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Abstract: In recent years, attempts to improve the mechanical properties of composites have increased 

remarkably owing to the inadequate utilization of matrices in demanding technological systems where 

efficiency, durability, and environmental compatibility are the key requirements. The search for novel 

materials that can potentially have enhanced mechanical properties continues. Recent studies have 

demonstrated that two-dimensional (2D) nanomaterials can act as excellent reinforcements because they 

possess high modulus of elasticity, high strength, and ultralow friction. By incorporating 2D nanomaterials 

in a composite, 2D nanomaterial-based composites (2DNBCs) have been developed. In view of this, a 

critical review of recent mechanical and tribological studies based on 2DNBCs has been undertaken. 

Matrices such as polymers, ceramics, and metals, as well as most of the representative 2D nanomaterial 

reinforcements such as graphene, boron nitride (BN), molybdenum disulfide (MoS2), and transition metal 

carbides and nitrides (MXenes) have been included in this review. Their preparation strategies, intrinsic 

mechanical properties, friction and lubrication performances, strengthening mechanisms, influencing 

factors, and potential applications have been comprehensively discussed. A brief summary and prospects 

are given in the final part, which would be useful in designing and fabricating advanced 2D 

nanocomposites in the future. 
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1  Introduction 

Over the past decade, two-dimensional (2D) 

nanomaterials, which refer to ultrathin nanofilms 

having a thickness of only a single or few atoms, have 

received increasing attention [1–6]. A number of 

studies showed that 2D nanomaterials have highly 

improved properties and can be incorporated in 

composites to meet different application requirements. 

Accordingly, novel 2D nanomaterials are very important 

for a sustainable future. 

Since Lee et al. [7] reported graphene’s outstanding 

mechanical properties, research on other 2D 

nanomaterials has also attracted attention worldwide. 

Studies on various 2D nanomaterials have significantly 

increased. Therefore, it is not surprising that 2D 

nanomaterials have been employed as promising 

reinforcements for polymers, metals, and ceramics to 

produce composites with enhanced mechanical 

properties. More importantly, it has been observed 

that even a very small amount of 2D nanomaterial 

can lead to a significant enhancement in the 

mechanical properties. As shown in Fig. 1, the 

numbers of publications on 2D materials and 2D 
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Fig. 1  Statistical data of articles on 2D materials and 2D 

material composites published during 2000–2018 based on 

the Web of Science database. 

 

material composites have increased tremendously 

during the last decade. In view of the excellent 

mechanical properties and possibility for chemical 

modification, graphene has been applied in various 

fields ranging from aerospace to biomedicine. Inspired 

by the success of graphene-based nanocomposites, 

considerable effort has been devoted to incorporating 

other 2D materials in a number of composites as 

well as the exploration of their potential for 

various applications. Further, 2DNBCs have already 

attracted significant attention in many different fields. 

However, their mechanical and tribological applications 

have not yet been adequately explored. Recent studies 

have demonstrated that some novel ultrathin 2D 

nanomaterials possess excellent mechanical properties. 

For engineering applications, improving the mechanical 

properties is one of the most critical and challenging 

aspects in the technical advancement of these 

materials. 

Many researchers are attempting to understand 

the reinforcing mechanism of composites with 

new 2D materials to improve their mechanical and 

tribological properties and achieve higher efficiency 

and longer durability for different engineering 

applications. 

According to their chemical elements and atomic 

arrangements, all 2D nanomaterials can be typically 

classified into five categories: (1) Xenes, (2) transition 

metal carbides and nitrides (MXenes), (3) transition 

metal dichalcogenides (TMDs), (4) nitrides, and (5) 

organic frameworks. More specifically, (1) Xenes 

are composed of only one type of element, such as 

carbon, silicon, and phosphorous. A typical example 

is graphene, which represents the carbon material 

of this type. Other examples are silicone, phosphorene 

[8], and borophene. (2) MXenes, where M is an 

early transition metal (e.g., Ti, V, and Mo) and X is 

carbon or nitrogen, are novel 2D nanomaterials 

discovered in 2011 [9–11]. (3) TMDs consist of 

hexagonal layers of metal atoms (M) sandwiched 

between two layers of chalcogen atoms (X) with a 

MX2 stoichiometry, such as MoS2, MoSe2, and WS2. 

(4) A typical 2D nitride is hexagonal boron nitride 

(h-BN). (5) 2D organic frameworks include metal- 

organic frameworks (2DMOFs) and covalent-organic 

frameworks (2DCOFs) [12]. One of the most 

characteristic features of 2D organic frameworks is 

the presence of micropores or mesopores within 

the layer. All 2D nanomaterials have high in-plane 

strength, which is attributed to the in-plane covalent 

bonding [13]. The mechanical properties of some 

typical 2D nanomaterials are presented in Table 1. 

Notably, the modulus of phosphorene has been 

calculated along the different directions owing to its 

puckered structure. 

Although a number of articles concerning 2DNBCs 

have been published, most of these papers focused 

on graphene-based nanocomposites [1, 21–24] and 

reviews regarding their mechanical properties have 

rarely been reported. This review intends to highlight 

the mechanical properties such as hardness, tensile 

strength, Young’s modulus (Y), and tribological properties 

of composites reinforced with 2D nanomaterials from 

nanoscale to macroscale systems. As illustrated in 

Fig. 2, based on the elements of the matrices, the 

composites can be classified into three categories:  

Table 1    Mechanical properties of some typical 2D nano- 

materials. 

2D 

nanomaterial
Thickness

Tensile 

strength (GPa) 

Elastic modulus 

(GPa) 

Graphene — 125 ~1,000 [14]

MoS2 Monolayer 23 [15] ~270 [16] 

h-BN Monolayer 35 [17] ~865 

Silicene — — ~82 [14] 

~106 (z) [18]
Phosphorene Monolayer — 

~41 (a) 

Ti2C Monolayer — ~597 [19] 

MOF — — ~5 [20] 
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Fig. 2  Types of 2D nanomaterials and composites considered 

in this review. 

 

polymer, ceramic, and metal composites. This review 

systematically describes the preparation and mechanical 

behaviors of various composites based on different 

matrices and 2D nanomaterials. More importantly, 

these 2DNBCs are promising for a variety of applications, 

such as aerospace, energy, and biomedicine, and 

they have potential to be utilized as structural materials 

and functional materials because of their excellent 

mechanical properties. Figure 3 depicts the basic 

framework of this review. In the following subsections, 

the preparation of 2DNBCs and the characterization 

methods of their mechanical properties are introduced. 

 

Fig. 3  Basic framework of this review. 

2  Preparation methods 

To achieve excellent mechanical properties, numerous 

methods, such as cold pressing, hot pressing, microwave 

sintering, powder metallurgy, and spark plasma 

sintering, have been developed for the preparation 

of 2DNBCs. Generally, all these methods can be 

classified into three categories:  

1) For polymer composites, in situ polymerization, 

solution mixing, and melt blending [25, 26] are the 

most typical fabrication methods. In situ polymeri-

zation is a common approach for obtaining uniform 

dispersion of 2D nanomaterials in a polymer matrix. 

The 2D nanomaterials and the monomers or 

pre-polymers are swollen within the solvent and 

polymerization is then initiated by adjusting the 

conditions. Solution mixing is another method of 

incorporating 2D nanomaterials into a polymer 

matrix. The 2D nanomaterial and polymer can be 

dispersed easily in a solvent by ultrasonication or 

mechanical mixing and the solvent is then removed 

to obtain the composite. In this technique, the 

choice of a suitable solvent is a critical issue. There 

are many successful examples, such as epoxy (EP), 

polymethyl methacrylate (PMMA), polystyrene, 

and polytetrafluorothylene (PTFE). Melt blending 

is performed by high temperature melting without 

a solvent. This method is generally used for fabricating 

thermoplastic composites. Recently, the resin transfer 

molding method has been presented to improve the 

dispersion of graphene in composites [27]. In this pro-

cess, EP is incorporated into a three-dimensional (3D) 

graphene skeleton to prepare composites. Currently, 

research activities on 2DNBCs are mostly on com-

posites reinforced with graphene or its derivatives. 

The preparation of other composites has also been 

achieved through similar strategies. 

