Mechanical and Structural Vibration: Theory and Applications

Jerry H. Ginsberg
Errata to the First Printing: 17 August 2001

Pg. 15, second line: ... and $L_{2}+x_{2}-x_{1}$, respectively, \ldots
Pg. 15, 2nd eq. and eq. (1.4.6): darken overdots above Δ for damping terms.
Pg. 16, eq. (1.4.8): insert overdots in damping term:

$$
\ldots\left[\begin{array}{cc}
\left(c_{1}+c_{2}\right) & -c_{2} \\
-c_{2} & c_{2}
\end{array}\right]\left\{\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right\}+\ldots
$$

Pg. 41, 6th line following figure: $\Delta_{3}=\ldots=y \ldots$
Pg. 41, 2nd equation: $V_{\mathrm{sp}}=\ldots+\frac{1}{2} k_{3}(y)^{2}$
Pg. 41, 3rd equation from bottom: $V=\frac{1}{2}\left(K_{11} x^{2}+\cdots\right.$
Pg. 45, 3 lines from bottom: ... express $\mathcal{P}_{\text {dis }}$ in terms ...
Pg. 51, 2nd and 3rd equations: delete all overdots in expressions for $\Delta \bar{r}_{D}$ and $\Delta \bar{r}_{E}$
Pg. 51, 3rd equation from bottom: Result should be $\mathcal{P}_{\text {in }}=0.866 L F_{1} \dot{\theta}$
Pg. 52, 2nd figure: the downward force on the small gear is $k \Delta_{2}+\mu \dot{\Delta}_{2}$
Pg. 54, equation at top of page: insert overdots in damping term:

$$
\ldots[C]\left\{\begin{array}{l}
\dot{\psi} \\
\dot{\theta}
\end{array}\right\}+\ldots
$$

Pg. 61, Exercise 1.47, third line: ...spring stiffness k_{1}.and ...
Pg. 61, Figure for Exercise 1.47: distance from pivot to force point is $2 L / 3$.
Pg. 67, eq. (2.1.45), 2nd equation: change + to - , i.e.

$$
\ldots \sin (\omega t)=\frac{1}{2 i}[\exp (i \omega t)-\exp (-i \omega t)]
$$

Pg. 67, eq. (2.1.6), 2nd equation: insert parentheses around $i \omega t$ in both exponentials Pg. 69, 3rd equation: $A=\ldots=4.605+1.947 i$
Pg. 69, 11 lines from bottom: ...we write abs (z), while ...
Pg. 70, eq. (2.1.3): Change sign preceding ϕ_{2} to a plus: ... $+A_{2} \cos \left(\omega t+\phi_{2}\right)$

Pg. 70, eq. (2.1.4): Insert a minus sign before $i \phi_{1}$ in both lines, i.e. $\frac{A_{1}}{i} \exp \left(-i \phi_{1}\right)$
Pg. 98, 3rd equation: $\ldots \Longrightarrow n>\frac{x_{0}-4.905\left(10^{-5}\right)}{4 \Delta} \ldots$
Pg. 109, eq. (2.3.20): $g(t-\tau)=\lim _{T \rightarrow 0} \ldots$
Pg. 110, 4th line from bottom: ...the force, $|F| / k \equiv \ldots$
Pg. 111, Figure 2.19: the heading for the left graph should be $\zeta=0.05$
Pg. 112, Exercise 2.5, Part (b), 2nd line from bottom: ... Write the complex amplitude in ...

