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Bistable mechanical vibration is observed in a cavity magnomechanical system, which consists of a mi-
crowave cavity mode, a magnon mode, and a mechanical vibration mode of a ferrimagnetic yttrium-iron-garnet
(YIG) sphere. The bistability manifests itself in both the mechanical frequency and linewidth under a strong
microwave drive field, which simultaneously activates three different kinds of nonlinearities, namely, magne-
tostriction, magnon self-Kerr, and magnon-phonon cross-Kerr nonlinearities. The magnon-phonon cross-Kerr
nonlinearity is first predicted and measured in magnomechanics. The system enters a regime where Kerr-
type nonlinearities strongly modify the conventional cavity magnomechanics that possesses only a radiation-
pressure-like magnomechanical coupling. Three different kinds of nonlinearities are identified and distinguished
in the experiment. Our work demonstrates a new mechanism for achieving mechanical bistability by combining
magnetostriction and Kerr-type nonlinearities, and indicates that such Kerr-modified cavity magnomechanics
provides a unique platform for studying many distinct nonlinearities in a single experiment.

Introduction.—Bistability, or multistability, discontinuous
jumps, and hysteresis are characteristic features of nonlin-
ear systems. Bistability is a widespread phenomenon that
exists in a variety of physical systems, e.g., optics [1–3],
electronic tunneling structures [4], magnetic nanorings [5],
thermal radiation [6], a driven-dissipative superfluid [7], and
cavity magnonics [8]. Its presence requires nonlinearity in
the system. To date, bistability has been studied in vari-
ous mechanical systems, including nano- or micromechani-
cal resonators [9–11], piezoelectric beams [12], mechanical
morphing structures [13], and levitated nanoparticles [14].
Bistable mechanical motion finds many important applica-
tions: It is the basis for mechanical switches [15, 16], mem-
ory elements [17, 18], logic gates [19], vibration energy har-
vesters [12, 20], and signal amplifiers [11, 14], etc.

Different mechanisms can bring about nonlinearity in the
system leading to bistable mechanical motion. Most com-
monly, a strong drive can induce bistability of a mechanical
oscillator, of which the dynamics is described by the Duff-
ing equation [11, 21–23]. Mechanical bistability can also be
caused by the Casimir force [9], nanomechanical effects on
Coulomb blockade [10], magnetic repulsion [24], and intrin-
sic nonlinearity in the optomechanical coupling [25], etc.

Here we introduce a mechanism to induce mechanical
bistability, distinguished from all the above mechanisms, by
exploiting rich nonlinearities in the ferrimagnetic yttrium-
iron-garnet (YIG) in cavity magnomechanics (CMM). In
the CMM [26–29], magnons are the quanta of collective
spin excitations in magnetically ordered materials, such as
YIG. They can strongly couple to microwave cavity pho-
tons by the magnetic-dipole interaction, leading to cavity po-
laritons [30–35]. They can also couple to deformation vi-
bration phonons of the ferrimagnet via the magnetostrictive
force [26, 28, 36]. Such a radiation-pressure-like magnome-
chanical coupling provides necessary nonlinearity, enabling a
number of theoretical proposals, including the preparation of
entangled states [37–41], squeezed states [42–44], mechanical
quantum-ground states [45–47], slow light [48, 49], thermom-

etry [50], quantum memory [51, 52], exceptional points [53],
and parity-time-related phenomena [54–57], etc. In contrast,
the experimental studies on this system are, by now, very lim-
ited: Magnomechanically induced transparency and absorp-
tion [26] and mechanical cooling and lasing [28] have been
demonstrated.

In this Letter, we report an experimental observation of
bistable mechanical vibration of a YIG sphere in the CMM.
We show that both the frequency and linewidth of the me-
chanical mode exhibit a bistable feature as a result of the
combined effects of the radiation-pressure-like magnetostric-
tive interaction [26, 28], the magnon self-Kerr [58, 59], and
the magnon-phonon cross-Kerr nonlinearities. Three different
kinds of nonlinearities are simultaneously activated by apply-
ing a strong drive field on the YIG sphere. Their respective
contributions to the mechanical frequency and linewidth are
discussed.