2) For ceramic composites, many methods have 

been used and developed, such as powder metallurgy 

[28, 29], reaction bonding [30], chemical vapor 

deposition/infiltration [31], sol–gel [32], and polymer 

infiltration pyrolysis [33]. In the powder metallurgy 

technique, 2D nanomaterials and matrix powder 

particles are mixed using ball milling to form 

composites. Commonly, hot isostatic pressing, vacuum 

hot pressure sintering, and spark plasma sintering 

are employed in the later stage. Compared with 
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other methods, the powder metallurgy method is 

cost- and time-effective and is the most promising. 

Reaction bonding and chemical vapor deposition/ 

infiltration belong to gas phase processes. With 

these techniques, good dispersion of 2D nanomaterials 

in the matrix can be achieved. The sol–gel method 

can provide uniform dispersion of 2D nanomaterials, 

which are dispersed early in a molecular precursor 

solution. The composite can then be formed through 

the sol–gel reaction. Polymer infiltration pyrolysis 

is an important method by which ceramic composites 

can be fabricated from preceramic polymers. The 

2D nanomaterials can be dispersed in a liquid 

phase preceramic polymer beforehand. 

3) For metal composites, the fabrication methods 

are mostly similar to those described above. For 

instance, both powder metallurgy [34] and melt 

blending are the most popular methods. However, 

there are some special methods for fabricating 

metal matrix composites. Electrochemical deposition 

and thermal spray are often reported in Ref. [35]. 

The electrochemical deposition method is an 

attractive approach for fabricating composite films. 

As reported, metal injection molding is one of the 

special ways [35]. Recently, additive manufacturing 

and molecular-level mixing techniques have also 

been developed [36, 37]. In a previous review by 

Naseer et al. [38], these preparation methods have 

been discussed in detail. 

Based on the summary (Table 2), the dispersion 

of 2D nanomaterials in a matrix is a crucial step 

and a key challenge in the production of 

composites. In recent years, a variety of processing 

routes for dispersing 2D nanomaterial fillers into 

matrices, such as liquid phase blending, melt 

mixing, and freezing-dried masterbatch strategy, 

have been reported [30, 35–37]. 

3  Characterization methods 

Mechanical properties are important factors in 

the structural and functional applications of 

composites. Many studies have focused on the 

qualitative and quantitative characterization of the 

mechanical properties of various composites [47]. 

The characterization methods frequently used in 

studying the mechanical properties of 2DNBCs are 

briefly described as follows. 

3.1  Universal testing machine approach 

The universal testing machine is a conventional  

Table 2  Summary of preparation methods for 2DNBCs. 

Materials Method Advantages Disadvantages Ref. 

In situ polymerization Excellent adhesion and 

dispersion 

Complicated to operate, high 

cost, and only used in lab 
[39] 

Solution mixing Flexibility in various materials Hard to remove solution [40–42] 
Polymer 

matrix 

Melt blending Simple process, eco-friendly Unsuitable for thermosetting 

resin 
[43] 

Powder metallurgy Easy operation, saving in time Environmental pollution, 

destructive to 2D materials 
[28, 29] 

Reaction bonding Lower processing time, high 

densification 

High energy consumption 
[30] 

Chemical vapor 

deposition/infiltration 

Less energy required Difficult control in shape 
[31] 

Sol–gel Excellent dispersion Only used in lab [32] 

Ceramic 

matrix 

Polymer infiltration 

pyrolysis 

Steady quality Less raw material sources 
[33] 

Powder metallurgy Easy operation, low cost Environmental pollution [44, 45] 

Melting blending Excellent dispersion of 2D 

materials 

High cost, dangerous, 

destructive to 2D materials 
[46] 

Metal 

matrix Additive manufacturing Ability to form various shapes, 

easy to industrialize, and 

environment-friendliness 

Poor densification 

[36] 
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equipment for measuring the tensile, compressive, 

and shear strengths. It is worth pointing out that 

most of the composites can be tested by this approach 

according to the relevant standard. Different 

standards have been developed by different countries 

and organizations. Several studies have applied this 

approach to characterize composites including 

graphene/EP [47], h-BN/poly [2,2’-(p-oxydiph-

enylene)-5,5’-bibenzimidazole] (OPBI) [48], and 

graphene/Cu [49]. 

3.2  Dynamic mechanical analysis (DMA) 

DMA is another typical strategy that has been 

extensively used to study the elastic modulus and 

loss factor of composites [50, 51]. It is most widely 

used for determining typical stress–strain curves 

and interfacial adhesion of polymeric composite 

systems. For example, the storage modulus and 

loss angle tangent of MoS2/chitosan as a function 

of temperature were shown in Ref. [52]. The forced 

frequency and free resonance are two typical approaches 

for calculating the modulus and viscosity values. It 

has been found that the DMA method is more 

suitable for polymer composites [50]. 

3.3  Finite element approach 

Calculation methods are also effective for evaluating 

the mechanical properties of composites. The modulus 

of 2DNBCs can be calculated by the Mori Tanaka 

equation [53] and the Halpin–Tsai equation [54] or 

the modified Halpin–Tsai equation [55, 56]. The 

modified Halpin–Tsai equation is as follows: 

G G L G T G
C

L G T G

1 (2 / 3 ) 1 23 5

8 1 8 1 P

L T V V
E E

V V

 
 

              
 

(1) 

 

G P
L

G P G G

( / ) 1

/ 2 / 3

E E

E E L T





  (2) 

 

G P
T

G P

( / ) 1

/ 2

E E

E E






 (3) 

where 
C

E  is the Y of the composite with randomly 

oriented graphene, 
G

E  is the tensile modulus of 

graphene, 
P

E  is the tensile modulus of polymer, 
G

L  

and 
G

T  represent the length and thickness of graphene, 

respectively, and 
G

V  is the volume fraction of graphene 

in the matrix. 
L

  and 
T

  are dimensionless parameters. 
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where 
paral

E  is the Y of the composites with 

unidirectionally distributed graphene. Apparently, 

the calculation method is an effective way of 

deriving the theoretical value of Y. 

Based on these relevant equations, simulation 

methods, such as finite element models [57, 58], 

molecular dynamics [59–62], and 3D computational 

models [63], are developed into effective routes for 

predicting the mechanical properties of 2DNBCs, 

as displayed in Fig. 4. 

3.4  Nanoindentation method 

The nanoindentation method has been used since 

the 1970s and has become one of the most effective 

methods for determining the mechanical properties 

of composites since the early 2000s. Nanoindentation 

is a microscopic method that allows characterization 

through small-volume deformations. Atomic force 

microscopy (AFM) nanoindentation is one of the 

most effective ways for investigating nanomechanical 

properties such as normal hardness and elastic 

modulus [64, 65]. Based on force curves and the 

approach by Du et al. [66], the elastic modulus (E) 

of composites can be extracted from the following 

equation: 

 

22

r i
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vv
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Fig. 4  (a, b) 3D computational model of the effective interface 

properties between a graphene sheet and polymer matrix. 

Reproduced with permission from Ref. [63], © Elsevier B.V. 

2014. 
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where 
r

E  and 
i

E  are the reduced modulus and 
elastic modulus of the indenter, respectively, while 
v and 

i
v  are the Poisson’s ratios of the composite 

and indenter, respectively. 

3.5  Tribological testing  

As one important aspect of the mechanical properties 

of composites, the tribological properties have drawn 

much attention and need to be considered. To measure 

the coefficient of friction (COF) and wear rate, there 

are many different tribometers employing different 

test configurations such as pin (or ball) on disc, 

roller on plate, and block on ring [67, 68]. The COF 

is calculated from the frictional force and normal 

load. The wear rate is generally in the form of 

specific wear rate, which is calculated by the 

following equation: 

 N

S

m
W

LF


    (6) 

where m  and   are the mass loss and density 

of the composite, respectively, L is the sliding 

distance, and 
N

F  is the normal load. 

Since 2DNBCs consist of various matrices and 2D 

nanomaterials, their mechanical properties can be 

significantly altered by adjusting the chemical 

composition, microstructure, and content of 2D 

nanomaterials. The addition of very low amounts of 

2D nanomaterials significantly improves the mechanical 

properties of a matrix. Thus, the mechanical properties 

and behaviors of 2DNBCs are complex and challenging. 