Pg. 113, 2nd and 3rd lines of Exercise 2.14: Delete dots above Δ
Pg. 116, Exercise 2.31, 2nd line following Item 3: ... frequency $\omega_{\text {nat }}$, the ratio ...
Pg. 117, figure for Exercise 2.35: delete subscript 1 from label for displacement arrow
Pg. 119, 4th line in Exercise 2.63: time $\omega_{\text {nat }} t$ over ...
Pg. 123, Figure 3.2, lower " 0 " label for vertical axis to the bottom left corner
Pg. 126, 5th line in Example 3.2, insert: $L=2 \mathrm{~m}$. It may be assumed that the wheel remains in contact with the ground. (See Exercise 3.36)
Pg. 129, last equation: ... $\left[\hat{F} \exp (i \Omega t)+\hat{F}^{*} \exp (-i \Omega t)\right]$
Pg. 134, 2nd line following figure: ...The two curves intersect the ...
Pg. 143, first graph: right label should be 200
Pg. 144, Figure 3.11: labels for spring and dashpot should be capitalized
Pg. 144, eq. (3.4.1):..$-m \omega^{2} \bar{r}_{G / O}$
Pg. 145, eq. (3.4.2): $\ldots-\bar{F} \cdot \bar{j}-K q-C \dot{q}=M \ddot{q}$
Pg. 149, 5th equation: $y=\left\{\ldots e^{i \Omega t}\right\}$
Pg. 151, 7 th equation: $V=\ldots=\frac{1}{2} k \theta^{2} \Longrightarrow$
Pg. 151, 2nd line after equation for $V: 2 a \dot{\theta}$, which (i.e. insert overdot)
Pg. 156, 2nd equation: ... $\hat{F}_{n}^{*} \exp \left(-i n \omega_{1} t\right)$
Pg. 160, 4th line from bottom of page: and $G_{(-N / 2+1)}$ to $G_{N / 2}$ are ...
Pg. 161, eq. (3.7.25), 1st line: ... $k=-\frac{N}{2}+1,-\frac{N}{2}+2, \ldots, \frac{N}{2}$
Pg. 178, 3rd paragraph, 2nd line: ... is well below the accelerometer's natural ...
Pg. 178, eq. (3.7.57), 2nd line:

$$
U_{n}=\frac{K+i n \omega_{1} C}{K+i n \omega_{1} C-n^{2} \omega_{1}^{2} M} Z_{n} \equiv \frac{1+2 i n r_{1} \zeta}{1+2 i n r_{1} \zeta-n^{2} r_{1}^{2}} Z_{n}
$$

Pg. 180, 2nd set of figures, heading for the left graph should be $\omega_{\text {nat }} T=40 \pi$

Pg. 183, eq. (3.8.9) and 4 lines before: subscript in τ_{d} should be roman type. Pg. 202, last line: Figure 3.26, as ...
Pg. 214, Exercise 3.42:

$$
z(x)=\left\{\begin{array}{l}
h\left(1-x^{2} / w^{2}\right) \text { if }|x| \leq w \\
0 \text { if } w \leq|x|<L / 2 \\
z(x \pm L) \text { if }|x|>L / 2
\end{array}\right.
$$

Pg. 215, 2 lines before Exercise 3.45: ... 90% of the highest critical
Pg. 224, eq. (4.2.4): $\left|[K]-\omega^{2}[M]\right|=0$
Pg. 225, eq. (4.2.7): lower left element of rectangular matrix should be

$$
\left(K_{(N-1) 1}-\omega_{j}^{2} M_{(N-1) 1}\right)
$$

Pg. 226, eq. (4.2.8), 1st line: last element of column matrix is $\phi_{N j}$
Pg. 230, 5th line after figure: ...Because θ is the pitch ...
Pg. 235, 2nd equation: lower left element of matrix should be $-1.8\left(10^{-5}\right)$
Pg. 239, 2nd equation: $\ldots+3 N x_{N}=0$
Pg. 240, 1st line: $j=1: N ;$ phi_norm $(:, j)=p h i _\operatorname{sort}(:, j) / \operatorname{sqrt}(m u(j, j)) ;$ end.
Pg. 248, eq. (4.2.49), 2nd line $\ldots+\alpha_{22}\left\{\phi_{j+1}^{\prime}\right\}^{\mathrm{T}}[M]\left\{\phi_{j+1}^{\prime}\right\}=0$
Pg. 248, eq. (4.2.50), second line:

$$
\alpha_{22}=-\frac{\left\{\phi_{j+1}^{\prime}\right\}^{\mathrm{T}}[M]\left\{\phi_{j+2}\right\}}{\left\{\phi_{j+1}^{\prime}\right\}^{\mathrm{T}}[M]\left\{\phi_{j+1}^{\prime}\right\}}
$$

Pg. 250, last equation:

$$
\phi^{<k>}:=\phi^{<k>}-\frac{\left(\phi^{<k-1>^{\mathrm{T}}} * M * \phi^{<k>}\right)_{1,1}}{\left(\phi^{<k-1>^{\mathrm{T}}} * M * \phi^{<k-1>}\right)_{1,1}} * \phi^{<k-1>}
$$

