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Fibroblasts are cells present throughout the human body that are primarily responsible

for the production and maintenance of the extracellular matrix (ECM) within the tissues.

They have the capability to modify the mechanical properties of the ECMwithin the tissue

and transition into myofibroblasts, a cell type that is associated with the development

of fibrotic tissue through an acute increase of cell density and protein deposition.

This transition from fibroblast to myofibroblast—a well-known cellular hallmark of the

pathological state of tissues—and the environmental stimuli that can induce this transition

have received a lot of attention, for example in the contexts of asthma and cardiac

fibrosis. Recent efforts in understanding how cells sense their physical environment at

the micro- and nano-scales have ushered in a new appreciation that the substrates on

which the cells adhere provide not only passive influence, but also active stimulus that

can affect fibroblast activation. These studies suggest that mechanical interactions at the

cell–substrate interface play a key role in regulating this phenotype transition by changing

the mechanical and morphological properties of the cells. Here, we briefly summarize

the reported chemical and physical cues regulating fibroblast phenotype. We then

argue that a better understanding of how cells mechanically interact with the substrate

(mechanosensing) and how this influences cell behaviors (mechanotransduction) using

well-defined platforms that decouple the physical stimuli from the chemical ones can

provide a powerful tool to control the balance between physiological tissue regeneration

and pathological fibrotic response.

Keywords: fibroblast, myofibroblast, fibroblast-myofibroblast transition, mechanoresponse, fibrosis, homeostasis

INTRODUCTION

Fibroblasts are cells belonging to the mesenchyme that are capable of producing and modifying
extracellular matrix (ECM) components such as fibronectin and collagen (Kanekar et al.,
1998). They are present in various tissues. For example, in neonatal and adult heart tissues,
fibroblasts arise from endogenous cell populations via epithelial to mesenchymal transition (EMT)
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and from bone marrow derived cells (Visconti et al., 2006).
Cardiac fibroblasts play a crucial role during fetal development
and neonatal growth by contributing ECM to several specific
structures of the heart (Figure 1) (Manso et al., 2009; Souders
et al., 2009). In general, fibroblasts are flat and spindle shaped
and can be easily distinguished from other cell types residing in
the tissues, as fibroblasts lack tissue-specific functional hallmarks.
Returning to the example of the heart tissue, the cardiac
fibroblasts lack the basement membrane typical of the other
cardiac resident cells (Kanekar et al., 1998).

Despite this, fibroblasts perform various critical functions in
tissues and organs, such as generating ECM, actively migrating,
and producing or degrading growth factors and cytokines that are
fundamental for inflammatory cell response. Fibroblasts are also
key players in several tissue-specific functions, such as ensuring
normal heartbeat, where they form and maintain networks of
junctions with several cell types, without which the tissue enters
a pathological state (Camelliti et al., 2004, 2005; Baudino et al.,
2006). As such, understanding their behavior within the tissue is
a matter of high relevance, especially given that fibroblasts are a
very common cell type throughout the human body. Fibroblasts
have been extensively studied in vitro over several decades, partly
because they can be easily derived from different tissues and aided
by the simplicity of their in-vitro culture. There is evidence that
fibroblast have to be activated to proliferate and migrate during
specific pathophysiological conditions such as wound healing
and fibrosis, and thus play an important role for development
and repair of tissues (Gabbiani, 1996; Hinz et al., 2007). How
the activation, phenotype transition, and migration of fibroblast
take place in the contexts of injury response, tissue regeneration,
wound healing, and fibrosis remains a key outstanding question.

One of the first responses after a stress in the tissue, such as
in acute injures, is physical changes at the cellular and tissue
level, such as tissue stiffening associated with changes in the ECM
composition (Georges et al., 2007). These changes inevitably
disrupt the mechanical homeostasis that underlies normal tissue

FIGURE 1 | Fibroblast-to-myofibroblast transition (FMT). The scheme summarizes the FMT process, the corresponding changes in fibroblast behavior, and the

downstream effects at the tissue level. The transition start from the fibroblast activation due to the different kinds of stimuli. The activation can sometimes be reversed

or can proceed to the apoptosis of the myofibroblasts. When they escape these routes, due either to the persistent stimuli or to intracellular misregulations, FMT will

lead to changes in the extracellular matrix (ECM) deposition and its architecture, driving the tissue to a pathological state. At the cellular level, FMT results in

appreciable in the intracellular stress fibers and α-SMA expression.

architecture and function (Humphrey et al., 2014). Inflammatory
signals such as transforming growth factor beta (TGF-β) and
tumor necrosis factor alpha (TNF-α) are released after injury,
which can lead to cytoskeletal remodeling that, in turn, alters
cell-generated forces and cellular mechanical properties (Wang
et al., 2001; Leung et al., 2007; Yang et al., 2011). When the
injuries cannot be resolved and repaired, the response switches
from wound healing to fibrosis.

Fibroblast-mediated fibrosis can affect every tissue of the body
and is a frequent pathological feature of chronic inflammatory
diseases. During this pathological process, homeostasis is
disrupted and a variety of biochemical factors are released
by inflammatory cells, which trigger fibroblasts to undergo a
phenotypical change to become myofibroblasts, which in turn
leads to a notable change in the tissue microenvironment.
One critical pathway is the TGF-β pathway (Wynn and
Ramalingam, 2012; Rockey et al., 2015). This pathway can
strongly impact the transition of fibroblasts to a myofibroblast
phenotype, which involves alpha smooth muscle actin (α-SMA)
production with stress-fiber-like appearance, further leading to
migration, proliferation, and production of ECM components
such as collagen type 1 that changes the mechanical and
physical properties of the environment. It was shown that
increasing matrix stiffness, a phenomenon observed in aging
tissue, leads to myofibroblast activation (Wang et al., 2006;
van Putten et al., 2016). During dermal wound healing, the
stresses within the tissues are reduced especially inside the
wound bed, causing myofibroblasts to enter a quiescent state
or initiate the apoptosis pathway (Desmoulière et al., 1997;
Hinz et al., 2001b). On the other hand, splitting the wound
or exposing the tissue to chronic mechanical stress keeps
the myofibroblasts activated, leading to the opposite response,
i.e., preventing healing and promoting scar formation (Aarabi
et al., 2007; Gurtner et al., 2011). Similarly, during wound
healing, myofibroblast can be either inactivated, going toward a
more quiescent state, or continue with its normal functioning,
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leading the tissue in which it resides along the fibrotic pathway.
This risk associated with myofibroblasts escaping inactivation
and overcoming the apoptosis control is always present; an
example of controlled escaping is in the CCl4 rodent liver tissue
model, where hepatic stellate cells can turn into myofibroblasts
(Kisseleva et al., 2012).