4  Mechanical and tribological properties 

First, the main concepts should be introduced. In 

general, the interatomic bonds of composites mainly 

determine their mechanical properties [69]. Y, 

which is one of the most important mechanical 

properties, depends on the spring constant of the 

bond (k) and the interatomic distance (r0). It can be 

expressed by the following formula: Y = k/r0 [69]. It 

should be noted that the spring constant is a 

crucial term. For example, the value of the carbon– 

carbon bond is from 500 to 1,000 N/m and that of 

the metal or ionic bond is relatively lower [70]. If k 

of the material changes, the properties also change. 

Hence, the composite Y is greatly influenced by 

the matrix type and filler type as well as the 

interface bonding type between the matrix and 

filler (i.e., hydrogen bond). 

In recent years, 2D nanomaterials such as graphene, 

BN, and MoS2 [52] have been incorporated into a 

wide range of matrices for improving the mechanical 

performance. In the following sections, recent developments 

in the mechanical properties of 2DNBCs, from polymer 

composites to metal composites, are discussed. For 

comparison, the salient mechanical properties based 

on previous studies are summarized in Table 3. 

Table 3  Summary of mechanical properties of 2DNBCs. 

2D materials/the 

optimum content 
Matrix 

Tensile 

strength 

(MPa)/increase

Tensile 

modulus 

(GPa)/increase

Elongation 

at break (%)

Y(GPa)/ 

increase 

Bending 

strength 

(MPa)/increase

Ref.

Functionalized graphene 

(FGS) (0.75 wt%) 
Polyimide (PI) 204.9/59% 2.93/62% 14.2 — — [71]

Graphene (2 wt%) 
Polyvinyl chloride 

(PVC) 
55/130% — 40 2/58% — [72]

MoS2 (4 wt%) 
Waterborne 

polyurethane (WPU) 
28/140% — — 0.205/85% — [73]

Graphene (1 wt%) 

Polyetheretherketo

ne-carbon fiber 

(PEEK–CF) 

160/60% — — 7/52% — [43]

Graphene (3 vol%) PTFE 21.5/10% — — 2.62/223% — [74]

BN (1.0 wt%) Al2O3  — — — 432.8/58.6% [75]

MoS2 (7 wt%) 
Polyvinylidene 

fluoride (PVDF) 
42/61.5% — 470 — — [76]

Graphene (0.5%) Cu 164/49.1% — — — — [77]
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(Continued)   

2D materials/the 

optimum content 
Matrix 

Tensile strength

(MPa)/increase

Tensile 

modulus 

(GPa)/increase

Elongation 

at break (%)

Y(GPa)/ 

increase 

Bending 

strength 

(MPa)/increase

Ref.

Graphene (0.5%) Ti 1021/20.1% 125/14.6% 9.3 — — [44]

BN (2%) 
Polyvinyl alcohol 

(PVA) 
95/98% — — — — [78]

BN (3%) PMMA  — — 5.11/130% — [79]

Graphene (0.05 wt%) Cementitious 5/79% — — — — [80]

BN (0.3 wt%) PMMA 42/11% — — 2.13/22% — [17]

Graphene Al 120/26% — — — — [81]

BN (2.5 wt%) Borosilicate glass  — — 74 112 [82]

BN (0.2 wt%) PVA 140/16% — — 3.4/36% — [83]

MoS2 (5 wt%) PVA 105/24% — 150 — — [84]

MoS2 with POSS 

 (2 wt%) 
PVA 58/57% — — — — [85]

BN (0.5 wt%) 
Cellulose acetate 

(CA) 
115 7 — — — [86]

BN (0.3 wt%) PMMA 42/11% — — 2.3/22% — [87]

BN PMMA  — 34.4 0.803/9% — [88]

Ni-GNPs (0.5 vol%) Cu 281/24% — 11.9 — — [89]

BN (1.5 wt%) 
Styrene butadiene 

rubber (SBR) 
48.7/150% — 380 — — [90]

Reduced graphene 

oxide (rGo) (1.5 wt%) 
Ni 948 — 12.1 — — [91]

Graphene (1.8 vol%) PVA 42/150% 1.04/940% 98 — — [55]

Graphene (1 wt%) Al5083 alloy 470/56% — 3 — — [92]

Graphene 6063Al 277/23% — 14.7 — — [93]

BN (2 wt%) 
Polyarylene ether 

nitrile (PEN) 
111/10% — 2.75 — — [41]

rGO (1 wt%) AlN  — — 322/10% — [94]

GO 
Polyelectrolyte 

(PEC) 
155/370% — 9 4.41/270% — [95]

Graphene (5 wt%) EP 62/52% 4/48% —  — [96]

Graphene (2 wt%) 
Polybutylene 

succinate (PBS) 
37.2/21%  19 — — [97]

Silane-f-GO (0.1 wt%) EP 80/45% 3.3/6% — — — [98]

Graphene (1.0 vol%) Copper 32039%  — 132/61% — [99]

PBA–BN (0.3 wt %) EP 71.9/54% 3.34/21% — — — [100]

Ti3C2Tx NH2–CF/EP 1210.9/40.8% — — — — [101]

Graphene (0.1 wt %) Ag/PVA 141.1/16.4% — — 0.701/126.9% — [102]

Graphene Polypropylene (PP) 61.57/81% — 19 2.314/100% — [26]

 
 

4.1  Polymer composites 

To date, polymer composites enhanced with 2D 

nanomaterials such as graphene, MoS2, BN, MXene, 

and MOF [103] have been widely reported and 

applied. In this section, the recent developments on 

both strength and friction of 2DNBCs are described. 

4.1.1  Strength 

Most of the studies on polymer composites have 

been aimed at exploiting the high mechanical strength 

of fillers such as fibers [104, 105], nanoparticles 
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[106–108], whiskers [109, 110], and nanosheets [111–116]. 

Compared with other fillers, 2D nanomaterials have 

attracted more attention because of their unique planar 

structure and unconventional mechanical properties, 

as illustrated in Fig. 5. Herein, the critical strength 

of polymer composites incorporated with 2D 

nanomaterials is discussed in detail. 

As presented in Fig. 6, the layered structure of 

typical 2D nanomaterials investigated by transmission 

electron microscopy (TEM) and AFM shows good 

dispersion in the composites. Four factors are 

responsible for enhancing the mechanical strength 

of polymer composites reinforced by 2D materials: 

(1) the large aspect ratio and high intrinsic 

mechanical properties of 2D materials [26], (2) the 

strong interfacial interaction between the 2D 

material and polymer matrix [26, 84, 118–120], (3) 

the homogeneous dispersion of 2D materials [78, 

84, 118], and (4) the increased crystallinity [121]. 

As organic materials, polymers are highly flexible  

 

 

Fig. 5  (a) Tensile strength and (b) Y of pristine EP, single- 

walled carbon nanotube (SWNT)/EP, multi-walled carbon 

nanotube (MWNT)/EP, and graphene (GPL)/EP composites. 

Reproduced with permission from Ref. [117], © American 

Chemical Society 2009. 

and have poor mechanical properties [122]. However, 

the addition of 2D nanomaterials significantly 

improves their characteristics. As a typical example, 

PVA was reinforced by various 2D nanomaterials 

including graphene [123], BN [78], MoS2 [84], and 

Ti3C2Tx [124, 125]. The crystallinity of the PVA 

polymer was influenced by the addition of graphene 

or graphene oxide (GO) nanosheets, indicating that 

2D nanomaterials act as nucleating agents in the 

matrix [26]. However, Wang et al. [97] reported that 

the crystallinity of polybutylene succinate (PBS) 

remained the same despite the presence of graphene. 

The addition of 2.0 wt% graphene in PBS increased 

the tensile strength and storage modulus by 21% 

and 24%, respectively. This is because, at room 

 

 

 

Fig. 6  Morphology images of (a) graphene and (b, c) its 

composite. Reproduced with permission from Ref. [1], © 

Springer Nature 2006. (d) BN and (e) its composite. Reproduced 

with permission from Ref. [83], © RSC 2009. (f–h) MXene 

and (i, j) its composite. Reproduced with permission from 

Ref. [101], © Springer Nature 2019. 
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temperature, the load transfer across the interface 

between the graphene and matrix is easily achieved 

owing to the large aspect ratio and uniform dispersion 

of graphene in the matrix. Since the crystallinity of 

PBS remained the same despite the presence of 

graphene, this could mean that the addition of 2D 

nanomaterials does not affect the crystallinity of 

composites and the improvement in mechanical 

properties depends mainly on the 2D material rather 

than on the matrix. The results are consistent with the 

shear lag theory, which describes the 2D nanomaterial 

behavior in a matrix [126]. 