Pg. 255, first equation: $\bar{v}_{2 m}=\dot{q}_{1} \bar{\imath}, \ldots$
Pg. 256, 5th line of equations: $-m(\cos \theta) \omega_{n}^{2}+\left(k-m \omega_{n}^{2}\right) \phi_{2 n}=\ldots$
Pg. 267, 2nd text line: .. $[M]$ is $\kappa_{G}=L / \sqrt{8}$
Pg. 272, 6th line of Exercise 4.10: $\ldots=\dot{x}_{2}=0$ at $t=0 \ldots$
Pg. 284, Exercise 4.5, 7th line: and (b) $m_{1}=5 \mathrm{~kg}, m_{2}=\ldots$ (Then delete the following sentence)

Pg. 286, Exercise 4.12, part (d) $[K]=\ldots \mathrm{N} / \mathrm{m}, \omega_{2}=\ldots$
Pg. 286, Exercise 4.12, part (d), list line: Determine the normal mode $\left\{\Phi_{2}\right\}$.

Pg. 286, Exercise 4.13, 2nd line of 4th item: described above is ...
Pg. 287, Exercise 4.20, equation: $w=\ldots$
Pg. 287, Exercise 4.21, last line: and normal modes of this system.
Pg. 291, Exercise 4.47, one line before end: $q_{n}=\operatorname{Re}\left[Y_{n} \exp (i 20 t)\right]$ and \ldots
Pg. 298, eq. (5.2.2): $[G(\omega)]=\left[[K](1+i \gamma)-\omega^{2}[M]\right]^{-1}$
Pg. 309, equation: $V=\frac{1}{2} k_{0} y_{6}^{2}+\ldots$
Pg. 314, 7 lines before eq. (5.4.9). Insert: , $Q_{j}(k \Delta)=\beta_{j} f(k \Delta), k=0,1, \ldots, K-$ 1. Simultaneously, ...

Pg. 314, eq. (5.4.9), 2nd line: $m=0,1, \ldots, K / 2$
Pg. 319, Exercise 5.12, 9th line: ...cases, $\gamma=0.001$ and $\gamma=0.01$...
Pg. 322, Exercise 5.23, part(b), last line: ...platform at a designated ...
Pg. 322, Exercise 5.23, part (c)7th line. Insert: ...part(b) corresponding to 20 Hz . Use... Pg. 325, 2nd paragraph, 3rd line: .. work of the Swiss mathematician....
Pg. 328, eq. (6.1.7), change superscript:

$$
\mathcal{P}_{\mathrm{dis}}=\int_{0}^{L} \gamma E A\left(\frac{\partial \dot{u}}{\partial x}\right)^{2} d x+\sum c \dot{u}\left(x_{c}, t\right)^{2}
$$

Pg. 339, eq. (6.1.27): $\theta=\ldots$
Pg. 340, 2nd line: $[K]\{q\}=\{Q\}$. (i.e. delete repeated terms)
Pg. 344, eq. (6.1.37): ...

$$
\begin{aligned}
\ldots & =K_{n j}=\int_{0}^{L} E I \frac{d^{2} \psi_{j}}{d x^{2}} \frac{d^{2} \psi_{n}}{d x^{2}} d x+\ldots \\
\ldots=C_{n j} & =\int_{0}^{L}\left[\gamma E I \frac{d^{2} \psi_{j}}{d x^{2}} \frac{d^{2} \psi_{n}}{d x^{2}}+c_{v} \psi_{j} \psi_{n}\right] d x+\ldots
\end{aligned}
$$

Pg. 349, 4 th line of Matlab commands: $\ldots * p \operatorname{si}(n) * H, y, 0,1)$
Pg. 409, Exercise 6.17, 7th, 8th, and 9th lines: where ω is 95% and 105% of the fundamental and second natural frequencies, plot the
Pg. 409, Exercise 6.19, insert at end of last sentence: ...at midspan as a function of ω. Pg. 410, Exercise 6.27, last line: $k=2000 E I / L^{3}$.
Pg. 413, Exercise 6.56, reword 1st sentence: When a cantilerbeam is modeled by a certain Ritz series, the inertia ...
Pg. 440, first figure: change + to 4 in vertical axis.
Pg. 444, 2nd equation: $\left(\psi_{j}(x)\right)_{\text {asymptotic }}=\ldots$ Also, insert close brace at end of equation. Pg. 445, 2nd line of text: ... by letting $1 / \cosh (\alpha)=0$. This...

