.rb(25)

Goal:
(Key_Ct(lambda k: Key (Is_Substring(<k>, S.Contents))) <=
Max_Capacity)

Given:
1: (Max_Capacity > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Last_Char_Num > 0)
5: (Max_Capacity > 0)
6: (|S.Contents| <= Max_Capacity)
7: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
8: Is_Duplicate_Free(S.Contents)

Figure 38: Example Search and Store VC

Realization Search_Store_Realiz (
 operation Are_Equal_Keys(evaluates i, j: Key): Boolean;
 ensures Are_Equal_Keys = (i = j);;
 operation Copy_Key(replaces Copy: Key;restores Orig: Key);
 ensures Copy = Orig;)
 for Search_Store_Template;
 uses Preemptable_Queue_Template, Std_Char_Str_Fac,

Std_Integer_Fac, Std_Boolean_Fac,
Modified_String_Theory;

 Facility PQ_Fac is Preemptable_Queue_Template(Key,

Max_Capacity)
 realized by Stack_Based_Realiz
 enhanced by Searching_Capability
 realized by Searching_Realiz(Are_Equal_Keys);

 Type Store is represented by Record
 Contents: PQ_Fac.P_Queue;
 end;
 Conventions Is_Duplicate_Free(S.Contents);
 Correspondence
 Conc.S = lambda k2:Key.(Is_Substring(<k2>,

S.Contents));

 Procedure Add (restores k: Key; updates S: Store);
 Var t: Key;
 Copy_Key(t,k);
 Enqueue(t,S.Contents);
 end Add;

Procedure Remove (restores k: Key; updates S: Store);

121

 Var b: Boolean;
 Search_and_Move(k,S.Contents,b);
 Dequeue(k,S.Contents);
 end Remove;

 Procedure Remove_Any (replaces k: Key; updates S: Store);
 Dequeue(k,S.Contents);
 end Remove_Any;

 Procedure Is_Present(restores k: Key;

 restores S: Store): Boolean;
 Var b: Boolean;
 Search_and_Move(k,S.Contents,b);
 Is_Present := b;
 end Is_Present;

 Procedure Key_Count (restores S: Store): Integer;
 Key_Count := Length(S.Contents);
 end Key_Count;

 Procedure Rem_Capacity (restores S: Store): Integer;
 Rem_Capacity := PQ_Fac.Rem_Capacity(S.Contents);
 end Rem_Capacity;

 Procedure Clear (clears S: Store);
 PQ_Fac.Clear(S.Contents);
 end Clear;
end Search_Store_Realiz;

Figure 39: Search and Store Implementation

Benchmark #5:Linked-List Implementation of a Queue ADT

Problem Requirements: Verify an implementation of the queue type specified in benchmark #3,

using a linked data structure for the representation. [12]

Solution: It is important that the VC Generator demonstrate the ability to generate VCs for

commonly used structures, even if they are not the recommended development mechanism in the

RESOLVE language. This ability will demonstrate that RESOLVE is not just a ‗toy‘ language

and that VCs can be generated for complex concepts. Specifically, although pointers are not

generally recommended in RESOLVE, there may be times when they are necessary. Thus, we

122

will consider how pointers could be specified and verified in RESOLVE. More details for how

pointers can be handled in RESOLVE are provided in [47].

The specification used to demonstrate how pointers can be handled in RESOLVE is

Location_Linking_Template_1. The technical aspects of this specification are detailed in [45] and

summarized in [47]. The present specification is incomplete in many respects and is presented

here only as a proof of concept example. It is expected that the implementation of this concept

will be hard-coded in the RESOLVE language, similar to arrays. Figure 40 specifies the behavior.

Location_Linking_Template_1 has one parameter, a type that defines the type, Info, of

information stored in each location. This is a simplified version of this template, in that only one

link is permitted from each location. The more complex version would require a second

parameter defining the number of links from a given location which would provide the ability to

create more interesting data structures. This specification contains two global variables: Ref and

Content. Ref is the link to the next Location. Contents is a variable of type Info which contains

the data at the current Location. Each operation that updates one of these global variables must

state then with the updates clause in the specification. Any operation that does not update is

assumed to restore the global variable.

123

Concept Location_Linking_Template_1(type Info);
 uses Std_Integer_Fac, Std_Boolean_Fac,

Modified_String_Theory;

 Definition Void: Z;
 Var Content: Z -> Info;
 Var Ref: Z -> Z;
 Facility_Initialization ensures for all L: Z,

Info.Is_Initial(Content(L)) and Ref(L) = Void;

 Type Family Position is modeled by Z;
 exemplar P;
 initialization ensures P = Void;

 Operation Take_New_Location(updates P: Position);
 ensures P /= Void;

 Operation Relocate_to(updates P: Position;

 preserves Q: Position);
 ensures (P = Q);

 Operation Follow_Link(updates P: Position);
 requires P /= Void;
 ensures P = Ref(#P);

 Operation Relocate_To_Target(updates P: Position;
 preserves Q: Position);
 requires Q /= Void;
 ensures P = Ref(Q);

 Operation Redirect_Link(preserves P: Position;

updates Q: Position);
 updates Ref;
 requires P /= Void;
 ensures Ref = lambda L:Z.(
 {{#Q if L = P; #Ref(L) otherwise;}}) and
 Q = #Ref(P);

 Operation Redirect_To_Target(updates P: Position;
 preserves Q: Position);
 updates Ref;
 requires P /= Void and Q /= Void;
 ensures Ref = lambda L:Z.(
 {{Ref(Q) if L = P; #Ref(L) otherwise;}});

 Operation Redirect_and_Update(preserves P: Position;
 updates Q: Position);
 updates Ref;
 requires P /= Void;
 ensures Ref = lambda L:Z.(
 {{#Ref(#Q) if L = P; #Ref(L) otherwise;}}) and
 Q = #Ref(P);

124

Operation Is_At_Void(preserves P: Position): Boolean;
 ensures Is_At_Void = (P = Void);

Operation Reset_To_Void(clears P: Position);

Operation Swap_Info(preserves P: Position;

 updates I: Info);
 updates Content;
 requires P /= Void;
 ensures I = #Content(P)
 and Content = lambda L:Z.(
 {{#I if L = P;
 #Content(L) otherwise;}});

end;

Figure 40: Location Linking Template

We consider code here that uses the Location_Linking_Template to implement Queue_Template.

This queue specification is slightly modified from the previous queue specification. Figure 41

shows a specification for an unbounded queue. This specification should not necessitate a detailed

explanation. The only difference from the previous version is the lack of bounds.

Concept Unbounded_Queue_Template(type Entry);
 uses Std_Integer_Fac, Modified_String_Theory;

 Type Family Queue is modeled by Str(Entry);
 exemplar Q;
 initialization ensures Q = empty_string;

 Operation Enqueue(alters E: Entry; updates Q: Queue);
 ensures Q = #Q o <#E>;

 Operation Dequeue(replaces R: Entry; updates Q: Queue);
 requires Q /= empty_string;
 ensures #Q = <R> o Q;

 Operation Is_Empty(restores Q: Queue): Boolean;
 ensures Is_Empty = (Q = empty_string);

 Operation Clear (clears Q: Queue);
end Unbounded_Queue_Template;

Figure 41: Unbounded Queue

The following implementation of a queue uses the Location_Linking_Template. Because this

realization defines the type of the queue as a position, a facility is used to instantiate the

125

Location_Linking_Template_1 with the type, Entry. The correspondence of this queue requires

the string that represents the queue is equal to the string created by concatenation each entry of

the linked list. The conversions require that there are no loops – that void is reachable. This

implementation is not complete in many respects [47]. For example, it is missing conventions,

such as no two queues share locations. It is mainly intended to show the use of global variables

in VC generation and how the verification machinery is suitable for handling code with pointer

behavior.

Realization Queue_Location_Linking_Realiz for
Unbounded_Queue_Template;

 uses Location_Linking_Template_1;

 definition Is_Reachable(first: Z, last: Z,
 refContext : Z -> Z) : B = {{(true) if first = last;
 Is_Reachable(refContext(first), last, refContext)
 otherwise;}};

 definition Str_Info(first: Z, refContext : Z -> Z,
 contentsContext : Z -> Entry): Str(Entry) =
 {{empty_string if first = Void;
 <contentsContext(first)> o
 Str_Info(refContext(first), refContext,

contentsContext) otherwise;}};

Facility Entry_Ptr_Fac is
Location_Linking_Template_1(Entry)

 realized by Std_Location_Linking_Realiz;

 Type Queue is represented by Record
 Front: Entry_Ptr_Fac.Position;
 Back: Entry_Ptr_Fac.Position;
 end;

 convention Is_Reachable(Q.Front, Q.Back, Ref) and
 (Ref(Q.Back) = Void) and
 (Q.Back = Void iff Q.Front = Void);
 correspondence Conc.Q = Str_Info(Q.Front, Content, Ref);

 Procedure Dequeue(replaces R: Entry; updates Q: Queue);
 Var Temp: Position;

 Swap_Info(Q.Front, R);

 Follow_Link(Q.Front);
 If (Is_At_Void(Q.Front)) then
 Reset_To_Void(Q.Back);

126

 end;
 end Dequeue;

 Procedure Enqueue(alters E: Entry; updates Q: Queue);
 Var Temp: Position;

 Take_New_Location(Temp);

 Swap_Info(Temp, E);
 If (Is_At_Void(Q.Front)) then
 Relocate_to(Temp, Q.Back);
 Relocate_to(Q.Back, Q.Front);
 else
 Redirect_Link(Q.Back, Temp);

 end;
 end Enqueue;

 Procedure Is_Empty(restores Q: Queue) : Boolean;
 Var Temp: Position;

 Is_Empty := Is_At_Void(Q.Front);
 end Is_Empty;

 Procedure Clear(clears Q: Queue);
 Reset_To_Void(Q.Front);
 Reset_To_Void(Q.Back);
 end Clear;
end Queue_Location_Linking_Realiz;

Figure 42: Queue Implementation with a Linked List

VCs for each of these operations have been generated and are available in Appendix F. To further

motivate why pointers are not the desired mechanism to implement data structures in RESOLVE,

the following example demonstrates a much simpler realization of Unbounded_Queue_Template.

The code in Figure 43 is much shorter than the linked implementation in Figure 42, allowing less

opportunity for bugs to be introduced and less VCs that must be proved. The linked list

implementation generated 39 VCs whereas the list implementation only generated 11.

127

Realization UnboundedQueue_List_Realiz for
Unbounded_Queue_Template;

 uses Unbounded_List_Template, Boolean_Template;

 Facility List_Fac is Unbounded_List_Template(Entry)
 realized by Std_Unbounded_List_Realiz;

 Type Queue is represented by List_Fac.List;

 convention true;
 correspondence Conc.Q = Q.Prec o Q.Rem;

 Procedure Dequeue(replaces R: Entry; updates Q: Queue);
 Reset(Q);
 Remove(R, Q);
 end Dequeue;

 Procedure Enqueue(alters E: Entry; updates Q: Queue);
 Advance_to_End(Q);
 Insert(E, Q);
 end Enqueue;

 Procedure Is_Empty(restores Q: Queue): Boolean;
 Is_Empty := And(Is_Prec_Empty(Q), Is_Prec_Empty(Q));
 end Is_Empty;

 Procedure Clear(clears Q: Queue);
 Clear(Q);
 end Clear;

end UnboundedQueue_List_Realiz;

Figure 43: List Implementation of Unbounded Queue

An Exercise with Auxiliary Variables

We conclude this chapter by considering an example that contains an existential quantifier in the

specification of the operation. In general, developers should be able to write specifications

without existential quantifiers so that auxiliary variables are not required in implementations. For

example, if an operation was specified to move one element from the front of a queue to the back

of a queue, an existential quantifier is not necessary. Rotating_Capability, an enhancement to

Queue_Template, can be written using the Prt_Btwn definition. Prt_Btwn is defined in

String_Theory and returns a portion of the string where the first argument indicates the starting

position, the second argument indicates the ending position, and the third argument indicates the

128

source string. Prt_Btwn assumes the string is indexed beginning at 0. Figure 44 provides a

specification with a simple ensures clause that would be a good option and would provide VCs

that are easy to prove. However, to demonstrate the use of auxiliary variables, we will also

consider how this could be specified with existential quantifiers.

Enhancement Rotating_Capability for Queue_Template;
 Operation Rotate(updates Q: Queue);
 requires |Q| /= 0;
 ensures Q = Prt_Btwn(0,1,#Q) o Prt_Btwn(1,|#Q|,#Q)
end Rotating_Capability;

Figure 44: Queue Rotate with Alternate Specification

So suppose instead that Rotate is specified using existential quantifiers as in Figure 45. In writing

an implementation of a specification with such quantifiers, RESOLVE provides the ability to

define verification variables or auxiliary variables; also, termed ghost or adjunct variables in [1],

[2] and [10]. These are not used to translate and execute the code but are used to help the VC

generator create VCs that are more easily proved. These auxiliary variables coincide with the

mathematical variable in the existential quantification. The auxiliary code is used to set the value

of the auxiliary variable which is then used to generate easier-to-prove VCs. Thus, the VC prover

will know the value of the existential variables and won‘t have to ―guess‖ at the value. This can

be most easily explained with an example.

The specification in Figure 45 states that there exist two entries, E and R. There are also two

auxiliary variables, the entry E and the Queue R. The auxiliary variables, E and R, are set using

the auxiliary code (Queue_Replica and Entry_Replica). Auxiliary code is ignored by the

translator but the VC generator treats the Auxiliary variables and Auxiliary code just like normal

variables and code. The only difference is that there won‘t be actual realizations for the auxiliary

operations!

129

Enhancement Rotating_Capability for Queue_Template;

 Operation Rotate(updates Q: Queue);
 requires |Q| /= 0;
 ensures there exists E: Entry,

 there exists R: Str(Entry),
 #Q = <E> o R and Q = R o <E>;

end Rotating_Capability;

Realization Obvious_Rotate_Realiz for

Rotating_Capability of Queue_Template;
 Aux Operation Entry_Replica (restores E: Entry): Entry;
 ensures Entry_Replica = E;

 Aux Operation Queue_Replica (restores P: Queue): Queue;
 ensures Queue_Replica = P;

 Procedure Rotate(updates Q: Queue);
 Var TE: Entry;
 Aux_Var E: Entry;
 Aux_Var R: Queue;
 Dequeue(TE, Q);
 Aux_Code
 E := Entry_Replica(TE);
 R := Queue_Replica(Q);
 end;
 Enqueue(TE, Q);

 end Rotate;
end Obvious_Rotate_Realiz;

Figure 45: Queue Rotate with Auxiliary Variables Specification and Implementation

Consider Appendix F that shows the VCs generated for Queue Rotate with the auxiliary code and

without the auxiliary code. VC 1 and VC 2 contain only minor differences between the two

versions. However VC 3 (and 4) are much simpler to prove in the example using auxiliary code.

Each of the VCs for the auxiliary code were automatically proved by the RESOLVE prover.

130

CHAPTER SIX

EDUCATIONAL USES

One important use of the RESOLVE verifier is its value in the classroom. It has been used at

multiple universities to provide a foundation for logical reasoning about software design. All too

often students, just like other software developers, write bug-filled code with an attitude that most

bugs will be found during the testing process. Often that wrong assumption leads to a lack of

proper understanding of their own code. Using RESOLVE to teach students demonstrates both

the need and viability of creating provably correct software and leads students to create software

that has been properly designed based on the corresponding specifications. [48]

There are several different ways the web interface for the RESOLVE verifier is currently being

used in the classroom. The most obvious use of RESOLVE is in a software engineering course.

However, it has also been used at a few schools in a theory and programming language course.

Students interacted with the VC generator to varying degrees at different schools. The web-

interface for the VC generator was used by the students at the school in the list below.

 Clemson University
o Junior/Senior-Level Software Engineering Course
o Graduate-Level Software Engineering Course

 Cleveland State University
o Junior/Senior-Level Software Engineering Course
o Graduate-Level Software Engineering Course

 Denison University
o Junior/Senior-Level Software Engineering Course
o Theory and Programming Language Course

 Depauw university
o Theory and Programming Language Course

 Ramapo College
o Theory and Programming Language Course

 University of Alabama
o Junior/Senior-Level Software Engineering Course

131

 VT Northern Virginia Campus
o Junior/Senior-Level Software Engineering Course
o Graduate-Level Software Engineering Course

 Western Carolina University
o Junior/Senior-Level Software Engineering Course

To understand the educational benefits provided by the VC generator, let us consider how it has

been used at Clemson in a junior-level software engineering course. The students have been

assigned a team project for the past several semesters used to teach, by example, how helpful

formal specifications and verification are in contract-based software design. With each group

using the same specifications, the implementations from various groups were combined and

executed. Because full verification was not yet possible, these did not always work perfectly, but

students saw that most of the time the process worked. This demonstrated the feasibility of the

using contracts to design and build software.

At other universities (Clemson, Alabama, Western Carolina, DePauw, and Cleveland State) VCs

were generated for examples using the web interface during classtime. Students were able to edit

the code to attempt various ‗What If‘ scenarios. This allowed students to see and use a VC

generator to understand the purpose and usefulness of verification.

Recursive Queue Append Example

This example shows the type of ‗What If‘ scenarios that can be demonstrated in undergraduate

courses. RESOLVE provides support for recursion and thus must be able to generate VCs to

show termination of the recursion in addition to the normal VCs required for showing that the

post-condition holds. Similar to the While loop, recursive procedures require a decreasing clause

to show termination. The example in Figure 46 shows an operation, Append, which accepts two

queues as parameters and will append the second queue, Q, to the first queue, P. The queue, Q,

will be empty after the operation completes. With each recursive call by append the queue, Q,

132

will decrease in length (by one) with Append removing one entry from Q and then recursively

calling Append on the resulting Q. As can be seen, the implementation of Append defines the

length of Q as the decreasing clause. So it must be shown that this is true before each recursive

call. After the recursive call to Append, the entry removed from Q before the call is added to P.

Enhancement Append_Capability for Queue_Template;
 Operation Append(updates P: Queue; clears Q: Queue);
 requires |P| + |Q| <= Max_Length;
 ensures P = #P o #Q;
end Append_Capability;

Realization Recursive_Append_Realiz for Append_Capability

of Queue_Template;
 uses Std_Boolean_Fac;
 Recursive Procedure Append(updates P: Queue;

clears Q: Queue);
 decreasing |Q|;

 Var E: Entry;
 If (Length (Q) /= 0) then
 Dequeue(E,Q);
 Enqueue(E,P);
 Append(P,Q);
 end;
 end Append;
end Recursive_Append_Realiz;

Figure 46: Queue Recursive Append Specification and Implementation

When generating VCs for recursive operations, it is necessary to update the operation call rule

and procedure declaration rule. Each of these will be modified to use and maintain P_Val based

on the decreasing clause (similar to the While loop). The procedure declaration and operation call

rule with updates to support recursion follow. The italicized portions of the proof rules have been

added to handle recursion. These proof rules will construct VCs such that there is an assumption

that P_Val is equal to the decreasing statement at the start of the operation. However, before the

recursive call, we must show that the value the decreasing statement has decreased.

133

Assuming an example operation, P, with one parameter being updated and one parameter being

cleared, the modified, recursive procedure declaration and call rules follow.

CDP = Operation P(updates t: T1; clears u: T2);

 requires Pre/_t, u _\;
 ensures Post/_ #t, #u, t _\;

Recursive Procedure Declaration Rule:

 C {CDP}\ Assume Pre  T1.Constraint(t)  T2.Constraint(u);
 Remember;

Assume P_Val = P_Exp;
body;

Confirm Post  T2.is_initial(u);
 C {CDP}\ code; Confirm RP;

 C {CDP}\ Recursive Proc P(…); decreasing P_Exp; body; end P;
code; Confirm RP;

Recursive Procedure Invocation Rule:

 C {CDP}\ code; Confirm Invk_Cond(P(a,b)) and P_Exp < P_Val;

Assume Post[t⇝NQV(RP, a), #t⇝a, #u⇝b] and T2.is_initial(b);

Confirm RP[a⇝NQV(RP, a)];

 C {CDP}\ code; P(a, b); Confirm RP/_ a, b _\ ;

Each of the VCs generated by this example are provable. There are 8 generated VCs that are

generated for the Append operation. Three VCs are generated from pre-conditions to operation

calls, one will show the recursion terminates, and one will show the final goal is achieved.

VC 0_3 is the most interesting of these VCs at it shows termination. The goal of the VCs is that

the size of Q decreases before the recursive call. This VC is provable based on assumption 10

which exists because of the Dequeue of E from Q. The other VCs are located in Appendix G.

134

VC: 0_3: Show Termination of Recursive Call:
Recursive_Append_Realiz.rb(5)

Goal: (|Q'| < |Q|)
Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |Q|
11: |Q| /= 0
12: Q = (<E'> o Q')

Figure 47: Example VC for Recursive Append

Another interesting example is one where a programmer supplies an incorrect decreasing clause.

In that case, although the append will still work correctly, the code will be invalid since we

cannot show termination. Consider Figure 47. In this example, we have indicated that the size of

the Queue, P, is decreasing. However, the size of the Queue, P, is in fact increasing with each

level of recursion.

Realization Recursive_Append_Realiz for Append_Capability
of Queue_Template;

 uses Std_Boolean_Fac;
 Procedure Append(updates P: Queue; clears Q: Queue);
 decreasing |P|;

 Var E: Entry;
 If (Length (Q) /= 0) then
 Dequeue(E,Q);
 Enqueue(E,P);
 Append(P,Q);
 end;
 end Append;

end Recursive_Append_Realiz;

Figure 48: Invalid Queue Recursive Append implementation

135

The VCs generated from the example in Figure 48 are nearly identical to the VCs generated from

Figure 46 except for the VC that shows termination. The complete list of VCs are included in

Appendix G. All of the VCs are still provable except for VC 0_3 shown in Figure 49 This VC is

not provable because |(P o <E‘>)| is greater than |P| which is generated because we are appending

an entry to P with each level of recursion. Thus we cannot show that the recursion ends.

VC: 0_3:
Show Termination of Recursive Call:
Recursive_Append_Realiz.rb(5)

Goal:
(|(P o <E'>)| < |P|)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |P|
11: |Q| /= 0
12: Q = (<E'> o Q')

Figure 49: Example VC for Recursive Append with Wrong Decreasing Clause

Let‘s consider another variation of the recursive Append example in Figure 50.

Realization Recursive_Append_Realiz for Append_Capability of
Queue_Template;
 uses Std_Boolean_Fac;
 Procedure Append(updates P: Queue; clears Q: Queue);
 decreasing |Q|;

 If (Length (Q) /= 0) then
 Append(P,Q);
 end;
 end Append;

end Recursive_Append_Realiz;

Figure 50: Another Invalid Queue Recursive Append Implementation

136

As can be seen in this example, we have supplied the |Q| as the decreasing clause again. The

previous example in Figure 48 was a correct implementation but invalid because of the wrong

specification. However, this is an example where the VCs are not going to be provable because

it‘s simply a wrong implementation. Similar to the previous example, only the VC that shows

termination is unable to be proved. Because the size of Q does not decrease before calling

Append, we cannot prove VC 0_1 in Figure 51 that would show the recursion is finite. These

VCs are also located in Appendix G.