The effect of graphene on the stiffness, strength, 

and toughness of OPBI was investigated by Wang 

et al. [51] through an in situ polymerization method. 

Later, significant progress of composites filled with 

other 2D nanomaterials has been reported. An 

appropriate concentration of the well-structured BN 

enables the enhancement of mechanical properties 

[48]. The addition of 4 wt% BN to OPBI has a 

similar effect on improving the tensile strength 

and modulus to that of filling with 0.4 wt% of 

graphene [48]. The difference in the amounts may 

be due to their intrinsic strengths (graphene ≈ 130 

GPa [7, 127], BN ≈ 85 GPa [128]). 

There are two main strategies for further enhancing 

the mechanical properties of polymer composites. 

First, the functionalization, using octa (aminophenyl) 

silsesquioxane, octadecylamine, fluoride, etc., is an 

efficient way [129–135], because both dispersion 

and stress transfer can significantly improve the 

strength. The functionalization of 2D nanomaterials 

is conducive to better dispersion [136]. The compatibility 

of the 2D nanomaterial and the matrix affects 

the interface energy transfer in composites [76]. 

Ramanathan et al. [2] added 0.05 wt% of single- 

layer functionalized graphene to PMMA and 

achieved an increase of 80% in elastic modulus 

and 20% in tensile strength. A similar result was 

obtained by Qiu et al. [137]. In addition, Xing et al. 

[138] also claimed that functionalized BN can 

enhance the mechanical properties of polymers. 

Another strategy is synergistic effect [102, 139–143]. 

Owing to the synergistic effect of the π–π interaction 

between the one-dimensional (1D) carbon nanotube 

(CNT) and 2D GO nanosheet as well as the strong 

interfacial interactions between the PEC matrix 

and CNT–GO, the production of PEC/GO–CNT 

composites with higher tensile strength and Y is 

expected [95]. The incorporation of GO can improve 

the compressive strength of the PEC complex hydrogel 

[50]. The GO nanofiller bears most of the applied 

load in various states owing to its intrinsic high 

strength. Figure 5 displays a comparison between 

the tensile strengths and Y of pure EP and different 

nanocomposites. It is shown that the tensile strengths 

of the composites are higher than that of the pure 

matrix. On average, the strength increases by 20% 

to 140%. Note that even 0.5 wt% MoS2 improved the 

tensile strength of chitosan to 207% [52]. Finally, it 

remains a challenge to understand the strengthening 

mechanisms of 2D nanomaterials in 2DNBCs owing 

to their diversity and complexity. 

4.1.2  Friction and wear characteristics 

Besides the mechanical strength, 2D nanomaterials 

can improve the tribological performance of polymers 

as well, because these 2D nanomaterials exhibit 

in-plane mechanical isotropy and a weak interlayer 

interaction [144]. The good tribological performance, 

which can be achieved by incorporating 2D 

nanomaterials in the matrix, comprises two aspects: 

(1) reduction in COF and (2) enhancement in wear 

resistance. This section discusses the effect of 

using 2D nanomaterials as fillers in a polymer 

matrix on the frictional properties. All the results 

mentioned for the COF and wear rates are 

summarized in Table 4. For comparison, various 

2D nanomaterials added in the polymer matrix are 

presented [145–147]. 

The COF of PTFE is significantly reduced when 

the added graphene in the matrix is 4.0 wt% 

[148]. However, a higher content of graphene may 

compromise the lubrication property. The addition 

of graphene to a PTFE matrix decreases the wear 

rate by three or four orders of magnitude [157]. 

The friction reduction and improved wear resistance 

of the composite are attributed to the good dispersion 

and self-lubrication of 2D nanofillers [144]. Ultrahigh 

molecular weight polyethylene (UHMWPE) had 

been reinforced by graphene [158] or Ti3C2 [156]. 

The results showed that the 2D nanomaterial 

reduced the effective lateral force and increased 

the wear resistance. Further, 2D nanomaterials can 
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Table 4  Tribological properties of polymer composites reinforced with 2D materials. 

Matrix 2D material Method 
Operating 

condition 
COF 

Wear rate 

(mm3/(N·m)1) 
Ref. 

PTFE 
4.0 wt% 

graphene 

Cold compression and 

sintering 
20 N, 0.1 m/s 0.18 7.5×10−6 [148] 

PTFE 10 wt% MoS2 Cold press and sintering 5 N, 0.12 m/s 0.15 2.5×10−5 [149] 

PTFE 10 wt% g-C3N4 Cold press and sintering 5 N, 0.12 m/s 0.18 1.0×10−5 [149] 

PTFE 
5 wt% 

phosphorene 
Ball milling and SPS 3 N, 20 mm/s 0.041 6.9×10−6 [150] 

EP 0.5 wt% BN Mechanical mixing 5 N, 20 mm/s 0.5 16×10−5 [151] 

PI 2 wt% BN 
Mechanical mixing and 

spin-coated 
3 N, 20 mm/s 0.10 2.79×10−6 [152] 

PEEK 10 vol% g-C3N4 
Mechanical mixing and 

hot pressing 
50 N, 1 m/s 0.6 4.0×10−7 [68] 

Phenol 

formaldehyde (PF) 

0.3 wt% 

Graphene oxide 
Solution mixing 320 N, 2.24 m/s 0.12 — [153] 

Polyurethane 3 wt% MoS2 Solution mixing 3 N, 60 mm/s 0.10 9×10−5 [145] 

EP 
1.0 wt% 

MoS2@PPN 
Mechanical mixing 80 N, 0.05 m/s 0.58 22.3×10−5 [154] 

Bismaleimide 

(BMI) 

0.6 wt% 

PHbP@rGO/WS2 
Solution mixing 196 N, 0.42 m/s 0.13 1.22×10−6 [155] 

UHMWPE 2.0 wt% Ti3C2 Hot compression mold 200 N, 0.4 m/s 0.128 — [156] 

EP 2.0 wt% Ti2CTx Mechanical mixing 98 N, 0.3 m/s 0.228 — [39] 

 

significantly contribute to the excellent mechanical 

properties, lubricity, and thermal conductivity [151]. 

These 2D nanomaterials also have potential to 

solve the frictional heat problems of polymer 

composites. Qiu et al. [154] employed an infrared 

thermal imager to investigate the melting behavior 

of composites. The results showed that the addition 

of MoS2 reduced the frictional heat and retarded 

the melting wear. In Ref. [159], a 2D nanomaterial 

was also added in a base oil owing to its good 

self-lubricating property. Thus, 2D nanomaterials 

are promising fillers and can significantly enhance 

the tribological performance of polymer composites 

because of their good lubricating properties under 

harsh conditions [160]. 

To understand the wear mechanism of polymer 

composites incorporating 2D nanomaterials, many 

studies have focused on the analysis of the worn 

surface of composites (Fig. 7). The mechanism reported 

includes two different categories: (i) slightly abrasive 

wear [155] and (ii) melting wear [154]. Based on 

the observation of friction surfaces, many studies 

have demonstrated that the formation of a load- 

carrying transfer layer is the key factor for improving 

the tribological properties of polymer composites 

(Fig. 8) [149, 150]. 

In summary, the friction performance of polymer 

matrices reinforced with 2D nanomaterials mainly 

depends on the type and content of the 2D 

nanomaterial as well as the interfacial bonding. 

As discussed above, the functionalization of 2D 

nanomaterials is an important method for streng-

thening the interfacial bonding. To further enhance 

the tribological performance, several challenges 

related to the interfacial bonding must be tackled 

urgently [40]. 

4.2  Ceramic composites 

Similar to polymer composites reinforced with 

2D nanomaterials, ceramic composites require a 

homogeneous distribution of 2D nanomaterials for 

improving their mechanical performance. However, 

designing advanced ceramic composites is still a 

challenging task owing to interdiffusion and chemical 

reactions at high temperatures. To address this 

challenge, novel preparation methods have been 

developed as described in Section 2. Thus, their 

mechanical and tribological properties would be 
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Fig. 7  Scanning electron microscopy images of worn surfaces of (a) bismaleimide resin and its composites incorporating: (b) 0.2 

wt%, (c) 0.4 wt%, (d) 0.6 wt%, (e) 0.8 wt%, and (f) 1.0 wt% PHbP@rGO/WS2. Reproduced with permission from Ref. [155],  

© Elsevier Ltd. 2019. 