Pg. 445, 4th line of equation for B_{4} :

$$
=C_{1} \lim _{\alpha_{j} \rightarrow \infty}\left\{2\left[\sin \left(\alpha_{j}\right)-\ldots .\right\}\right.
$$

Pg. 449, line following equation for ψ : where $\alpha^{4}=\rho A L^{4} \omega^{2} / E I$
Pg. 453, Figure 7.12: Spring force on the right mass should be $\left.k w\right|_{x=L}$
Pg. 455, 2 lines before eq. (7.6.26): ... are not inertially coupled. Interestingly...
Pg. 464, 4th equation, 2nd line: insert close brace at end of equation
Pg. 481, 4th line of equations: $\exp (-k L)=1 / \varepsilon_{1}, \quad \exp (-0.8 k L)=1 / \varepsilon_{2}$
Pg. 494, eq. (7.9.40), 2nd line:

$$
=\frac{1}{2} \sum_{j} \sum_{n}\left[\int_{0}^{L}\left(\rho A \Psi_{w j} \Psi_{w n}+\rho I \Psi_{w j} \Psi_{w n}\right) d x\right] \dot{\eta}_{j} \dot{\eta}_{n}
$$

Pg. 495, 10 lines before end of Example 7.14: ... function of $\alpha, L_{-} d$, and σ Pg. 496, 1st line: cross-section rotation χ at this frequency....
Pg. 501, Exercises 7.25 and 7.26, insert at beginning of second sentence: Use Appendix C to decompose ...

Pg. 501, Exercise 7.29, 2nd line: Example 7.5 and Exercise 7.12. What...
Pg. 501, Exercise 7.33, change second sentence to: A torque $\Gamma h(t)$ is applied at the midpoint.
Pg. 503, Exercise 7.52, last line: range $0<\omega<2000 \mathrm{rad} / \mathrm{s}$
$\operatorname{Pg} 513$, equation for $\left[K^{e}\right]$: The denominators for $K_{2,6}^{e}, K_{3,5}^{e}, K_{5,3}^{e}$, and $K_{6,2}^{e}$ should be L^{2}.
Pg. 520, 1st line: Once we have formed $[\hat{M}],[\hat{K}]$, and $\{\hat{Q}\}$, we \ldots
Pg. 529, Exercise 8.6, 7th line: ...Derive linear interpolating functions ... Also, delete parenthetical last sentence.

Pg. 530, Exercise 5.16, 3rd line: ...Use a single finite element for bar $B D$,
Pg. 539, 2nd line of equations: $a_{2(j+3 N)}=1$,
Pg. 541, 3rd line of equation for V^{1} : index in first summation sign should be j
Pg. 544, eq. (9.1.31), 2nd line: $=[B]^{\mathrm{T}}\{Q\}+[B]^{\mathrm{T}}[a]^{\mathrm{T}}\{\lambda\}$
Pg. 546: 3rd line of equations: $M_{j n}=\frac{1}{2} \rho A L \delta_{j n}$
Pg. 546: equation for V, 2nd line: delete exponent two for q_{j} term
Pg. 546: equation for V, 3rd line: delete exponent 2 and x from second factor
Pg. 546: equation for V, 4th line: $K_{j n}=j^{4} \frac{\pi^{4} E I}{2 L^{3}} \delta_{j n}+\ldots$

Pg. 556, 2nd equation: $\psi_{w j}^{F \ell}=C_{j}^{\ell} \psi\left(\frac{x}{L_{\ell}}, \alpha_{j}\right)$
Pg. 558, eq. (9.2.3):

$$
\left[K^{\ell}\right]=\left[\begin{array}{ll}
{\left[K^{\ell}\right]^{F F}} & {\left[K^{\ell}\right]^{F C}} \\
{\left[K^{\ell}\right]^{C F}} & {\left[K^{\ell}\right]^{C C}}
\end{array}\right]
$$