VC: 0_1:
Show Termination of Recursive Call:
Recursive_Append_Realiz.rb(5)

Goal:
(|Q| < |Q|)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |Q|
11: |Q| /= 0

Figure 51: Example VC for Recursive Append with wrong implementation

User Feedback

The VC generator also needs to be able to provide appropriate user feedback. Similar to a

compiler, users should be able to identify which portions of code generated a VC so they

know where to begin to debug. This can be done by relating line numbers to each VC. The

current VC generator can specify where the goal of an assertion originates and thus

debugging based on unprovable assertions will become an easier process. The current VC

137

generator can also relate each assumption to a line number, though it is currently unclear if

that will be a commonly used option. When each assertion is formed, the line number of the

code is connected to the related portion of the code. The current web interface, designed by

Clemson University students, has made use of this information to create a very useful tool

[48].

138

CHAPTER SEVEN

CONCLUSIONS AND FUTURE DIRECTIONS

This research has shown that automated VC generation is not only possible but practical, by

designing mechanizable proof rules and realizing them within a full-fledged object-based

language, bridging the large gap between theoretical principles and actual verification. These

proof rules are scalable, allowing verification of all data types in many data constructs. The

system also allows for modular generation of VCs, verifying each component independently.

VCs have been generated for a wide variety of examples in addition to a set of benchmarks

demonstrating the goal of verification – the Grand Challenge provided by Tony Hoare [4]– is

achievable.

Several directions for further research remain. The proof rules and the VC generator in this

dissertation cover only a subset of RESOLVE, albeit a large subset. Specifically, the treatment of

global variables is minimal at best. But the work here provides a solid theoretical and practical

basis to build on. Similarly, only initial semantics for the RESOLVE language have been

formalized and only examples of the soundness of mechanizable rules have been presented in this

dissertation. Ultimately, more complete semantics for the RESOLVE language are needed,

including formal semantics for data abstraction. Additionally, details about the relational

semantics need to be formalized.

One reason to formalize the semantics is so that the VC generator itself can be verified. Much like

Pascal once demonstrated that a compiler could be written in a high-level language and compiled,

the verifier should be written in RESOLVE that supports full verification and verified. The

present verifier can be used for this bootstrapping. Many questions remain as to how this should

139

be done. It must be determined which components are best suited for this task and how each of

these components should be specified and verified.

There is much more work to be done to have a completely automated verification system.

Currently, work is continuing on the RESOLVE minimalist prover. The prover is now able to

automatically prove many of the VCs generated by the VC generator. Many others cannot be

proved. A key reason for this is simply the result of incomplete mathematical theories. As the

theories are used and expanded and the prover is improved, the abilities to prove more software

correct will also grow. Currently, the prover is a completely independent step which follows the

VC generation process. It should be considered whether the two steps should be intertwined to

provide a more efficient and capable verifier.

Another area of research is verification of performance. Performance profiles can be written to

complement the specifications of functional behavior (concepts). These profiles will specify the

time and space requirements of the software. Thus, not only will the verifier be able to prove that

the software is correct in functionality but can also prove that the software runs within the

specified time constraints and resource constraints. These will be modular and scalable, and can

be layered on the mechanizable proof rules and VC generator, conceived in this dissertation.

In conjunction with the online RESOLVE web-interface, the VC generator has provided the

ability to allow many students and researchers to use RESOLVE. This allows students to both

learn to reason about the software and shows that verification is an attainable goal. For example,

the VC generator has been used for a PayPal type system for research at Virginia Tech, Northern

Virginia Center and for verifying a piece of sensor network code at Clemson University. Other

software needs to be developed with the VC generator to test and demonstrate its ability to verify

large software applications.

140

As the verifier develops into a fully automatic system, students should learn to use the verifier

instead of a debugger to develop software. This will provide students with a better understanding

of the code they have written, and should lead to stronger developers in the workplace, skilled in

mathematical reasoning, even if they may never use a verifier.

141

APPENDICES

142

Appendix A

Proof Rules

In the following rules,

 RP is the result predicate

 code refers to the statements preceding the construct

 C is the context

 Invk_Cond(exp) conjoins all pre-conditions for all the programming functions

 in exp

 Math(exp) composes the mathematical expressions for all the programming

 functions in exp.

 BE is a Boolean valued programming expression.

 P_Exp is the ordinal valued progress metric expression, the system variables ?kP_Val hold

progress metric values

 NQV(RD, x) produces a next question marked variable name of the form ?mx such that

m is the smallest value for which ?mx doesn’t occur in RD.

 CExp/_t_\ is the constraint expression for T.

Assume Rule:

C\ code; Confirm exp => RP;

C\ code; Assume exp; Confirm RP;

143

Swap Rule:

 C\ code; Confirm RP[x⇝y, y⇝x];

 C\ code; x :: y; Confirm RP;

Function Call/Expression Reassignment Rule:

 C\ code; Confirm Invk_Cond(exp)  RP[x⇝Math(exp)];

 C\ code; x : exp; Confirm RP;

If/Else Rule:

 C\ code; Confirm Invk_Cond(BE); Assume Math(BE); code1;
Confirm RP;

 C\ code; Assume ¬ Math(BE); code2; Confirm RP;

 C\ code; If BE then code1 else code2 end_if; Confirm RP;

If Rule:

 C\ code; If BE then code1 else end_if; Confirm RP;

 C\ code; If BE then code1 end_if; Confirm RP;

Confirm Rule:

 C\ code; Confirm exp  RP;

 C\ code; Confirm exp; Confirm RP;

144

While Rule:

C/ code; Confirm Inv; Change Vlist; Assume Inv ^
NQV(RP, P_Val)= P_Exp;
If BE then body; Confirm Inv ^ P_Exp < NQV(RP, P_Val);
else Confirm RP end_if;
Confirm True;

C/ code; While B

maintaining Inv;
decreasing P_Exp;
changing VList;

 do
body

end;
Confirm RP;

Change Rule:

(The context indicates that x is of type T.)

C {NQV(RP, x): T}\ code;
Confirm RP[x⇝NQV(RP, x)];

C\ code; Change x; Confirm RP;

Remember Rule:

C\ code; Confirm RP[#s⇝s, #t⇝t];

C\ code; Remember; Confirm PR/_ s, #s, t, #t, u, v, ⋯ _\;

The following rules will use the example operation template for P given below.

CDP = Operation P(updates t: T1; evaluates u: T2;
replaces v: T3; restores w: T4; preserves x: T5;
alters y: T6; clears z: T7);

 requires Pre/_t, u, w, x, y, z, _\;
 ensures Post/_ #t, u, w, x, #y, #z, t, v, _\;

145

Operation Declaration Rule:

 C {CDP} \

 C \ CDP;

Operation Invocation Rule:

 C {CDP}\ code; Confirm Invk_Cond(P(a,exp,b,c,d,e,f));

Assume (T1.Constraint(t)  T3.Constraint(v) 
T6.Constraint(y)  Post) [t⇝NQV(RP, a), #t⇝a, u⇝Math(exp),

v⇝NQV(RP, b), w⇝c, x⇝d, #y⇝e, #z⇝f] 
T7.is_initial(NQV(RP, f));

Confirm RP[a⇝NQV(RP, a), b⇝NQV(RP, b), e⇝NQV(RP, e),

f⇝NQV(RP, f)]);

 C {CDP}\ code; P(a, exp, b, c, d, e, f);

Confirm RP/_ a, b, c, d, e, f, g, h,  _\;

Procedure Declaration Rule:

 C {CDP}\ Assume Pre  T1.Constraint(t)  T2.Constraint(u) 
 T3.Is_Init(v)  T4.Constraint(w)  T5.Constraint(x) 

T6.Constraint(y)  T7.Constraint(z);
Remember;

body;

Confirm Post  w  #w  T7.is_initial(z);
 C {CDP}\ code; Confirm RP;

 C {CDP}\ Proc P(…); body; end P; code;
Confirm RP;

146

Suppose a Concept Template is specified by:

CT = Concept CN(type T; eval n: U; def R: TVB);
 uses AFac, BTh;
 requires CPC/_ n, R _\;

 Definition S: WB = (DExp);

 Defines f: WT;
 constraint DC/_ f, n, R _\;
 Var gv: X1;
 constraint VC/_ gv, f, n, R _\;

Facility_Initialization
 ensures GIC/_ gv, f, S, n, R _\;

 Type Family TF is modeled by MTE;
 exemplar x;
 constraint TC/_ x, n, R, gv, f _\;
 initialization
 updates gv;
 ensures IC/_ x, gv, f, n, R _\;
 finalization
 updates gv;
 ensures FC1/_#x, gv, f, n, R_\;

 Oper P(updates x: TF; evaluates z: U);
 updates gv;
 requires Pre/_x, y, gv, f, n, R_\;
 ensures Post/_x, #x, y, gv, #gv, f, n, R_\;
 end CN;

Concept Declaration Rule:

 C {CT}\ code; Confirm Q;

 C\ CT; code; Confirm Q;

147

Suppose a Concept implementation is specified by:

RT = Realization RN(eval rn: RU; def RR: RTRVB;
Realization F_Realiz(eval e:T3);
Procedure RP(updates rx: RT2);

 requires preRP/_ rx, rn _\;
 ensures postRP/_ rx, #rx, rn _\)

 for CN;
 uses RAFac, RBTh, GTy, R_C;
 requires RPC/_ rn, RR _\;)

 Definition RS: RWB = (RDExp);

 Definition f: WT = (F_Exp);
 constraint RDC/_ rn, RR _\;

Facility F is R_C(f_exp/_ rx, rn _\, GTy, RR, RS)

realized_by F_Realiz(f_exp/_ rx, rn _\, RR, RS);

(* Treatment of rules does not include realization globals *)
(*
Var rg1: RX;
Aux_Var ra: Tm;
 convention RGC//_ ra, rg, f, rn, RR, RS _\;
 correspondence CR_Exprg//_ gv, ra, rg1, rn, RR, RS _\;
 Facility_Initialization GI_body; end;
*)

Type TF = RT;
 conventions RC/_ x, rg1, f, rn, RR, RS_\;
 correspondence3 conc.x = Cor_Fn_Exp/_x, gv, rg, rg, ra,

f, n, rn, R, RR, S,
RS_\;

 Facility_Initialization I_body; end;

Procedure P (updates x: TF; evaluates z: U);
 p_body;
end P;

end RN;

Please see footnote #1 for how the rule changes if the correspondence is relational.

148

Realization Declaration Rule:

 C {R_C}\ Fac_Instantiation_Hyp;

C {CT}\ Well_Def_Corr_Hyp;

C {CT}\ T_Init_Hyp;

C {CT}\ Correct_Op_Hyp;

 C {CT}{R_Heading}\ code; Confirm Q;

 C {CT}\ RT; code; Confirm Q;

Well_Def_Corr_Hyp shows that the correspondence is well defined.

 Assume CPC/_ n, R _\  RPC/_ rn, RR_\ 
RC/_ rg, f, rn, RR, RS_\;
// Assumes Concept Level Requires, Concept
// Realization level requires and convention

Confirm TC[x ⇝ Cor_Fn_Exp];

T_Init_Hyp establishes that the type initialization is done correctly.

Assume CPC  RPC;
var x1: RT;
I_Body;
Confirm RC;

Confirm IC/_ x ⇝ Cor_Func_Exp, gv, f, n, R _\;

Correct_Op_Hyp establishes the correctness of each procedure.

Assume CPC  DC  VC  RPC  RDC 
RC  TC  Pre[x ⇝ Cor_Fn_Exp];

Remember;
p_body;

Confirm RC/_ x, rg, f, rn, RR, RS_\

  Post[x ⇝ Cor_Fn_Exp];

149

Suppose a Facility instantiation takes the form:

F_Instn = Facility FN is CN(IT, n_exp, IR)
 realized_by RN(rn_exp, IRR, IRCR, IRP);

where Operation IRP has the specification:
Operation IRP (updates irx: RT2);

 requires preIRP /_rn_exp, irx_\;
 ensures postIRP /_rn_exp, #irx, irx _\;

Facility Instantiation Rule:

 Fac_Instantiation_Hyp;

 C {CT, RT}  {F_I_Spec} \ Assume I_Exp; code; Confirm RP;

 C {CT, RT} \ F_Instn; code; Confirm RP;

where

F_I_Spec is Facility Instantiation Specification

I_Exp is GIC[S⇝ DExp, f⇝ F_Exp[rn⇝ rn_exp, RR⇝ IRR]

[n⇝ n_exp, R⇝ IR, T⇝ IT];

Fac_Instantiation_Hyp is

(RPC[rn⇝ rn_exp, RR⇝ IRR]  CPC)[n⇝ n_exp, R⇝ IR] 
(preRP [rn⇝ rn_exp, rx⇝ irx] implies preIRP) 
(postIRP implies postRP[rn⇝ rn_exp, #rx⇝ #irx, rx⇝ irx]);

150

Suppose an explicit facility is specified by:

F = Facility FN;
 uses AFac, BRealiz, CCon;

 gv: X;

 XI/_ gv_\;








var

initialization

ensures

 Global_Info;

procedure;
 G_I_Body;
end;

 T = PTE;

 x;

 . D: W B = (DE /_ x, gv _\);

 TCE /_ x, gv_\;

 i

 TIE /_ x, gv_\;











Type

exemplar

Def

constraints

nitialization

ensures

 Type_Info;

 procedure;
T_I_Body;

 end;

 P x ; P t x x ; Op_Info1

procedure P1;
 P1_body;
 end P1;

⋮

end FN;

F_Spec = {Global_Info, Type_Info, Op_Info1, ⋯ }

151

Explicit Facility Declaration Rule:

C \ G_I_F_Hyp;

C {Global_Info} \ T_I_F_Hyp;

C {Type_Info} \ Correct_Op_Hyp;

C  F_Spec \ code; Confirm RP;

C \ F; code; Confirm RP;

152

Appendix B

Simplification Rules

Confirm X;

Assume true; Confirm X;

Confirm X;

Confirm true -> X;

Confirm X;

Confirm X; Confirm true;

Confirm true;

Confirm A -> true;

Confirm (A ^ B) -> C;

Confirm A -> B -> C;

Confirm A -> B;

Confirm A -> (A ^ B);

Confirm A -> B;

Confirm A -> (B ^ A);

Confirm A;

Confirm A ^ true;

Confirm A;

Confirm true ^ A;

153

Appendix C

Additional Specifications

Array Specification

Concept Static_Array_Template(type Entry; evaluates
Lower_Bound, Upper_Bound: Integer);
 uses Std_Integer_Fac;
 requires (Lower_Bound <= Upper_Bound);

 Type Family Static_Array is modeled by (Z -> Entry);
 exemplar A;
 constraint true;
 initialization ensures
 for all i: Z, Entry.Is_Initial(A(i));

 Operation Swap_Entry(updates A: Static_Array;

updates E: Entry; evaluates i: Integer);
requires Lower_Bound <= i and i <= Upper_Bound;

 ensures E = #A(i) and
A = lambda j: Z.({{#E if j = i;

#A(j) otherwise;}});

 Operation Swap_Two_Entries(updates A: Static_Array;

 evaluates i, j: Integer);
 requires Lower_Bound <= i and i <= Upper_Bound and
 Lower_Bound <= j and j <= Upper_Bound;
 ensures A = lambda k: Z.({{#A(j) if k = i;

 #A(i) if k = j;
 #A(k) otherwise;}});

end Static_Array_Template;

154

Integer Specification

Concept Integer_Template;
 uses Integer_Theory, Std_Boolean_Fac;

 defines min_int: Z;
 defines max_int: Z;

 Constraint min_int <= 0 and 0 < max_int;

 Type Family Integer is modeled by Z;
 exemplar i;
 constraint min_int <= i <= max_int;
 initialization ensures i = 0;

 Operation Is_Zero(evaluates i: Integer): Boolean;
 ensures Is_Zero = (i = 0);

 Operation Is_Not_Zero(evaluates i: Integer): Boolean;
 ensures Is_Not_Zero = (i /= 0);

 Operation Increment(updates i: Integer);
 requires i + 1 <= max_int;
 ensures i = #i + 1;

 Operation Decrement(updates i: Integer);
 requires min_int <= i - 1;
 ensures i = #i - 1;

 Operation Less_Or_Equal(evaluates i, j: Integer): Boolean;
 ensures Less_Or_Equal = (i <= j);

 Operation Less(evaluates i, j: Integer): Boolean;
 ensures Less = (i < j);

 Operation Greater(evaluates i, j: Integer): Boolean;
 ensures Greater = (i > j);

 Operation Greater_Or_Equal(

evaluates i, j: Integer): Boolean;
 ensures Greater_Or_Equal = (i >= j);

 Operation Sum(evaluates i, j: Integer): Integer;
 requires min_int <= i + j <= max_int;
 ensures Sum = (i + j);

 Operation Negate(evaluates i: Integer): Integer;
 requires min_int <= -i <= max_int;
 ensures Negate = (-i);

155

 Operation Difference(evaluates i, j: Integer): Integer;
 requires min_int <= i - j <= max_int;
 ensures Difference = (i - j);

 Operation Product(evaluates i, j: Integer): Integer;
 requires min_int <= i * j <= max_int;
 ensures Product = (i * j);

 Operation Power(evaluates i, j: Integer): Integer;
 requires min_int <= i**j <= max_int;
 ensures Power = (i**j);

 Operation Divide(evaluates i, j: Integer;

replaces q: Integer);
 requires if (j <= 0) then

(j*(max_int + 1) < i and i < j*(min_int -1));
 ensures (|j*q| <= |i|) and (|i - j*q| < |j|);

 Operation Mod(evaluates i, j: Integer): Integer;
 requires j /= 0;
 ensures Mod = (i mod j);

 Operation Rem(evaluates i, j: Integer): Integer;

 Operation Quotient(evaluates i, j: Integer): Integer;

 Operation Div(evaluates i, j: Integer): Integer;
 requires j /= 0;
 ensures Div = (i/j);

 Operation Are_Equal(evaluates i, j: Integer): Boolean;
 ensures Are_Equal = (i = j);

 Operation Are_Not_Equal(evaluates i, j: Integer): Boolean;
 ensures Are_Not_Equal = (i /= j);

 Operation Replica(restores i: Integer): Integer;
 ensures Replica = (i);

 Operation Read(replaces i: Integer);

 Operation Write(evaluates i: Integer);

 Operation Write_Line(evaluates i: Integer);

 Operation Max_Int(): Integer;
 ensures Max_Int = max_int;

 Operation Min_Int(): Integer;
 ensures Min_Int = min_int;

 Operation Clear(clears i: Integer);

end Integer_Template;

156

Preemptable Queue Specification

Concept Preemptable_Queue_Template(type Entry;
evaluates Max_Length: Integer);

 uses Std_Integer_Fac, Modified_String_Theory;
 requires Max_Length > 0;

 Type Family P_Queue is modeled by Str(Entry);
 exemplar Q;
 constraint |Q| <= Max_Length;
 initialization ensures Q = empty_string;

 Operation Enqueue(alters E: Entry; reassigns Q: P_Queue);
 requires |Q| < Max_Length;
 ensures Q = #Q o <#E>;

 Operation Inject(alters E: Entry; updates Q: P_Queue);
 requires |Q| < Max_Length;
 ensures Q = <#E> o #Q;

 Operation Dequeue(replaces R: Entry; updates Q: P_Queue);
 requires |Q| > 0;
 ensures #Q = <R> o Q;

 Operation Swap_Last_Entry(updates E: Entry;

updates Q: P_Queue);
 requires |Q| > 0;
 ensures there exists Pre: Str(Entry) such that
 #Q = Pre o <E> and Q = Pre o <#E>;

 Operation Length(restores Q: P_Queue): Integer;
 ensures Length = (|Q|);

 Operation Rem_Capacity(restores Q: P_Queue): Integer;
 ensures Rem_Capacity = (Max_Length - |Q|);

 Operation Clear(clears Q: P_Queue);

end Preemptable_Queue_Template;

157

Search Enhancement to Preemptable Queue

Enhancement Searching_Capability for
Preemptable_Queue_Template;

 uses Std_Boolean_Fac;

 Operation Search_and_Move(restores E: Entry;

 updates Q: P_Queue;
 replaces Result: Boolean);

 ensures Is_Permutation(Q, #Q) and
 (Is_Substring(<E>, #Q) iff Result = true) and
 (Result = true implies Is_Prefix(<E>, Q));
end Searching_Capability;

Realization Searching_Realiz
(
 Operation Entries_Are_Equal

(restores E, F: Entry) : Boolean;
 ensures Entries_Are_Equal = (E = F);
)
 for Searching_Capability of Preemptable_Queue_Template;
 uses Std_Boolean_Fac;

 Procedure Search_and_Move (restores E: Entry;

updates Q: P_Queue;
replaces Result: Boolean);

 Var T: Entry;
 Var R: P_Queue;
 Result := False();
 While(Length(Q) > 0)
 changing Q, Result, T, R;
 maintaining Is_Permutation(Q o R, #Q) and
 (Is_Substring(<E>, R) iff Result = true) and
 (Result = true implies Is_Prefix(<E>, R));
 decreasing |Q|;
 do
 Dequeue(T, Q);
 if (Entries_Are_Equal(E, T)) then
 Inject(T, R);
 Result := True();
 else Enqueue(T, R);
 end;
 end;
 Q :=: R;
 end Search_and_Move;

end Searching_Realiz;

158

Appendix D

Alternate Stack Specifications with implementations and VCs

Example of a Stack Specified as a Natural Number

Concept Stack_Template(type Entry; evaluates Max_Depth:
Integer);
 uses Std_Integer_Fac;
 requires Max_Depth > 0;

 Type Family Stack is modeled by N;
 exemplar S;
 constraint S <= Max_Depth;
 initialization ensures S = 0;

 Operation Push(alters E: Entry; updates S: Stack);
 requires S < Max_Depth;
 ensures S = #S + 1;

 Operation Pop(replaces R: Entry; updates S: Stack);
 requires S /= 0;
 ensures #S = S + 1;

 Operation Depth(restores S: Stack): Integer;
 ensures Depth = (S);

 Operation Rem_Capacity(restores S: Stack): Integer;
 ensures Rem_Capacity = (Max_Depth - S);

 Operation Clear(clears S: Stack);

end Stack_Template;

Enhancement Reversal_Capability for Stack_Template;
 Operation Reverse(updates S: Stack);
 ensures S = #S;
end Reversal_Capability;

Realization Obvious_Rev_Realiz for Reversal_Capability of
Stack_Template;
 uses Std_Boolean_Fac, Std_Integer_Fac;

 Procedure Reverse(updates S: Stack);
 Var S_Reversed: Stack;
 Var Next_Entry: Entry;

 While (Is_Not_Zero(Depth(S)))
 changing S, S_Reversed, Next_Entry;

159

 maintaining #S = S_Reversed + S;
 decreasing S;
 do
 Pop(Next_Entry, S);
 Push(Next_Entry, S_Reversed);
 end;
 S :=: S_Reversed;
 end Reverse;
end Obvious_Rev_Realiz;

Stack Flip VCs generated with alternative Stack Spec:

//
// Generated by the RESOLVE Verifier, December 2011 version
// from file: Obvious_Rev_Realiz.rb
// on: Tue Mar 09 21:14:08 EST 2010
//

Free Variables: Max_Depth:Z, min_int:Z, max_int:Z, S:N,
?Next_Entry:Entry, ?S_Reversed:N, ?S:N, ??S:N,
Next_Entry:Entry, S_Reversed:N

VC: 0_1

(((min_int <= 0)and
(0 < max_int) and
(Max_Depth > 0)) and
(S <= Max_Depth))
======================>
S = (0 + S)

VC: 0_2

((((min_int <= 0)and
(0 < max_int) and
(Max_Depth > 0)) and
(S <= Max_Depth)) and
(S = (?S_Reversed + ??S) and
(??S /= 0 and
??S = (?S + 1))))
======================>
(?S_Reversed < Max_Depth)

VC: 0_3

((((min_int <= 0)and
(0 < max_int) and
(Max_Depth > 0)) and

160

(S <= Max_Depth)) and
(S = (?S_Reversed + ??S) and
(??S /= 0 and
??S = (?S + 1))))
======================>
(?S_Reversed + ??S) = ((?S_Reversed + 1) + ?S)

VC: 0_4

((((min_int <= 0)and
(0 < max_int) and
(Max_Depth > 0)) and
(S <= Max_Depth)) and
(S = (?S_Reversed + ??S) and
(??S /= 0 and
??S = (?S + 1))))
======================>
(?S < ??S)

Free Variables: Max_Depth:Z, min_int:Z, max_int:Z, S:N,
?P_val:N, ?S:N, ?S_Reversed:N, Next_Entry:Entry, S_Reversed:N

VC: 1_1

(((min_int <= 0)and
(0 < max_int) and
(Max_Depth > 0)) and
((S <= Max_Depth) and
(S = (?S_Reversed + ?S) and
?S = 0)))
======================>
?S_Reversed = (?S_Reversed + ?S)

161

Example of a Stack Specified as a String of Entries

Concept Stack_Template(type Entry; evaluates Max_Depth:
Integer);
 uses Std_Integer_Fac, String_Theory;
 requires Max_Depth > 0;

 Type Family Stack is modeled by Str(Entry);
 exemplar S;
 constraint |S| <= Max_Depth;
 initialization ensures S = empty_string;

 Operation Push(alters E: Entry; updates S: Stack);
 requires |S| < Max_Depth;
 ensures S = <#E> o #S;

 Operation Pop(replaces R: Entry; updates S: Stack);
 requires |S| /= 0;
 ensures #S = <R> o S;

 Operation Depth(restores S: Stack): Integer;
 ensures Depth = (|S|);

 Operation Rem_Capacity(restores S: Stack): Integer;
 ensures Rem_Capacity = (Max_Depth - |S|);

 Operation Clear(clears S: Stack);

end Stack_Template;

Enhancement Flipping_Capability for Stack_Template;

 Operation Flip(updates S: Stack);
 ensures S = Reverse(#S);

end Flipping_Capability;

Realization Obvious_Flip_Realiz for Flipping_Capability of
Stack_Template;
 uses Std_Boolean_Fac;

 Procedure Flip(updates S: Stack);
 Var S_Flipped: Stack;
 Var Next_Entry: Entry;
 While (Depth(S) /= 0)
 changing S, S_Flipped, Next_Entry;
 maintaining #S = Reverse(S_Flipped) o S;
 decreasing |S|;
 do
 Pop(Next_Entry, S);
 Push(Next_Entry, S_Flipped);

162

 end;
 S_Flipped :=: S;
 end Flip;
end Obvious_Flip_Realiz;

Stack Flip VCs generated with normal Stack Spec:

//
// Generated by the RESOLVE Verifier, December 2011 version
// from file: Obvious_Rev_Realiz.rb
// on: Mon Mar 08 20:29:54 EST 2010
//

Free Variables: Max_Depth:Z, min_int:Z, max_int:Z,
S:String_Theory.Str(Entry), ?Next_Entry:Entry,
?S_Reversed:String_Theory.Str(Entry),
?S:String_Theory.Str(Entry), ??S:String_Theory.Str(Entry),
Next_Entry:Entry, S_Reversed:String_Theory.Str(Entry)

VC: 0_1

(((min_int <= 0)and
(0 < max_int) and
(Max_Depth > 0)) and
(|S| <= Max_Depth))
======================>
S = (Rev(empty_string) o S)

VC: 0_2

((((min_int <= 0)and
(0 < max_int) and
(Max_Depth > 0)) and
(|S| <= Max_Depth)) and
(S = (Rev(?S_Reversed) o ??S) and
(|??S| /= 0 and
??S = (<?Next_Entry> o ?S))))
======================>
(|?S_Reversed| < Max_Depth)

VC: 0_3

((((min_int <= 0)and
(0 < max_int) and
(Max_Depth > 0)) and
(|S| <= Max_Depth)) and
(S = (Rev(?S_Reversed) o ??S) and

163

(|??S| /= 0 and
??S = (<?Next_Entry> o ?S))))
======================>
(Rev(?S_Reversed) o ??S) = (Rev((<?Next_Entry> o ?S_Reversed))
o ?S)

VC: 0_4

((((min_int <= 0)and
(0 < max_int) and
(Max_Depth > 0)) and
(|S| <= Max_Depth)) and
(S = (Rev(?S_Reversed) o ??S) and
(|??S| /= 0 and
??S = (<?Next_Entry> o ?S))))
======================>
(|?S| < |??S|)

Free Variables: Max_Depth:Z, min_int:Z, max_int:Z,
S:String_Theory.Str(Entry), ?P_val:N,
?S:String_Theory.Str(Entry),
?S_Reversed:String_Theory.Str(Entry), Next_Entry:Entry,
S_Reversed:String_Theory.Str(Entry)

VC: 1_1

(((min_int <= 0)and
(0 < max_int) and
(Max_Depth > 0)) and
((|S| <= Max_Depth) and
(S = (Rev(?S_Reversed) o ?S) and
|?S| = 0)))
======================>
?S_Reversed = Rev((Rev(?S_Reversed) o ?S))

164

Appendix E

Examples of VCs from Component-Level Verification

VCs for Circular_Array_Realiz of Queue_Template

//
//
// Generated by the RESOLVE Verifier, December 2011 version
// from file: Circular_Array_Realiz.rb
// on: Mon Dec 05 12:22:25 EST 2011
//

Free Variables:
Entry, Lower_Bound:Z, Upper_Bound:Z

VC: 0_1:
Requirement for Facility Declaration Rule for
_Contents_Array_Fac_1: Circular_Array_Realiz.rb(5)

Goal:
(Lower_Bound <= (Upper_Bound + 1))

Given:

1: (Lower_Bound <= (Upper_Bound + 1))

Free Variables:
Q:(Contents:_Contents_Array_Fac_1.Static_Array; Front:Integer;
Length:Integer), Lower_Bound:Z, Upper_Bound:Z,
Last_Char_Num:N, min_int:Z, max_int:Z, Max_Char_Str_Len:N

VC: 1_1:
Correspondence Rule for Queue: Circular_Array_Realiz.rb(12)

Goal:
(|Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
<= Max_Length)

Given:
1: (Max_Length > 0)
2: (min_int <= 0)

165

3: (0 < max_int)
4: (Last_Char_Num > 0)
5: (0 <= (Max_Length - 1 + 1))
6: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
7: (min_int <= 0) and (0 <= max_int)
8: (0 <= Q.Front) and (Q.Front < Max_Length)
9: (0 <= Q.Length) and (Q.Length <= Max_Length)

Free Variables:
Q:(Contents:_Contents_Array_Fac_1.Static_Array; Front:Integer;
Length:Integer), Conc.Q:Str(Entry), Q.Length:Z, Q.Front:Z,
Q.Contents:Z -> Entry

VC: 2_1:
Convention for Queue generated by intialization rule:
Circular_Array_Realiz.rb(9)

Goal:
(0 <= 0) and (0 < Max_Length)

Given:
1: for all i:Z, Entry.Is_Initial(Q.Contents(i))
2: (Max_Length > 0)

VC: 2_2:
Convention for Queue generated by intialization rule:
Circular_Array_Realiz.rb(9)

Goal:
(0 <= 0) and (0 <= Max_Length)

Given:
1: for all i:Z, Entry.Is_Initial(Q.Contents(i))
2: (Max_Length > 0)

VC: 2_3:
Initialization Rule for Queue: Circular_Array_Realiz.rb(4)

Goal:
Concatenation i:Integer where (0 <= i) and (i <= ((0 + 0) -
1)), <Q.Contents((i mod Max_Length))> = empty_string

Given:
1: for all i:Z, Entry.Is_Initial(Q.Contents(i))
2: (Max_Length > 0)
3: Conc.Q = Concatenation i:Integer where (0 <= i) and (i <=
((0 + 0) - 1)), <Q.Contents((i mod Max_Length))>

166

Free Variables:
Max_Length:Z, Lower_Bound:Z, Upper_Bound:Z, Last_Char_Num:N,
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.Q:Str(Entry),
E:Entry, Q:(Contents:_Contents_Array_Fac_1.Static_Array;
Front:Integer; Length:Integer),
Q':(Contents:_Contents_Array_Fac_1.Static_Array;
Front:Integer; Length:Integer), E':Entry

VC: 3_1:
Requires Clause of Swap_Entry in Procedure Enqueue:
Circular_Array_Realiz.rb(17)

Goal:
(0 <= (Q.Front + Q.Length) mod Max_Length))

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: (|Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
< Max_Length)

VC: 3_2:
Requires Clause of Swap_Entry in Procedure Enqueue:
Circular_Array_Realiz.rb(17)

Goal:
(Q.Front + Q.Length) mod Max_Length) <= Max_Length - 1)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)

167

7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: (|Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
< Max_Length)

VC: 3_3:
Requires Clause of Q.Length + 1 in Procedure Enqueue:
Circular_Array_Realiz.rb(18)

Goal:
(min_int <= (Q.Length + 1)) and ((Q.Length + 1) <= max_int)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: (|Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
< Max_Length)
13: E' = Q.Contents(((Q.Front + Q.Length) mod Max_Length))
14: Q'.Contents = lambda j: Z ({{E if j = (Q.Front +
Q.Length) mod Max_Length)
Q.Contents(j) otherwise
}})

VC: 3_4:
Convention for Queue generated by intialization rule:
Circular_Array_Realiz.rb(9)

Goal:
(0 <= Q.Front) and (Q.Front < Max_Length)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)

168

4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: (|Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
< Max_Length)
13: E' = Q.Contents(((Q.Front + Q.Length) mod Max_Length))
14: Q'.Contents = lambda j: Z ({{E if j = (Q.Front +
Q.Length) mod Max_Length)
Q.Contents(j) otherwise
}})

VC: 3_5:
Convention for Queue generated by intialization rule:
Circular_Array_Realiz.rb(9)

Goal:
(0 <= (Q.Length + 1)) and ((Q.Length + 1) <= Max_Length)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: (|Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
< Max_Length)
13: E' = Q.Contents(((Q.Front + Q.Length) mod Max_Length))
14: Q'.Contents = lambda j: Z ({{E if j = (Q.Front +
Q.Length) mod Max_Length)
Q.Contents(j) otherwise
}})

VC: 3_6:
Ensures Clause of Enqueue: Circular_Array_Realiz.rb(19)

169

Goal:
Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + (Q.Length + 1)) - 1)), <Q'.Contents((i mod
Max_Length))> = (Concatenation i:Integer where (Q.Front <= i)
and (i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))> o <E>)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: (|Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
< Max_Length)
13: E' = Q.Contents(((Q.Front + Q.Length) mod Max_Length))
14: Q'.Contents = lambda j: Z ({{E if j = (Q.Front +
Q.Length) mod Max_Length)
Q.Contents(j) otherwise
}})

Free Variables:
Max_Length:Z, Lower_Bound:Z, Upper_Bound:Z, Last_Char_Num:N,
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.Q:Str(Entry),
R:Entry, Q:(Contents:_Contents_Array_Fac_1.Static_Array;
Front:Integer; Length:Integer),
Q':(Contents:_Contents_Array_Fac_1.Static_Array;
Front:Integer; Length:Integer), R':Entry

VC: 4_1:
Requires Clause of Swap_Entry in Procedure Dequeue:
Circular_Array_Realiz.rb(22)

Goal:
(0 <= Q.Front)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)

170

4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: Entry.is_initial(R)
13: |Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
/= 0

VC: 4_2:
Requires Clause of Swap_Entry in Procedure Dequeue:
Circular_Array_Realiz.rb(22)

Goal:
(Q.Front <= Max_Length - 1)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: Entry.is_initial(R)
13: |Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
/= 0

VC: 4_3:
Requires Clause of Q.Front + 1 % Max_Length in Procedure
Dequeue: Circular_Array_Realiz.rb(23)

Goal:
Max_Length /= 0

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)

171

4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: Entry.is_initial(R)
13: |Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
/= 0
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front
Q.Contents(j) otherwise
}})

VC: 4_4:
Requires Clause of Q.Length - 1 in Procedure Dequeue:
Circular_Array_Realiz.rb(24)

Goal:
(min_int <= (Q.Length - 1)) and ((Q.Length - 1) <= max_int)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: Entry.is_initial(R)
13: |Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
/= 0
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front
Q.Contents(j) otherwise
}})

VC: 4_5:
Convention for Queue generated by intialization rule:
Circular_Array_Realiz.rb(9)

Goal:

172

(0 <= ((Q.Front + 1) mod Max_Length)) and (((Q.Front + 1) mod
Max_Length) < Max_Length)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: Entry.is_initial(R)
13: |Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
/= 0
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front
Q.Contents(j) otherwise
}})

VC: 4_6:
Convention for Queue generated by intialization rule:
Circular_Array_Realiz.rb(9)

Goal:
(0 <= (Q.Length - 1)) and ((Q.Length - 1) <= Max_Length)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: Entry.is_initial(R)
13: |Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
/= 0
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front
Q.Contents(j) otherwise
}})

173

VC: 4_7:
Ensures Clause of Dequeue: Circular_Array_Realiz.rb(25)

Goal:
Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>
= (<Q.Contents(Q.Front)> o Concatenation i:Integer where
(((Q.Front + 1) mod Max_Length) <= i) and (i <= ((((Q.Front +
1) mod Max_Length) + (Q.Length - 1)) - 1)), <Q'.Contents((i
mod Max_Length))>)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: Entry.is_initial(R)
13: |Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>|
/= 0
14: Q'.Contents = lambda j: Z ({{R if j = Q.Front
Q.Contents(j) otherwise
}})

Free Variables:
Max_Length:Z, Lower_Bound:Z, Upper_Bound:Z, Last_Char_Num:N,
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.Q:Str(Entry),
Q:(Contents:_Contents_Array_Fac_1.Static_Array; Front:Integer;
Length:Integer), Length:Z

VC: 5_1:
Convention for Queue generated by intialization rule modified
by Variable Declaration rule: Circular_Array_Realiz.rb(9)

Goal:
(0 <= Q.Front) and (Q.Front < Max_Length)

Given:

174

1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: (min_int <= Length) and (Length <= max_int)

VC: 5_2:
Convention for Queue generated by intialization rule modified
by Variable Declaration rule: Circular_Array_Realiz.rb(9)

Goal:
(0 <= Q.Length) and (Q.Length <= Max_Length)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: (min_int <= Length) and (Length <= max_int)

VC: 5_3:
Ensures Clause of Length modified by Variable Declaration
rule: Circular_Array_Realiz.rb(30)

Goal:
Q.Length = |Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>|

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))

175

5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: (min_int <= Length) and (Length <= max_int)

VC: 5_4:
Ensures Clause of Length modified by Variable Declaration
rule: Circular_Array_Realiz.rb(30)

Goal:
Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>
= Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>
12: (min_int <= Length) and (Length <= max_int)

Free Variables:
Max_Length:Z, Lower_Bound:Z, Upper_Bound:Z, Last_Char_Num:N,
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.Q:Str(Entry),
Q:(Contents:_Contents_Array_Fac_1.Static_Array; Front:Integer;
Length:Integer), Rem_Capacity:Z

VC: 6_1:
Requires Clause of Max_Length - Q.Length in Procedure
Rem_Capacity: Circular_Array_Realiz.rb(33)

Goal:

176

(min_int <= (Max_Length - Q.Length)) and ((Max_Length -
Q.Length) <= max_int)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>

VC: 6_2:
Convention for Queue generated by intialization rule modified
by Variable Declaration rule: Circular_Array_Realiz.rb(9)

Goal:
(0 <= Q.Front) and (Q.Front < Max_Length)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>

VC: 6_3:
Convention for Queue generated by intialization rule modified
by Variable Declaration rule: Circular_Array_Realiz.rb(9)

Goal:
(0 <= Q.Length) and (Q.Length <= Max_Length)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))

177

5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>

VC: 6_4:
Ensures Clause of Rem_Capacity: Circular_Array_Realiz.rb(34)

Goal:
(Max_Length - Q.Length) = (Max_Length - |Concatenation
i:Integer where (Q.Front <= i) and (i <= ((Q.Front + Q.Length)
- 1)), <Q.Contents((i mod Max_Length))>|)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>

VC: 6_5:
Ensures Clause of Rem_Capacity: Circular_Array_Realiz.rb(34)

Goal:
Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>
= Concatenation i:Integer where (Q.Front <= i) and (i <=
((Q.Front + Q.Length) - 1)), <Q.Contents((i mod Max_Length))>

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)

178

10: (0 <= Q.Length) and (Q.Length <= Max_Length)
11: Conc.Q = Concatenation i:Integer where (Q.Front <= i) and
(i <= ((Q.Front + Q.Length) - 1)), <Q.Contents((i mod
Max_Length))>

Free Variables:
Max_Length:Z, Lower_Bound:Z, Upper_Bound:Z, Last_Char_Num:N,
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.Q:Str(Entry),
Q:(Contents:_Contents_Array_Fac_1.Static_Array; Front:Integer;
Length:Integer)

VC: 7_1:
Convention for Queue generated by intialization rule modified
by Variable Declaration rule: Circular_Array_Realiz.rb(9)

Goal:
(0 <= 0) and (0 < Max_Length)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)

VC: 7_2:
Convention for Queue generated by intialization rule modified
by Variable Declaration rule: Circular_Array_Realiz.rb(9)

Goal:
(0 <= 0) and (0 <= Max_Length)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)

179

VC: 7_3:
Ensures Clause of Clear: Circular_Array_Realiz.rb(38)

Goal:
true

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)

VC: 7_4:
Ensures Clause of Clear: Circular_Array_Realiz.rb(38)

Goal:
Concatenation i:Integer where (0 <= i) and (i <= ((0 + 0) -
1)), <Q.Contents((i mod Max_Length))> = empty_string

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (0 <= (Max_Length - 1 + 1))
5: (min_int <= Max_Length - 1) and (Max_Length - 1 <= max_int)
6: (min_int <= 0) and (0 <= max_int)
7: (Max_Length > 0)
8: (min_int <= Max_Length) and (Max_Length <= max_int)
9: (0 <= Q.Front) and (Q.Front < Max_Length)
10: (0 <= Q.Length) and (Q.Length <= Max_Length)

180

VCs for Selection_Sort_Realization for Sorting_Capability of Queue_Template

//
// Generated by the RESOLVE Verifier, December 2011 version
// from file: Selection_Sort_Realization.rb
// on: Sat Oct 15 19:28:23 EDT 2011
//

Free Variables:
Max_Length:Z, min_int:Z, max_int:Z, Last_Char_Num:N,
Max_Char_Str_Len:N, Q:Modified_String_Theory.Str(Entry),
Min:Entry, Considered_Entry:Entry,
New_Queue:Modified_String_Theory.Str(Entry),
Considered_Entry':Entry,
New_Queue':Modified_String_Theory.Str(Entry),
Q':Modified_String_Theory.Str(Entry),
Q'':Modified_String_Theory.Str(Entry), Min':Entry,
Min'':Entry, Q''':Modified_String_Theory.Str(Entry)

VC: 0_1:
Requires Clause of Dequeue in Procedure Remove_Min modified by
Variable Declaration rule: Selection_Sort_Realization.rb(18)

Goal:
|Q| /= 0

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0

VC: 0_2:
Base Case of the Invariant of While Statement in Procedure
Remove_Min modified by Variable Declaration rule:
Selection_Sort_Realization.rb(22)

Goal:
Is_Permutation(((empty_string o Q''') o <Min''>), Q)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)

181

4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0
10: Q = (<Min''> o Q''')

VC: 0_3:
Base Case of the Invariant of While Statement in Procedure
Remove_Min modified by Variable Declaration rule:
Selection_Sort_Realization.rb(22)

Goal:
Is_Universally_Related(LEQV, <Min''>, empty_string)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0
10: Q = (<Min''> o Q''')

VC: 0_4:
Requires Clause of Dequeue in Procedure Remove_Min modified by
Variable Declaration rule: Selection_Sort_Realization.rb(26)

Goal:
|Q''| /= 0

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0
10: Q = (<Min''> o Q''')
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q)
12: Is_Universally_Related(LEQV, <Min'>, New_Queue')
13: (|Q''| > 0)

VC: 0_5:

182

Requires Clause of Enqueue in Procedure Remove_Min , If "if"
condition at Selection_Sort_Realization.rb(28) is true
modified by Variable Declaration rule:
Selection_Sort_Realization.rb(32)

Goal:
(|New_Queue'| < Max_Length)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0
10: Q = (<Min''> o Q''')
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q)
12: Is_Universally_Related(LEQV, <Min'>, New_Queue')
13: (|Q''| > 0)
14: Q'' = (<Considered_Entry'> o Q')
15: LEQV(Considered_Entry', Min')

VC: 0_6:
Inductive Case of Invariant of While Statement in Procedure
Remove_Min , If "if" condition at
Selection_Sort_Realization.rb(28) is true modified by Variable
Declaration rule: Selection_Sort_Realization.rb(22)

Goal:
Is_Permutation((((New_Queue' o <Min'>) o Q') o
<Considered_Entry'>), Q)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0
10: Q = (<Min''> o Q''')
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q)
12: Is_Universally_Related(LEQV, <Min'>, New_Queue')
13: (|Q''| > 0)
14: Q'' = (<Considered_Entry'> o Q')
15: LEQV(Considered_Entry', Min')

183

VC: 0_7:
Inductive Case of Invariant of While Statement in Procedure
Remove_Min , If "if" condition at
Selection_Sort_Realization.rb(28) is true modified by Variable
Declaration rule: Selection_Sort_Realization.rb(22)

Goal:
Is_Universally_Related(LEQV, <Considered_Entry'>, (New_Queue'
o <Min'>))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0
10: Q = (<Min''> o Q''')
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q)
12: Is_Universally_Related(LEQV, <Min'>, New_Queue')
13: (|Q''| > 0)
14: Q'' = (<Considered_Entry'> o Q')
15: LEQV(Considered_Entry', Min')

VC: 0_8:
Termination of While Statement in Procedure Remove_Min , If
"if" condition at Selection_Sort_Realization.rb(28) is true
modified by Variable Declaration rule:
Selection_Sort_Realization.rb(24)