 

Fig. 8  Schematic of friction mechanism for (a) EP/MoS2@ PPN composites. Reproduced with permission from Ref. [154], 

© Elsevier Ltd. 2018. (b) PTFE/phosphorene. Reproduced with permission from Ref. [150], © Springer Nature 2018. (c) PTFE/MoS2 

and PTFE/g-C3N4. Reproduced with permission from Ref. [149], © Springer Nature 2019. 

 

discussed in the following sections. 

4.2.1  Strength 

Graphene-reinforced ceramic composites, which 

possess the strongest 2D nanomaterial, have been 

studied extensively [161–170]. Two reviews have 

already examined critically the effect of graphene 

[171, 172]. Even a very small content of graphene 

can significantly improve the tensile strength and 

fracture toughness of ceramic composites. For example, 

the fracture toughness of zirconia ceramics can 

improve with 0.01 wt% graphene [161]. Krystek et 

al. [80] reported that the addition of 0.05 wt% 

graphene to ordinary cement results in a significant 

increase of up to 79% in the tensile strength. In 

another example, with increasing graphene content, 

the flexural strength and fracture toughness of AlN 

composites initially increased and then decreased 
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[166]. Graphene nanosheet (GNS) bridging the crack 

propagation path indicated the crack bridging effect 

of GNSs during crack propagation, which in turn, 

increased the fracture toughness. Furthermore, the 

microstructure of composites was investigated to 

explain the reinforcing mechanism of 2D nanomaterials 

[166]. It was found that the addition of graphene 

promotes the hydration reaction of both alite and 

belite, and thus leading to the formation of a large 

fraction of 3CaO·2SiO2·3H2O (C–S–H) phase. In fact, 

the 2D nanomaterials proved to be superior to the 

1D and 3D nanomaterials, such as nanotubes and 

nanoparticles, in improving the mechanical properties 

of ceramic matrices [173]. A detailed review by 

Papageorgiou et al. [24] summarizes the research on 

improving the mechanical properties of graphene 

nanocomposites. 

Owing to the poor toughness of ceramic matrices, 

BN can be used to improve their mechanical properties 

[174]. Lee et al. [28] explored the mechanical properties 

of a BN/Si3N4 nanocomposite by the single-edge 

notched beam method and microstructural analyses. 

The strengthening mechanism is summarized in Fig. 9. 

Moreover, it was shown that the introduction of BN 

results in the strengthening and toughening of ceramic 

composites [28, 82, 175]. 

MoS2 nanoplatelets were also incorporated into 

bioceramic scaffolds fabricated by selective laser 

sintering (Fig. 10) by Shuai et al. [15]. At 0.5 wt% 

MoS2 nanoplatelets, the compressive strength and 

fracture toughness of the bioceramic scaffolds 

improved by 46% and 24%, respectively. The MoS2 

crack bridge/deflection enhances energy dissipation, 

leading to the improvement. 

 

Fig. 9  Microstructure of a ceramic composite reinforced with 

BN. Reproduced with permission from Ref. [28], © Springer 

Nature 2016. 

 

Fig. 10  Fabrication process of a bioceramic scaffold 

incorporating MoS2. Reproduced with permission from Ref. 

[15], © Elsevier Ltd. 2017. 

 

MXenes for high-strength composites have attracted 

much attention and were incorporated into ceramic 

composites. Incorporating 2 wt% Ti3C2Tx into an 

alumina ceramic composite can improve the fracture 

toughness, bending strength, and hardness to ~300%, 

~150%, and ~300%, respectively [176]. The hardness 

and elastic modulus of ZnO ceramic were increased 

dramatically with 0.5 wt% Ti3C2Tx [177]. The 

microstructure of the nanocomposites and the 

outstanding intrinsic mechanical properties of Ti3C2Tx 

were the reasons for such improvements. 

In summary, the toughness of ceramics can be 

improved by 2D nanomaterials, which can solve 

the brittleness problem. The strengthening of ceramic 

composites by 2D nanomaterials is mainly attributed 

to two reasons. The first reason is the microstructure 

of nanocomposites. The 2D nanomaterials are mainly 

dispersed at the grain boundaries of the ceramic 

matrices, resulting in a remarkable increase in the 

grain boundary strength and energy dissipation. 

Second, the outstanding intrinsic mechanical 

property and large surface area of 2D nanomaterials 

are equally important. 

4.2.2  Friction and wear characteristics 

As discussed in Section 4.1.2, very significant 

improvements have been achieved in ceramic matrices 

by using various types of 2D nanomaterials. Further 

research on the tribological performance of ceramics 

reinforced with 2D nanomaterials is necessary [161, 
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163–165, 178, 179]. 

In a previous study by Belmonte et al. [178], 

graphene was added into a silicon nitride ceramic 

and the tribological properties of the graphene/ 

ceramic composite were reported. One of the 

most interesting properties of the graphene/Si3N4 

composite is its excellent wear resistance, which 

can be attributed to the formation of a protective 

tribofilm by graphene. In addition, the tribological 

performance of zirconia composites reinforced with 

an in situ-reduced GO was reported recently [180]. 

The wear rate was decreased from 2.33×105 to 

4.66×106 mm3·N1·m1 with 0.5 wt% GO (Fig. 11(a)). 

Moreover, various amounts of graphene were added 

into a ceramic to evaluate the friction and wear [181]. 

The results are interesting because all composites 

exhibited outstanding tribological performance, even 

those composites containing large amounts of graphene. 

Besides graphene, other 2D nanomaterials including 

BN [28], MoS2 [182], and WS2 [183] have been 

incorporated into ceramic matrices by various 

fabrication methods. The results revealed that the 

tribological performance of ceramic composites is 

better than that of pure ceramics (Figs. 11(b) and 

11(c)). These results verified the advantage of 

incorporating 2D nanomaterials in ceramic composites. 

From the above discussion, it can be concluded 

that to obtain the lowest COF and best wear resistance, 

2D nanomaterials can be considered as one of the 

most effective reinforcements (as listed in Table 5). 

The resulting microstructures of ceramic composites 

reinforced with 2D nanomaterials lead to significantly 

lower friction and wear [184]. The main wear 

mechanisms of ceramic composites reinforced with 

   

Fig. 11  (a) Specific wear rates of ZrO2 and ZrO2–GO (IGZ: in situ reduced graphene oxide reinforced 3 mol% yttria stabilized 

zirconia; RGZ: Pre-reduced graphene oxide reinforced 3 mol% yttria stabilized zirconia). Reproduced with permission from 

Ref. [180], © Elsevier Ltd. 2018. COFs of (b) Al2O3 and Al2O3–MoS2 composites. Reproduced with permission from Ref. [182], 

© American Chemical Society 2017. (c) TiN and TiN–WS2 composites. Reproduced with permission from Ref. [183], © Elsevier 

Ltd and Techna Group S.r.l. 2019. 

Table 5  Tribological properties of ceramic composites reinforced with 2D materials.  

Matrix 2D material Method Operating condition COF 
Wear rate 

(mm3/(N·m)1)
Ref. 

Al2O3 1.0 vol% graphene 
Ball milling and cold 

isostatic press 
25 N, 0.1 m/s 0.35 2.0×105 [185]

Si3N4 20.6 vol% graphene Solution mixing and SPS 
180 N, 0.1 m/s, 

lubrication with isooctane
0.10 5.0×108 [181]

SiC 20 vol% graphene Solution mixing and SPS 
180 N, 0.1 m/s, 

lubrication with isooctane
0.12 1.0×106 [186]

ZrO2 
0.5 wt%  

Graphene oxide 
Ultrasonic and SPS 30 N, 0.12 m/s 0.76 4.66×106 [180]

SiO2 5.0 vol% graphene Ball milling and SPS 5 N, 0.1 m/s 0.56 7.7×106 [179]

Si3N4 2.0 vol% BN Hot pressing 39.2 N, 7.85 mm/s 0.30 — [28] 

TiN 19 wt% WS2 
Reactive magnetron 

sputtering 
2 N, 14 mm/s 0.19 — [183]

Al2O3 10 vol% MoS2 
Ultrasonic and vacuum 

infusing 
5 N, 5 cm/s, high vacuum 0.20 1.4×106 [182]
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2D nanomaterials are plastic deformation [180, 183] 

and microcracking [180]. These findings suggest 

that 2D nanomaterial-based ceramic composites 

have the potential for various tribological applications. 