Kerr-modified CMM.—The CMM system consists of a mi-
crowave cavity mode, a magnon mode, and a mechanical vi-
bration mode, see Fig. 1. In the experiment, we use the
oxygen-free copper cavity with dimensions of 42×22×8 mm3.
The cavity TE101 mode has a frequency ωa/2π = 7.653 GHz,
and a total decay rate κa/2π = 2.78 MHz. The cavity decay
rates associated with the two ports are κ1,2/2π = 0.22 MHz
and 1.05 MHz, respectively. The magnon and mechanical
modes are supported by a 0.28 mm-diameter YIG sphere.
The frequency of the magnon mode can be tuned by ad-
justing the bias magnetic field B0 via ωm = γB0, with
γ being the gyromagnetic ratio. The magnon dissipation
rate is κm/2π = 2.2 MHz. The magnon mode couples
to the cavity magnetic field by the magnetic-dipole inter-
action with the coupling strength gma/2π = 7.37 MHz,
and to a vibration mode by the magnetostrictive (radiation-
pressure-like) interaction with the bare magnomechanical
coupling strength gmb/2π = 1.22 mHz. Here we consider the
lower-frequency mechanical mode (with a natural frequency
ωb/2π = 11.0308 MHz and linewidth κb/2π = 550 Hz) in
our observed two adjacent mechanical modes, which has a
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FIG. 1. Device schematic. Left panel: Schematic of the CMM system. A
0.28 mm-diameter YIG sphere is placed (free to move) in a horizontal 0.9
mm-inner-diameter glass capillary and at the antinode of the magnetic field
of the cavity mode TE101. The cavity has two ports: Port 1 is connected to
a microwave source (MW) to load the drive field, and Port 2 is connected to
a vector network analyzer (VNA) to measure the reflection of the probe field
with the power of −5 dBm. We set the direction of the bias magnetic field B0
as the z direction, and the vertical direction as the x direction. Right panel:
Schematic of the coupled three modes.

stronger coupling gmb. The magnomechanical coupling can
be significantly enhanced by applying a pump field on the
magnon mode [37]. In our experiment, this is realized by
strongly driving the cavity, which linearly couples to the
magnon mode. In Ref. [60], we provide a list of parameters
and the details of how they are extracted by fitting the experi-
mental data.

Under a strong pump, the Hamiltonian of the CMM system
is given by [60]

H/~ = ωaa†a + ωmm†m + ωbb†b + gma(a†m + am†)

+ gmbm†m
(
b + b†

)
+ HKerr/~ +

√
κ1εd

(
a†e−iωdt + H.c.

)
,

(1)
where a, m, and b (a†, m†, and b†) are the annihilation (cre-
ation) operators of the cavity mode, the magnon mode, and the
mechanical mode, respectively. The last term is the driving
Hamiltonian, where κ1 is the cavity decay rate associated with
the driving port (Port 1), and εd =

√
Pd/(~ωd), with Pd (ωd)

being the power (frequency) of the microwave drive field. The
novel part of the Hamiltonian, with respect to the conventional
CMM, is the Kerr nonlinear term HKerr activated by the strong
pump field [60]

HKerr/~ = Kmm†mm†m + Kcrossm†mb†b, (2)

where Km is the magnon self-Kerr coefficient, and Kcross is the
magnon-phonon cross-Kerr coefficient. The magnon self-Kerr
effect is caused by the magnetocrystalline anisotropy [58, 59],
and the cross-Kerr nonlinearity originates from the magne-
toelastic coupling by including the second-order terms in the
strain tensor [61, 62],

εi j =
1
2

∂ui

∂l j
+
∂u j

∂li
+

∑
k

∂uk

∂li

∂uk

∂l j

 , (3)

where ui are the components of the displacement vector, and
li = i (i = x, y, z). The first-order terms lead to the conven-
tional radiation-pressure-like interaction Hamiltonian [63],
~gmbm†m

(
b + b†

)
. Under a moderate drive field, the second-

order terms are negligible [26, 28], but can no longer be ne-
glected when the drive becomes sufficiently strong, as in our
experiment, yielding an appreciable magnon-phonon cross-
Kerr nonlinearity. As will be seen later, the cross-Kerr nonlin-
earity is indispensable in the model for fitting the mechanical
frequency shift.

Both the magnon self-Kerr and magnon-phonon cross-
Kerr terms, as well as the radiation-pressure-like term, cause
a magnon frequency shift δωm = 2Km|M|2 + Kcross|B|2 +

2gmbRe[B], where O = 〈o〉 (o = m, b, a) denote the average of
the modes. In our experiment, the dominant contribution is
from the self-Kerr nonlinearity [60], which gives a bistable
magnon frequency shift [8]. Also, the cross-Kerr nonlinearity
causes a mechanical frequency shift δωb = Kcross|M|2. Using
the Heisenberg-Langevin approach, we obtain the equation for
the steady-state average M [60]

ηaκ1g2
maε

2
d = |M|2×[(

∆m − ηag2
ma∆a + 2Km|M|2

)2
+

(
κm

2
+ ηag2

ma
κa

2

)2
]
,
(4)

where ∆a (m) = ωa (m) − ωd, ηa = 1
∆2

a+(κa/2)2 . In deriving Eq. (4),
we neglect contributions from the mechanical mode to the
magnon frequency shift, because of a much smaller mechan-
ical excitation number compared to the magnon excitation
number for the drive powers used in this work. It is a cubic
equation of the magnon excitation number |M|2. In a suitable
range of the drive power, there are two stable solutions, lead-
ing to the bistable magnon and phonon frequency shifts by
varying the drive power.