Goal:
(|Q'| < |Q''|)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0
10: Q = (<Min''> o Q''')
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q)
12: Is_Universally_Related(LEQV, <Min'>, New_Queue')
13: (|Q''| > 0)
14: Q'' = (<Considered_Entry'> o Q')
15: LEQV(Considered_Entry', Min')

184

Free Variables:
Max_Length:Z, min_int:Z, max_int:Z, Last_Char_Num:N,
Max_Char_Str_Len:N, Q:Modified_String_Theory.Str(Entry),
Min:Entry, Considered_Entry:Entry,
New_Queue:Modified_String_Theory.Str(Entry),
Considered_Entry':Entry,
New_Queue':Modified_String_Theory.Str(Entry),
Q':Modified_String_Theory.Str(Entry),
Q'':Modified_String_Theory.Str(Entry), Min':Entry,
Min'':Entry, Q''':Modified_String_Theory.Str(Entry)

VC: 1_1:
Requires Clause of Dequeue in Procedure Remove_Min modified by
Variable Declaration rule: Selection_Sort_Realization.rb(18)

Goal:
|Q| /= 0

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0

VC: 1_2:
Base Case of the Invariant of While Statement in Procedure
Remove_Min modified by Variable Declaration rule modified by
Variable Declaration rule: Selection_Sort_Realization.rb(22)

Goal:
Is_Permutation(((empty_string o Q''') o <Min''>), Q)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0
10: Q = (<Min''> o Q''')

185

VC: 1_3:
Base Case of the Invariant of While Statement in Procedure
Remove_Min modified by Variable Declaration rule modified by
Variable Declaration rule: Selection_Sort_Realization.rb(22)

Goal:
Is_Universally_Related(LEQV, <Min''>, empty_string)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0
10: Q = (<Min''> o Q''')

VC: 1_4:
Requires Clause of Dequeue in Procedure Remove_Min modified by
Variable Declaration rule: Selection_Sort_Realization.rb(26)

Goal:
|Q''| /= 0

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0
10: Q = (<Min''> o Q''')
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q)
12: Is_Universally_Related(LEQV, <Min'>, New_Queue')
13: (|Q''| > 0)

VC: 1_5:
Requires Clause of Enqueue in Procedure Remove_Min , If "if"
condition at Selection_Sort_Realization.rb(28) is false
modified by Variable Declaration rule:
Selection_Sort_Realization.rb(32)

Goal:
(|New_Queue'| < Max_Length)

186

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0
10: Q = (<Min''> o Q''')
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q)
12: Is_Universally_Related(LEQV, <Min'>, New_Queue')
13: (|Q''| > 0)
14: Q'' = (<Considered_Entry'> o Q')
15: not(LEQV(Considered_Entry', Min'))

VC: 1_6:
Inductive Case of Invariant of While Statement in Procedure
Remove_Min , If "if" condition at
Selection_Sort_Realization.rb(28) is true modified by Variable
Declaration rule , If "if" condition at
Selection_Sort_Realization.rb(28) is false modified by
Variable Declaration rule: Selection_Sort_Realization.rb(22)

Goal:
Is_Permutation((((New_Queue' o <Considered_Entry'>) o Q') o
<Min'>), Q)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0
10: Q = (<Min''> o Q''')
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q)
12: Is_Universally_Related(LEQV, <Min'>, New_Queue')
13: (|Q''| > 0)
14: Q'' = (<Considered_Entry'> o Q')
15: not(LEQV(Considered_Entry', Min'))

VC: 1_7:
Inductive Case of Invariant of While Statement in Procedure
Remove_Min , If "if" condition at
Selection_Sort_Realization.rb(28) is true modified by Variable
Declaration rule , If "if" condition at

187

Selection_Sort_Realization.rb(28) is false modified by
Variable Declaration rule: Selection_Sort_Realization.rb(22)

Goal:
Is_Universally_Related(LEQV, <Min'>, (New_Queue' o
<Considered_Entry'>))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0
10: Q = (<Min''> o Q''')
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q)
12: Is_Universally_Related(LEQV, <Min'>, New_Queue')
13: (|Q''| > 0)
14: Q'' = (<Considered_Entry'> o Q')
15: not(LEQV(Considered_Entry', Min'))

VC: 1_8:
Termination of While Statement in Procedure Remove_Min , If
"if" condition at Selection_Sort_Realization.rb(28) is false
modified by Variable Declaration rule:
Selection_Sort_Realization.rb(24)

Goal:
(|Q'| < |Q''|)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0
10: Q = (<Min''> o Q''')
11: Is_Permutation(((New_Queue' o Q'') o <Min'>), Q)
12: Is_Universally_Related(LEQV, <Min'>, New_Queue')
13: (|Q''| > 0)
14: Q'' = (<Considered_Entry'> o Q')
15: not(LEQV(Considered_Entry', Min'))

188

Free Variables:
Max_Length:Z, min_int:Z, max_int:Z, Last_Char_Num:N,
Max_Char_Str_Len:N, Q:Modified_String_Theory.Str(Entry),
Min:Entry, Considered_Entry:Entry,
New_Queue:Modified_String_Theory.Str(Entry), P_val':N,
Q':Modified_String_Theory.Str(Entry), Min':Entry,
New_Queue':Modified_String_Theory.Str(Entry), Min'':Entry,
Q'':Modified_String_Theory.Str(Entry)

VC: 2_1:
Requires Clause of Dequeue in Procedure Remove_Min:
Selection_Sort_Realization.rb(18)

Goal:
|Q| /= 0

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0

VC: 2_2:
Ensures Clause of Remove_Min:
Selection_Sort_Realization.rb(12)

Goal:
Is_Permutation((New_Queue' o <Min'>), Q)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0
10: Q = (<Min''> o Q'')
11: Is_Permutation(((New_Queue' o Q') o <Min'>), Q)
12: Is_Universally_Related(LEQV, <Min'>, New_Queue')
13: not((|Q'| > 0))

VC: 2_3:

189

Ensures Clause of Remove_Min:
Selection_Sort_Realization.rb(12)

Goal:
Is_Universally_Related(LEQV, <Min'>, New_Queue')

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0
10: Q = (<Min''> o Q'')
11: Is_Permutation(((New_Queue' o Q') o <Min'>), Q)
12: Is_Universally_Related(LEQV, <Min'>, New_Queue')
13: not((|Q'| > 0))

VC: 2_4:
Ensures Clause of Remove_Min:
Selection_Sort_Realization.rb(12)

Goal:
|New_Queue'| = (|Q| - 1)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: Is_Total_Preordering(LEQV)
7: Entry.is_initial(Min)
8: (|Q| <= Max_Length)
9: |Q| /= 0
10: Q = (<Min''> o Q'')
11: Is_Permutation(((New_Queue' o Q') o <Min'>), Q)
12: Is_Universally_Related(LEQV, <Min'>, New_Queue')
13: not((|Q'| > 0))

Free Variables:
Max_Length:Z, min_int:Z, max_int:Z, Last_Char_Num:N,
Max_Char_Str_Len:N, Q:Modified_String_Theory.Str(Entry),
Sorted_Queue:Modified_String_Theory.Str(Entry),
Lowest_Remaining:Entry, Lowest_Remaining':Entry,
Sorted_Queue':Modified_String_Theory.Str(Entry),

190

Q':Modified_String_Theory.Str(Entry),
Q'':Modified_String_Theory.Str(Entry)

VC: 3_1:
Base Case of the Invariant of While Statement in Procedure
Sort modified by Variable Declaration rule:
Selection_Sort_Realization.rb(45)

Goal:
Is_Permutation((Q o empty_string), Q)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: (|Q| <= Max_Length)

VC: 3_2:
Base Case of the Invariant of While Statement in Procedure
Sort modified by Variable Declaration rule:
Selection_Sort_Realization.rb(45)

Goal:
Is_Conformal_With(LEQV, empty_string)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: (|Q| <= Max_Length)

VC: 3_3:
Base Case of the Invariant of While Statement in Procedure
Sort modified by Variable Declaration rule:
Selection_Sort_Realization.rb(45)

Goal:
Is_Universally_Related(LEQV, empty_string, Q)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: (|Q| <= Max_Length)

191

VC: 3_4:
Requires Clause of Remove_Min in Procedure Sort modified by
Variable Declaration rule: Selection_Sort_Realization.rb(49)

Goal:
|Q''| /= 0

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: (|Q| <= Max_Length)
7: Is_Permutation((Q'' o Sorted_Queue'), Q)
8: Is_Conformal_With(LEQV, Sorted_Queue')
9: Is_Universally_Related(LEQV, Sorted_Queue', Q'')
10: (|Q''| > 0)

VC: 3_5:
Requires Clause of Enqueue in Procedure Sort modified by
Variable Declaration rule: Selection_Sort_Realization.rb(50)

Goal:
(|Sorted_Queue'| < Max_Length)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: (|Q| <= Max_Length)
7: Is_Permutation((Q'' o Sorted_Queue'), Q)
8: Is_Conformal_With(LEQV, Sorted_Queue')
9: Is_Universally_Related(LEQV, Sorted_Queue', Q'')
10: (|Q''| > 0)
11: Is_Permutation((Q' o <Lowest_Remaining'>), Q'')
12: Is_Universally_Related(LEQV, <Lowest_Remaining'>, Q')
13: |Q'| = (|Q''| - 1)

VC: 3_6:
Inductive Case of Invariant of While Statement in Procedure
Sort modified by Variable Declaration rule:
Selection_Sort_Realization.rb(45)

Goal:
Is_Permutation((Q' o (Sorted_Queue' o <Lowest_Remaining'>)),
Q)

192

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: (|Q| <= Max_Length)
7: Is_Permutation((Q'' o Sorted_Queue'), Q)
8: Is_Conformal_With(LEQV, Sorted_Queue')
9: Is_Universally_Related(LEQV, Sorted_Queue', Q'')
10: (|Q''| > 0)
11: Is_Permutation((Q' o <Lowest_Remaining'>), Q'')
12: Is_Universally_Related(LEQV, <Lowest_Remaining'>, Q')
13: |Q'| = (|Q''| - 1)

VC: 3_7:
Inductive Case of Invariant of While Statement in Procedure
Sort modified by Variable Declaration rule:
Selection_Sort_Realization.rb(45)

Goal:
Is_Conformal_With(LEQV, (Sorted_Queue' o <Lowest_Remaining'>))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: (|Q| <= Max_Length)
7: Is_Permutation((Q'' o Sorted_Queue'), Q)
8: Is_Conformal_With(LEQV, Sorted_Queue')
9: Is_Universally_Related(LEQV, Sorted_Queue', Q'')
10: (|Q''| > 0)
11: Is_Permutation((Q' o <Lowest_Remaining'>), Q'')
12: Is_Universally_Related(LEQV, <Lowest_Remaining'>, Q')
13: |Q'| = (|Q''| - 1)

VC: 3_8:
Inductive Case of Invariant of While Statement in Procedure
Sort modified by Variable Declaration rule:
Selection_Sort_Realization.rb(45)

Goal:
Is_Universally_Related(LEQV, (Sorted_Queue' o
<Lowest_Remaining'>), Q')

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)

193

5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: (|Q| <= Max_Length)
7: Is_Permutation((Q'' o Sorted_Queue'), Q)
8: Is_Conformal_With(LEQV, Sorted_Queue')
9: Is_Universally_Related(LEQV, Sorted_Queue', Q'')
10: (|Q''| > 0)
11: Is_Permutation((Q' o <Lowest_Remaining'>), Q'')
12: Is_Universally_Related(LEQV, <Lowest_Remaining'>, Q')
13: |Q'| = (|Q''| - 1)

VC: 3_9:
Termination of While Statement in Procedure Sort modified by
Variable Declaration rule: Selection_Sort_Realization.rb(47)

Goal:
(|Q'| < |Q''|)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: (|Q| <= Max_Length)
7: Is_Permutation((Q'' o Sorted_Queue'), Q)
8: Is_Conformal_With(LEQV, Sorted_Queue')
9: Is_Universally_Related(LEQV, Sorted_Queue', Q'')
10: (|Q''| > 0)
11: Is_Permutation((Q' o <Lowest_Remaining'>), Q'')
12: Is_Universally_Related(LEQV, <Lowest_Remaining'>, Q')
13: |Q'| = (|Q''| - 1)

Free Variables:
Max_Length:Z, min_int:Z, max_int:Z, Last_Char_Num:N,
Max_Char_Str_Len:N, Q:Modified_String_Theory.Str(Entry),
Sorted_Queue:Modified_String_Theory.Str(Entry),
Lowest_Remaining:Entry, P_val':N,
Q':Modified_String_Theory.Str(Entry),
Sorted_Queue':Modified_String_Theory.Str(Entry)

VC: 4_1:
Ensures Clause of Sort: Selection_Sort_Realization.rb(54)

Goal:
Is_Conformal_With(LEQV, Sorted_Queue')

Given:
1: (Last_Char_Num > 0)

194

2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: (|Q| <= Max_Length)
7: Is_Permutation((Q' o Sorted_Queue'), Q)
8: Is_Conformal_With(LEQV, Sorted_Queue')
9: Is_Universally_Related(LEQV, Sorted_Queue', Q')
10: not((|Q'| > 0))

VC: 4_2:
Ensures Clause of Sort: Selection_Sort_Realization.rb(54)

Goal:
Is_Permutation(Q, Sorted_Queue')

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Max_Length > 0)
5: (min_int <= Max_Length) and (Max_Length <= max_int)
6: (|Q| <= Max_Length)
7: Is_Permutation((Q' o Sorted_Queue'), Q)
8: Is_Conformal_With(LEQV, Sorted_Queue')
9: Is_Universally_Related(LEQV, Sorted_Queue', Q')
10: not((|Q'| > 0))

195

VCs for Selection_Sort_Realization for Sorting_Capability of Queue_Template

//
// Generated by the RESOLVE Verifier, December 2011 version
// from file: Sort_Job_Queue.fa
// on: Fri Nov 11 11:49:10 EST 2011
//

Free Variables:
min_int:Z, max_int:Z, Last_Char_Num:N, Max_Char_Str_Len:N,
S1:(Name:Char_Str; Priority:Integer), S2:(Name:Char_Str;
Priority:Integer)

VC: 0_1:
Ensures Clause of Priority_Order: Sort_Job_Queue.fa(15)

Goal:
(S1.Priority <= S2.Priority) = Priority_LEQV(S1, S2)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)

VC: 0_2:
Ensures Clause of Priority_Order: Sort_Job_Queue.fa(15)

Goal:
S1 = S1

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)

VC: 0_3:
Ensures Clause of Priority_Order: Sort_Job_Queue.fa(15)

Goal:
S2 = S2

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)

196

Free Variables:

VC: 1_1:
Requires from Compare: Selection_Sort_Realization.rb(3)

Goal:
true

Given:

Free Variables:

VC: 2_1:
Ensures from QF: Sort_Job_Queue.fa(13)

Goal:
Priority_LEQV(S1, S2) = Priority_LEQV(S1, S2)

Given:
1: Priority_Order = Priority_LEQV(S1, S2)
2: #S1 = S1
3: #S2 = S2

VC: 2_2:
Ensures from QF: Sort_Job_Queue.fa(13)

Goal:
S1 = S1

Given:
1: Priority_Order = Priority_LEQV(S1, S2)
2: #S1 = S1
3: #S2 = S2

VC: 2_3:
Ensures from QF: Sort_Job_Queue.fa(13)

Goal:
S2 = S2

Given:

197

1: Priority_Order = Priority_LEQV(S1, S2)
2: #S1 = S1
3: #S2 = S2

Free Variables:
Entry, Max_Length:Z

VC: 3_1:
Requirement for Facility Declaration Rule for QF:
Sorting_Capability.en(5)

Goal:
Is_Total_Preordering(Priority_LEQV)

Given:

VC: 3_2:
Facility Declaration Rule: Queue_Template.co(42)

Goal:
(10 > 0)

Given:

1: true

Free Variables:
min_int:Z, max_int:Z, Last_Char_Num:N, Max_Char_Str_Len:N,
S1:(Name:Char_Str; Priority:Integer), S2:(Name:Char_Str;
Priority:Integer), S3:(Name:Char_Str; Priority:Integer),
Temp:(Name:Char_Str; Priority:Integer),
Q:Modified_String_Theory.Str(Entry), Temp':(Name:Char_Str;
Priority:Integer), Q':Modified_String_Theory.Str(Entry),
Temp'':(Name:Char_Str; Priority:Integer),
Q'':Modified_String_Theory.Str(Entry), Temp''':(Name:Char_Str;
Priority:Integer), Q''':Modified_String_Theory.Str(Entry),
Q'''':Modified_String_Theory.Str(Entry), S3':(Name:Char_Str;
Priority:Integer), Q''''':Modified_String_Theory.Str(Entry),
S2':(Name:Char_Str; Priority:Integer), S1':(Name:Char_Str;
Priority:Integer)

VC: 4_1:

198

Requires Clause of Enqueue in Procedure Main modified by
Variable Declaration rule: Sort_Job_Queue.fa(34)

Goal:
(|empty_string| < 10)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: Job_Info.is_initial(S1)
5: Job_Info.is_initial(S2)
6: Job_Info.is_initial(S3)

VC: 4_2:
Requires Clause of Enqueue in Procedure Main modified by
Variable Declaration rule: Sort_Job_Queue.fa(35)

Goal:
(|(empty_string o <S1>)| < 10)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: Job_Info.is_initial(S1)
5: Job_Info.is_initial(S2)
6: Job_Info.is_initial(S3)

VC: 4_3:
Requires Clause of Enqueue in Procedure Main modified by
Variable Declaration rule: Sort_Job_Queue.fa(36)

Goal:
(|(empty_string o <S1>) o <S2>)| < 10)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: Job_Info.is_initial(S1)
5: Job_Info.is_initial(S2)
6: Job_Info.is_initial(S3)

VC: 4_4:
Requires Clause of Dequeue in Procedure Main modified by
Variable Declaration rule: Sort_Job_Queue.fa(38)

Goal:
|Q''''| /= 0

199

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: Job_Info.is_initial(S1)
5: Job_Info.is_initial(S2)
6: Job_Info.is_initial(S3)
7: Is_Conformal_With(LEQV, Q'''')
8: Is_Permutation((((empty_string o <S1>) o <S2>) o <S3>),
Q'''')

VC: 4_5:
Requires Clause of Dequeue in Procedure Main modified by
Variable Declaration rule: Sort_Job_Queue.fa(40)

Goal:
|Q'''| /= 0

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: Job_Info.is_initial(S1)
5: Job_Info.is_initial(S2)
6: Job_Info.is_initial(S3)
7: Is_Conformal_With(LEQV, Q'''')
8: Is_Permutation((((empty_string o <S1>) o <S2>) o <S3>),
Q'''')
9: Q'''' = (<Temp'''> o Q''')

VC: 4_6:
Requires Clause of Dequeue in Procedure Main modified by
Variable Declaration rule: Sort_Job_Queue.fa(42)

Goal:
|Q''| /= 0

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: Job_Info.is_initial(S1)
5: Job_Info.is_initial(S2)
6: Job_Info.is_initial(S3)
7: Is_Conformal_With(LEQV, Q'''')
8: Is_Permutation((((empty_string o <S1>) o <S2>) o <S3>),
Q'''')
9: Q'''' = (<Temp'''> o Q''')
10: Q''' = (<Temp''> o Q'')

VC: 4_7:

200

Ensures Clause of Main modified by Variable Declaration rule:
Sort_Job_Queue.fa(25)

Goal:
true

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: Job_Info.is_initial(S1)
5: Job_Info.is_initial(S2)
6: Job_Info.is_initial(S3)
7: Is_Conformal_With(LEQV, Q'''')
8: Is_Permutation((((empty_string o <S1>) o <S2>) o <S3>),
Q'''')
9: Q'''' = (<Temp'''> o Q''')
10: Q''' = (<Temp''> o Q'')
11: Q'' = (<Temp'> o Q')

201

Appendix F

Benchmark VCs

Benchmark #1: Adding and Multiplying Numbers

//
// Generated by the RESOLVE Verifier, December 2011 version
// from file: Add_And_Multiply_Realiz.rb
// on: Fri Oct 21 11:52:13 EDT 2011
//

Free Variables:
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Last_Char_Num:N,
i:Z, j:Z, Add:Z, zero:Z, P_val:N, j':Z, j'':Z, Add':Z

VC: 0_1:
Requires Clause of Increment in Procedure Add modified by
Variable Declaration rule: Add_And_Multiply_Realiz.rb(9)

Goal:
(i + 1) <= max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= j) and (j <= max_int)
5: (min_int <= i) and (i <= max_int)
6: (min_int <= (i + j))
7: (i + j) <= max_int)
8: P_val = |j|
9: (j > 0)

VC: 0_2:
Requires Clause of Decrement in Procedure Add modified by
Variable Declaration rule: Add_And_Multiply_Realiz.rb(10)

Goal:
(min_int <= (j - 1))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= j) and (j <= max_int)
5: (min_int <= i) and (i <= max_int)

202

6: (min_int <= (i + j))
7: (i + j) <= max_int)
8: P_val = |j|
9: (j > 0)

VC: 0_3:
Requires Clause of Add in Procedure Add modified by Variable
Declaration rule: Add_And_Multiply_Realiz.rb(11)

Goal:
(min_int <= (i + 1) + (j - 1)))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= j) and (j <= max_int)
5: (min_int <= i) and (i <= max_int)
6: (min_int <= (i + j))
7: (i + j) <= max_int)
8: P_val = |j|
9: (j > 0)

VC: 0_4:
Requires Clause of Add in Procedure Add modified by Variable
Declaration rule: Add_And_Multiply_Realiz.rb(11)

Goal:
(i + 1) + (j - 1)) <= max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= j) and (j <= max_int)
5: (min_int <= i) and (i <= max_int)
6: (min_int <= (i + j))
7: (i + j) <= max_int)
8: P_val = |j|
9: (j > 0)

VC: 0_5:
Requires Clause of Increment in Procedure Add modified by
Variable Declaration rule: Add_And_Multiply_Realiz.rb(12)

Goal:
(j - 1) + 1) <= max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)

203

3: (0 < max_int)
4: (min_int <= j) and (j <= max_int)
5: (min_int <= i) and (i <= max_int)
6: (min_int <= (i + j))
7: (i + j) <= max_int)
8: P_val = |j|
9: (j > 0)

VC: 0_6:
Ensures Clause of Add , If "if" condition at
Add_And_Multiply_Realiz.rb(8) is true modified by Variable
Declaration rule: Add_And_Multiply_Realiz.rb(19)

Goal:
(i + 1) + (j - 1)) = (i + j)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= j) and (j <= max_int)
5: (min_int <= i) and (i <= max_int)
6: (min_int <= (i + j))
7: (i + j) <= max_int)
8: P_val = |j|
9: (j > 0)
10: j' = (j - 1) + 1)

Free Variables:
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Last_Char_Num:N,
i:Z, j:Z, Add:Z, zero:Z, P_val:N, j':Z, j'':Z, Add':Z

VC: 1_1:
Requires Clause of Decrement in Procedure Add modified by
Variable Declaration rule: Add_And_Multiply_Realiz.rb(15)

Goal:
(min_int <= (i - 1))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= j) and (j <= max_int)
5: (min_int <= i) and (i <= max_int)
6: (min_int <= (i + j))
7: (i + j) <= max_int)
8: P_val = |j|