4.3  Metal composites 

Metal composites are widely used in aerospace, 

automotive, precision instruments, and large 

infrastructure owing to their high strength and 

stiffness. Besides the well-designed 2D nanomaterial- 

based polymer and ceramic composites, 2D nanoma-

terials have also been used as reinforcements in metal 

matrices including Cu [99, 187–191], Al [192–194], 

Mg [195], Ni [91, 196], and alloys [197]. The mechanical 

properties of metal composites incorporating 

2D nanomaterials are discussed in the following 

subsections. 

4.3.1  Strength 

Recent studies have shown that metal composites 

filled with 2D nanomaterials exhibit superior hardness, 

Y, compressive strength, and tensile strength at room 

temperature compared to their corresponding 

unreinforced matrices. For example, Cu/graphene 

composite is typical, as described in Refs. [198– 

200]. Several recent studies reported the outstanding 

mechanical properties of composites with 2D 

nanomaterial contents from 0.05 wt% to 2 wt% 

[201]. However, the properties are highly dependent 

on the type and content of the 2D nanomaterial, as 

shown in Table 2. 

The reinforcement of metal matrices using 

graphene has become one of the hottest topics in 

metal composite research [44, 45, 77, 81, 91, 92, 99, 

187–189, 192, 193, 195, 196, 202–207]. Early studies 

on the mechanical properties of composites have 

demonstrated the advantages of incorporating 

graphene and its derivatives in metal composites 

[81, 194, 208–212]. The strengthening efficiency 

shown in Fig. 12 indicates that functionalized 

graphene can reinforce a copper matrix more effectively 

than other nanomaterials including carbon fiber, 

CNT, and pristine graphene, leading to the best 

strengthening efficiency for metal matrices. To 

ensure uniform dispersion of graphene in the copper 

matrix, Shao et al. [49] fabricated graphene- 

 

Fig. 12  Summary of progress in the strengthening efficiency 

of Cu matrix composites. Graphene–Ni. Reproduced with 

permission from Ref. [99], © Elsevier B.V. 2014. Carbon fiber. 

Reproduced with permission from Ref. [208], © Elsevier Science 

S.A. 2000. CNT network. Reproduced with permission from 

Ref. [209], © John Wiley and Sons 2005. Graphene. Reproduced 

with permission from Ref. [37], © John Wiley and Sons 2013. 

 

nanoplatelets/copper (GNPs/Cu) composites by 

electrostatic self-assembly and spark plasma sintering. 

The resulting GNPs/Cu composite exhibited 

outstanding tensile strength and hardness. In another 

study, it was observed that the Cu–O–C bonding can 

be formed in graphene/Cu composites fabricated by 

electrochemical deposition [213]. Oxygen-mediated 

bonding was reported by Zhao [91], as depicted in 

Fig. 13. This suggests that interface bonding is 

important for achieving excellent mechanical properties 

in metal composites. Recently, the effects of ball 

milling time [93], content [214], and functional 

group [140] on the mechanical properties of metal 

composites have been studied in detail. Researchers 

are continuously extending the research scope of 

graphene/metal composites. 

The addition of BN to a Ni3Al matrix has 

enhanced the elastic modulus and thereby shows 

its significant strengthening effect [36]. In another 

study, the enhancement in the mechanical properties 

of composites was attributed to the higher strength 

of the 2D nanomaterials [75]. Metal composites 

incorporating MXene or 2DMOF have not yet been 

explored owing to their high cost and expected 

defects in structure. 

Five strengthening mechanisms are summarized 

here. First, dislocation strengthening occurs when 

2D nanomaterials become effective barriers to 

dislocation migration [215, 216]. Molecular dynamics 
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Fig. 13  (a) Transmission electron microscopy (TEM) image of the interface between rGO and Ni matrix. (b) Selected area 

electron diffraction patterns and (c) electron energy-dispersive X-ray spectrometry results at the regions marked in (a). (d) 

Schematic of interface bonding. Reproduced with permission from Ref. [91], © Springer Nature 2014. 
 

simulation results also corroborate this mechanism 

[217]. Second, it is generally accepted that load 

transfer can be achieved owing to the large surface 

area and high strength of 2D materials [204, 218]. 

Third, grain refinement in metal matrices also occurs 

as revealed by TEM [219]. In addition, thermal mismatch 

strengthening [211] and Orowan strengthening [36, 193] 

have been mentioned in some cases. 

4.3.2  Friction and wear characteristics 

The use of 2D nanomaterials to reinforce metals 

usually leads to excellent improvement in the self- 

lubrication and anti-wear properties of the composites. 

The COF of 0.3 wt% graphene/Cu composite decreases 

by 65% compared to that of pure copper [220]. Graphene 

addition causes a plastic zone and a decrease in 

grain size [45]. It is noteworthy that as a 2D-layered 

nanomaterial, graphene has a lubricating effect 

[221], leading to a fairly stable frictional behavior 

in metal composites [197]. Moreover, the excellent 

antifriction performance of graphene has been revealed 

by both simulation and experimental studies [13]. 

BN-reinforced Ni3Al composites also showed outstanding 

lubrication and anti-wear resistance [36]. Compared 

to metal composites reinforced with graphene, 

those reinforced with BN exhibit high COF and 

poor wear resistance. This is because graphene 

possesses better self-lubrication characteristics [220]. 

Mai et al. [222] first demonstrated that MXenes can 

significantly improve the tribological properties of 

metal matrix composites. However, different from 

other 2D nanomaterials such as graphene, it is 

difficult to observe transfer layers on the contact 

surface of the Ti3C2/Cu composite. Thus, the lack 

of transfer layers is one of the major reasons for its 

poor tribological properties. Therefore, it is worthwhile 

to carry out further research on how to improve 

this aspect in the future. 

The above discussions show that the COF and 

wear rate of metal composites decrease with the 

addition of 2D nanomaterials. This improved 

tribological performance is mainly attributed to 

the formation of a tribolayer on the contacting 

surfaces [223–227]. Table 6 summarizes typical data 

on the tribological properties of metal composites 

reinforced with 2D materials. 

5  Salient factors influencing the per-

formance of composites 

The enhancement in the mechanical and tribological 

properties of composites by 2D nanomaterial 

reinforcement also depends on numerous factors 

such as aspect ratio, volume fraction of nanomaterials, 

orientation of nanosheet, and interface bonding 

between the filler and matrix [230]. Naturally, the 
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Table 6  Tribological properties of metal composites reinforced with 2D materials. 

Matrix 2D material Method 
Operating 

condition 
COF 

Wear rate 

(mm3/(N·m)−1) 
Ref. 

TiAl 3.5 wt% graphene SPS 10 N, 0.2 m/s 0.33 0.33×10−4 [197] 

Ni3Al 1.0 wt% graphene Ball milling and SPS 11.65 N, 1.0 m/s 0.20 9.0×10−6 [228] 

Ni3Al BN 
Selective laser 

melting 
9 N 0.22 2.1×10−5 [36] 

Cu 10 vol% graphene Hot pressing 2 N, 1 m/s 0.17 1.8×10−4 [229] 

Cu 4.0 vol% graphene 
Molecular level 

mixing and SPS 
5 N, 0.01 m/s 0.25 — [45] 

Cu 2 wt% Ni@graphene
Ball-milling and 

hot-pressing 
6 N, 0.105 m/s 0.2 0.1×10−3 [224] 

Cu Graphene 
Ambient-pressure 

CVD  
1 N, 2.74 cm/s 0.2 2.8×10−5 [223] 

Cu Ti3C2 
Electrodeposition 

Technique 
1 N, 5.2 cm/s 0.27 3.7×10−5 [222] 

Ni 0.68 wt% graphene Powder metallurgy 5 N, 9 mm/s 0.39 5×10−4 [225] 

Al 2 wt% WS2 Cold spray 1 N, 2 mm/s 0.6 88×10−3 [227] 

Al 10 vol% graphene Powder metallurgy 10 N, 0.1 m/s 0.2 9×10−3 [226] 

Al 15 vol% MoS2 Powder metallurgy 10 N, 0.1 m/s 0.2 20×10−3 [226] 

Al 15 vol% BN Powder metallurgy 10 N, 0.1 m/s 0.4 100×10−3 [226] 
 
 

improvement in mechanical properties depends on 

various factors including the matrix, reinforcement, 

and process. These influencing factors in the context 

of the mechanical properties of 2DNBCs are discussed 

as follows. 