As we shall discuss, the evidence indicates a complex, dynamic
interplay between fibroblasts and the extracellular matrix in
the tissue, where cells alter the properties of the environment
and, at the same time, changes in the substrate mechanical
and physical cues lead to changes in cellular organization and
behavior (Jaalouk and Lammerding, 2009; Kurniawan et al.,
2016). Sensing of physical extracellular cues and the subsequent
dynamics of the interaction between cells and the ECM
regulate the downstream mechanotransductive events, causing
a variety of nano- and micro-topography-sensitive cellular
behaviors, including cell adhesion, morphology, proliferation,
gene expression, self-renewal, and differentiation (Lemischka
and Moore, 2003; Kingham and Oreffo, 2013). In light of
these, in this review we highlight how a better knowledge of
how physical/mechanical stimuli can influence the phenotype
transition of fibroblasts can provide us with a better control on
this process and allow us to revert in more efficient way the
fibrotic tissue response, thereby presenting an important step
forward to treat fibrotic pathologies.

FIBROBLAST-TO-MYOFIBROBLAST
TRANSITION

A key step in wound healing, but also in fibrotic pathological
diseases, is the activation of the fibroblast to become
myofibroblast, where they escape the entrance to a quiescent
state or the apoptosis pathway (Gabbiani et al., 1971). This
phenotype transition is defined as Fibroblast-to-Myofibroblast
Transition (FMT). The influence of FMT has received significant
attention in the context of diseases such as bronchial asthma
(Michalik et al., 2018). Some tissue-specific FMT events
have been identified, such as increased collagen deposition
within the subepithelial basement membrane in asthma,
although these events do not fully explain the variations in
the severity of asthma (Chu et al., 1998). Here, therefore, we
will focus on the shared features of FMT and factors that
promote FMT, drawing examples from different tissues and
tissue pathologies.

Broadly, FMT can be subdivided into 2 stages. The fibroblast

first become activated to a proto-myofibroblast phenotype,
followed by a second stage completing the cell phenotype
transition (Tomasek et al., 2002; Hinz and Gabbiani, 2003).
During the initial transition stage, distinguishing the normal
fibroblasts from proto-myofibroblasts is very difficult, but if
the elevated mechanical, physical, and biochemical stresses
due to the injuries continue to be present in the tissue,
they start the polymerization of α-SMA-containing stress
fibers (Figures 2A,B). The hallmarks of the full transition
into myofibroblast are the expression of β-cadherins, the
formation of mature focal adhesions (FAs), and reduction in

migration and proliferation, with increased contractility (Hinz
and Gabbiani, 2003; Hinz et al., 2004; Ward et al., 2008).
The mechanical tension of the wound and the presence of
growth factors further push toward the phenotype transition
from fibroblast to myofibroblast (Balza et al., 1988). Interestingly,
the formation of stress fibers that promote cell motility
can also be induced by the presence of growth factors
(Malmström et al., 2003), suggesting the role of environmental
humoral stimuli in FMT.

Environmental Stimuli Affecting FMT
Humoral stimuli (Figure 2C) have been generally believed to
be fundamental to drive the phenotype transition of fibroblast,
especially the role of TGF-β growth factor. TGF-β is present
in 3 different isoforms (TGF-β1, TGF-β2, and TGF-β3) that are
secreted by cells into the extracellular space (Minshall et al.,
1997; Batra et al., 2004; Howell and McAnulty, 2006; Rahimi
and Leof, 2007). TGF-β may have pro- or anti-apoptotic effects
on epithelial cells (Al-Alawi et al., 2014) and can induce EMT
in airway epithelial cells from asthmatic subjects (Hackett et al.,
2009). It is well-documented that TGF-β can trigger FMT in
asthmatic subjects (Sagara et al., 2002; Le et al., 2007; Luo
et al., 2014) and in in-vitro cultures (Minshall et al., 1997;
Batra et al., 2004; Howell and McAnulty, 2006; Boero et al.,
2007; Milara et al., 2012). It was furthermore shown that other
growth factors have a well-coordinated activity with TGF-β to
promote FMT, such as CTGF (also known as CCN2) (Kular
et al., 2011), PDGF, which increases the number of migrating
cells and encourages phenotypical shifts of lung fibroblast toward
myofibroblasts (Malmström et al., 2003), as well as NGF (Bonini
et al., 1996) and IGF-1 (Yamashita et al., 2005; Boero et al., 2007)
in different tissues.

Another kind of FMT-inducing stimuli is related to an
elevated influx of immune cells associated with increased
vascular permeability, and the subsequent release of cytokines
and chemokines. Especially the role of interleukins during
inflammatory response and how they are correlated to FMT
is well-understood. For example, when stimulated by IL-4 and
IL-3, the expressions of α-SMA in human lung fibroblasts are
increased depending on the interleukins concentration and in
a time-dependent manner (Hashimoto et al., 2001; Saito et al.,
2003).