The radiation-pressure-like coupling gives rise to an effec-
tive susceptibility of the mechanical mode [60]

χb,eff(ω) =
(
χ−1

b (ω) − 2i|Gmb|
2 (
χma(ω) − χ∗ma(−ω)

))−1
, (5)

where χb(ω) is the natural susceptibility of the mechanical
mode, but depends on the modified mechanical frequency
ω̃b = ωb + Kcross|M|2, which includes the cross-Kerr induced
frequency shift. The effective coupling Gmb = gmbM, and
χma(ω) =

[
χ−1

m (ω) + g2
maχa(ω)

]−1
, where χm(ω) and χa(ω) are

the natural susceptibilities of the magnon and cavity modes,
with the magnon detuning in χm(ω) modified as ∆̃m = ∆m +

2Km|M|2, which includes the dominant magnon self-Kerr in-
duced frequency shift. See [60] for the explicit expressions of
the susceptibilities.

The effective mechanical susceptibility yields a frequency
shift of the phonon mode (the so-called “magnonic spring”
effect [28], in analogy to the “optical spring” in optomechan-
ics [69])

δωb = −Re
[
2i|Gmb|

2 (
χma(ω) − χ∗ma(−ω)

)]
+ Kcross|M|2, (6)

where we write together the frequency shift induced by the
cross-Kerr nonlinearity. Moreover, it leads to a mechanical
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FIG. 2. (a) Left panel: Measured reflection spectra under a red-detuned
drive. The frequency of the drive field ωd/2π = 7.645 GHz (black ar-
row). By increasing the drive power, the magnon frequency shift is neg-
ative: ωL

m/2π = 7.658 GHz (light green dashed line) at a lower power
Pd = 4.7 dBm (upper panel) and ωH

m/2π = 7.640 GHz (dark green dashed
line) at Pd = 29.7 dBm (lower panel). The green arrow indicates the direc-
tion in which the magnon frequency shifts by increasing the power. Right
panel: Zoom-in on the red shaded areas in the left panel shows detailed spec-
tra of the magnomechanically induced resonances, where ∆pd = ωp−ωd. The
black lines are the fitting curves. (b) Left panel: Measured reflection spec-
tra under a blue-detuned drive. The drive frequency ωd/2π = 7.660 GHz.
By adjusting the bias magnetic field, the magnon frequency is tuned close
to the drive frequency ωL

m/2π ' ωd at the power Pd = 4.7 dBm. Increas-
ing the power to 23.7 dBm, the magnon frequency ωH

m/2π = 7.645 GHz.
Right panel: Zoom-in on the blue shaded areas in the left panel shows de-
tailed spectra of the magnomechanically induced resonances. We observe
two adjacent mechanical modes with the frequencies ωb/2π = 11.0308 MHz
and ω′b/2π = 11.0377 MHz. Due to their similar behaviors, we focus on the
lower-frequency mode in the text.

linewidth change

δΓb = Im
[
2i|Gmb|

2 (
χma(ω) − χ∗ma(−ω)

)]
. (7)

Clearly, this linewidth change is only caused by the radiation-
pressure-like coupling, distinguished from the frequency shift
caused by the self-Kerr or cross-Kerr nonlinearity. By apply-
ing a red- or blue-detuned drive field, we can choose to operate
the system in two different regimes, where either the mag-
nomechanical anti-Stokes or Stokes scattering is dominant.
This yields an increased (δΓb > 0) or a reduced (δΓb < 0)
mechanical linewidth, corresponding to the cooling or ampli-
fication of the mechanical motion [28, 69].

In our system, due to the strong coupling gma > κm, κa,
the magnon and cavity modes form two cavity polariton (hy-
bridized) modes (Fig. 2, left panels) [30–35]. Here, a red
(blue)-detuned drive means that the drive frequency is lower
(higher) than the frequency of the cavity-like polariton mode,
i.e., the “deeper” polariton in the spectra close to the cavity
resonance. For the red (blue)-detuned drive, we show the anti-

Stokes (Stokes) sidebands associated with two mechanical
modes for two drive powers in the zoom-in plots of Fig. 2(a)
(Fig. 2(b)). When the detuning between the drive field and the
deeper polariton matches the mechanical frequencies, the anti-
Stokes (Stokes) sidebands are manifested as the magnome-
chanically induced transparency (absorption) [26].

Red-detuned drive.—To implement a red-detuned drive,
we drive the cavity with a microwave field at frequency
ωd/2π = 7.645 GHz. By adjusting the bias magnetic field,
we tune the magnon frequency to be ωL

m/2π = 7.658 GHz
at the drive power Pd = 4.7 dBm (see Fig. 2(a)). We have
the [110] axis of the YIG sphere aligned parallel to the static
magnetic field, which yields a negative self-Kerr coefficient
Km/2π =−6.5 nHz. An increase in power thus results in a
negative magnon frequency shift δωm = 2Km|M|2, and the
magnon frequency reduces to ωH

m/2π = 7.640 GHz when the
power increases to Pd = 29.7 dBm (Fig. 2(a)), which yields
an effective coupling Gmb/2π = 45.8 kHz. Under these con-
ditions, the magnon excitation number |M|2 shows a bistable
behavior through variation of the power.