5.1  Matrix type 

As is well known, there are many types of matrix 

materials that can be selected. It is also essential to  

emphasize that the mechanical properties of 

composites fundamentally depend on the matrix 

[231]. Commonly, the order of the magnitude of 

tensile strength is ceramic matrix > metal matrix > 

polymer matrix. After being reinforced by 2D 

nanomaterials, the tensile strength of composites 

maintains a similar trend, as displayed in Fig. 14. 

In addition, the order of the magnitude of elastic 

modulus is similar (ceramics: 30–1,000 GPa; metals: 

50–300 GPa; polymers: 0.4–4.0 GPa). Further, different 

varieties of the same type of material also exhibit 

different mechanical performances owing to differences 

in the chemical composition and structure. 

5.2  Reinforcement state 

In the previously highlighted key points, the majority 

of the effects on the mechanical properties were 

attributed primarily to the physical properties of 

2D nanomaterials (Fig. 15). The synergistic effect of 

graphene with other 2D nanomaterials was also 

reported by many researchers. Previous AFM-based 

indentation experiments have also demonstrated 

its significance [65]. 

5.2.1  Geometry 

The geometry of 2D nanomaterials, such as lateral 

dimension, thickness, and aspect ratio, determines 

its mechanical properties. A key factor that affects 

many properties including mechanical properties 

is the lateral dimension [29]. 2D nanomaterials 

have a layered structure with a large lateral dimension 

and atomic thickness. Khan et al. [240, 241] found 

that the mean sizes of graphene and MoS2 

nanosheets have evident effects on the mechanical 

properties of composites. The high aspect ratio of 

BN sheets is a critical factor for improving the 

mechanical property of a composite [86]. The 

macromolecular chains of the matrix are confined 

by 2D nanomaterials with a high aspect ratio. The 

effect has also been confirmed in graphene/PEEK 

[43]. 
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Fig. 14    Comparison of various matrices incorporating 2D materials (PBI: polybenzimidazole; PS: polystyrene; TE: 

thermoplastic elastomers; PDMS: polydimethylsiloxane; bwGO: base-washed graphene oxide; P-G: plasma treated graphene). 

 

 

Fig. 15  Effect of (a) aspect ratio, (b) dispersion, and (c, d) volume content of graphene on the strain–stress curves of 

nanocomposites. Reproduced with permission from Ref. [63], © Elsevier B.V. 2014. (e) Schematic of the effect of volume 

content on the microstructure. Reproduced with permission from Ref. [55], © American Chemical Society 2010. 
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Moreover, thickness plays an important role in 

the mechanical properties of composites. Kiran et 

al. [79] demonstrated that the mechanical properties 

decrease linearly with increasing number of BN 

layers. Furthermore, several researchers reported 

the effect of thickness on wear of graphene/PTFE 

composites [148]. The results revealed the relation 

between wear and thickness. 

When the 2D nanomaterials are small and thin, 

the composites have high tensile strength and 

ductility [242, 243]. These results demonstrate that 

the mechanical properties of polymer composites 

containing 2D nanomaterials depend primarily on 

the number of layers, with the properties decreasing 

linearly with increasing number of layers. 

Although the aspect ratio plays a crucial role in 

determining the composite properties, little attention 

has been given to its influence on the mechanical 

and tribological properties of composites. A large 

aspect ratio can promote the load transfer ability in 

composite systems [236]. 

5.2.2  Volume content 

The volume content of 2D nanomaterials is a key 

factor in controlling the mechanical strength, COF, 

and wear rate [45, 244, 245]. An extremely small 

amount of 2D nanomaterial, usually no more than 

5 wt%, can significantly improve the mechanical 

properties of composites. As indicated in Fig. 15(e), 

the microstructure of a polymer composite has changed 

remarkably as the volume content of graphene increases. 

With the high volume content of graphene, the 

original advantage of a layered structure disappears, 

resulting in the deterioration of the mechanical 

properties. 

The tensile strength of a composite can be 

calculated as [49] 

 c g g g m
(1 )V V      (7) 

where 
g

 , 
m

 , and 
c

  are the tensile strength of 

graphene, the matrix, and the composite, respectively; 

whereas 
g

V  represents the volume content of 

graphene. It may be noted that the volume content 

is crucial to the tensile strength of composites. As 

mentioned above, there is a critical point of the 

volume content [56]. At the critical point, the 

composite exhibits the best mechanical property 

[246]. The strength and modulus of composites both 

increase with the increase in the 2D nanomaterial 

content [63]. At a higher volume content, 2D 

nanomaterials are prone to self-aggregation, resulting 

in the deterioration of the mechanical properties of 

the composite [41]. 

5.2.3  Dispersion 

The effect of the dispersion of 2D nanomaterials 

on the mechanical properties of 2DNBCs has been 

extensively studied [6, 47, 121, 160, 218, 247–249]. 

To summarize, the degree of dispersion, including 

that of the 2D nanomaterials and other fillers, has 

a significant impact on the mechanical performance 

of composites. Figure 15(b) illustrates the effect of 

dispersion of graphene on the strain–stress curves 

of nanocomposites. Poor dispersion decreases the 

effective aspect ratio of 2D nanomaterials, leading 

to the deterioration in mechanical properties. Thus, 

dispersion is a major challenge in the fabrication 

of various composites [250]. Luo et al. [239] found 

that homogeneous dispersion of graphene can be 

achieved by the modification of silver nanoparticles. 

All the aspects mentioned above suggest that 

dispersion is one of the key factors for improving 

the mechanical properties. Achieving effective 

dispersion of 2D materials in the matrix should 

therefore be explored further. 

5.2.4  Orientation 

Recent studies have examined the role of the 

orientation of 2D nanomaterials within a material 

in its mechanical and tribological properties [234, 

251]. A well-ordered orientation of 2D nanomaterials 

in composites maximizes the interactions between 

the 2D nanomaterials and the matrices, which lead 

to efficient stress transfer [252]. Conversely, a random 

distribution of 2D nanomaterials causes low load 

transfer ability [253]. Li et al. [251] reported that 

the Krenchel orientation factor can predict the 

effect of spatial orientation on the mechanical 

properties of 2DNBCs. Jan et al. [254] found that 

improving the alignment of BN nanosheets by 

uniaxial drawing can enhance the mechanical 

properties of composites. To control the orientation 

of graphene and its derivatives, a previous review 
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summarized a series of methods and evaluated the 

resulting properties [255].  

5.2.5  Interface bonding 

Interface bonding comprises hydrogen bonding, 

covalent bonding, ionic interactions, electrostatic 

interactions, and so on. Most studies have mentioned 

that interface bonding is an important factor to be 

considered [232, 256–258], as displayed in Fig. 16. 

Under axial stress, the parallel lines become distorted 

owing to the low Y of the matrix (Fig. 16(g)). This 

means that 2D nanomaterials carry most of the  

 

 

Fig. 16  Typical interface between graphene and copper matrix: (a, b) the interplanar distance of graphene is 0.34 nm. 

Reproduced with permission from Ref. [204], © American Chemical Society 2015. Bridging of 2D materials in composite 

systems: (c) graphene bridging. Reproduced with permission from Ref. [166], © Elsevier Ltd and Techna Group S.r.l. 2015. (d) 

BN bridging. Reproduced with permission from Ref. [36], © The Authors 2019. (e, f) Graphene bridging. Reproduced with 

permission from Ref. [49], © Elsevier B.V. 2018. (g, h) Deformation patterns of 2D material in a matrix under axial stress σ1. 

Reproduced with permission from Ref. [126], © The Authors 2017. 
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load in the composite. According to the elastic 

contact theory [259], the Y of the matrix will be 

affected by the interfacial contact between the 2D 

nanomaterial and matrix. To ensure adequate 

stress transfer, strong interface bonding between the 

2D nanomaterial and matrix is essential. In view of 

the importance of interface bonding, the interface 

microstructure was investigated by TEM in Ref. [49]. 

The 2D nanomaterial was incorporated into composites, 

resulting in the presence of 2D bridging. 