More recently, mechanical stimuli have also been
demonstrated to have a key role in FMT (Tomasek et al.,
2002; Balestrini et al., 2012; Hinz et al., 2012; Darby et al., 2016).
Several in-vitro studies have shown that mechanical stress within
the cellular environment, induced for instance by different
mechanical and physical properties of collagen gels, is one of the
factors that controls the shift in the fibroblast phenotype and cell
fate (Arora et al., 1999; Hinz et al., 2001b;Wang et al., 2003; Choe
et al., 2006; Balestrini et al., 2012). However, at the moment,
there are still very few results on the direct impact of mechanical
factors and their influence in FMT. There is evidence that
mechanical stress leads to an increase of the ECM proteins and
proteoglycan content (Breen, 2000; Ludwig et al., 2004; Le Bellego
et al., 2009; Manuyakorn, 2014; Manuyakorn et al., 2016) and in
recent studies it was demonstrated that mechanical properties
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FIGURE 2 | Key signatures of FMT. (A) Influence on cytoskeletal arrangement and cardiomyogenic differentiation of the substrate that presents pattern at different

time points. Along the first row the cells reside on flat surface while the following two present same kind of grooves but with different dimensions. Image was adapted

with permission from Gu et al. (2017). (B) Schematic illustration of the mechanostimulation that lead to myofibroblast differentiation. The upper part shows that

endothelial cells lose their endothelial markers. The lower part shows that mechanical factors, such as the degradation or production of ECM that alter tissue

stiffening, can induce the differentiation, for example in cardiac fibroblasts. Image was adapted with permission from Schroer and Merryman (2015). (C) Different

fibroblast activation pathways through biochemical and mechanical factors in asthmatic (AS) and not asthmatic (NA) patients. Image was adapted with permission

from Michalik et al. (2018).

of the microenvironment in which the cells reside, such as lung,
bronchial, neuronal and cardiac tissues, have an active role on cell
fate and their development (Tschumperlin, 2013; Michalik et al.,
2018; Park et al., 2018). These studies suggest that biochemical,
mechanical and physical factors in the microenvironment take
part in a regulatory network that leads to different cell fate by
specifically inducing intracellular changes also at a mechanical
level, inducing the completion of the phenotypic transition from
proto-myofibroblast to myofibroblast.

Role of Physical Stimuli in FTM
Cell Phenotype Is Driven by Physical and Mechanical

Properties of the Environment
In vivo, cells are embedded in a complex ECM during both
development and normal homeostatic maintenance, where ECM
fibers present chemically and structurally intricate contact
interfaces. Within this intricate ECM network, fibroblasts
and other cell types drive ECM remodeling by deforming,
reorienting, and degrading the ECM fibers, as well as depositing
new ECM (Zamir et al., 2000; Shieh et al., 2011). These events
are critical for tissue morphogenesis and maintenance. To
study these contact interfaces systematically, minimal in-vitro
model systems using eithermicrofabricated substrates, controlled
deposition of ECM fibers, or structured protein patterns have
been developed (Kurniawan and Bouten, 2018).

Experiments performed using adipose stromal cells (ASCs)
cultured in collagen matrices of different architectures show
that matrices with thicker fibers promote ASC phenotype
transition into myofibroblast through regulation of VEGF and
IL-8 secretion (Seo et al., 2020). Intriguingly, nanoscale changes
in the ligand spacing of model ECM fibers were shown to
influence the collective cell behavior and overall characteristics,
such as action-potential propagation in cardiac myocytes, on the
scale of centimeters, suggesting effects on the ECM organization

over six orders of magnitude of length scale (Kim et al.,
2010). Recent works from our group using patterning of ECM
proteins have furthermore shown that various morphological
features of myofibroblasts that are relevant for FMT, such as cell
area, shape, elongation, and alignment, are sensitively governed
by the ECM patterns in a length-scale-dependent manner
(Buskermolen et al., 2019, 2020).Moreover, the ECMarchitecture
at the microscale induces different cellular events that activate a
mechanical feedback loop whereby cell-generated forces lead to
matrix remodeling, which in turn induces mechanotransductive
processes and thus influencing the cell-generated forces again,
by modulating the cell’s capability to form and mature FAs as a
result of changes in the stiffness of the substrate (Hall et al., 2016;
Sapudom et al., 2019). Taken together, these findings clearly show
that physical cues from the environment can strongly influence
the phenotype of tissue-resident fibroblasts, which in turn can
shape tissue homeostasis.

Another way that microenvironmental cues can affect tissue
homeostasis is through changes in cell composition due to
cellular movements. A relatively well-recognized consequence
of the abovementioned mechanical feedback loop is the family
of cellular “taxis” responses triggered by the ability of cells
to sense chemical, mechanical, electrical stimuli gradients in
the environment. These taxis responses include chemotaxis
(sensing to spatial gradients of chemical factors) (Devreotes and
Janetopoulos, 2003), haptotaxis (sensing of the surface-bound
ECM proteins densities) (McCarthy and Furcht, 1984; Isenberg
et al., 2009), durotaxis (sensing of substratum rigidity) (Lo et al.,
2000), galvanotaxis (sensing of electric fields) (Mycielska and
Djamgoz, 2004), and curvotaxis (sensing of cell-scale curvature
variations) (Pieuchot et al., 2018). These sensing machineries
can be locally activated within the tissue microenvironment,
triggering specific mechanotransductive pathways that not only
can instigate FMT directly, but also can promote active migration
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of fibroblasts and myofibroblasts into and out of the tissue.
Using artificial engineered substrates that mimic the chemical,
mechanical, and physical properties of highly organized ECM
fibers, and so controlling their spatial density, it was shown in
a recent study that the fiber density variation can be sensed
by fibroblasts, and interestingly different cell types exhibit
different sensitivities along a density gradient depending on
their cortical stiffness (Kim et al., 2012). Interestingly, skin
fibroblasts have bidirectional guidance from the highest and the
lowest density areas toward an optimal one. This suggests that
a topotactical guidance depending on ECM density is present.
Indeed, cells tend to move toward the direction that allows
them to make the largest contact area with the substrate (Park
et al., 2018). Of note, fibroblast sensitivity to the taxis guidance
cues can vary with its activation state; indeed, myofibroblast
migrate differently depending on the mechanical and physical
properties of the ECM (Berk et al., 2007). During wound healing,
fibroblasts are directed chemotactically by the presence of TGF-
β1 in the microenvironment where the homeostasis is disrupted
(Chen et al., 2020) and can afterward shift their phenotype
to myofibroblasts, leading further to cell migration toward the
wound site, thereby increasing the local myofibroblast subcellular
population (van Caam et al., 2018).