204

9: not((j > 0))
10: (0 > j)

VC: 1_2:
Requires Clause of Increment in Procedure Add modified by
Variable Declaration rule: Add_And_Multiply_Realiz.rb(16)

Goal:
(j + 1) <= max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= j) and (j <= max_int)
5: (min_int <= i) and (i <= max_int)
6: (min_int <= (i + j))
7: (i + j) <= max_int)
8: P_val = |j|
9: not((j > 0))
10: (0 > j)
11: Add' = (i - 1)

VC: 1_3:
Requires Clause of Add in Procedure Add modified by Variable
Declaration rule: Add_And_Multiply_Realiz.rb(17)

Goal:
(min_int <= (i + (j + 1)))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= j) and (j <= max_int)
5: (min_int <= i) and (i <= max_int)
6: (min_int <= (i + j))
7: (i + j) <= max_int)
8: P_val = |j|
9: not((j > 0))
10: (0 > j)
11: Add' = (i - 1)

VC: 1_4:
Requires Clause of Add in Procedure Add modified by Variable
Declaration rule: Add_And_Multiply_Realiz.rb(17)

Goal:
(i + (j + 1)) <= max_int)

Given:

205

1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= j) and (j <= max_int)
5: (min_int <= i) and (i <= max_int)
6: (min_int <= (i + j))
7: (i + j) <= max_int)
8: P_val = |j|
9: not((j > 0))
10: (0 > j)
11: Add' = (i - 1)

VC: 1_5:
Requires Clause of Decrement in Procedure Add modified by
Variable Declaration rule: Add_And_Multiply_Realiz.rb(18)

Goal:
(min_int <= (j + 1) - 1))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= j) and (j <= max_int)
5: (min_int <= i) and (i <= max_int)
6: (min_int <= (i + j))
7: (i + j) <= max_int)
8: P_val = |j|
9: not((j > 0))
10: (0 > j)
11: Add' = (i - 1)

VC: 1_6:
Ensures Clause of Add , If "if" condition at
Add_And_Multiply_Realiz.rb(8) is false , If "if" condition at
Add_And_Multiply_Realiz.rb(14) is true modified by Variable
Declaration rule: Add_And_Multiply_Realiz.rb(19)

Goal:
(i + (j + 1)) = (i + j)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= j) and (j <= max_int)
5: (min_int <= i) and (i <= max_int)
6: (min_int <= (i + j))
7: (i + j) <= max_int)
8: P_val = |j|
9: not((j > 0))
10: (0 > j)

206

11: Add' = (i - 1)
12: j' = (j + 1) - 1)

Free Variables:
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Last_Char_Num:N,
i:Z, j:Z, Add:Z, zero:Z, P_val:N

VC: 2_1:
Ensures Clause of Add , If "if" condition at
Add_And_Multiply_Realiz.rb(8) is false , If "if" condition at
Add_And_Multiply_Realiz.rb(14) is false modified by Variable
Declaration rule: Add_And_Multiply_Realiz.rb(19)

Goal:
i = (i + j)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= j) and (j <= max_int)
5: (min_int <= i) and (i <= max_int)
6: (min_int <= (i + j))
7: (i + j) <= max_int)
8: P_val = |j|
9: not((j > 0))
10: not((0 > j))

Free Variables:
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Last_Char_Num:N,
I:Z, J:Z, Multiply:Z, nj:Z, zero:Z, J':Z, nj':Z, Multiply':Z

VC: 3_1:
Base Case of the Invariant of While Statement in Procedure
Multiply modified by Variable Declaration rule modified by
Variable Declaration rule: Add_And_Multiply_Realiz.rb(31)

Goal:
(0 + (I * J)) = (I * J)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)

207

4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: (J >= 0)

VC: 3_2:
Base Case of the Invariant of While Statement in Procedure
Multiply modified by Variable Declaration rule modified by
Variable Declaration rule: Add_And_Multiply_Realiz.rb(31)

Goal:
(0 + J) = J

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: (J >= 0)

VC: 3_3:
Requires Clause of Add in Procedure Multiply modified by
Variable Declaration rule modified by Variable Declaration
rule: Add_And_Multiply_Realiz.rb(34)

Goal:
(min_int <= (Multiply' + I))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: (J >= 0)
11: (Multiply' + (I * J')) = (I * J)
12: (nj' + J') = J
13: (J' > 0)

208

VC: 3_4:
Requires Clause of Add in Procedure Multiply modified by
Variable Declaration rule modified by Variable Declaration
rule: Add_And_Multiply_Realiz.rb(34)

Goal:
(Multiply' + I) <= max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: (J >= 0)
11: (Multiply' + (I * J')) = (I * J)
12: (nj' + J') = J
13: (J' > 0)

VC: 3_5:
Requires Clause of Increment in Procedure Multiply modified by
Variable Declaration rule modified by Variable Declaration
rule: Add_And_Multiply_Realiz.rb(35)

Goal:
(nj' + 1) <= max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: (J >= 0)
11: (Multiply' + (I * J')) = (I * J)
12: (nj' + J') = J
13: (J' > 0)

VC: 3_6:
Requires Clause of Decrement in Procedure Multiply modified by
Variable Declaration rule modified by Variable Declaration
rule: Add_And_Multiply_Realiz.rb(36)

Goal:

209

(min_int <= (J' - 1))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: (J >= 0)
11: (Multiply' + (I * J')) = (I * J)
12: (nj' + J') = J
13: (J' > 0)

VC: 3_7:
Inductive Case of Invariant of While Statement in Procedure
Multiply modified by Variable Declaration rule modified by
Variable Declaration rule: Add_And_Multiply_Realiz.rb(31)

Goal:
(Multiply' + I) + (I * (J' - 1))) = (I * J)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: (J >= 0)
11: (Multiply' + (I * J')) = (I * J)
12: (nj' + J') = J
13: (J' > 0)

VC: 3_8:
Inductive Case of Invariant of While Statement in Procedure
Multiply modified by Variable Declaration rule modified by
Variable Declaration rule: Add_And_Multiply_Realiz.rb(31)

Goal:
(nj' + 1) + (J' - 1)) = J

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)

210

4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: (J >= 0)
11: (Multiply' + (I * J')) = (I * J)
12: (nj' + J') = J
13: (J' > 0)

VC: 3_9:
Termination of While Statement in Procedure Multiply modified
by Variable Declaration rule modified by Variable Declaration
rule: Add_And_Multiply_Realiz.rb(32)

Goal:
(J' - 1) < J')

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: (J >= 0)
11: (Multiply' + (I * J')) = (I * J)
12: (nj' + J') = J
13: (J' > 0)

Free Variables:
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Last_Char_Num:N,
I:Z, J:Z, Multiply:Z, nj:Z, zero:Z, P_val':N, J':Z,
Multiply':Z, nj':Z

VC: 4_1:
Ensures Clause of Multiply , If "if" condition at
Add_And_Multiply_Realiz.rb(28) is true modified by Variable
Declaration rule: Add_And_Multiply_Realiz.rb(52)

Goal:
Multiply' = (I * J)

Given:

211

1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: (J >= 0)
11: (Multiply' + (I * J')) = (I * J)
12: (nj' + J') = J
13: not((J' > 0))

Free Variables:
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Last_Char_Num:N,
I:Z, J:Z, Multiply:Z, nj:Z, zero:Z, J':Z, nj':Z, Multiply':Z

VC: 5_1:
Base Case of the Invariant of While Statement in Procedure
Multiply modified by Variable Declaration rule modified by
Variable Declaration rule: Add_And_Multiply_Realiz.rb(41)

Goal:
(0 - (I * J)) = (-(I) * J)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: not((J >= 0))

VC: 5_2:
Base Case of the Invariant of While Statement in Procedure
Multiply modified by Variable Declaration rule modified by
Variable Declaration rule: Add_And_Multiply_Realiz.rb(41)

Goal:
(0 + J) = J

Given:
1: (Last_Char_Num > 0)

212

2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: not((J >= 0))

VC: 5_3:
Base Case of the Invariant of While Statement in Procedure
Multiply modified by Variable Declaration rule modified by
Variable Declaration rule: Add_And_Multiply_Realiz.rb(41)

Goal:
(J <= 0)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: not((J >= 0))

VC: 5_4:
Requires Clause of Add in Procedure Multiply modified by
Variable Declaration rule modified by Variable Declaration
rule: Add_And_Multiply_Realiz.rb(44)

Goal:
(min_int <= (Multiply' + I))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: not((J >= 0))
11: (Multiply' - (I * J')) = (-(I) * J)
12: (nj' + J') = J
13: (J' <= 0)

213

14: J' /= 0

VC: 5_5:
Requires Clause of Add in Procedure Multiply modified by
Variable Declaration rule modified by Variable Declaration
rule: Add_And_Multiply_Realiz.rb(44)

Goal:
(Multiply' + I) <= max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: not((J >= 0))
11: (Multiply' - (I * J')) = (-(I) * J)
12: (nj' + J') = J
13: (J' <= 0)
14: J' /= 0

VC: 5_6:
Requires Clause of Decrement in Procedure Multiply modified by
Variable Declaration rule modified by Variable Declaration
rule: Add_And_Multiply_Realiz.rb(45)

Goal:
(min_int <= (nj' - 1))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: not((J >= 0))
11: (Multiply' - (I * J')) = (-(I) * J)
12: (nj' + J') = J
13: (J' <= 0)
14: J' /= 0

VC: 5_7:

214

Requires Clause of Increment in Procedure Multiply modified by
Variable Declaration rule modified by Variable Declaration
rule: Add_And_Multiply_Realiz.rb(46)

Goal:
(J' + 1) <= max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: not((J >= 0))
11: (Multiply' - (I * J')) = (-(I) * J)
12: (nj' + J') = J
13: (J' <= 0)
14: J' /= 0

VC: 5_8:
Inductive Case of Invariant of While Statement in Procedure
Multiply modified by Variable Declaration rule modified by
Variable Declaration rule: Add_And_Multiply_Realiz.rb(41)

Goal:
(Multiply' + I) - (I * (J' + 1))) = (-(I) * J)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: not((J >= 0))
11: (Multiply' - (I * J')) = (-(I) * J)
12: (nj' + J') = J
13: (J' <= 0)
14: J' /= 0

VC: 5_9:
Inductive Case of Invariant of While Statement in Procedure
Multiply modified by Variable Declaration rule modified by
Variable Declaration rule: Add_And_Multiply_Realiz.rb(41)

215

Goal:
(nj' - 1) + (J' + 1)) = J

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: not((J >= 0))
11: (Multiply' - (I * J')) = (-(I) * J)
12: (nj' + J') = J
13: (J' <= 0)
14: J' /= 0

VC: 5_10:
Inductive Case of Invariant of While Statement in Procedure
Multiply modified by Variable Declaration rule modified by
Variable Declaration rule: Add_And_Multiply_Realiz.rb(41)

Goal:
(J' + 1) <= 0)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: not((J >= 0))
11: (Multiply' - (I * J')) = (-(I) * J)
12: (nj' + J') = J
13: (J' <= 0)
14: J' /= 0

VC: 5_11:
Termination of While Statement in Procedure Multiply modified
by Variable Declaration rule modified by Variable Declaration
rule: Add_And_Multiply_Realiz.rb(42)

Goal:
(-((J' + 1)) < -)

Given:

216

1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: not((J >= 0))
11: (Multiply' - (I * J')) = (-(I) * J)
12: (nj' + J') = J
13: (J' <= 0)
14: J' /= 0

Free Variables:
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Last_Char_Num:N,
I:Z, J:Z, Multiply:Z, nj:Z, zero:Z, P_val':N, J':Z,
Multiply':Z, nj':Z

VC: 6_1:
Requires Clause of Negate in Procedure Multiply modified by
Variable Declaration rule: Add_And_Multiply_Realiz.rb(48)

Goal:
(min_int <= -) and (- <= max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: not((J >= 0))
11: (Multiply' - (I * J')) = (-(I) * J)
12: (nj' + J') = J
13: (J' <= 0)
14: J' = 0

VC: 6_2:
Ensures Clause of Multiply , If "if" condition at
Add_And_Multiply_Realiz.rb(28) is false modified by Variable
Declaration rule: Add_And_Multiply_Realiz.rb(52)

217

Goal:
- = (I * J)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (min_int <= J) and (J <= max_int)
5: (min_int <= I) and (I <= max_int)
6: (min_int <= -(I))
7: (-(I) <= max_int)
8: (min_int <= (I * J))
9: (I * J) <= max_int)
10: not((J >= 0))
11: (Multiply' - (I * J')) = (-(I) * J)
12: (nj' + J') = J
13: (J' <= 0)
14: J' = 0

Benchmark #2:Binary Search in an Array

//
// Generated by the RESOLVE Verifier, December 2011 version
// from file: MyBinarySearchRealiz.rb
// on: Fri Nov 11 10:27:28 EST 2011
//

Free Variables:
Lower_Bound:Z, Upper_Bound:Z, Max_Char_Str_Len:N, min_int:Z,
max_int:Z, Last_Char_Num:N, x:Entry, y:Entry

VC: 0_1:
Ensures Clause of Are_Equal: MyBinarySearchRealiz.rb(8)

Goal:
1: LEQ(x, y) and LEQ(y, x) = x = y

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Total(LEQ)
8: Is_Transitive(LEQ)

218

9: Is_Symmetric(LEQ)

VC: 0_2:
Ensures Clause of Are_Equal: MyBinarySearchRealiz.rb(8)

Goal:
x = x

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Total(LEQ)
8: Is_Transitive(LEQ)
9: Is_Symmetric(LEQ)

VC: 0_3:
Ensures Clause of Are_Equal: MyBinarySearchRealiz.rb(8)

Goal:
y = y

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Total(LEQ)
8: Is_Transitive(LEQ)
9: Is_Symmetric(LEQ)

Free Variables:
Lower_Bound:Z, Upper_Bound:Z, Max_Char_Str_Len:N, min_int:Z,
max_int:Z, Last_Char_Num:N, key:Entry, A:Z -> Entry,
Is_Present:Boolean.B, low:Z, mid:Z, high:Z, midVal:Entry,
lowVal:Entry, highVal:Entry, A':Z -> Entry, midVal':Entry,
A'':Z -> Entry, midVal'':Entry, mid':Z, A''':Z -> Entry,
Is_Present':Boolean.B, low':Z, high':Z

VC: 1_1:
Base Case of the Invariant of While Statement in Procedure
Is_Present: MyBinarySearchRealiz.rb(30)

219

Goal:
false = (Exists_Between(key, A, Lower_Bound, (Lower_Bound -
1)) or Exists_Between(key, A, (Upper_Bound + 1),
Upper_Bound))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)

VC: 1_2:
Base Case of the Invariant of While Statement in Procedure
Is_Present: MyBinarySearchRealiz.rb(30)

Goal:
(Lower_Bound <= Lower_Bound)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)

VC: 1_3:
Base Case of the Invariant of While Statement in Procedure
Is_Present: MyBinarySearchRealiz.rb(30)

Goal:
(Upper_Bound <= Upper_Bound)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)

VC: 1_4:

220

Base Case of the Invariant of While Statement in Procedure
Is_Present: MyBinarySearchRealiz.rb(30)

Goal:
A = A

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)

VC: 1_5:
Requires Clause of high - low in Procedure Is_Present:
MyBinarySearchRealiz.rb(33)

Goal:
(min_int <= (high' - low')) and ((high' - low') <= max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')

VC: 1_6:
Requires Clause of Divide in Procedure Is_Present:
MyBinarySearchRealiz.rb(34)

Goal:
If (2 <= 0) then ((((2 * (max_int + 1)) < (high' - low')) and
((high' - low') < (2 * (min_int - 1)))))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)

221

4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')

VC: 1_7:
Requires Clause of low + mid in Procedure Is_Present:
MyBinarySearchRealiz.rb(35)

Goal:
(min_int <= (low' + mid')) and ((low' + mid') <= max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)

VC: 1_8:
Requires Clause of Swap_Entry in Procedure Is_Present:
MyBinarySearchRealiz.rb(36)

Goal:
(Lower_Bound <= (low' + mid'))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)

222

6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)

VC: 1_9:
Requires Clause of Swap_Entry in Procedure Is_Present:
MyBinarySearchRealiz.rb(36)

Goal:
(low' + mid') <= Upper_Bound)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)

VC: 1_10:
Requires Clause of high + 1 in Procedure Is_Present:
MyBinarySearchRealiz.rb(39)

Goal:
(min_int <= (high' + 1)) and ((high' + 1) <= max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)

223

6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) = key

VC: 1_11:
Requires Clause of Swap_Entry in Procedure Is_Present , If
"if" condition at MyBinarySearchRealiz.rb(37) is true:
MyBinarySearchRealiz.rb(47)

Goal:
(Lower_Bound <= (low' + mid'))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) = key

VC: 1_12:
Requires Clause of Swap_Entry in Procedure Is_Present , If
"if" condition at MyBinarySearchRealiz.rb(37) is true:
MyBinarySearchRealiz.rb(47)

224

Goal:
(low' + mid') <= Upper_Bound)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) = key

VC: 1_13:
Inductive Case of Invariant of While Statement in Procedure
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37)
is true: MyBinarySearchRealiz.rb(30)

Goal:
true = (Exists_Between(key, lambda j: Z ({{key if j = (low' +
mid')
A''(j) otherwise
}}), Lower_Bound, ((high' + 1) - 1)) or Exists_Between(key,
lambda j: Z ({{key if j = (low' + mid')
A''(j) otherwise
}}), (high' + 1), Upper_Bound))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))

225

10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) = key
18: midVal' = A''((low' + mid'))
19: A' = lambda j: Z ({{key if j = (low' + mid')
A''(j) otherwise
}})

VC: 1_14:
Inductive Case of Invariant of While Statement in Procedure
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37)
is true: MyBinarySearchRealiz.rb(30)

Goal:
(Lower_Bound <= (high' + 1))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) = key
18: midVal' = A''((low' + mid'))
19: A' = lambda j: Z ({{key if j = (low' + mid')
A''(j) otherwise
}})

VC: 1_15:

226

Inductive Case of Invariant of While Statement in Procedure
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37)
is true: MyBinarySearchRealiz.rb(30)

Goal:
(high' <= Upper_Bound)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) = key
18: midVal' = A''((low' + mid'))
19: A' = lambda j: Z ({{key if j = (low' + mid')
A''(j) otherwise
}})

VC: 1_16:
Inductive Case of Invariant of While Statement in Procedure
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37)
is true: MyBinarySearchRealiz.rb(30)

Goal:
lambda j: Z ({{key if j = (low' + mid')
A''(j) otherwise
}}) = A

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)

227

9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) = key
18: midVal' = A''((low' + mid'))
19: A' = lambda j: Z ({{key if j = (low' + mid')
A''(j) otherwise
}})

VC: 1_17:
Termination of While Statement in Procedure Is_Present , If
"if" condition at MyBinarySearchRealiz.rb(37) is true:
MyBinarySearchRealiz.rb(31)

Goal:
(high' - (high' + 1)) < (high' - low'))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) = key
18: midVal' = A''((low' + mid'))
19: A' = lambda j: Z ({{key if j = (low' + mid')
A''(j) otherwise
}})

228

Free Variables:
Lower_Bound:Z, Upper_Bound:Z, Max_Char_Str_Len:N, min_int:Z,
max_int:Z, Last_Char_Num:N, key:Entry, A:Z -> Entry,
Is_Present:Boolean.B, low:Z, mid:Z, high:Z, midVal:Entry,
lowVal:Entry, highVal:Entry, A':Z -> Entry, midVal':Entry,
A'':Z -> Entry, midVal'':Entry, mid':Z, A''':Z -> Entry,
Is_Present':Boolean.B, low':Z, high':Z

VC: 2_1:
Base Case of the Invariant of While Statement in Procedure
Is_Present: MyBinarySearchRealiz.rb(30)

Goal:
false = (Exists_Between(key, A, Lower_Bound, (Lower_Bound -
1)) or Exists_Between(key, A, (Upper_Bound + 1),
Upper_Bound))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)

VC: 2_2:
Base Case of the Invariant of While Statement in Procedure
Is_Present: MyBinarySearchRealiz.rb(30)

Goal:
(Lower_Bound <= Lower_Bound)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)

VC: 2_3:
Base Case of the Invariant of While Statement in Procedure
Is_Present: MyBinarySearchRealiz.rb(30)

229

Goal:
(Upper_Bound <= Upper_Bound)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)

VC: 2_4:
Base Case of the Invariant of While Statement in Procedure
Is_Present: MyBinarySearchRealiz.rb(30)

Goal:
A = A

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)

VC: 2_5:
Requires Clause of high - low in Procedure Is_Present:
MyBinarySearchRealiz.rb(33)

Goal:
(min_int <= (high' - low')) and ((high' - low') <= max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)

230

12: A''' = A
13: (low' <= high')

VC: 2_6:
Requires Clause of Divide in Procedure Is_Present:
MyBinarySearchRealiz.rb(34)

Goal:
If (2 <= 0) then ((((2 * (max_int + 1)) < (high' - low')) and
((high' - low') < (2 * (min_int - 1)))))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')

VC: 2_7:
Requires Clause of low + mid in Procedure Is_Present:
MyBinarySearchRealiz.rb(35)

Goal:
(min_int <= (low' + mid')) and ((low' + mid') <= max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)

231

15: (|(high' - low') - (2 * (high' - low')))| < |2|)

VC: 2_8:
Requires Clause of Swap_Entry in Procedure Is_Present:
MyBinarySearchRealiz.rb(36)

Goal:
(Lower_Bound <= (low' + mid'))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)

VC: 2_9:
Requires Clause of Swap_Entry in Procedure Is_Present:
MyBinarySearchRealiz.rb(36)

Goal:
(low' + mid') <= Upper_Bound)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)

232

15: (|(high' - low') - (2 * (high' - low')))| < |2|)

VC: 2_10:
Requires Clause of mid + 1 in Procedure Is_Present:
MyBinarySearchRealiz.rb(42)

Goal:
(min_int <= ((low' + mid') + 1)) and (((low' + mid') + 1) <=
max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) /= key
18: LEQ(A'''((low' + mid')), key)

VC: 2_11:
Requires Clause of Swap_Entry in Procedure Is_Present , If
"if" condition at MyBinarySearchRealiz.rb(37) is false , If
"if" condition at MyBinarySearchRealiz.rb(41) is true:
MyBinarySearchRealiz.rb(47)

Goal:
(Lower_Bound <= (low' + mid'))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)

233

9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) /= key
18: LEQ(A'''((low' + mid')), key)

VC: 2_12:
Requires Clause of Swap_Entry in Procedure Is_Present , If
"if" condition at MyBinarySearchRealiz.rb(37) is false , If
"if" condition at MyBinarySearchRealiz.rb(41) is true:
MyBinarySearchRealiz.rb(47)

Goal:
(low' + mid') <= Upper_Bound)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) /= key
18: LEQ(A'''((low' + mid')), key)

VC: 2_13:
Inductive Case of Invariant of While Statement in Procedure
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37)

234

is false , If "if" condition at MyBinarySearchRealiz.rb(41) is
true: MyBinarySearchRealiz.rb(30)