Interface bonding can be controlled by modi- 

fication [2, 130] and ball milling [93]. As the 

interface bonding is improved, the final Y of the 

composite becomes almost three times higher than 

that of the pure matrix [2]. Thus, the design of the 

interface is essential owing to its importance in 

suppressing shear bands of the composites. It is 

also called interface-dominated/enabled mechanical 

behavior [260]. In addition to its use as enhancement 

fillers in composites, 2D nanomaterials have proved 

to be an efficient potent coupling agent [261]. 

Ultrathin GO was introduced in the interface between 

silica and EP resin to optimize the mechanical 

properties [262]. The results showed that the 

mechanical reinforcement is superior compared to 

those reported by others. Ti3C2Tx MXene nanosheets 

are already used for enhancing the interfacial 

connection between carbon fibers and EP resins as 

well as for reducing the stress concentration of the 

interface [101]. The design might be complicated, 

but it has the great advantage of improving the 

tensile, flexural, shear, and impact strengths. 

5.3  Processing parameters 

Composites fabricated by different methods may 

possess different mechanical properties. In fact, 

there are many processing parameters in every 

method, such as pressure, temperature, and time. 

As described in Section 2, the main methods used 

for fabricating 2DNBCs are in situ polymerization, 

solution mixing, melt blending, powder metallurgy, 

reaction bonding, chemical vapor deposition/ 

infiltration, and molecular-level mixing. Additionally, 

novel approaches of fabricating advanced composites 

[263] have been developed. Each processing parameter 

directly affects the quality of the composites and 

even creates defects. Thus, the mechanical properties 

of composites are affected significantly by the 

processing parameters. 

6  Potential applications 

In Section 4, the mechanical properties of 2DNBCs 

are reviewed. Excellent mechanical properties can 

lead to more applications and reduced costs of 

composites. In this section, we will focus on the 

discussion about the potential of the aforementioned 

prepared composites for a number of applications 

based on their outstanding mechanical properties 

(Fig. 17). 

6.1  Aviation and aerospace 

Composites have been used for a long time and 

 

Fig. 17  Advanced technological applications of 2DNBCs. 

Ti3C2. Reproduced with permission from Ref. [264], © John 

Wiley and Sons 2014. BN. Reproduced with permission from 

Ref. [265], © John Wiley and Sons 2018. MoS2. Reproduced 

with permission from Ref. [266], © American Chemical Society 

2017. MOF. Reproduced with permission from Ref. [267],  

© John Wiley and Sons 2015. Drug release. Reproduced with 

permission from Ref. [268], © Springer Nature 2017. Wearable 

devices. Reproduced with permission from Ref. [269], © 

American Chemical Society 2018. Electrical devices. 

Reproduced with permission from Ref. [270], © American 

Chemical Society 2015. Biomedicine, automotive, sensors, 

and detectors. Reproduced with permission from Ref. [271], 

© Elsevier B.V. 2016. Batteries. Reproduced with permission 

from Ref. [272], © Science China Press 2017. 
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have become important materials in the field of 

aviation and aerospace. To further improve their 

performance, studies on reinforcing them with 

2DNBCs have been reported widely in the literature. 

Among the family of 2DNBCs, graphene-based 

nanocomposites are one of the most promising 

materials in view of their excellent specific strength 

and good wear resistance. Besides graphene-based 

nanocomposites, composites incorporating MoS2 

and BN also exhibit excellent tribological properties. 

The different types of applications in aviation and 

aerospace can be categorized into structural 

components, e.g., fuselages, wings, and moving 

components, such as bearings, gears, and hatch 

seals [34]. It is well known that the aviation and 

aerospace industry depends on many structural and 

moving machine components; thus, 2DNBCs will 

play significant roles in this industry. 

6.2  Biomedicine 

The biomedical applications of 2DNBCs mainly 

include tissue engineering scaffolds [15, 273], drug 

delivery [274], thermotherapy [269, 275], and 

biosensors [276, 277]. Effective drug loading can 

be achieved by 2DNBCs owing to the 2D structure 

and delocalized surface π electrons [274]. Thus, 

composites have potential applications in drug 

delivery systems. Commonly, polymer composites 

used in tissue engineering scaffolds usually require 

structural strength and support [273]. To enhance 

their mechanical properties, 2D nanomaterials such 

as graphene and GO are incorporated into these 

matrices. For instance, Das et al. [65] demonstrated 

that incorporating functionalized few-layer graphene 

into PVA and PMMA can significantly increase 

their hardness and elastic modulus. 

6.3  Energy storage 

Energy storage including supercapacitors and 

batteries is a hot research area [278]. Based on 

the ultrathin flexible 2D structure, 2DNBCs 

applied to supercapacitors can endure different 

mechanical deformations [272]. For example, the 

graphene/polymer has led to successful imple- 

mentation in supercapacitor [279]. In this case, 

graphene provided the most effective flexibility. 

MXene/PVA composite has been used as electrode for 

supercapacitors and exhibits impressive performance 

[280]. It is noted that MXene provides an excellent 

flexibility and then the composite can sustain 5,000 

times its own weight. In addition, 2DNBCs have 

potential to be used as protection materials and 

barrier materials such as body armor, ambient 

armor due to the in-plane mechanical isotropy of 

the 2D nanomaterial. Its critical penetration velocity 

gives 2DNBC a unique advantage over traditional 

woven fabric [281].  

Overall, the potential application of 2DNBCs 

will be further expanded with the development of 

study of 2D nanomaterial [282]. It will have to be 

recognized that more work is needed in order to 

realize the true potential of 2DNBCs and to 

explore new application in the future. 

7  Conclusions 

In recent years, there has been a rapid development 

in the field of composites, especially in the design 

and characterization of novel 2DNBCs. Here, 

various characterization methods, including the 

use of universal testing machine, tribological testing, 

DMA, nanoindentation, and AFM, are introduced. 

All of these methods are proposed for the 

measurement of the mechanical and tribological 

properties of composites. Compared with conventional 

methods, microscopic methods, such as AFM, 

nanoindentation, and theoretical calculations, are 

becoming more important. This review reports the 

recent progress pertaining to the mechanical and 

tribological properties of composites reinforced with 

different 2D nanomaterials. Such nanomaterials 

including graphene, GO, rGO, phosphorene, BN, 

g-C3N4, MoS2, WS2, Ti3C2Tx, and MOF can effectively 

enhance the properties of composites because of their 

distinctive characteristics that can result in uniform 

dispersion, optimized orientation, and strong interface 

bonding. Of these 2D nanomaterials, graphene has 

been studied the most because of its ultrahigh 

strength, relatively low cost, and mature technology. 

In addition, owing to the weak interlayer van der 

Waals interaction of 2D nanomaterials, composites 

possessing outstanding tribological properties such 
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as ultralow friction, self-lubricating action, and 

ultralow wear rate can be realized. For these reasons, 

2D nanomaterials are considered as the best 

reinforcements for various composites, such as 

polymers, ceramics, and metals. Particularly, the 

intrinsic mechanical properties of graphene have 

been proven to be excellent and it has been widely 

used for reinforcing various matrices. Further, the 

functionalization of 2D nanomaterials will be an 

effective approach for strengthening the interface 

bonding between the matrix and reinforcement.  

Despite the enormous advances, several problems 

of 2DNBCs have not been fully resolved yet. These 

challenges include the followings:  

1) Preparation of tailored 2D nanomaterials. Though 

much progress has been made in the preparation 

of 2D nanomaterials, high-quality and single-layer 

2D nanomaterials except for graphene are still 

lacking. This is one of the main challenges in this 

field. 

2) Uniform distribution of 2D nanomaterials in 

matrices. This determines the strength of the interface 

between the matrix and the 2D nanomaterial. Some 

easy and effective approaches are still expected. In 

addition, optimal orientation of the 2D nanomaterial 

needs to be maintained as much as possible by an 

appropriate technology such as external electric 

fields and magnetic fields. 

3) Fundamental mechanism of strengthening and 

tribology for various composite systems. Much research 

has been attempted to elucidate the fundamental 

mechanism. However, some new systems such as 

phosphorene/polymer and MXene/polymer have 

not been investigated. 

4) Low-cost applications of 2DNBCs. An increasing 

number of composite materials are being developed; 

thus, it is necessary to consider their particular 

applications. The cost and scalability should also 

be taken into consideration for real applications. 

Considering the importance of composites for 

human activities, effectively designing and fabricating 

2DNBCs need to be addressed in the future. This 

review opens up a new path toward the design of 

advanced composites having potential applications 

in various technological systems. 
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