Through these cellular response to the physical cues in the
environment, pathological features can emerge and progress. A
high density of myofibroblasts and a different ratio between ECM
components can be found in the bronchial and transbronchial
biopsies of advanced asthma patients, compared to those of the
patients with controlled and treated asthma symptoms (Weitoft
et al., 2014). These are caused by activation of myofibroblasts
within the tissue, which start a positive loop to retain their
activated state instead of entering a quiescent state, as well as
the associated regulation of metalloproteases MMPs and their
regulators tissue inhibitors (TIMPs) secretion, thereby allowing
the progression of the pathological state.

Interestingly, specific mechanical requirements have been
found using a 2D in-vitro platform that the substrate must
satisfy in order to initiate FMT. In particular, the substrates
have to present a Young’s modulus of at least 3 kPa, which
allows the cells to produce large, mature integrin clusters that
enable the full phenotype transition (Balestrini et al., 2012).
Moreover, depending on the cell type studied, it can happen that
stiffer culture substrates with a Young’s modulus higher than 20
kPa are needed to continue the mechanotransductive machinery
required to drive the phenotype transition of fibroblasts.
Similarly, during in vitro wound healing assays, FMT requires a
stiffness threshold in range of 25–50 kPa (Balestrini et al., 2012).
These studies further emphasize the importance of physical and
mechanical interactions with the ECM during FMT.

The Contact Events Start the Signal Transduction
Contact events with ECM andmaturation of adhesion complexes
are the first key steps in cell–ECM interactions that allow
the regulation of cell functions such as growth, differentiation,
and disease (Hynes, 2002; Geiger et al., 2009). The adhesion
complexes arise as nascent adhesions (Alexandrova et al., 2008;
Choi et al., 2008) that reach the dimensions of ∼110 nm (Bachir

et al., 2014; Changede et al., 2015; Changede and Sheetz,
2017). Their maturation is then promoted through outside-in
mechanotransduction mechanism from the matrix (Wolfenson
et al., 2016; Saxena et al., 2017a,b).

When cell membrane receptors bind a ligand in the ECM
substrate, the intracellular tail of the B subunits of integrins
binds talin, a mechanoprotein in closed conformation. Talin links
the B subunits with F-actin and, due to the force exerted by
myosin II through F-actin, switches to an open conformation,
consequently exposing binding site for vinculin, another protein
that confers stability to this complex, the so-called “molecular
clutch” (Sheetz, 1974; Geiger et al., 2001; Swaminathan and
Waterman, 2016). First, vinculin binds to the binding site along
talin, which is in open confomation, nearby the link between
integrin β-tail and talin. Subsequently, vinculin binds in the
same way along talin, but in proximity of the link between
talin and F-actin. If this clutch can support the loading force
exerted by the myosin II on the cell membrane receptors, the
maturation of FAs lead to mechanotransduction depending on
properties of the environment where the cell reside in Sheetz
(1974), Geiger et al. (2001), and Swaminathan and Waterman
(2016). The maturation of the FAs has been directly linked to
ligand spacing (Dalby et al., 2014) as well as substrate stiffness
(Oria et al., 2017), showing that depending on the Young’s
modulus of the substrate, the minimum ligand spacing necessary
to lead at maturation of adhesion complexes can change.
The molecular clutch mechanism can therefore instigate FMT
through these mechanosensitive responses at the cell–substrate
contact interface.

ECM Composition Regulates Fibroblast

Mechanosensing
The ECM composition is also a hallmark of the pathological state
of the tissues. Depending on the abundance of its components,
the ECM can present different microarchitectures, leading
to different mechanical and physical properties. Importantly,
interactions between the cells and the different ECM components
can directly regulate cell behavior such as migration and
development (Park et al., 2018; Changede et al., 2019; Nastały
et al., 2020).

One of the main components of the ECM that has been
shown to play an important role in promoting FMT is fibronectin
splice variant ectodomain A (ED-A-FN), which is upregulated
in pulmonary disorders such as asthma (Larsen et al., 2006; Ge
et al., 2015). Fibroblast from lung ovalbumin treated mice that
lack the ED-A-FN present a reduced tendency to proliferate and
migrate, and very interestingly display a lower α-SMA expression
as well as less collagen deposition with impaired TGF-β1 and
IL-13 release, which are all hallmarks of a phenotype transition
(Kohan et al., 2011). This suggests that the composition of the
ECM can influence the mechanical stress in the tissue and thus
affecting cellular phenotype transition. Another evidence is the
role of the fibulin-1, a glycoprotein related to the stabilization of
other protein group in ECM that is also known to be a marker for
bronchial asthma (Lau et al., 2010; Giziry et al., 2017), indicating
that the enhanced stability of ECM increases the propensity of
fibroblasts to FMT.
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It was demonstrated that enhancing actomyosin-mediated cell
contractility can induce stromal cell mechanoactivation, leading
to adipose stromal cells turn into myofibroblasts (Seo et al.,
2015). This transition, in turn, leads to changes in the cellular
environment through deposition of more fibronectin as well as
deformation of the fibronectin network, partially unfolding the
fibronectin molecules (Wan et al., 2013; Wang et al., 2017).