Goal:
(Exists_Between(key, A, Lower_Bound, (low' - 1)) or
Exists_Between(key, A, (high' + 1), Upper_Bound)) =
(Exists_Between(key, lambda j: Z ({{A'''((low' + mid')) if j
= (low' + mid')
A''(j) otherwise
}}), Lower_Bound, (((low' + mid') + 1) - 1)) or
Exists_Between(key, lambda j: Z ({{A'''((low' + mid')) if j =
(low' + mid')
A''(j) otherwise
}}), (high' + 1), Upper_Bound))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) /= key
18: LEQ(A'''((low' + mid')), key)
19: midVal' = A''((low' + mid'))
20: A' = lambda j: Z ({{A'''((low' + mid')) if j = (low' +
mid')
A''(j) otherwise
}})

VC: 2_14:
Inductive Case of Invariant of While Statement in Procedure
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37)
is false , If "if" condition at MyBinarySearchRealiz.rb(41) is
true: MyBinarySearchRealiz.rb(30)

Goal:
(Lower_Bound <= (low' + mid') + 1))

235

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) /= key
18: LEQ(A'''((low' + mid')), key)
19: midVal' = A''((low' + mid'))
20: A' = lambda j: Z ({{A'''((low' + mid')) if j = (low' +
mid')
A''(j) otherwise
}})

VC: 2_15:
Inductive Case of Invariant of While Statement in Procedure
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37)
is false , If "if" condition at MyBinarySearchRealiz.rb(41) is
true: MyBinarySearchRealiz.rb(30)

Goal:
(high' <= Upper_Bound)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A

236

13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) /= key
18: LEQ(A'''((low' + mid')), key)
19: midVal' = A''((low' + mid'))
20: A' = lambda j: Z ({{A'''((low' + mid')) if j = (low' +
mid')
A''(j) otherwise
}})

VC: 2_16:
Inductive Case of Invariant of While Statement in Procedure
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37)
is false , If "if" condition at MyBinarySearchRealiz.rb(41) is
true: MyBinarySearchRealiz.rb(30)

Goal:
lambda j: Z ({{A'''((low' + mid')) if j = (low' + mid')
A''(j) otherwise
}}) = A

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) /= key
18: LEQ(A'''((low' + mid')), key)
19: midVal' = A''((low' + mid'))
20: A' = lambda j: Z ({{A'''((low' + mid')) if j = (low' +
mid')
A''(j) otherwise
}})

237

VC: 2_17:
Termination of While Statement in Procedure Is_Present , If
"if" condition at MyBinarySearchRealiz.rb(37) is false , If
"if" condition at MyBinarySearchRealiz.rb(41) is true:
MyBinarySearchRealiz.rb(31)

Goal:
(high' - (low' + mid') + 1)) < (high' - low'))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) /= key
18: LEQ(A'''((low' + mid')), key)
19: midVal' = A''((low' + mid'))
20: A' = lambda j: Z ({{A'''((low' + mid')) if j = (low' +
mid')
A''(j) otherwise
}})

Free Variables:
Lower_Bound:Z, Upper_Bound:Z, Max_Char_Str_Len:N, min_int:Z,
max_int:Z, Last_Char_Num:N, key:Entry, A:Z -> Entry,
Is_Present:Boolean.B, low:Z, mid:Z, high:Z, midVal:Entry,
lowVal:Entry, highVal:Entry, A':Z -> Entry, midVal':Entry,
A'':Z -> Entry, midVal'':Entry, mid':Z, A''':Z -> Entry,
Is_Present':Boolean.B, low':Z, high':Z

VC: 3_1:

238

Base Case of the Invariant of While Statement in Procedure
Is_Present: MyBinarySearchRealiz.rb(30)

Goal:
false = (Exists_Between(key, A, Lower_Bound, (Lower_Bound -
1)) or Exists_Between(key, A, (Upper_Bound + 1),
Upper_Bound))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)

VC: 3_2:
Base Case of the Invariant of While Statement in Procedure
Is_Present: MyBinarySearchRealiz.rb(30)

Goal:
(Lower_Bound <= Lower_Bound)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)

VC: 3_3:
Base Case of the Invariant of While Statement in Procedure
Is_Present: MyBinarySearchRealiz.rb(30)

Goal:
(Upper_Bound <= Upper_Bound)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)

239

VC: 3_4:
Base Case of the Invariant of While Statement in Procedure
Is_Present: MyBinarySearchRealiz.rb(30)

Goal:
A = A

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)

VC: 3_5:
Requires Clause of high - low in Procedure Is_Present:
MyBinarySearchRealiz.rb(33)

Goal:
(min_int <= (high' - low')) and ((high' - low') <= max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')

VC: 3_6:
Requires Clause of Divide in Procedure Is_Present:
MyBinarySearchRealiz.rb(34)

Goal:
If (2 <= 0) then ((((2 * (max_int + 1)) < (high' - low')) and
((high' - low') < (2 * (min_int - 1)))))

Given:
1: (Last_Char_Num > 0)

240

2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')

VC: 3_7:
Requires Clause of low + mid in Procedure Is_Present:
MyBinarySearchRealiz.rb(35)

Goal:
(min_int <= (low' + mid')) and ((low' + mid') <= max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)

VC: 3_8:
Requires Clause of Swap_Entry in Procedure Is_Present:
MyBinarySearchRealiz.rb(36)

Goal:
(Lower_Bound <= (low' + mid'))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)

241

4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)

VC: 3_9:
Requires Clause of Swap_Entry in Procedure Is_Present:
MyBinarySearchRealiz.rb(36)

Goal:
(low' + mid') <= Upper_Bound)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)

VC: 3_10:
Requires Clause of mid - 1 in Procedure Is_Present:
MyBinarySearchRealiz.rb(44)

Goal:
(min_int <= ((low' + mid') - 1)) and (((low' + mid') - 1) <=
max_int)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)

242

3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) /= key
18: not(LEQ(A'''((low' + mid')), key))

VC: 3_11:
Requires Clause of Swap_Entry in Procedure Is_Present , If
"if" condition at MyBinarySearchRealiz.rb(37) is false , If
"if" condition at MyBinarySearchRealiz.rb(41) is false:
MyBinarySearchRealiz.rb(47)

Goal:
(Lower_Bound <= (low' + mid'))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) /= key
18: not(LEQ(A'''((low' + mid')), key))

243

VC: 3_12:
Requires Clause of Swap_Entry in Procedure Is_Present , If
"if" condition at MyBinarySearchRealiz.rb(37) is false , If
"if" condition at MyBinarySearchRealiz.rb(41) is false:
MyBinarySearchRealiz.rb(47)

Goal:
(low' + mid') <= Upper_Bound)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) /= key
18: not(LEQ(A'''((low' + mid')), key))

VC: 3_13:
Inductive Case of Invariant of While Statement in Procedure
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37)
is false , If "if" condition at MyBinarySearchRealiz.rb(41) is
false: MyBinarySearchRealiz.rb(30)

Goal:
(Exists_Between(key, A, Lower_Bound, (low' - 1)) or
Exists_Between(key, A, (high' + 1), Upper_Bound)) =
(Exists_Between(key, lambda j: Z ({{A'''((low' + mid')) if j
= (low' + mid')
A''(j) otherwise
}}), Lower_Bound, (low' - 1)) or Exists_Between(key, lambda
j: Z ({{A'''((low' + mid')) if j = (low' + mid')
A''(j) otherwise
}}), (((low' + mid') - 1) + 1), Upper_Bound))

Given:

244

1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) /= key
18: not(LEQ(A'''((low' + mid')), key))
19: midVal' = A''((low' + mid'))
20: A' = lambda j: Z ({{A'''((low' + mid')) if j = (low' +
mid')
A''(j) otherwise
}})

VC: 3_14:
Inductive Case of Invariant of While Statement in Procedure
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37)
is false , If "if" condition at MyBinarySearchRealiz.rb(41) is
false: MyBinarySearchRealiz.rb(30)

Goal:
(Lower_Bound <= low')

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')

245

14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) /= key
18: not(LEQ(A'''((low' + mid')), key))
19: midVal' = A''((low' + mid'))
20: A' = lambda j: Z ({{A'''((low' + mid')) if j = (low' +
mid')
A''(j) otherwise
}})

VC: 3_15:
Inductive Case of Invariant of While Statement in Procedure
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37)
is false , If "if" condition at MyBinarySearchRealiz.rb(41) is
false: MyBinarySearchRealiz.rb(30)

Goal:
(low' + mid') - 1) <= Upper_Bound)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) /= key
18: not(LEQ(A'''((low' + mid')), key))
19: midVal' = A''((low' + mid'))
20: A' = lambda j: Z ({{A'''((low' + mid')) if j = (low' +
mid')
A''(j) otherwise
}})

VC: 3_16:

246

Inductive Case of Invariant of While Statement in Procedure
Is_Present , If "if" condition at MyBinarySearchRealiz.rb(37)
is false , If "if" condition at MyBinarySearchRealiz.rb(41) is
false: MyBinarySearchRealiz.rb(30)

Goal:
lambda j: Z ({{A'''((low' + mid')) if j = (low' + mid')
A''(j) otherwise
}}) = A

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) /= key
18: not(LEQ(A'''((low' + mid')), key))
19: midVal' = A''((low' + mid'))
20: A' = lambda j: Z ({{A'''((low' + mid')) if j = (low' +
mid')
A''(j) otherwise
}})

VC: 3_17:
Termination of While Statement in Procedure Is_Present , If
"if" condition at MyBinarySearchRealiz.rb(37) is false , If
"if" condition at MyBinarySearchRealiz.rb(41) is false:
MyBinarySearchRealiz.rb(31)

Goal:
(low' + mid') - 1) - low') < (high' - low'))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))

247

5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A''', Lower_Bound, (low'
- 1)) or Exists_Between(key, A''', (high' + 1),
Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A''' = A
13: (low' <= high')
14: (|(2 * (high' - low'))| <= |(high' - low')|)
15: (|(high' - low') - (2 * (high' - low')))| < |2|)
16: A'' = lambda j: Z ({{midVal'' if j = (low' + mid')
A'''(j) otherwise
}})
17: A'''((low' + mid')) /= key
18: not(LEQ(A'''((low' + mid')), key))
19: midVal' = A''((low' + mid'))
20: A' = lambda j: Z ({{A'''((low' + mid')) if j = (low' +
mid')
A''(j) otherwise
}})

Free Variables:
Lower_Bound:Z, Upper_Bound:Z, Max_Char_Str_Len:N, min_int:Z,
max_int:Z, Last_Char_Num:N, key:Entry, A:Z -> Entry,
Is_Present:Boolean.B, low:Z, mid:Z, high:Z, midVal:Entry,
lowVal:Entry, highVal:Entry, P_val':N, A':Z -> Entry,
Is_Present':Boolean.B, low':Z, high':Z

VC: 4_1:
Ensures Clause of Is_Present: MyBinarySearchRealiz.rb(48)

Goal:
(Exists_Between(key, A, Lower_Bound, (low' - 1)) or
Exists_Between(key, A, (high' + 1), Upper_Bound)) =
Exists_Between(key, A, Lower_Bound, Upper_Bound)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)

248

9: Is_Present' = (Exists_Between(key, A', Lower_Bound, (low'
- 1)) or Exists_Between(key, A', (high' + 1), Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A' = A
13: not((low' <= high'))

VC: 4_2:
Ensures Clause of Is_Present: MyBinarySearchRealiz.rb(48)

Goal:
key = key

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A', Lower_Bound, (low'
- 1)) or Exists_Between(key, A', (high' + 1), Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A' = A
13: not((low' <= high'))

VC: 4_3:
Ensures Clause of Is_Present: MyBinarySearchRealiz.rb(48)

Goal:
A = A

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Lower_Bound <= (Upper_Bound + 1))
5: (min_int <= Upper_Bound) and (Upper_Bound <= max_int)
6: (min_int <= Lower_Bound) and (Lower_Bound <= max_int)
7: Is_Ordered(A, Lower_Bound, Upper_Bound)
8: (Upper_Bound + 1) <= max_int)
9: Is_Present' = (Exists_Between(key, A', Lower_Bound, (low'
- 1)) or Exists_Between(key, A', (high' + 1), Upper_Bound))
10: (Lower_Bound <= low')
11: (high' <= Upper_Bound)
12: A' = A
13: not((low' <= high'))

249

Benchmark #4:Layered implementation of a Map ADT

//
// Generated by the RESOLVE Verifier, December 2011 version
// from file: Search_Store_Realiz.rb
// on: Mon Dec 05 07:40:37 EST 2011
//

Free Variables:
Entry, Max_Length:Z

VC: 0_1:
Requirement for Facility Declaration Rule for PQ_Fac:
Search_Store_Realiz.rb(10)

Goal:
(Max_Length > 0)

Given:

1: (Max_Length > 0)

Free Variables:
S:(Contents:PQ_Fac.P_Queue), Max_Length:Z, Last_Char_Num:N,
min_int:Z, max_int:Z, Max_Char_Str_Len:N

VC: 1_1:
Correspondence Rule for Store: Search_Store_Realiz.rb(20)

Goal:
(Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents))) <=
Max_Capacity)

Given:
1: (Max_Capacity > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: (Last_Char_Num > 0)
5: (Max_Capacity > 0)
6: (|S.Contents| <= Max_Capacity)
7: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
8: Is_Duplicate_Free(S.Contents)

250

Free Variables:
S:(Contents:PQ_Fac.P_Queue), Conc.S:Key -> Boolean.B,
S.Contents:Modified_String_Theory.Str(Entry)

VC: 2_1:
Convention for Store generated by intialization rule:
Search_Store_Realiz.rb(18)

Goal:
Is_Duplicate_Free(empty_string)

Given:

1: (Max_Capacity > 0)

VC: 2_2:
Initialization Rule for Store: Search_Store_Realiz.rb(15)

Goal:
Key_Ct(lambda k2: Key (Is_Substring(<k2>, empty_string))) = 0

Given:
1: (Max_Capacity > 0)
2: Conc.S = lambda k2: Key (Is_Substring(<k2>, empty_string))

Free Variables:
Max_Capacity:Z, Key_Ct:N, Max_Length:Z, Last_Char_Num:N,
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.S:Key ->
Boolean.B, k:Key, S:(Contents:PQ_Fac.P_Queue), t:Key, t':Key,
S':(Contents:PQ_Fac.P_Queue)

VC: 3_1:
Requires Clause of Enqueue in Procedure Add:
Search_Store_Realiz.rb(25)

Goal:
(|S.Contents| < Max_Capacity)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)

251

7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))
< Max_Capacity)
12: not(Conc.S(k))

VC: 3_2:
Convention for Search_Store_Realiz: Search_Store_Realiz.rb(25)

Goal:
Is_Duplicate_Free((S.Contents o <k>))

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))
< Max_Capacity)
12: not(Conc.S(k))

VC: 3_3:
Ensures Clause of Add: Search_Store_Realiz.rb(26)

Goal:
Conc.S'(k)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))
< Max_Capacity)
12: not(Conc.S(k))
13: Conc.S' = lambda k2: Key (Is_Substring(<k2>, (S.Contents
o <k>)))

252

VC: 3_4:
Ensures Clause of Add: Search_Store_Realiz.rb(26)

Goal:
for all k1:Key, If k1 /= k then (Conc.S'(k1) = Conc.S(k1))

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))
< Max_Capacity)
12: not(Conc.S(k))
13: Conc.S' = lambda k2: Key (Is_Substring(<k2>, (S.Contents
o <k>)))

VC: 3_5:
Ensures Clause of Add: Search_Store_Realiz.rb(26)

Goal:
k = k

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))
< Max_Capacity)
12: not(Conc.S(k))
13: Conc.S' = lambda k2: Key (Is_Substring(<k2>, (S.Contents
o <k>)))

Free Variables:
Max_Capacity:Z, Key_Ct:N, Max_Length:Z, Last_Char_Num:N,
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.S:Key ->

253

Boolean.B, k:Key, S:(Contents:PQ_Fac.P_Queue), b:Boolean.B,
k':Key, S':(Contents:PQ_Fac.P_Queue),
S'':(Contents:PQ_Fac.P_Queue), b':Boolean.B

VC: 4_1:
Requires Clause of Dequeue in Procedure Remove:
Search_Store_Realiz.rb(31)

Goal:
(|S''.Contents| > 0)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: Conc.S(k)
12: Is_Permutation(S''.Contents, S.Contents)
13: (Is_Substring(<k>, S.Contents) iff b' = true)
14: b' = true
15: Is_Prefix(<k>, S''.Contents)

VC: 4_2:
Convention for Search_Store_Realiz: Search_Store_Realiz.rb(31)

Goal:
Is_Duplicate_Free(S'.Contents)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: Conc.S(k)
12: Is_Permutation(S''.Contents, S.Contents)
13: (Is_Substring(<k>, S.Contents) iff b' = true)
14: b' = true
15: Is_Prefix(<k>, S''.Contents)
16: S''.Contents = (<k'> o S'.Contents)

254

VC: 4_3:
Ensures Clause of Remove: Search_Store_Realiz.rb(32)

Goal:
not(Conc.S'(k'))

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: Conc.S(k)
12: Is_Permutation(S''.Contents, S.Contents)
13: (Is_Substring(<k>, S.Contents) iff b' = true)
14: b' = true
15: Is_Prefix(<k>, S''.Contents)
16: S''.Contents = (<k'> o S'.Contents)
17: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents))

VC: 4_4:
Ensures Clause of Remove: Search_Store_Realiz.rb(32)

Goal:
for all k1:Key, If k1 /= k' then (Conc.S'(k1) = Conc.S(k1))

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: Conc.S(k)
12: Is_Permutation(S''.Contents, S.Contents)
13: (Is_Substring(<k>, S.Contents) iff b' = true)
14: b' = true
15: Is_Prefix(<k>, S''.Contents)
16: S''.Contents = (<k'> o S'.Contents)
17: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents))

255

VC: 4_5:
Ensures Clause of Remove: Search_Store_Realiz.rb(32)

Goal:
k = k'

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: Conc.S(k)
12: Is_Permutation(S''.Contents, S.Contents)
13: (Is_Substring(<k>, S.Contents) iff b' = true)
14: b' = true
15: Is_Prefix(<k>, S''.Contents)
16: S''.Contents = (<k'> o S'.Contents)
17: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents))

Free Variables:
Max_Capacity:Z, Key_Ct:N, Max_Length:Z, Last_Char_Num:N,
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.S:Key ->
Boolean.B, k:Key, S:(Contents:PQ_Fac.P_Queue), k':Key,
S':(Contents:PQ_Fac.P_Queue)

VC: 5_1:
Requires Clause of Dequeue in Procedure Remove_Any:
Search_Store_Realiz.rb(35)

Goal:
(|S.Contents| > 0)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))

256

11: Key.is_initial(k)
12: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))
> 0)

VC: 5_2:
Convention for Search_Store_Realiz: Search_Store_Realiz.rb(35)

Goal:
Is_Duplicate_Free(S'.Contents)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: Key.is_initial(k)
12: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))
> 0)
13: S.Contents = (<k'> o S'.Contents)

VC: 5_3:
: Search_Store_Template.co(63)

Goal:
Conc.S(k')

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: Key.is_initial(k)
12: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))
> 0)
13: S.Contents = (<k'> o S'.Contents)
14: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents))

VC: 5_4:
Ensures Clause of Remove_Any: Search_Store_Realiz.rb(36)

257

Goal:
not(Conc.S'(k'))

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: Key.is_initial(k)
12: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))
> 0)
13: S.Contents = (<k'> o S'.Contents)
14: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents))

VC: 5_5:
Ensures Clause of Remove_Any: Search_Store_Realiz.rb(36)

Goal:
for all k1:Key, If k1 /= k' then (Conc.S'(k1) = Conc.S(k1))

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: Key.is_initial(k)
12: (Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents)))
> 0)
13: S.Contents = (<k'> o S'.Contents)
14: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents))

Free Variables:
Max_Capacity:Z, Key_Ct:N, Max_Length:Z, Last_Char_Num:N,
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.S:Key ->
Boolean.B, k:Key, S:(Contents:PQ_Fac.P_Queue),
Is_Present:Boolean.B, b:Boolean.B,
S':(Contents:PQ_Fac.P_Queue), b':Boolean.B

258

VC: 6_1:
Convention for Search_Store_Realiz: Search_Store_Realiz.rb(41)

Goal:
Is_Duplicate_Free(S'.Contents)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: Is_Permutation(S'.Contents, S.Contents)
12: (Is_Substring(<k>, S.Contents) iff b' = true)
13: b' = true
14: Is_Prefix(<k>, S'.Contents)

VC: 6_2:
Ensures Clause of Is_Present: Search_Store_Realiz.rb(42)

Goal:
b' = Conc.S'(k)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: Is_Permutation(S'.Contents, S.Contents)
12: (Is_Substring(<k>, S.Contents) iff b' = true)
13: b' = true
14: Is_Prefix(<k>, S'.Contents)
15: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents))

VC: 6_3:
Ensures Clause of Is_Present: Search_Store_Realiz.rb(42)

Goal:

259

k = k

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: Is_Permutation(S'.Contents, S.Contents)
12: (Is_Substring(<k>, S.Contents) iff b' = true)
13: b' = true
14: Is_Prefix(<k>, S'.Contents)
15: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents))

VC: 6_4:
Ensures Clause of Is_Present: Search_Store_Realiz.rb(42)

Goal:
lambda k2: Key (Is_Substring(<k2>, S.Contents)) = lambda k2:
Key (Is_Substring(<k2>, S'.Contents))

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))
11: Is_Permutation(S'.Contents, S.Contents)
12: (Is_Substring(<k>, S.Contents) iff b' = true)
13: b' = true
14: Is_Prefix(<k>, S'.Contents)
15: Conc.S' = lambda k2: Key (Is_Substring(<k2>, S'.Contents))

Free Variables:
Max_Capacity:Z, Key_Ct:N, Max_Length:Z, Last_Char_Num:N,
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.S:Key ->
Boolean.B, S:(Contents:PQ_Fac.P_Queue), Key_Count:Z

260

VC: 7_1:
Convention for Search_Store_Realiz: Search_Store_Realiz.rb(45)

Goal:
Is_Duplicate_Free(S.Contents)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))

VC: 7_2:
Ensures Clause of Key_Count: Search_Store_Realiz.rb(46)

Goal:
|S.Contents| = Key_Ct(lambda k2: Key (Is_Substring(<k2>,
S.Contents)))

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))

VC: 7_3:
Ensures Clause of Key_Count: Search_Store_Realiz.rb(46)

Goal:
lambda k2: Key (Is_Substring(<k2>, S.Contents)) = lambda k2:
Key (Is_Substring(<k2>, S.Contents))

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)

261

8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))

Free Variables:
Max_Capacity:Z, Key_Ct:N, Max_Length:Z, Last_Char_Num:N,
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.S:Key ->
Boolean.B, S:(Contents:PQ_Fac.P_Queue), Rem_Capacity:Z

VC: 8_1:
Convention for Search_Store_Realiz: Search_Store_Realiz.rb(49)

Goal:
Is_Duplicate_Free(S.Contents)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))

VC: 8_2:
Ensures Clause of Rem_Capacity: Search_Store_Realiz.rb(50)