Equation (6) indicates that the radiation-pressure-like cou-
pling results in a mechanical frequency shift, and so does
the cross-Kerr nonlinearity. This is confirmed by the exper-
imental data in Fig. 3(a). It shows that the cross-Kerr plays
a dominant role because of a large magnon excitation num-
ber, and both the frequency shifts caused, respectively, by
the cross-Kerr and the radiation-pressure-like coupling show
a bistable feature with the forward and backward sweeps of
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FIG. 3. Bistable mechanical frequency and linewidth under a red-detuned
drive. (a) The mechanical frequency shift versus the drive power. The red
(green) curve is the fitting of the frequency shift induced by the radiation-
pressure-like coupling (cross-Kerr effect) using Eq. (6), and the black curve
is the sum of the two contributions. (b) The mechanical linewidth variation
versus the drive power. The black curve is the fitting of the linewidth change
using Eq. (7). In both figures, the blue (orange) triangles are the experimental
data obtained via forward (backward) sweep of the drive power.
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the drive power. This is because both of them originate from
the bistable magnon excitation number |M|2, c.f. Eq. (6). Note
that for the spring effect, the bistability of |M|2 is mapped to
the magnon frequency shift ∆̃m, then to the polariton suscep-
tibility χma(ω), and finally to the mechanical frequency.

By increasing the drive power from 4.7 dBm to 19.7 dBm,
the cross-Kerr causes a maximum frequency shift of −4.6 kHz
(Fig. 3(a), the green line). The fitting cross-Kerr coeffi-
cient is Kcross/2π = −5.4 pHz. Under the red-detuned drive,
the magnonic spring effect yields a negative frequency shift
δωb = Re

[
χ−1

b,eff
(ω) − χ−1

b (ω)
]
< 0 (Fig. 3(a), the red line), and

the maximum frequency shift is −200 Hz. Adding up these
two frequency shifts gives the total mechanical frequency shift
(Fig. 3(a), the black line), which fits well with the experimen-
tal data (Fig. 3(a), triangles) when the power is not too strong.

Another interesting finding is the bistable feature of the me-
chanical linewidth (Fig. 3(b)). The magnomechanical backac-
tion leads to the variation of the mechanical linewidth δΓb =

−Im
[
χ−1

b,eff
(ω) − χ−1

b (ω)
]
. For a red-detuned drive, the anti-

Stokes process is dominant, resulting in an increased mechan-
ical linewidth δΓb > 0 and the cooling of the motion. The
bistable mechanical linewidth is also induced by the bistable
|M|2 (see Eq. (7)), similar to the mechanical frequency. The
theory fits well with the experimental results, and the discrep-
ancy appears only in the high-power regime. This is because
the considerable heating effect at strong pump powers can
broaden the mechanical linewidth [70, 71], which is not in-
cluded in our model.

Blue-detuned drive.—When a blue-detuned drive is applied,
the system enters a regime where the Stokes scattering is dom-
inant. The magnomechanical parametric down-conversion
amplifies the mechanical motion with the characteristic of a
reduced linewidth. Furthermore, the mechanical frequency
shift induced by the spring effect will move in the opposite
direction compared with the red-detuned drive.

To implement a blue-detuned drive, we drive the cavity
with a microwave field at frequency ωd/2π = 7.66 GHz, and
tune the magnon frequency close to the drive frequency (see
Fig. 2(b)). We attempted to make the Stokes sideband of the
drive field resonate with the “deeper” polariton at a high pump
power, such that the Stokes scattering rate is maximized and
the magnomechanical coupling strength Gmb becomes strong.
However, to meet the drive conditions for a bistable magnon
excitation number |M|2, the drive frequency is restricted to
a certain range, which hinders us to make the Stokes side-
band and the “deeper” polariton resonate. Therefore, we only
achieve this at lower drive powers, giving a faint magnome-
chanically induced absorption (Fig. 2(b), upper panels).