Pg. 558, eq. (9.2.4), insert: $\left[K^{\ell}\right]^{C F}=\left[\left[K^{\ell}\right]^{F C}\right]^{\mathrm{T}}$
Pg. 558, 1st sentence after eq. (9.2.4) should be: In the special case where the fixedinterface modes are those of a bar that is immobilized at both ends, the off-diagonal partitions of $\left[K^{\ell}\right]$ are identically zero.
Pg. 558, last sentence of paragraph following eq. (9.2.4) should be: If $\psi_{j}^{F \ell}$ is defined to have zero displacement and rotation at interfaces, each work term will be zero.
Pg. 559, 4th line following eq. (9.2.6): eqs. (9.2.3). These matrices ...
Pg. 560, paragraph following equation for $\left(K^{\ell}\right)_{j n}^{C C}$, insert after second sentence: All $\left(K^{\ell}\right)_{j n}^{F C}$ should evaluate to zero according to the note on page 558 .
Pg. 564, Exercise 9.23, change second sentence: Determine the constraint modes and Jacobian constraint matrix corresponding to using clamped-clamped flexural modes as the fixed interface modes for bar $A B$.

Pg. 564, Exercise 9.26, change 1st sentence: Select clamped-clamped flexural and fixedfree torsional modes as the fixed-interface ...
Pg. 572, 3rd line after 1st set of equations: eigenvalues to those derived from undamped modal analysis. Also, compare ...
Pg. 572, 3rd set of equations:

$$
\begin{array}{ll}
\text { Mathcad: } & \text { zero }=\operatorname{identity}(3) * 0 \\
& S:=\operatorname{stack}(\operatorname{augment}(-K, \text { zero }), \operatorname{augment}(\text { zero, } M)) \\
& R:=-\operatorname{stack}(\operatorname{augment}(\text { zero }, K), \operatorname{augment}(K, C))
\end{array}
$$

Pg. 572, 4th set of equations, insert after "MATLAB": lambda = $\operatorname{diag}(\operatorname{lambda})$;
Pg. 572, 4th set of equations, 2nd line: ... $+0.0001 *(\operatorname{imag}(\operatorname{lambda}(j))<0)$;
Pg. 592, Exercise 10.6, 2nd line, insert at end: ...to 16 , and let Δf_{j} be a set of random numbers in the range $-0.05<\Delta f_{j}<0.05$.
Pg. 598, 1st line after eq. (11.1.11): When the quadratic coefficients of T actually ...
Pg. 598, eq. (11.1.12), insert term: $\cdots-\sum_{n=1}^{N} E_{j n} q_{n}+\dot{N}_{j}-J_{j}$
Pg. 599, 1st line after eq. (11.1.16): ...use eqs (11.1.12) and (11.1.15) to form ...
Pg. 599, eq. (11.1.17), insert term: $\cdots=\{Q\}-\{\dot{N}\}+\{J\}-\left\{F_{0}\right\}$

Pg. 600, eq. (11.1.19), 2nd line, insert term: $\cdots=\{Q\}-\{\dot{N}\}+\{J\}-\left\{F_{0}\right\}$
Pg. 600, eq. (11.1.21):

$$
[S] \frac{d}{d t}\{x\}-[R]\{x\}=\left\{\begin{array}{c}
\{0\} \\
\{Q\}-\{\dot{N}\}+\{J\}-\left\{F_{0}\right\}
\end{array}\right\}
$$

Pg. 606, 1st line after eq. (11.2.1): ... into eq. (11.1.21) and ...
Pg. 607, 1st line after eq. (11.2.11): ... leads to $\{v\}=\lambda\{u\}$, which ...
Pg. 620, eq. (11.4.13):

$$
\{\dot{\xi}\}-[\lambda]\{\xi\}=\left\{\tilde{\Psi}_{n}\right\}^{\mathrm{T}}\left\{\begin{array}{l}
\{0\} \\
\{Q\}
\end{array}\right\}, \quad n=1, \ldots, 2 N
$$