Mechanotransduction Leads to Distinct Internal

Cellular Rearrangements
Following the mechanosensing events described above, the
mechanical signals are transduced to elicit a variety of cellular
responses that are also reflected in the alterations of internal
cell organizations relevant for the progression of FMT. Here we
highlight a few notable findings that exemplify this concept.

It has been recently demonstrated that cell behaviors that are
implicated in FMT, such as migration, can be influenced by the
curvature of the substrate (Pieuchot et al., 2018; Werner et al.,
2019). This is especially interesting as curvature is a common
geometrical feature of in-vivo tissues and organs (Callens et al.,
2020; Werner et al., 2020). Convex spherical surfaces have been
shown to cause a compression of the cytoskeleton on the nucleus,
increasing the contact area between cell and substrate (Werner
et al., 2017). Thus, cell nuclei were flattened and stretched
over the convex surface, even resulting in a bean-like nuclear
morphology. This effect on nuclear morphology can further
translate to changes at transcription level. In a recent study, it was
observed that, depending on the adhesion area, fibroblasts alters
their cytoskeletal tension to the nuclear envelope; small substrates
areas leads to an increased histone acetylation levels with a
decreased nuclear volume (Alisafaei et al., 2019). Moreover,
the motility of cells is regulated by the organization of stress
fibers (SFs), but in curved environment the fibroblasts present
a different SF organization with respect to those on planar
substrates. A negative curvature polarize the cells and direct
cell migration (Bade et al., 2018). Therefore, rearrangement of
the cytoskeleton through mechanotransductive machinery leads
to changes in the nucleus polarity and positioning within the
cell, influencing cell migration (Vassaux et al., 2019; Moure
and Gomez, 2020). Indeed, both F-actin and focal adhesion
distributions were strongly influenced by this repositioning of
nuclear compartment (Nastały et al., 2020). These findings
provide intriguing insights that physical reorganization of the
intracellular structural components and mechanotransductive
players, which can be induced by changes in the tissue
morphology, can directly affect FMT.

Further evidence of the importance of the mechanosensing
in governing intracellular organizations and cellular response
can be observed by direct perturbations to the mechanosensing
apparatus.When ASCs that are undergoing FMT are treated with
Y27632, which inhibits ROCK and reduces α-SMA levels (Seo
et al., 2015), as well as diminishing the capability of the cells to
sense the environment by inhibiting the receptors to TGF-β, the
cells exhibit a decrease in myofibroblast transition and moreover
reduced VEGF and IL-8 secretion. On the contrary, treating these
cells with blebbistatin influences their morphology, confining
the adhesions to the extreme cell periphery, causing actin stress

fiber formation and enhancing contractility, thereby stimulating
ASC myofibroblast transition (Seo et al., 2020). Consistent
with this link between cell mechanosensing, force generation,
mechanical properties, and organization, it is also increasingly
recognized that ECM viscoelasticity, non-linear elasticity, and
fiber rearrangement play a central role for cell behavior such
as proliferation and multilineage differentiation (Baker et al.,
2015; Chaudhuri et al., 2016; Das et al., 2016; Xie et al., 2017;
Matera et al., 2019; Vining et al., 2019). Tuning the structural
and mechanical properties of hydrogels has been shown to lead
to different types of cellular organization and responses (Goh and
Holmes, 2017; Herum et al., 2017).

With regard to active mechanical cues such as stretching,
in recent study it was shown that exerting stretching on
myofibroblasts lead to the maintenance of the shifted phenotype
through the activation of the release of endogenous latent TGF-
β1 (Walker et al., 2020). On the other hand, when treated
to block the release of TGF-β1, stretched cells maintain their
phenotype, exhibiting comparable contractility and stiffness as
in static cultures. This suggest that cyclic stretching can be
responsible to maintain the myofibroblastic phenotype, leading
to chronic fibrosis (Walker et al., 2020). Furthermore, under
stretch, TGF-β1-treated cells showed further alignment to static
conditions, as well as increased gel compaction (Walker et al.,
2020). This demonstrates the capability of mechanical stretch of
the substrate to change the sensitivity of the cells to biochemical
stimuli present within the environment. The stretching causes a
downregulation of the ECM proteases, leading to an increase of
collagen-I associated peptides secretion. This is consistent with
the concomitant increases of inflammatory and fibrotic response
of the tissue (Sun et al., 2016; Rogers et al., 2020).

Taken together, these studies highlight the importance of
better characterization and quantification of the involvement
of mechanical and physical properties of the environment
in which the cells reside, giving attentions not only on the
mechanotransductive machinery involved, but also achieving a
better control on this machinery through the passive function of
the substrates and the active adaptation of the cells.

DISSECTING THE CELL–SUBSTRATE
INTERACTION EVENTS IN FMT

The previous sections have unequivocally established the
importance of changes at the mechanical level of the cell in FMT,
from the first contact event with the substrate to the influence
on cellular behavior. During this phenotype transition, a variety
of humoral and mechanical cues from the substrate drive the
fibroblast to myofibroblast transition via a proto-myofibroblast
state. When the transition completes, the myofibroblasts present
α-SMA containing stress fibers and an enhanced contractility. To
complete such transition, the mechanical and physical properties
of the environment play an active role in inducing intracellular
changes. These cellular and intracellular events are overall
interconnected through the mechanotransductive machinery,
starting from the mechanosensing exerted by the fibroblasts.
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Thus, the dynamic interplay between the ECM and the cell seems
to play a central role in cytogenesis, especially during FMT.