From the red to the blue detuning, we only adjust the
magnon and the drive frequencies. Because the direction of
the crystal axis is unchanged, the magnon self-Kerr coeffi-
cient Km is still negative, so again a negative frequency shift
by increasing the power (green arrow in Fig. 2(b)). For the
power up to 23.7 dBm, which yields Gmb/2π = 42.7 kHz,
the frequency of the cavity-like polariton is always lower than
the drive frequency, so the system is operated under a blue-
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FIG. 4. Bistable mechanical frequency and linewidth under a blue-detuned
drive. (a) The mechanical frequency shift and (b) the mechanical linewidth
change versus the drive power. The curves and the triangles are shown in the
same manner as in Fig. 3.

detuned drive.
Figure 4 displays the bistable mechanical frequency shift

δωb and linewidth change δΓb. For the frequency shift,
both the contributions from the cross-Kerr and the radiation-
pressure-like coupling should be considered, but the former
plays a dominant role (Fig. 4(a), the green line), as in the case
of the red-detuned drive, yielding a frequency shift of −6.5
kHz at the power of 23.7 dBm. Differently, the spring ef-
fect induced frequency shift (370 Hz at 23.7 dBm) is positive
(Fig. 4(a), the red line). The opposite frequency shifts by the
spring effect in the blue and red-detuned drives agree with the
finding of Ref. [28], but no bistability was observed in their
work.

The reduced mechanical linewidth δΓb < 0 under a blue-
detuned drive is confirmed by Fig. 4(b). However, unlike the
bistable curve in the red-detuned drive case (Fig. 3(b)), δΓb
manifests the bistability in an alpha-shaped curve by sweep-
ing the drive power. This is the result of the trade-off be-
tween the growing coupling strength Gmb (which enhances
the Stokes scattering rate, yielding an increasing |δΓb|) and the
larger detuning between the Stokes sideband and the “deeper”
polariton (Fig. 2(b)) (which reduces the Stokes scattering rate,
resulting in a decreasing |δΓb|) by raising the drive power.
These two effects are balanced when the power is in the range
of 12 dBm to 15 dBm.

Conclusions.—We have observed bistable mechanical fre-
quency and linewidth and the magnon-phonon cross-Kerr
nonlinearity in the CMM system. The mechanical bistability
results from the magnomechanical backaction on the mechan-
ical mode and the strong modifications on the backaction due
to the magnon self-Kerr and magnon-phonon cross-Kerr non-



5

linearities. The effects of the magnon self-Kerr, the magnon-
phonon cross-Kerr, and the radiation-pressure-like interac-
tions can be identified by measuring primarily the magnon
frequency shift, the mechanical frequency shift, and the me-
chanical linewidth, respectively. The new mechanism for
achieving bistable mechanical motion revealed by this work
promises a wide range of applications, such as in mechanical
switches, memories, logic gates, and signal amplifiers.
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multiwindow magnomechanically induced transparency, Fano
resonances, and slow-to-fast light conversion. Phys. Rev. A 102,
033721 (2020).

[50] C. A. Potts, V. A. S. V. Bittencourt, S. V. Kusminskiy, and J.
P. Davis, Magnon-phonon quantum correlation thermometry.
Phys. Rev. Applied 13, 064001 (2020).

[51] S.-F. Qi, and J. Jing, Magnon-assisted photon-phonon conver-
sion in the presence of structured environments. Phys. Rev. A
103, 043704 (2021).

[52] B. Sarma, T. Busch, and J. Twamley, Cavity magnomechani-
cal storage and retrieval of quantum states. New J. Phys. 23,
043041 (2021).

[53] T.-X. Lu, H. Zhang, Q. Zhang, and H. Jing, Exceptional-point-
engineered cavity magnomechanics. Phys. Rev. A 103, 063708
(2021).

[54] S.-N. Huai, Y.-L. Liu, J. Zhang, L. Yang, and Y.-X. Liu,
Enhanced sideband responses in a PT -symmetric-like cavity
magnomechanical system. Phys. Rev. A 99, 043803 (2019).

[55] M. Wang, D. Zhang, X.-H. Li, Y.-Y. Wu, and Z.-Y. Sun,

Magnon Chaos in PT -Symmetric Cavity Magnomechanics.
IEEE Photonics J. 11, 5300108 (2019).

[56] Y.-T. Chen, L. Du, Y. Zhang, and J.-H. Wu, Perfect transfer
of enhanced entanglement and asymmetric steering in a cavity-
magnomechanical system. Phys. Rev. A 103, 053712 (2021).

[57] M.-S. Ding, X.-X. Xin, S.-Y. Qin, and C. Li, Enhanced entan-
glement and steering in PT -symmetric cavity magnomechan-
ics. Opt. Commun. 490, 126903 (2021).

[58] Y.-P. Wang, G. Q. Zhang, D. Zhang, X. Q. Luo, W. Xiong, S.
P. Wang, T. F. Li, C. M. Hu, and J. Q. You, Magnon Kerr effect
in a strongly coupled cavity-magnon system. Phys. Rev. B 94,
224410 (2016).

[59] R.-C. Shen, Y.-P. Wang, J. Li, S.-Y. Zhu, G. S. Agarwal, and
J. Q. You, Long-Time Memory and Ternary Logic Gate Using
a Multistable Cavity Magnonic System. Phys. Rev. Lett. 127,
183202 (2021).