Goal:
(Max_Capacity - |S.Contents|) = (Max_Capacity -
Key_Ct(lambda k2: Key (Is_Substring(<k2>, S.Contents))))

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))

VC: 8_3:

262

Ensures Clause of Rem_Capacity: Search_Store_Realiz.rb(50)

Goal:
lambda k2: Key (Is_Substring(<k2>, S.Contents)) = lambda k2:
Key (Is_Substring(<k2>, S.Contents))

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)
10: Conc.S = lambda k2: Key (Is_Substring(<k2>, S.Contents))

Free Variables:
Max_Capacity:Z, Key_Ct:N, Max_Length:Z, Last_Char_Num:N,
min_int:Z, max_int:Z, Max_Char_Str_Len:N, Conc.S:Key ->
Boolean.B, S:(Contents:PQ_Fac.P_Queue),
S':(Contents:PQ_Fac.P_Queue)

VC: 9_1:
Convention for Search_Store_Realiz: Search_Store_Realiz.rb(53)

Goal:
Is_Duplicate_Free(empty_string)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)

VC: 9_2:
Ensures Clause of Clear: Search_Store_Realiz.rb(54)

Goal:
true

Given:

263

1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)

VC: 9_3:
Ensures Clause of Clear: Search_Store_Realiz.rb(54)

Goal:
Key_Ct(lambda k2: Key (Is_Substring(<k2>, empty_string))) = 0

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: (Max_Capacity > 0)
5: (|S.Contents| <= Max_Capacity)
6: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
7: (Max_Capacity > 0)
8: (min_int <= Max_Capacity) and (Max_Capacity <= max_int)
9: Is_Duplicate_Free(S.Contents)

264

Benchmark #5:Linked-List Implementation of a Queue ADT

//
// Generated by the RESOLVE Verifier, December 2011 version
// from file: Queue_Location_Linking_Realiz.rb
// on: Mon Dec 05 17:39:20 EST 2011
//

Free Variables:
Info

VC: 0_1:
Requirement for Facility Declaration Rule for Entry_Ptr_Fac:
Queue_Location_Linking_Realiz.rb(15)

Goal:
true

Given:

Free Variables:
Q:(Front:Entry_Ptr_Fac.Position; Back:Entry_Ptr_Fac.Position),
Void:Z, Max_Char_Str_Len:N, Last_Char_Num:N, min_int:Z,
max_int:Z

VC: 1_1:
Correspondence Rule for Queue:
Queue_Location_Linking_Realiz.rb(26)

Goal:
true

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)

Free Variables:

265

Q:(Front:Entry_Ptr_Fac.Position; Back:Entry_Ptr_Fac.Position),
Conc.Q:Str(Entry), Content:Z -> Info, Ref:Z -> Z, Q.Back:Z,
Q.Front:Z

VC: 2_1:
Convention for Queue generated by intialization rule:
Queue_Location_Linking_Realiz.rb(24)

Goal:
Is_Reachable(Void, Void, Ref)

Given:

VC: 2_2:
Convention for Queue generated by intialization rule:
Queue_Location_Linking_Realiz.rb(24)

Goal:
Ref(Void) = Void

Given:

VC: 2_3:
Convention for Queue generated by intialization rule generated
by intialization rule generated by intialization rule:
Queue_Location_Linking_Realiz.rb(24)

Goal:
(Void = Void iff Void = Void)

Given:

1: true

VC: 2_4:
Initialization Rule for Queue:
Queue_Location_Linking_Realiz.rb(18)

Goal:
Str_Info(Void, Content, Ref) = empty_string

Given:

1: Conc.Q = Str_Info(Void, Content, Ref)

266

Free Variables:
Void:Z, Max_Char_Str_Len:N, Last_Char_Num:N, min_int:Z,
max_int:Z, Conc.Q:Str(Entry), R:Entry,
Q:(Front:Entry_Ptr_Fac.Position; Back:Entry_Ptr_Fac.Position),
Content:Z -> Info, Ref:Z -> Z, Temp:Z,
Q':(Front:Entry_Ptr_Fac.Position;
Back:Entry_Ptr_Fac.Position), R':Entry

VC: 3_1:
Requires Clause of Swap_Info in Procedure Dequeue:
Queue_Location_Linking_Realiz.rb(31)

Goal:
Q.Front /= Void

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Entry.is_initial(R)
9: Str_Info(Q.Front, Content, Ref) /= empty_string

VC: 3_2:
Requires Clause of Follow_Link in Procedure Dequeue:
Queue_Location_Linking_Realiz.rb(32)

Goal:
Q.Front /= Void

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Entry.is_initial(R)
9: Str_Info(Q.Front, Content, Ref) /= empty_string
10: Content' = lambda L: Z ({{R if L = Q.Front
Content(L) otherwise
}})

VC: 3_3:

267

Convention for Queue generated by intialization rule , If "if"
condition at Queue_Location_Linking_Realiz.rb(33) is true:
Queue_Location_Linking_Realiz.rb(24)

Goal:
Is_Reachable(Void, Void, Ref)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Entry.is_initial(R)
9: Str_Info(Q.Front, Content, Ref) /= empty_string
10: Content' = lambda L: Z ({{R if L = Q.Front
Content(L) otherwise
}})
11: Ref(Q.Front) = Void

VC: 3_4:
Convention for Queue generated by intialization rule , If "if"
condition at Queue_Location_Linking_Realiz.rb(33) is true:
Queue_Location_Linking_Realiz.rb(24)

Goal:
Ref(Void) = Void

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Entry.is_initial(R)
9: Str_Info(Q.Front, Content, Ref) /= empty_string
10: Content' = lambda L: Z ({{R if L = Q.Front
Content(L) otherwise
}})
11: Ref(Q.Front) = Void

VC: 3_5:
Convention for Queue generated by intialization rule generated
by intialization rule generated by intialization rule , If
"if" condition at Queue_Location_Linking_Realiz.rb(33) is
true: Queue_Location_Linking_Realiz.rb(24)

Goal:

268

(Void = Void iff Void = Void)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Entry.is_initial(R)
9: Str_Info(Q.Front, Content, Ref) /= empty_string
10: Content' = lambda L: Z ({{R if L = Q.Front
Content(L) otherwise
}})
11: Ref(Q.Front) = Void

VC: 3_6:
Ensures Clause of Dequeue , If "if" condition at
Queue_Location_Linking_Realiz.rb(33) is true:
Queue_Location_Linking_Realiz.rb(35)

Goal:
Str_Info(Q.Front, Content, Ref) = (<Content(Q.Front)> o
Str_Info(Void, lambda L: Z ({{R if L = Q.Front
Content(L) otherwise
}}), Ref))

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Entry.is_initial(R)
9: Str_Info(Q.Front, Content, Ref) /= empty_string
10: Content' = lambda L: Z ({{R if L = Q.Front
Content(L) otherwise
}})
11: Ref(Q.Front) = Void

Free Variables:
Void:Z, Max_Char_Str_Len:N, Last_Char_Num:N, min_int:Z,
max_int:Z, Conc.Q:Str(Entry), R:Entry,
Q:(Front:Entry_Ptr_Fac.Position; Back:Entry_Ptr_Fac.Position),
Content:Z -> Info, Ref:Z -> Z, Temp:Z,
Q':(Front:Entry_Ptr_Fac.Position;
Back:Entry_Ptr_Fac.Position), R':Entry

269

VC: 4_1:
Requires Clause of Swap_Info in Procedure Dequeue:
Queue_Location_Linking_Realiz.rb(31)

Goal:
Q.Front /= Void

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Entry.is_initial(R)
9: Str_Info(Q.Front, Content, Ref) /= empty_string

VC: 4_2:
Requires Clause of Follow_Link in Procedure Dequeue:
Queue_Location_Linking_Realiz.rb(32)

Goal:
Q.Front /= Void

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Entry.is_initial(R)
9: Str_Info(Q.Front, Content, Ref) /= empty_string
10: Content' = lambda L: Z ({{R if L = Q.Front
Content(L) otherwise
}})

VC: 4_3:
Convention for Queue generated by intialization rule , If "if"
condition at Queue_Location_Linking_Realiz.rb(33) is true , If
"if" condition at Queue_Location_Linking_Realiz.rb(33) is
false: Queue_Location_Linking_Realiz.rb(24)

Goal:
Is_Reachable(Ref(Q.Front), Q.Back, Ref)

Given:

270

1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Entry.is_initial(R)
9: Str_Info(Q.Front, Content, Ref) /= empty_string
10: Content' = lambda L: Z ({{R if L = Q.Front
Content(L) otherwise
}})
11: Ref(Q.Front) /= Void

VC: 4_4:
Convention for Queue generated by intialization rule , If "if"
condition at Queue_Location_Linking_Realiz.rb(33) is false:
Queue_Location_Linking_Realiz.rb(24)

Goal:
Ref(Q.Back) = Void

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Entry.is_initial(R)
9: Str_Info(Q.Front, Content, Ref) /= empty_string
10: Content' = lambda L: Z ({{R if L = Q.Front
Content(L) otherwise
}})
11: Ref(Q.Front) /= Void

VC: 4_5:
Convention for Queue generated by intialization rule generated
by intialization rule generated by intialization rule , If
"if" condition at Queue_Location_Linking_Realiz.rb(33) is
false: Queue_Location_Linking_Realiz.rb(24)

Goal:
(Q.Back = Void iff Ref(Q.Front) = Void)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void

271

6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Entry.is_initial(R)
9: Str_Info(Q.Front, Content, Ref) /= empty_string
10: Content' = lambda L: Z ({{R if L = Q.Front
Content(L) otherwise
}})
11: Ref(Q.Front) /= Void

VC: 4_6:
Ensures Clause of Dequeue , If "if" condition at
Queue_Location_Linking_Realiz.rb(33) is false:
Queue_Location_Linking_Realiz.rb(35)

Goal:
Str_Info(Q.Front, Content, Ref) = (<Content(Q.Front)> o
Str_Info(Ref(Q.Front), lambda L: Z ({{R if L = Q.Front
Content(L) otherwise
}}), Ref))

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Entry.is_initial(R)
9: Str_Info(Q.Front, Content, Ref) /= empty_string
10: Content' = lambda L: Z ({{R if L = Q.Front
Content(L) otherwise
}})
11: Ref(Q.Front) /= Void

Free Variables:
Void:Z, Max_Char_Str_Len:N, Last_Char_Num:N, min_int:Z,
max_int:Z, Conc.Q:Str(Entry), E:Entry,
Q:(Front:Entry_Ptr_Fac.Position; Back:Entry_Ptr_Fac.Position),
Content:Z -> Info, Ref:Z -> Z, Temp:Z,
Q':(Front:Entry_Ptr_Fac.Position;
Back:Entry_Ptr_Fac.Position), E':Entry, Temp':Z

VC: 5_1:
Requires Clause of Swap_Info in Procedure Enqueue:
Queue_Location_Linking_Realiz.rb(42)

Goal:

272

Temp' /= Void

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Temp' /= Void

VC: 5_2:
Convention for Queue generated by intialization rule , If "if"
condition at Queue_Location_Linking_Realiz.rb(33) is true , If
"if" condition at Queue_Location_Linking_Realiz.rb(33) is
false , If "if" condition at
Queue_Location_Linking_Realiz.rb(43) is true:
Queue_Location_Linking_Realiz.rb(24)

Goal:
Is_Reachable(Temp', Temp', Ref)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Temp' /= Void
9: E' = Content(Temp')
10: Content' = lambda L: Z ({{E if L = Temp'
Content(L) otherwise
}})
11: Q.Front = Void

VC: 5_3:
Convention for Queue generated by intialization rule , If "if"
condition at Queue_Location_Linking_Realiz.rb(43) is true:
Queue_Location_Linking_Realiz.rb(24)

Goal:
Ref(Temp') = Void

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void

273

6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Temp' /= Void
9: E' = Content(Temp')
10: Content' = lambda L: Z ({{E if L = Temp'
Content(L) otherwise
}})
11: Q.Front = Void

VC: 5_4:
Convention for Queue generated by intialization rule generated
by intialization rule generated by intialization rule , If
"if" condition at Queue_Location_Linking_Realiz.rb(43) is
true: Queue_Location_Linking_Realiz.rb(24)

Goal:
(Temp' = Void iff Temp' = Void)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Temp' /= Void
9: E' = Content(Temp')
10: Content' = lambda L: Z ({{E if L = Temp'
Content(L) otherwise
}})
11: Q.Front = Void

VC: 5_5:
Ensures Clause of Enqueue , If "if" condition at
Queue_Location_Linking_Realiz.rb(43) is true:
Queue_Location_Linking_Realiz.rb(48)

Goal:
Str_Info(Temp', lambda L: Z ({{E if L = Temp'
Content(L) otherwise
}}), Ref) = (Str_Info(Q.Front, Content, Ref) o <E>)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Temp' /= Void

274

9: E' = Content(Temp')
10: Content' = lambda L: Z ({{E if L = Temp'
Content(L) otherwise
}})
11: Q.Front = Void

Free Variables:
Void:Z, Max_Char_Str_Len:N, Last_Char_Num:N, min_int:Z,
max_int:Z, Conc.Q:Str(Entry), E:Entry,
Q:(Front:Entry_Ptr_Fac.Position; Back:Entry_Ptr_Fac.Position),
Content:Z -> Info, Ref:Z -> Z, Temp:Z, Temp':Z, E':Entry,
Temp'':Z

VC: 6_1:
Requires Clause of Swap_Info in Procedure Enqueue:
Queue_Location_Linking_Realiz.rb(42)

Goal:
Temp'' /= Void

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Temp'' /= Void

VC: 6_2:
Requires Clause of Redirect_Link in Procedure Enqueue:
Queue_Location_Linking_Realiz.rb(47)

Goal:
Q.Back /= Void

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Temp'' /= Void
9: E' = Content(Temp'')
10: Content' = lambda L: Z ({{E if L = Temp''

275

Content(L) otherwise
}})
11: Q.Front /= Void

VC: 6_3:
Convention for Queue generated by intialization rule , If "if"
condition at Queue_Location_Linking_Realiz.rb(33) is true , If
"if" condition at Queue_Location_Linking_Realiz.rb(33) is
false , If "if" condition at
Queue_Location_Linking_Realiz.rb(43) is true , If "if"
condition at Queue_Location_Linking_Realiz.rb(43) is false:
Queue_Location_Linking_Realiz.rb(24)

Goal:
Is_Reachable(Q.Front, Q.Back, lambda L: Z ({{Temp'' if L =
Q.Back
Ref(L) otherwise
}}))

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Temp'' /= Void
9: E' = Content(Temp'')
10: Content' = lambda L: Z ({{E if L = Temp''
Content(L) otherwise
}})
11: Q.Front /= Void
12: Ref' = lambda L: Z ({{Temp'' if L = Q.Back
Ref(L) otherwise
}})
13: Temp' = Ref(Q.Back)

VC: 6_4:
Convention for Queue generated by intialization rule , If "if"
condition at Queue_Location_Linking_Realiz.rb(43) is false:
Queue_Location_Linking_Realiz.rb(24)

Goal:
Ref'(Q.Back) = Void

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void

276

6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Temp'' /= Void
9: E' = Content(Temp'')
10: Content' = lambda L: Z ({{E if L = Temp''
Content(L) otherwise
}})
11: Q.Front /= Void
12: Ref' = lambda L: Z ({{Temp'' if L = Q.Back
Ref(L) otherwise
}})
13: Temp' = Ref(Q.Back)

VC: 6_5:
Convention for Queue generated by intialization rule generated
by intialization rule generated by intialization rule , If
"if" condition at Queue_Location_Linking_Realiz.rb(43) is
false: Queue_Location_Linking_Realiz.rb(24)

Goal:
(Q.Back = Void iff Q.Front = Void)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Temp'' /= Void
9: E' = Content(Temp'')
10: Content' = lambda L: Z ({{E if L = Temp''
Content(L) otherwise
}})
11: Q.Front /= Void
12: Ref' = lambda L: Z ({{Temp'' if L = Q.Back
Ref(L) otherwise
}})
13: Temp' = Ref(Q.Back)

VC: 6_6:
Ensures Clause of Enqueue , If "if" condition at
Queue_Location_Linking_Realiz.rb(43) is false:
Queue_Location_Linking_Realiz.rb(48)

Goal:
Str_Info(Q.Front, lambda L: Z ({{E if L = Temp''
Content(L) otherwise
}}), lambda L: Z ({{Temp'' if L = Q.Back
Ref(L) otherwise
}})) = (Str_Info(Q.Front, Content, Ref) o <E>)

277

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)
8: Temp'' /= Void
9: E' = Content(Temp'')
10: Content' = lambda L: Z ({{E if L = Temp''
Content(L) otherwise
}})
11: Q.Front /= Void
12: Ref' = lambda L: Z ({{Temp'' if L = Q.Back
Ref(L) otherwise
}})
13: Temp' = Ref(Q.Back)

Free Variables:
Void:Z, Max_Char_Str_Len:N, Last_Char_Num:N, min_int:Z,
max_int:Z, Conc.Q:Str(Entry), Q:(Front:Entry_Ptr_Fac.Position;
Back:Entry_Ptr_Fac.Position), Content:Z -> Info, Ref:Z -> Z,
Is_Empty:Boolean.B, Temp:Z

VC: 7_1:
Convention for Queue generated by intialization rule , If "if"
condition at Queue_Location_Linking_Realiz.rb(33) is true , If
"if" condition at Queue_Location_Linking_Realiz.rb(33) is
false , If "if" condition at
Queue_Location_Linking_Realiz.rb(43) is true , If "if"
condition at Queue_Location_Linking_Realiz.rb(43) is false:
Queue_Location_Linking_Realiz.rb(24)

Goal:
Is_Reachable(Q.Front, Q.Back, Ref)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)

VC: 7_2:

278

Convention for Queue generated by intialization rule:
Queue_Location_Linking_Realiz.rb(24)

Goal:
Ref(Q.Back) = Void

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)

VC: 7_3:
Convention for Queue generated by intialization rule generated
by intialization rule generated by intialization rule:
Queue_Location_Linking_Realiz.rb(24)

Goal:
(Q.Back = Void iff Q.Front = Void)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)

VC: 7_4:
Ensures Clause of Is_Empty:
Queue_Location_Linking_Realiz.rb(55)

Goal:
Q.Front = Void = Str_Info(Q.Front, Content, Ref) =
empty_string

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)

VC: 7_5:

279

Ensures Clause of Is_Empty:
Queue_Location_Linking_Realiz.rb(55)

Goal:
Str_Info(Q.Front, Content, Ref) = Str_Info(Q.Front, Content,
Ref)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)
7: Conc.Q = Str_Info(Q.Front, Content, Ref)

Free Variables:
Void:Z, Max_Char_Str_Len:N, Last_Char_Num:N, min_int:Z,
max_int:Z, Conc.Q:Str(Entry), Q:(Front:Entry_Ptr_Fac.Position;
Back:Entry_Ptr_Fac.Position), Content:Z -> Info, Ref:Z -> Z,
Q':(Front:Entry_Ptr_Fac.Position; Back:Entry_Ptr_Fac.Position)

VC: 8_1:
Convention for Queue generated by intialization rule , If "if"
condition at Queue_Location_Linking_Realiz.rb(33) is true , If
"if" condition at Queue_Location_Linking_Realiz.rb(33) is
false , If "if" condition at
Queue_Location_Linking_Realiz.rb(43) is true , If "if"
condition at Queue_Location_Linking_Realiz.rb(43) is false:
Queue_Location_Linking_Realiz.rb(24)

Goal:
Is_Reachable(Void, Void, Ref)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)

VC: 8_2:
Convention for Queue generated by intialization rule:
Queue_Location_Linking_Realiz.rb(24)

Goal:
Ref(Void) = Void

280

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)

VC: 8_3:
Convention for Queue generated by intialization rule generated
by intialization rule generated by intialization rule:
Queue_Location_Linking_Realiz.rb(24)

Goal:
(Void = Void iff Void = Void)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)

VC: 8_4:
Ensures Clause of Clear: Queue_Location_Linking_Realiz.rb(60)

Goal:
true

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void
6: (Q.Back = Void iff Q.Front = Void)

VC: 8_5:
Ensures Clause of Clear: Queue_Location_Linking_Realiz.rb(60)

Goal:
Str_Info(Void, Content, Ref) = empty_string

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (Last_Char_Num > 0)
4: Is_Reachable(Q.Front, Q.Back, Ref)
5: Ref(Q.Back) = Void

281

6: (Q.Back = Void iff Q.Front = Void)

282

Alternate Queue Implementation VCs

//
// Generated by the RESOLVE Verifier, December 2011 version
// from file: UnboundedQueue_List_Realiz.rb
// on: Fri Nov 11 09:40:00 EST 2011
//

Free Variables:
Entry

VC: 0_1:
Requirement for Facility Declaration Rule for List_Fac:
UnboundedQueue_List_Realiz.rb(4)

Goal:
true

Given:

Free Variables:
Q:List_Fac.List, Max_Char_Str_Len:N, min_int:Z, max_int:Z,
Last_Char_Num:N

VC: 1_1:
Correspondence Rule for Queue:
UnboundedQueue_List_Realiz.rb(10)

Goal:
true

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)

Free Variables:
Q:List_Fac.List, Conc.Q:Str(Entry)

283

VC: 2_1:
Initialization Rule for Queue:
UnboundedQueue_List_Realiz.rb(7)

Goal:
(Q.Prec o Q.Rem) = empty_string

Given:
1: Q.Prec = empty_string
2: Q.Rem = empty_string
3: Conc.Q = (Q.Prec o Q.Rem)

Free Variables:
Max_Char_Str_Len:N, min_int:Z, max_int:Z, Last_Char_Num:N,
Conc.Q:Str(Entry), R:Entry, Q:List_Fac.List, R':Entry,
Q':List_Fac.List, Q'':List_Fac.List

VC: 3_1:
Requires Clause of Remove in Procedure Dequeue:
UnboundedQueue_List_Realiz.rb(14)

Goal:
(Q.Prec o Q.Rem) /= empty_string

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: Entry.is_initial(R)
5: (Q.Prec o Q.Rem) /= empty_string
6: Conc.Q = (Q.Prec o Q.Rem)

VC: 3_2:
Ensures Clause of Dequeue: UnboundedQueue_List_Realiz.rb(15)

Goal:
(Q.Prec o Q.Rem) = (<R'> o (empty_string o Q'.Rem))

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: Entry.is_initial(R)
5: (Q.Prec o Q.Rem) /= empty_string
6: Conc.Q = (Q.Prec o Q.Rem)
7: (Q.Prec o Q.Rem) = (<R'> o Q'.Rem)

284

Free Variables:
Max_Char_Str_Len:N, min_int:Z, max_int:Z, Last_Char_Num:N,
Conc.Q:Str(Entry), E:Entry, Q:List_Fac.List, E':Entry,
Q':List_Fac.List

VC: 4_1:
Ensures Clause of Enqueue: UnboundedQueue_List_Realiz.rb(20)

Goal:
(Q.Prec o Q.Rem) o (<E> o empty_string)) = (Q.Prec o Q.Rem)
o <E>)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: Conc.Q = (Q.Prec o Q.Rem)

Free Variables:
Max_Char_Str_Len:N, min_int:Z, max_int:Z, Last_Char_Num:N,
Conc.Q:Str(Entry), Q:List_Fac.List, Is_Empty:Boolean.B

VC: 5_1:
Ensures Clause of Is_Empty: UnboundedQueue_List_Realiz.rb(24)

Goal:
1: Q.Prec = empty_string and Q.Prec = empty_string = (Q.Prec
o Q.Rem) = empty_string

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)
4: Conc.Q = (Q.Prec o Q.Rem)

VC: 5_2:
Ensures Clause of Is_Empty: UnboundedQueue_List_Realiz.rb(24)

Goal:
(Q.Prec o Q.Rem) = (Q.Prec o Q.Rem)

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)

285

3: (0 < max_int)
4: Conc.Q = (Q.Prec o Q.Rem)

Free Variables:
Max_Char_Str_Len:N, min_int:Z, max_int:Z, Last_Char_Num:N,
Conc.Q:Str(Entry), Q:List_Fac.List, Q':List_Fac.List

VC: 6_1:
Ensures Clause of Clear: UnboundedQueue_List_Realiz.rb(28)

Goal:
true

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)

VC: 6_2:
Ensures Clause of Clear: UnboundedQueue_List_Realiz.rb(28)

Goal:
empty_string = empty_string

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)

VC: 6_3:
Ensures Clause of Clear: UnboundedQueue_List_Realiz.rb(28)

Goal:
empty_string = empty_string

Given:
1: (Last_Char_Num > 0)
2: (min_int <= 0)
3: (0 < max_int)

286

Auxiliary Code Rotate VCs

VC Number With Auxiliary Code Without Auxiliary Code

1

Requires Clause of Dequeue

in Procedure Rotate:

Obvious_Rotate_Realiz.rb

Goal:

|Q| /= 0

Given:

1: (min_int <= 0)

2: (0 < max_int)

3: (Last_Char_Num > 0)

4: (Max_Length > 0)

5: (min_int <=

Max_Length) and

(Max_Length <= max_int)

6: (|Q| <= Max_Length)

7: |Q| /= 0

 Proved in 453

milliseconds.