Efforts to understand the cellular mechanosensing and
mechanotransduction mechanisms have gained significant
attention since it became known that these are involved in cell
differentiation processes (Yim and Sheetz, 2012; Dalby et al.,
2014; Iskratsch et al., 2014; Murphy et al., 2014). Importantly,
differentiation and FMT share many regulatory pathways that
direct the expression or the release of factors involved in cell
metabolism or cell fate, such as α-SMA production and the
release of TGF-β. In the initial contact events with the substrate,
mechanosensing and mechanotransduction of the physical
signals in the environment leads to the maturation of the FAs
only if the environment properties (ligands spacing and stiffness)
satisfy the requirements to drive the changes. In addition,
cellular sensing of extracellular topographical cues through
nanoscale architecture causes a multitude of nanotopography-
sensitive cellular behaviors, including cell adhesion, morphology,
proliferation, gene expression, self-renewal, and differentiation
(Lemischka and Moore, 2003; Kingham and Oreffo, 2013). This
is possible though integrin-mediated sensing of mechanical and
physical features of the microenvironment (Geiger et al., 2009;
Dalby et al., 2014; Chen et al., 2015; Humphries et al., 2015) and
will lead to intracellular rearrangements of the cytoskeleton and
alteration in the mechanical proprieties of the cell, a key step in
FMT. At the same time, the cell contractility is enhanced, causing
the cell to release latent TGF-β and pushing toward FMT. Thus,
dynamic interplay between the cells and the ECM induces
cytoskeletal rearrangements that will simultaneously cause
changes in the force transmission, cytoskeletal organization, and
mechanical properties of the cell and its nucleus, as well as of
the ECM in tissues (Jaalouk and Lammerding, 2009; Kurniawan
et al., 2016; Nastały et al., 2020).

The importance of considering the cell–substrate interaction
events in FMT should also be considered in light of the
fibroblast heterogeneity in different tissue microenvironments.
Indeed, fibroblasts exhibit differing functional identities,
including the composition and expression profile of the
intracellular macromolecules, depending on the tissue where
they reside (Lynch and Watt, 2018; LeBleu and Neilson,
2020). In-vitro culture entails loss of most of mechanical
and physical stimuli normally present in the tissue-specific
microenvironments (Lynch and Watt, 2018), which affect not
only the mechanical properties of the cells, but also cellular
functions such as polarization (Nastały et al., 2020). This
suggests a possible involvement of mechanotransduction
in the regulation of gene expressions. As will be addressed
in section Coupling of Mechanical and Physical Cues of
the Substrates, combinations of different local physical and
mechanical stimuli that are sensed by cells in a physiological
environment, such as roughness, topography, stiffness,
and stretching, could influence the functional identities
of the fibroblasts, further leading to heterogeneity in the
cell population.

Taken together, studying the mechanical interactions between
cells and the substrate at the cell and tissue levels is critical,
not only to start recognizing how much the environment is

involved in physiological processes, but also to better understand
how environmental features can be manipulated to speed up or
slowdown pathological processes. To do so, in-vitro biomimetic
substrates have become an invaluable toolset as a way to simplify
the complexity of the in-vivo cell–substrate interactions.

PRODUCTION OF SUBSTRATES WITH
WELL-DEFINED PHYSICAL AND
MECHANICAL CHARACTERISTICS

To better understand the role of physical and mechanical
cues in the environment in FMT, a multitude of versatile
substrate fabrication techniques have been developed and applied
in the attempt to produce substrates that accurately mimic
aspects of the ECM properties. In this section, we summarize
commonly used methodologies for creating substrates with well-
defined physical and mechanical features of ECM. Here we
pay particular attention to the accessible length-scale target
and characteristics (Figure 3), while referring readers who are
interested in the detailed working principles and practical
aspects to the original articles describing the individual methods.
Moreover, we highlight the emerging efforts to use a combination
of these cues to better mimic the physiological condition of
the tissues.

Mimicking ECM Topography
The aim of the approaches that focus on topography is
to understand the impact of substrate micro- or nano-
topography on mechanotransductive processes, and to exploit
these substrates to control cell behavior. Various fabrication
technologies have been adapted to the needs of cell biology
(Dalby et al., 2014; Chen et al., 2015; Crowder et al.,
2016; Chighizola et al., 2019). One of the most commonly
applied group of techniques for structuring the surface is
based on lithography. In this group, there are three main
methodologies: photolithography, electron beam lithography
(EBL), and colloidal lithography.

The optical lithography works by transferring the pattern
that is required onto a photosensitive emulsion (photoresist)
on a substrate. This approach can be very useful for creating
adhesion patterns and controlling cells organization (Dalby et al.,
2007; Bettinger et al., 2009). The main limitation with optical
lithography is the requirement that the starting layer on which
the features will be built must be a stiff flat surface, which
precludes fabrication of 3D structures. Prefabricated structured
rigid molds can be used in pattern transfer methods to print
the mold features to other materials with high efficiency and
fidelity (Guo, 2004; Pandey et al., 2019). The most common
techniques are nanoimprinting and replica molding (Chen et al.,
2015). These methodologies can be exploited to transfer patterns
with resolution of a few hundred nanometers. In practice, the
procedure for replica molding require baking time, while one of
the bottlenecks of nanoimprinting is to control the demolding
after the heating up to transfer the pattern. Normally these
approaches are used in combination with microfluidic devices.
Another methodology that does not necessitate templates is
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FIGURE 3 | Representative images of different substrates (ordered and disordered) created using various techniques for studying the role of environmental effects on

FMT. (A) Lithographic techniques: (a) nanogrooved silicon substrates with 70 nm wide ridge and 400 nm pitch; (b) arrays of 120 nm-diameter, 100 nm-deep nanopits

on silicon substrates; (c) self-assembly of 110 nm-diameter nanoparticles. The substrates present a ordered shape. (B) Pattern transfer techniques: (d)