[60] See Supplemental Materials for additional proofs, which in-
clude Refs. [26, 28, 61–68].

[61] L. Landau, E. Lifshitz, A. Kosevich, J. Sykes, L. Pitaevskii, and
W. Reid, Theory of Elasticity: Volume 7, Course of Theoretical
Physics (Elsevier, Amsterdam, 1986)

[62] K. S. U. Kansanen, C. Tassi, H. Mishra, M. A. Sillanpää, and
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SUPPLEMENTAL MATERIALS

I. SYSTEM PARAMETERS

Quantity Symbol Value
Gyromagnetic ratio γ 2π×2.8 MHz/Oe

Frequency of the cavity TE101 mode ωa 2π×7.653 GHz
Frequency of the magnon mode ωm γB0

Frequency of the lower-frequency phonon mode ωb 2π×11.0308 MHz
Frequency of the higher-frequency phonon mode ω′b 2π×11.0377 MHz

Total cavity decay rate κa 2π×2.78 MHz
Cavity decay rate via Port 1 κ1 2π×0.22 MHz
Cavity decay rate via Port 2 κ2 2π×1.05 MHz

Linewidth of the magnon mode κm 2π×2.2 MHz
Linewidth of the lower-frequency phonon mode κb 2π×550 Hz
Linewidth of the higher-frequency phonon mode κ′b 2π×180 Hz

Cavity-magnon coupling strength gma 2π×7.37 MHz
Bare magnomechanical coupling strength (for the lower-frequency mode) gmb 2π×1.22 mHz
Bare magnomechanical coupling strength (for the higher-frequency mode) g′mb 2π×0.62 mHz

Magnon self-Kerr coefficient Km -2π×6.5 nHz
Magnon-phonon cross-Kerr coefficient Kcross -2π×5.4 pHz

TABLE S1. List of system parameters.

Table S1 provides a list of the system parameters. In the experiment, the frequencies and the dissipation rates (linewidths)
of the cavity and magnon modes and their coupling strength gma are extracted by fitting the cavity-magnon polariton in the
reflection spectra using Eq. (S30). The mechanical frequency and linewidth and the magnomechanical coupling strength gmb
are obtained by fitting the spectra of the magnomechanically induced resonances using also Eq. (S30). The cavity decay rates κ1
and κ2 associated with the two ports need to be fitted by measuring the reflection spectrum through the two ports, respectively.
The magnon self-Kerr coefficient Km of the crystal axis [110] is determined by measuring the magnon frequency shift, which
is consistent with the value calculated from Eq. (S4). The magnon-phonon cross-Kerr coefficient Kcross is obtained by fitting
the mechanical frequency shift δωb using Eq. (S26). Specifically, the first term of Eq. (S26) is the frequency shift caused by
the magnon-phonon radiation-pressure-like coupling, which can be calculated (e.g., -200 Hz under a red-detuned drive with the
power 19.7 dBm). The magnon excitation number |M|2 can also be calculated by using Eq. (S20). With all these at hand, the
cross-Kerr coefficient Kcross can then be determined by fitting the mechanical frequency shift.

II. DERIVATION OF THE HAMILTONIAN FOR KERR NONLINEARITIES

In this section, we provide a detailed derivation of the Hamiltonian HKerr associated with the two Kerr nonlinear terms, namely,
the magnon self-Kerr nonlinearity and the magnon-phonon cross-Kerr nonlinearity. These two terms become appreciable in the
system when the pump field is sufficiently strong, such that the system enters a regime where the Kerr-type nonlinearities strongly
modify the conventional cavity magnomechanics (CMM), which we term as the Kerr-modified CMM. Here the conventional
CMM means that there is only a radiation-pressure-like coupling between magnons and vibration phonons [26, 28].

A. Magnon self-Kerr nonlinearity

The magnon self-Kerr nonlinearity originates from the anisotropic field. When the bias magnetic field is aligned along the
[110] axis of the YIG sphere, the anisotropic field is given by [64]

Han =
3KanMx

µ0M2 ex +
9KanMy

4µ0M2 ey +
KanMz

µ0M2 ez, (S1)

where Kan is the first-order magnetocrystalline anisotropy constant, and for the YIG at room temperature Kan = −610 J/m3.
M = (Mx,My,Mz) denotes the magnetization of the YIG sphere, M is the saturation magnetization, and µ0 is the permeability
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of vacuum. The anisotropy Hamiltonian reads

Han = −
µ0

2

∫
Vm

M ·Handτ,

= −
KanVm

8M2

(
12M2

x + 9M2
y + 4M2

z

)
,

(S2)

where Vm is the volume of the YIG sphere. By using the relation S = MVm/~γ ≡ (S x, S y, S z) [65], with S being the macrospin
operator and γ being the gyromagnetic ratio, the anisotropy Hamiltonian Han can be written as