Pg. 621, eq. (11.4.17): Numerators should be $\left\{\tilde{\Psi}_{n}\right\}^{\mathrm{T}}\{F\}$ and $\left\{\tilde{\Psi}_{n}\right\}^{\mathrm{T}}\left\{F^{*}\right\}$
Pg. 622, 3rd equation from bottom: $\ldots-\omega^{2} y_{n}-2 \omega \dot{z}_{n}$
Pg. 622, 2nd equation from bottom: ... $-\omega^{2} z_{n}+2 \omega \dot{y}_{n}$
Pg. 623, 3rd set of equations from the bottom: 1st row of [G^{\prime}] should be $0-\omega 00$ Pg. 626, upper left graph: Delete the small circle at the top of the larger ellipse Pg. 634, MATLAB program steps, 2nd and 3rd lines:

$$
\begin{aligned}
& \text { eigval }=\operatorname{eig}(S(\operatorname{sig}(j)), R(\operatorname{sig}(j))) ; \quad \text { Re_lam }(:, j)=\operatorname{sort}(\text { real }(\text { eigval })) ; \\
& \operatorname{Im} _\operatorname{lam}(:, j)=\operatorname{sort}(\operatorname{imag}(\text { eigval })) ; \text { end }
\end{aligned}
$$

Pg. 634, Mathcad program steps, 1st line: ... $\lambda^{<j>}:=\operatorname{genvals}\left(R\left(\sigma_{j}\right), S\left(\sigma_{j}\right)\right)$
Pg. 635, 3rd paragraph, lines 4 and 5 , and following equation: $\exp \left(\lambda_{n} \tau\right)$
Pg. 639, 4th equation:

$$
f_{j n}=\left.\left(\frac{\partial \psi_{n}}{\partial x} \psi_{j}\right)\right|_{x=L}
$$

Pg. 642, Exercise 11.4:

$$
T=\frac{1}{2} m L^{2}\left[\frac{1}{3} \dot{\theta}^{2}+\left(1+\cos (\theta)+\frac{1}{3} \cos (\theta)^{2}\right) \omega^{2}\right]+\frac{1}{2} I_{T} \omega^{2}
$$

Pg. 645, Exercise 11.23, 1st line: ... a height of $2 \ell / 3$ above ..
Pg. 646, Exercise 11.27, insert after 2nd sentence: The rotation rate is $\omega=0.6(k / m)^{1 / 2}$.
Pg 6.57, eq. (12.3.1): right sides are $\varepsilon m \omega^{2} \cos (\omega t)$ and $\varepsilon m \omega^{2} \sin (\omega t)$
Pg. 665, last set of equations: $M_{33}^{\prime}=M_{44}^{\prime}=\kappa_{y}^{2}, G_{34}^{\prime}=-G_{43}^{\prime}=2 \kappa_{x}^{2} \Omega$
Pg. 670, eq. (12.5.6), 2nd line: $\ldots=\varepsilon m \omega^{2} \cos (\omega t)$

Pg. 670, eq. (12.5.6), 4th line: $\ldots=\varepsilon m \omega^{2} \sin (\omega t)$
Pg. 672, 7th line: ... has a parametric instability. Typical ...
Pg. 672, 3rd and 2nd lines from bottom: ...condition $|\operatorname{Im}(\lambda)|=0$ also approximates ... Pg. 675, Exercise 12.11, part (c), delete last sentence, which begins with "Explain why ..."
Pg. 676, Exercise 12.15, insert after last sentence: The damping ratios are $\zeta_{E}=\zeta_{I}=$ 0.01.

Pg. 685, Appendix B, entry for Free vibration: Insert plus sign at the beginning of the second line

Pg. 685, Appendix B, entry for Quadratic excitation, last line: insert close parentheses after ζ^{3}

Pg. 685, Appendix B, entry for Transient co-sinusoidal excitation, last line: fraction should be:

$$
\frac{\zeta \omega_{\text {nat }}\left(\omega_{\text {nat }}^{2}+\omega^{2}\right)}{\omega_{\mathrm{d}}}
$$

Inside back cover, left page, first line: $\omega_{n}=\left(\frac{E}{\rho L^{2}}\right)^{1 / 2} \alpha_{n}$
Inside back cover, right page, entry for Clamped at $x=0$, Clamped at $x=L, 1$ st line:

$$
\cos (\alpha) \cosh (\alpha)-1=0
$$