Nanostructured polyurethane acrylate (PUA) surface with a patterned array of nanopillars fabricated; (e) PDMS nanograting; (f) PCL surface with nanopits with various

scales. (C) Surface roughening, obtaining disordered topographies: (g) Nanostructured PCL with feature dimensions of 50–100 nm; (h) surface roughness Ra = 0.87

± 0.03µm; (i) surface roughness of 100 nm. (D) Disordered topographies: (j) Aligned nanofibrous hydroxybutyl chitosan (HBC) scaffolds; (k) Nanofibrous PLLA matrix

with an average fiber diameter of 148 ± 21 nm and a porosity of 92.9%; (l) self-aligned TiO2 nanotubes with a diameter of 100 nm; (m) nanostructured alumina

substrates with 24 nm grain-like structures produced with different physical and chemical synthesis. Image adapted with permission from Chen et al. (2015).

surface roughening that can be achieved, for example, by physical
or chemical etching (Boyan et al., 1998; Thapa et al., 2003). Both
methods can be applied to large surface areas, but an accurate
control of the feature size is challenging (Chen et al., 2015).
Surface roughening is a very useful technique that allows study
of cell sensing of substrates with well-defined surface roughness.

In general, the mold must present precisely defined
topographies that are transferred to the substrate. For example, to
exploit the nanoimprinting lithography, the molds are produced
using PDMS (Odom et al., 2002), polyurethane acrylate (Kim
et al., 2003), and “hard-PDMS” (Schmid and Michel, 2000). In
addition, there are some efforts directed toward the production
of soft molds with an improved modulus and solvent resistance,

although this has the drawback of reduced durability due to the
temperature during the pattern transferring (Ro et al., 2011).
Moreover, these kind of molds are produced starting frommaster
inorganic templates, normally metals or ceramics (Albrecht et al.,
2015). The bottleneck in their production is the complexity of
the procedures.

The optical lithography approach can be applied at large scale
and high throughput due to the very quick transfer of topography
from the mold to the substrate. A modern lithography tool is able
to produce till 300 mm/h patterned wafers with roughly 50 nm
2D pattern resolution, achieving a pixel throughput of 1.8T
pixels/s. The achievable resolution of this method is determined
by the UV light wavelength, as well as by the capability to
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reduce diffraction at the mask apertures by reduction lenses that
capture higher order diffraction light. However, going beyond
sub-100 nm resolution is very challenging (Chen et al., 2015).

In EBL, electrons are used instead of photons in order
to improve the spatial resolution of the lithography, enabling
a resolution of <10 nm (e.g., for periodical line patterns)
(Michishita et al., 2014). This allows a very precise mimicry
of nanotopographical ECM features (such as collagen fibers
with lengths on the order of 10µm; Buehler, 2006), but at the
same time limiting the scale of surface area and throughput
that can be fabricated with reasonable time/cost efforts (Chen
et al., 2015). The above methodology is a top-down approach,
meaning that the topographies are transferred to the substrate of
interest through the usage of a mold. In practice, this approach
is relatively time consuming. An alternative method is a bottom-
up approach, which can produce ordered structures over large
area in a cost-effective manner (Yamada et al., 2017). Another
bottom-up approach is colloidal lithography, in which colloidal
nanoparticle with crystal structures self-assemble on planar
surfaces (Yang et al., 2006). These colloidal nanoparticles can
then by reduced by etching. With this technique, one can achieve
high throughput of nanometric features, but without an accurate
control of the spatial pattern (Chen et al., 2015).

Furthermore, several material synthesis methods can be
exploited for tissue engineering, such as electrospinning,
phase separation, anodisation, and sintering, which have been
described in detail in dedicated review articles (Zhang and Ma,
1999; Li and Xia, 2004; Park et al., 2007; Smith et al., 2008;
Dulgar-Tulloch et al., 2009; Bhardwaj and Kundu, 2010).

Coupling of Mechanical and Physical Cues
of the Substrates
More recently, the importance of examining the effects of
multiple mechanical and physical cues simultaneously presented
to the cells has been increasingly recognized, as efforts are
made to bridge the minimalistic model systems and complex
in vivo situations. For example, in the study of Oria et al.,
the authors studied the ligands spacing coupled to the stiffness
of the substrate, in this case a simple 2D protein patterning
hydrogels allowing to control the Young modulus and the
disposition of the ligands (Oria et al., 2017). The results indicate
that finding the right combination can lead to the activation
of mechanotransductive pathway, allowing the force loading on
molecular clutches.

Fibroblasts have also been shown to sense the mechanical
stiffness of the substrate. In fact, it is well-documented that,
between the physiological and pathological states of the tissue,
there is a significant difference in stiffness. This is caused
by changes in the microenvironment composition, which in
the pathological state is higher in collagen I and reduced in
collagen III (Herum et al., 2017). Culturing fibroblasts on
polyacrylamide gels with stiffness mimicking the pathological
state of breast tissue (20 kPa) resulted in larger cell spreading
area compared to on stiffness mimicking the physiological ECM
(1 kPa) (Schwager et al., 2019). Moreover, α-SMA content
increased on the stiffer substrate, suggesting that the fibroblast

activation can be promoted by matrix stiffness (Schwager et al.,
2019). When cardiac fibroblasts were cultured on hyaluronic
acid gels with different stiffnesses ranging from the healthy
myocardium (8 kPa) to the infarcted state (20–100 kPa), where
the in vivo presence of myofibroblast is known to be higher,
significantly reduced formation of α-SMA was observed on the
softer substrates (corresponding to the healthy myocardium
stiffness). In addition, the FAs on these substrates were small and
peripheral, whereas on the stiffer substrates the FAs were bigger
and distributed throughout the cell membrane (Herum et al.,
2017). The mechanical properties of the ECM therefore seems
to play an important role in the maintenance of the quiescent
fibroblast phenotype and the FMT, highlighting the relevance
of coming up with methods to fabricate substrates with tunable
stiffness in the range relevant for physiological tissues.