Han/~ = −
3~Kanγ

2

2M2Vm
S 2

x −
9~Kanγ

2

8M2Vm
S 2

y −
~Kanγ

2

2M2Vm
S 2

z . (S3)

Using the Holstein-Primakoff transformation [66]: S + =
√

2S − m†mm, S − = m†
√

2S − m†m, and S z = S −m†m, where S is
the total spin number of the macrospin and m†(m) is the creation (annihilation) operator of the magnon mode, we obtain

Han/~ ≈ −
13~S Kanγ

2

8M2Vm
m†m +

13~Kanγ
2

16M2Vm
m†mm†m. (S4)

The first term of the anisotropy Hamiltonian will modify the magnon frequency ω
′

m = ωm −
13~S Kanγ

2

8M2Vm
, and the second term

accounts for the magnon self-Kerr nonlinearity, which can be written in the form of Hself–Kerr/~ = Kmm†mm†m, with the self-
Kerr coefficient Km =

13~Kanγ
2

16M2Vm
. Note that in deriving the Hamiltonian (S4), we have omitted the constant term and the higher

order terms.

B. Magnon-phonon cross-Kerr nonlinearity

The magnetoelastic coupling describes the interaction between the magnetization and the elastic strain of the magnetic ma-
terial. Depending on the distance between magnetic atoms (or ions), there are different kinds of interactions: the spin-orbital
interaction, the exchange interaction between magnetic atoms (or ions), and the magnetic dipole-dipole interaction [64]. In a
cubic crystal, the magnetoelastic energy density is given by [67]

fme =
b1

M2

(
M2

xεxx + M2
y εyy + M2

z εzz

)
+

2b2

M2

(
MxMyεxy + MxMzεxz + MyMzεyz

)
, (S5)

where b1 and b2 are the magnetoelastic coupling constants, and the strain tensor εi j is given in the nonlinear Euler-Bernoulli
theory by [61, 62]

εi j =
1
2

∂ui

∂l j
+
∂u j

∂li
+

∑
k

∂uk

∂li

∂uk

∂l j

 , (S6)

with ui being the components of the displacement vector. The two first-order terms in εi j lead to the magnon-phonon radiation-
pressure-like coupling (see [63] for a strict derivation). In typical CMM experiments using a moderate drive field [26, 28], the
second-order terms are neglected. However, for an intense drive field as used in our experiment, those terms will produce a
noticeable effect. As we will derive below, those second-order terms in the strain tensor are responsible for the magnon-phonon
cross-Kerr nonlinearity.

In the magnetoelastic energy density (S5), the second term accounts for the parametric magnon generation when the phonon
frequency is twice the magnon frequency, or the linear magnon-phonon coupling when they are nearly resonant [26, 63]. Thus,
this term is negligible for our system with a low mechanical frequency ωb � ωm, and we can only consider the first term in (S5).
Integrating over the whole volume of the YIG sphere, the interaction Hamiltonian can be written as

H1 =
b1

M2

∫
dl3

(
M2

xεxx + M2
y εyy + M2

z εzz

)
,

'
b1

M
~γ

Vm
m†m

∫
dl3

(
εxx + εyy − 2εzz

)
.

(S7)

To quantize the above Hamiltonian, we express the displacement vector ui as a superposition

~u =
∑
n,m,l

d(n,m,l)~χ(n,m,l) (x, y, z) , (S8)
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where ~χ(n,m,l) (x, y, z) is the displacement eigenmode with the corresponding amplitude d(n,m,l), and the superscript n,m, l denote
the mode indices. The mechanical displacement can be quantized as d(n,m,l) = d(n,m,l)

zpm (bn,m,l +b†n,m,l), where d(n,m,l)
zpm is the amplitude

of the zero-point motion, and bn,m,l (b†n,m,l) is the bosonic annihilation (creation) operator of the mechanical mode. Substituting
(S8) into the Hamiltonian (S7), we obtain

H1 '
∑
n,m,l

~g(n,m,l)
mb m†m

(
bn,m,l + b†n,m,l

)
+

∑
n,m,l

~K(n,m,l)
cross m†mb†n,m,lbn,m,l, (S9)

where we use the rotating-wave approximation by neglecting the fast-oscillating terms in deriving the second term. This is valid
whenωb � Kcross|M|2, which is well satisfied in our experiment. The first term describes the magnon-phonon radiation-pressure-
like interaction, and the second term accounts for the cross-Kerr interaction between the magnon and mechanical modes. The
radiation-pressure-like coupling strength g(n,m,l)

mb and the cross-Kerr coefficient K(n,m,l)
cross are given by

g(n,m,l)
mb =

b1

M
γ

Vm

∫
dl3d(n,m,l)

zpm

∂χ(n,m,l)
x

∂x
+
∂χ(n,m,l)

y

∂y
− 2

∂χ(n,m,l)
z

∂z

 ,
K(n,m,l)

cross =
b1

M
γ

Vm

∫
dl3d(n,m,l)2

zpm

∑
k


∂χ(n,m,l)

k

∂x

2

+

∂χ(n,m,l)
k

∂y

2

− 2

∂χ(n,m,l)
k

∂z

2 .
(S10)