 Overall, 1 proofs

were directly

considered and 0

useful backtracks

were performed.

Goal:

|Q| /= 0

Given:

1: (min_int <= 0)

2: (0 < max_int)

3: (Last_Char_Num > 0)

4: (Max_Length > 0)

5: (min_int <=

Max_Length) and

(Max_Length <= max_int)

6: (|Q| <= Max_Length)

7: |Q| /= 0

287

2

Requires Clause of Enqueue

in Procedure Rotate:

Obvious_Rotate_Realiz.rb(1

7)

Goal:

(|Q'| < Max_Length)

Given:

1: (min_int <= 0)

2: (0 < max_int)

3: (Last_Char_Num > 0)

4: (Max_Length > 0)

5: (min_int <=

Max_Length) and

(Max_Length <= max_int)

6: (|Q| <= Max_Length)

7: |Q| /= 0

8: Q = (<TE'> o Q')

 Proved in 171

milliseconds.

 Overall, 1 proofs

were directly

considered and 0

useful backtracks

were performed.

Goal:

(|Q''| < Max_Length)

Given:

1: (min_int <= 0)

2: (0 < max_int)

3: (Last_Char_Num > 0)

4: (Max_Length > 0)

5: (min_int <=

Max_Length) and

(Max_Length <= max_int)

6: (|Q| <= Max_Length)

7: |Q| /= 0

8: Q = (<TE'> o Q'')

288

3

Ensures Clause of Rotate:

Rotating_Capability.en(5)

Goal:

Q = (<TE'> o Q')

Given:

1: (min_int <= 0)

2: (0 < max_int)

3: (Last_Char_Num > 0)

4: (Max_Length > 0)

5: (min_int <=

Max_Length) and

(Max_Length <= max_int)

6: (|Q| <= Max_Length)

7: |Q| /= 0

8: Q = (<TE'> o Q')

 Proved in 63

milliseconds.

 Overall, 1 proofs

were directly

considered and 0

useful backtracks

were performed.

Goal:

there exists E:Entry,

there exists

R:Str(Entry), (Q = (<E> o

R) and (Q'' o <TE'>) = (R

o <E>))

Given:

1: (min_int <= 0)

2: (0 < max_int)

3: (Last_Char_Num > 0)

4: (Max_Length > 0)

5: (min_int <=

Max_Length) and

(Max_Length <= max_int)

6: (|Q| <= Max_Length)

7: |Q| /= 0

8: Q = (<TE'> o Q'')

9: Q' = (Q'' o <TE'>)

289

4

Ensures Clause of Rotate:

Rotating_Capability.en(5)

Goal:

(Q' o <TE'>) = (Q' o

<TE'>)

Given:

1: (min_int <= 0)

2: (0 < max_int)

3: (Last_Char_Num > 0)

4: (Max_Length > 0)

5: (min_int <=

Max_Length) and

(Max_Length <= max_int)

6: (|Q| <= Max_Length)

7: |Q| /= 0

8: Q = (<TE'> o Q')

 Proved in 62

milliseconds.

 Overall, 1 proofs

were directly

considered and 0

useful backtracks

were performed.

Table 4: VC Comparison when Using Auxiliary Code

290

Appendix G

Recursive Educational Example Verification Conditions

//
// Generated by the RESOLVE Verifier, December 2011 version
// from file: Recursive_Append_Realiz.rb
// on: Sat Jul 02 08:19:38 EDT 2011
//

Free Variables:
Max_Length:Z, min_int:Z, max_int:Z,
P:Modified_String_Theory.Str(Entry),
Q:Modified_String_Theory.Str(Entry), P_val:N,
P':Modified_String_Theory.Str(Entry),
Q':Modified_String_Theory.Str(Entry), E':Entry, E:Entry

VC: 0_1:
Requires Clause of Dequeue in Procedure Append:
Recursive_Append_Realiz.rb(9)

Goal:
|Q| /= 0

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |Q|
11: |Q| /= 0

VC: 0_2:
Requires Clause of Enqueue in Procedure Append:
Recursive_Append_Realiz.rb(10)

Goal:
(|P| < Max_Length)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)

291

4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |Q|
11: |Q| /= 0
12: Q = (<E'> o Q')

VC: 0_3:
Show Termination of Recursive Call:
Recursive_Append_Realiz.rb(5)

Goal:
(|Q'| < |Q|)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |Q|
11: |Q| /= 0
12: Q = (<E'> o Q')

VC: 0_4:
Requires Clause of Append in Procedure Append:
Recursive_Append_Realiz.rb(11)

Goal:
(|(P o <E'>)| + |Q'|)<= Max_Length)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |Q|
11: |Q| /= 0
12: Q = (<E'> o Q')

292

VC: 0_5:
Ensures Clause of Append , If "if" condition at
Recursive_Append_Realiz.rb(8) is true: Append_Capability.en(4)

Goal:
(P o <E'>)o Q') = (P o Q)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |Q|
11: |Q| /= 0
12: Q = (<E'> o Q')

VC: 0_6:
Ensures Clause of Append , If "if" condition at
Recursive_Append_Realiz.rb(8) is true: Append_Capability.en(4)

Goal:
empty_string = empty_string

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |Q|
11: |Q| /= 0
12: Q = (<E'> o Q')

Free Variables:
Max_Length:Z, min_int:Z, max_int:Z,
P:Modified_String_Theory.Str(Entry),
Q:Modified_String_Theory.Str(Entry), P_val:N, E:Entry

293

VC: 1_1:
Ensures Clause of Append , If "if" condition at
Recursive_Append_Realiz.rb(8) is false:
Append_Capability.en(4)

Goal:
P = (P o Q)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |Q|
11: |Q| = 0

VC: 1_2:
Ensures Clause of Append , If "if" condition at
Recursive_Append_Realiz.rb(8) is false:
Append_Capability.en(4)

Goal:
Q = empty_string

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |Q|
11: |Q| = 0

294

VCs for Recursive Append with wrong decreasing clause:

//
// Generated by the RESOLVE Verifier, December 2011 version
// from file: Recursive_Append_Realiz.rb
// on: Sat Jul 09 08:20:12 EDT 2011
//

Free Variables:
Max_Length:Z, min_int:Z, max_int:Z,
P:Modified_String_Theory.Str(Entry),
Q:Modified_String_Theory.Str(Entry), P_val:N,
P':Modified_String_Theory.Str(Entry),
Q':Modified_String_Theory.Str(Entry), E':Entry, E:Entry

VC: 0_1:
Requires Clause of Dequeue in Procedure Append:
Recursive_Append_Realiz.rb(9)

Goal:
|Q| /= 0

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |P|
11: |Q| /= 0

VC: 0_2:
Requires Clause of Enqueue in Procedure Append:
Recursive_Append_Realiz.rb(10)

Goal:
(|P| < Max_Length)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)

295

7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |P|
11: |Q| /= 0
12: Q = (<E'> o Q')

VC: 0_3:
Show Termination of Recursive Call:
Recursive_Append_Realiz.rb(5)

Goal:
(|(P o <E'>)| < |P|)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |P|
11: |Q| /= 0
12: Q = (<E'> o Q')

VC: 0_4:
Requires Clause of Append in Procedure Append:
Recursive_Append_Realiz.rb(11)

Goal:
(|(P o <E'>)| + |Q'|)<= Max_Length)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |P|
11: |Q| /= 0
12: Q = (<E'> o Q')

VC: 0_5:

296

Ensures Clause of Append , If "if" condition at
Recursive_Append_Realiz.rb(8) is true: Append_Capability.en(4)

Goal:
(P o <E'>)o Q') = (P o Q)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |P|
11: |Q| /= 0
12: Q = (<E'> o Q')

VC: 0_6:
Ensures Clause of Append , If "if" condition at
Recursive_Append_Realiz.rb(8) is true: Append_Capability.en(4)

Goal:
empty_string = empty_string

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |P|
11: |Q| /= 0
12: Q = (<E'> o Q')

Free Variables:
Max_Length:Z, min_int:Z, max_int:Z,
P:Modified_String_Theory.Str(Entry),
Q:Modified_String_Theory.Str(Entry), P_val:N, E:Entry

VC: 1_1:

297

Ensures Clause of Append , If "if" condition at
Recursive_Append_Realiz.rb(8) is false:
Append_Capability.en(4)

Goal:
P = (P o Q)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |P|
11: |Q| = 0

VC: 1_2:
Ensures Clause of Append , If "if" condition at
Recursive_Append_Realiz.rb(8) is false:
Append_Capability.en(4)

Goal:
Q = empty_string

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |P|
11: |Q| = 0

298

VCs for Recursive Append with incorrect implementation :

//
// Generated by the RESOLVE Verifier, December 2011 version
// from file: Recursive_Append_Realiz.rb
// on: Sat Jul 09 08:50:00 EDT 2011
//

Free Variables:
Max_Length:Z, min_int:Z, max_int:Z,
P:Modified_String_Theory.Str(Entry),
Q:Modified_String_Theory.Str(Entry), P_val:N,
P':Modified_String_Theory.Str(Entry),
Q':Modified_String_Theory.Str(Entry)

VC: 0_1:
Show Termination of Recursive Call:
Recursive_Append_Realiz.rb(5)

Goal:
(|Q| < |Q|)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |Q|
11: |Q| /= 0

VC: 0_2:
Requires Clause of Append in Procedure Append:
Recursive_Append_Realiz.rb(8)

Goal:
(|P| + |Q|)<= Max_Length)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)

299

6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |Q|
11: |Q| /= 0

VC: 0_3:
Ensures Clause of Append , If "if" condition at
Recursive_Append_Realiz.rb(7) is true: Append_Capability.en(4)

Goal:
(P o Q) = (P o Q)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |Q|
11: |Q| /= 0

VC: 0_4:
Ensures Clause of Append , If "if" condition at
Recursive_Append_Realiz.rb(7) is true: Append_Capability.en(4)

Goal:
empty_string = empty_string

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |Q|
11: |Q| /= 0

Free Variables:

300

Max_Length:Z, min_int:Z, max_int:Z,
P:Modified_String_Theory.Str(Entry),
Q:Modified_String_Theory.Str(Entry), P_val:N

VC: 1_1:
Ensures Clause of Append , If "if" condition at
Recursive_Append_Realiz.rb(7) is false:
Append_Capability.en(4)

Goal:
P = (P o Q)

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |Q|
11: |Q| = 0

VC: 1_2:
Ensures Clause of Append , If "if" condition at
Recursive_Append_Realiz.rb(7) is false:
Append_Capability.en(4)

Goal:
Q = empty_string

Given:
1: (min_int <= 0)
2: (0 < max_int)
3: (min_int <= 0)
4: (0 < max_int)
5: (Max_Length > 0)
6: (min_int <= Max_Length) and (Max_Length <= max_int)
7: (|Q| <= Max_Length)
8: (|P| <= Max_Length)
9: (|P| + |Q|)<= Max_Length)
10: P_val = |Q|
11: |Q| = 0

301

REFERENCES

[1] J. C. King, "A Program Verifier," Carnegie-Mellon University, USA, PhD Thesis 1969.

[2] J. C. King, "Symbolic Execution and Program Testing.," Communications of the ACM,

vol. 19, no. 7, pp. 385-394, 1976.

[3] C.A. Hoare, "An Axiomatic basis for computer proramming," Communications of the

ACM, vol. 12, no. 10, pp. 576-580, 1969.

[4] Tony Hoare, "The verifying compiler: A grand challenge for computing research,"

Journal of the ACM, vol. 50, no. 1, pp. 63-69, January 2003.

[5] J. Bloch. (2006) [Online]. http://googleresearch.blogspot.com/2006/06/extra-extra-

readall-about-it-nearly.html

[6] (2011, Ocbober) VSTTE ’10 competition. [Online].
http://www.macs.hw.ac.uk/vstte10/Competition.html

[7] V. Klebanov et al., "The 1st Verified Software Competition: Experience Report.," in FM

2011: Formal Methods - 17th International Symposium on Formal Methods, vol. 6664,

Limerick, Ireland, June 20-24, 2011, pp. 154-168.

[8] K.R.M Leino, G. Nelson, and J.B. Saxe, "ESC/Java User's Manual," Technical Note, no.

002, 2000.

[9] B. Hackett and R. Rugina, "Region-Based Shape Analysis with Tracked Locations," in

Proceedings of the ACM SIGPLAN Symposium on Principles of Programming Languages

(POPL '05), Long Beach, CA, January, 2005.

[10] J. Krone, "The Role of Verification in Software Reusability," The Ohio State University,

PhD. Thesis 1988.

[11] W. Heym, "Computer Program Verification: Improvements for Human Reasoning,"

The Ohio State University, PhD. Thesis 1995.

[12] B W Weide et al., "Incremental Benchmarks for Software Verification Tools and

Techniques," in VSTTE 2008 (Verified Software: Theories, Tools, and Experiments),

Toronto, Canada, 2008, pp. 84-98.

302

[13] G.T. Leavens et al., "Roadmap for Enhanced Languages and Methods to Aid

Verification," in Proceedings of the 5th international Conference on Generative

Programming and Component Engineering, Portland, Oregon, USA, October 22 - 26,

2006, pp. 221-236.

[14] H. Harton, J. Krone, and M. Sitaraman, "Formal Program Verification," Wiley

Encyclopedia of Electrical and Electronics Engineering, Software Engineering Volume,

2007.

[15] J. Filliâtre and C. Marché, "The Why/Krakatoa/Caduceus Platform for Deductive

Program Verification," in 19th International Conference on Computer Aided

Verification, Berlin, Germany, July 2007, pp. 173-177.

[16] C. Marché, C. Paulin-Mohring, and X. Urbain, "The Krakatoa Tool for Certification of

Java/JavaCard Programs Annotated in JML," Journal of Logic and Algebraid

Programming, pp. 89-106, 2004.

[17] D. Detlefs, G. Nelson, and J.B. Saxe, "Simplify: A Theorem Prover for Program

Checking," J. ACM, vol. 52, no. 3, pp. 365-473, 2005.

[18] S. Ranise and D. Deharbe. The haRVey decision procedure. [Online].

http://www.loria.fr/~ranise/haRVey/

[19] C. March'e and C. Paulin-Mohring, "Reasoning about Java Programs with Aliasing and

Frame," in 18th International Conference on Theorem Proving in Higher Order Logics,

Lecture Notes in Compute rScience, vol. 3603, 2005, pp. 179-194.

[20] C.B. Jones, Systematic Software Development using VDM, 2nd ed.: Prentice Hall

International, 1990.

[21] A.A. Koptelov and A.K. Petrenko, "VDM vs. Programming Language Extensions or their

Integration," in Proceedings of the First International Overture Workshop, Newcastle,

July 2005.

[22] S. Owre, J.M. Rushby, and N. Shankar, "PVS: A Prototype Verification System," in

Proceedings of the 11th International Conference on Automated Deduction: Automated

Deduction, June 15-18, 1992, pp. 748-752.

[23] S. Owre, J. Rusby, N. Shanka, and F. von Henke, "Formal Verification for Fault-Tolerant

Architectures: Prolegomena to the Design of PVS," IEEE Transactions on Software

Engineering, vol. 21, no. 2, pp. 107-125, February 1995.

303

[24] W.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking.: The MIT Press, January

2000.

[25] W. Visser, K. Havelund, G. Brat, and S. Park, "Model Checking Programs," in IEEE

International Conference on Automated Software Engineering, September 2000, pp. 3-

12.

[26] T. Ball, R. Majumdar, T. Millstein, and S.K. Rajamani, "Automatic Predicate Abstraction

of C Programs," in Proceedings of the ACM SIGPLAN 2001 Conference on Programming

Language Design and Implementation, Snowbird, Utah, United States, 2001, pp. 203-

213.

[27] The Isabelle Theorem Proving Environment. Developed by Larry Paulson at

Cambridge University and Tobias Nipkow at TU Munich. [Online].

http://www.cl.cam.ac.uk/Research/HVG/Isabelle

[28] D. Leinenbach, W. Paul, and E. Petrova, "Towards the Formal Verification of a C0

Compiler: Code Generation and Implementation Correctness," in Software

Engineering and Formal Methods, 2005. SEFM 2005. Third IEEE International

Conference on, Sept. 2005, pp. 2-11, 7-9.

[29] P. Müller and A. Poetzsch-Heffter, "Modular Specification and Verification Techniques

for Object-Oriented Software Components," in Foundations of Component-Based

System, G.T., Sitaraman, M. Leavens, Ed. New York, NY, USA: Cambridge University

Press, 2000, pp. 137-159.

[30] G.T. Leavens, A.L. Baker, and C. Ruby, "Preliminary Design of JML: A Behavioral

Interface Specification Language for Java," ACM SIGSOFT Software Engineering Notes,

vol. 31, no. 3, pp. 1-38, March 2006.

[31] L. Burdy et al., "An Overview of JML Tools and Applications," International Journal on

Software Tools for Technology Transfer, vol. 7, no. 3, pp. 212-232, June 2005.

[32] E. Poll, J. Kiniry, and D. Cok. Introduction to JML. [Online].

http://secure.ucd.ie/products/open-

source/ESCJava2/ESCTools/papers/CASSIS2004.pdf

[33] L. Burdy, A. Requet, and J. Lanet, "Java applet correctness: A developer-oriented

approach," FME 2003, LNCS, vol. 2805, pp. 422-439, 2003.

[34] W. Ahrendt et al., "The KeY tool.," Software and System Modeling 4, pp. 32-54, 2005.

304

[35] J.V. Guttag and J.J. Horning, Larch: Languages and Tools for Formal Specification.:

Springer-Verlag New York, Inc., 1993.

[36] K. Kuncak and M. Rinard, "An Overview of the Jahob Analysis System: Project Goals

and Current Status," in Proceedings 20th IEEE International Parallel & Distributed

Processing, Rhodes Island, Greece, 2006, p. 285.

[37] T. Weis, Symbolic Shape Analysis. Master’s thesis, 2004.
[38] T. Weis, V. Kuncak, P. Lam, A. Podeleski, and M. Rinard, "Field Constraint Analysis," in

Proc. Int. Conf. Verification, Model Checking, and Abstract Interpratation, 2006.

[39] Murali Sitaraman and Bruce W Weide, "Component-based software using RESOLVE,"

Software Engineering Notes, vol. 19, pp. 21-67, 1994.

[40] G. Kulczycki, M. Sitaraman, W.F. Ogden, and B.W. Weide, "Clean Semantics for Calls

with Repeated Arguments," Department of Computer Science, Clemson University,

Clemson, SC, Technical Report RSRG-05-01 March 2005.

[41] M. Sitaraman et al., "Reasoning about Software-Component Behavior," in Proceedings

of the 6th International Conference on Software Reuse, 2000, pp. 266-283.

[42] J Kirschenbaum et al., "Verifying component-based software: deep mathematics or

simple bookkeeping?," in Formal Foundations of Reuse and Domain Engineering (Proc.

11th Intl. Conf. on Software Reuse), 2009, pp. 31-40.

[43] J He, C. A. R. Hoare, and J. W. Sanders, "Data Refinement Refined," in Proceedings of the

European Symposium on Programming, London, UK, 1986, pp. 187-196.

[44] M Sitaraman, B. W. Weide, and W. F. Ogden, "On the Practical Need for Abstraction

Relations to Verify Abstract Data Type Representations," IEEE Transactions on

Software Engineering, vol. 23, no. 3, pp. 157-170, March 1977.

[45] G. Kulczycki, "Direct Reasoning," Clemson University, Clemson, SC, Ph. D. Dissertation

2004.

[46] C. Cook, H. Harton, H. Smith, and M. Sitaraman, "Modular Verification of Generic

Compoents Using a Web-Integrated Environment," Clemson University, Clemson, SC,

Technical Report RSRG-11-03, School of Computing September 2011.

305

[47] G Kulczycki et al., "The Location Linking Concept: A Basis for Verification of Code

Using Pointers," in Proceedings of VSTTE 2012 (Verified Software: Theories, Tools, and

Experiments), Philadelphia, USA, 2012.

[48] C. Cook, "A Web-Integrated Environment for Component-Based Software Reasoning,"

Clemson University, 2011.

[49] H. Harton, "Use of Unprovable Verification Conditions for Debugging," in Proceedings

of the RESOLVE Workshop 2007, pp. 17-19.

[50] H. Keown, "Automation of Verification Condition Generation for a Verifying

Compiler," in Proceedings of the RESOLVE Workshop 2006, 2006, pp. 14-18.

[51] G. Kulczycki, M. Sitaraman, H. Keown, and B. Weide, "Abstracting Pointers for a

Verifying Compiler," in Proceedings 31st Annual Software Engineering Workshop,

Baltimore, MD, March, 2007, pp. 204–213.

[52] G. Kulczycki, M. Sitaraman, B. W. Weide, and A Rountev, "A Specification-Based

Approach to Reasoning about Pointers," ACM Software Engineering Notes, vol. 31, no.

2, pp. 55-62, September, 2005.

	Clemson University
	TigerPrints
	12-2011

	Mechanical and Modular Verification Condition Generation for Object-Based Software
	Heather Harton
	Recommended Citation

	tmp.1389118324.pdf.bBmpy