Another kind of physiologically relevant mechanical stimulus
that can be recapitulated in vitro is stretching. Tensile testing
has been used to stretch silicon substrates on which cells have
been allowed to adhere. This technique comprises an electronic
control console and a loading frame with a load capacity of
2.5N in tension or in compression (Boccafoschi et al., 2007).
This stretchingmethod can be combined with topographical cues
to obtain different cell responses such as different intracellular
rearrangements and adhesion patterns. For example, in the
study by Gu et al., the authors analyzed the effects due to the
simultaneous presence of protein patterns and cyclic stretching
on the cardiomyogenic differentiation of hMSCs (Gu et al.,
2017). In our group, we have examined the effect of stretch
in combination with shear flow in a vascular construct that
mimics the mechanical environment in cardiovascular tissues
(van Haaften et al., 2018). This approach has revealed the distinct
roles of stretch and shear in governing myofibroblast activity and
neotissue production, both directly (van Haaften et al., 2018)
and indirectly through crosstalk with immune cells (van Haaften
et al., 2020; Wissing et al., 2020). Furthermore, a combination of
substrate protein patterning, substrate stiffness, and mechanical
stretching has been studied to push toward the complete FMT by
stimulating the release of latent TGF-β (Walker et al., 2020).

This kind of coupling between mechanical and physical
features of the environment seems to be the key to reach in amore
controlled way different cell fates, by only exploiting the physical
and mechanical characteristics of the substrates.

3D Environments for Studying Fibroblast
Activation
Mimicking of physiological environment to better understand
cellular responses and gain fundamental insights to prevent
pathological outcome is getting increasing traction, especially
with new methodologies and protocols to mimic the 3D
properties of environment. Recent studies have demonstrated
that different geometrical states of the cell, such as its shape and
spatial constraints, lead to significantly different transcriptional
cellular responses, even when the cells are stimulated by the
same biochemical factors (Mitra et al., 2017; Damodaran et al.,
2018). In particular, recent efforts have focused in producing
3D in vitro environments that capture factors that normally are
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neglected or overlooked in 2D studies. Some studies use co-
culturing in order to reproduce the interplay between different
cell types, while simultaneously tuning the 3D culture setup to
resemble the desired cues of the tissue microenvironment; an
example is using spheroids of collagen matrix to mimic the
interplay between fibroblast and cancer cells (Venkatachalapathy
et al., 2020). Interestingly, fibroblasts were shown to sense the
biochemical stimuli released by cancer cells, indicating a complex
interplay between both cell types that affects the capability of
fibroblasts to remodel the ECM and the capability of cancer
cells to invade the surrounding tissue (Kalluri, 2016; Erdogan
et al., 2017; Richards et al., 2017). A more physiological 3D
environment can also be reproduced using gels, such as collagen
I hydrogels to model pulmonary fibrotic tissues coupled to a
fibrosis-on-chip model (Sundarakrishnan et al., 2018, 2019). It
is also noteworthy that such 3D in-vitro microenvironments
are also generally amenable to long-term culturing, enabling
dynamic alteration of their properties to mimic the properties of
tissue pathologies to study the fibroblast activation, which is still
missing in 2D approaches. Thus, the development of tunable 3D
physiological environment open new avenues for more in-depth
studies into the coordination between different stimuli toward a
better understanding and prevention of pathological progression.

FROM UNDERSTANDING TO
CONTROLLING FMT

In conclusion, examining the role of mechanical and physical
stimuli on cell behavior and fate is critical for understanding
the pathophysiological state of the tissue. Specifically, the normal
functioning of fibroblast throughout the organism can sensitively
determine the difference between tissue healing or regeneration
and progression to diseases, such as fibrotic diseases. Injuries,
which result in mechanical and physical stresses to the tissue, can
induce fibroblasts to switch their phenotype to a myofibroblastic
state, characterized by elongated shape with the production
of stress fibers. This phenotype transition cause reduced
proliferation andmigration, with an increased contractility (Hinz
and Gabbiani, 2003; Hinz et al., 2004; Ward et al., 2008). As
such, these myofibroblasts, which are normally is switched off in
a more quiescent state, are responsible for the tissue stiffening as
response to injuries such as in cardiac, lung, and liver diseases.

Physical and mechanical stimuli in the cellular
microenvironment, such as topography, ligands spacing,
and stiffness, have been identified as passive stimuli that allow

the cells to complete the FMT by affecting the formation of FAs
through the mechanotransductive pathway. This, in turn, causes
cytoskeleton rearrangements, leading to α-SMA production,

one of the hallmarks of myofibroblast (van Putten et al., 2016).
Moreover, there are also active stimuli such as mechanical
stretching that push the myofibroblasts to maintain their
activated state, even when the biochemical part of the network
causing the phenotype transition is switched off (Walker et al.,
2020). This evidence unambiguously demonstrate that the
environment where the cells reside has a very active role in
regulating internal cell processes that induce different cell fate;
mismatches lead to pathological states.

To study these processes systematically, in-vitro investigations
involving production of substrates that allow researchers to
control various combination of mechanical and physical cues
has proven to be invaluable. At the same time, these efforts
also highlight the possibility of using cellular environmental
properties not only to gain in-depth understanding of the FMT
process, but also to control and manipulate it. In particular,
the formation and maturation of the FA complexes as well as
the cytoskeletal rearrangements can be sensitively tuned using
environmental cues and thus can present a unique toolset
for tweaking the FMT process. We expect that the current
rapid advances in the technologies to produce substrates with
unprecedented control of the topographical and mechanical
characteristics will further fuel the emergence of new methods
and therapies to control cytoskeletal rearrangements, potentially
allowing to reverse phenotype transition in fibrotic tissue and the
progression of the disease.
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