When considering a specific mechanical mode as in our experiment, the interaction Hamiltonian takes a simple form of

H1/~ = gmbm†m
(
b + b†

)
+ Kcrossm†mb†b. (S11)

III. HAMILTONIAN OF THE KERR-MODIFIED CAVITY MAGNOMECHANICAL SYSTEM

The CMM system under study consists of a microwave cavity mode, a magnon (Kittel) mode, and a mechanical vibration
mode. The magnon mode couples to the cavity mode by the magnetic-dipole interaction, and to the mechanical mode by the
magnetostrictive interaction. There is no direct coupling between the cavity and the mechanics. The drive field is applied to the
cavity mode via the Port 1 of the cavity, and the probe field is sent via the Port 2 of the cavity. Under a strong pump, the magnon
self-Kerr and magnon-phonon cross-Kerr nonlinearities are activated in the system. The total Hamiltonian of the CMM system
is given by

H/~ =ωaa†a + ωmm†m + ωbb†b + gma(a†m + am†) + gmbm†m
(
b + b†

)
+ Kmm†mm†m

+ Kcrossm†mb†b +
√
κ1εd

(
aeiωdt + a†e−iωdt

)
+
√
κ2εp

(
aeiωpt + a†e−iωpt

)
,

(S12)

where κ1 (κ2) is the cavity decay rate associated with the driving (probe) port, εd =

√
Pd
~ωd

and εp =

√
Pp

~ωp
, with Pd (Pp) and ωd

(ωp) being the power and frequency of the drive (probe) microwave field. Since in the experiment the probe field is of a much
smaller power than that of the drive field and thus can be treated as a perturbation to the system, we therefore omit the probe
term in the Hamiltonian, giving rise to the Hamiltonian (1) that is provided in the main text

H/~ =ωaa†a + ωmm†m + ωbb†b + gma(a†m + am†) + gmbm†m
(
b + b†

)
+ Kmm†mm†m + Kcrossm†mb†b +

√
κ1εd

(
aeiωdt + a†e−iωdt

)
.

(S13)

IV. DETERMINATION OF THE MAGNON EXCITATION NUMBER

From the Hamiltonian (S13), we can obtain the Heisenberg-Langevin equations by including the dissipation and input noise
of each mode. In the frame rotating at the drive frequency, they are given by

da
dt

= −

(
i∆a +

κa

2

)
a − igmam − i

√
κ1εd +

√
κaain,

dm
dt

= −

[
i
(
∆m + 2Kmm†m + Km + Kcrossb†b

)
+ igmb(b + b†) +

κm

2

]
m − igmaa +

√
κmmin,

db
dt

= −

[
i
(
ωb + Kcrossm†m

)
+
κb

2

]
b − igmbm†m +

√
κbbin,

(S14)
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where ∆a = ωa −ωd, and ∆m = ωm −ωd, while κa, κm and κb (ain, min, and bin) are the dissipation rates (input noises) of the three
modes. Since the cavity mode is strongly driven, this leads to a large amplitude |〈a〉| � 1 in the steady state, and further due
to the cavity-magnon coupling, the magnon mode also has a large amplitude |〈m〉| � 1. This allows us to linearize the system
dynamics around the classical average values by writing the mode operators as a ≡ A + δa, m ≡ M + δm, and b ≡ B + δb, and
neglecting small second-order fluctuation terms [68]. Substituting these mode operators into Eq. (S14), the equations are then
separated into two sets of equations, respectively, for classical averages (A, M, B) and for quantum fluctuations (δa, δm, δb).
The equations for the classical averages in the steady state are as follows:(

∆a − i
κa

2

)
A + gmaM +

√
κ1εd = 0,[

∆m + 2Km|M|2 + Km + Kcross|B|2 + gmb(B + B∗) − i
κm

2

]
M + gmaA = 0,(

ωb + Kcross|M|2 − i
κb

2

)
B + gmb|M|2 = 0.

(S15)

From the first equation of Eq. (S15), we get

A = −ηagma

(
∆a + i

κa

2

)
M − ηa

√
κ1

(
∆a + i

κa

2

)
εd, (S16)

where ηa = 1
∆2

a+( κa2 )2 . Substituting A into the second equation of Eq. (S15), we obtain

[
∆m− ηag2

ma∆a + 2Km|M|2+ Km+ Kcross|B|2+ 2gmbRe[B] − i
(
κm

2
+ ηag2

ma
κa

2

)]
M + ηa

√
κ1gma(∆a + i

κa

2
)εd = 0. (S17)

Multiplying Eq. (S17) with its complex conjugate, we obtain the equation for the magnon excitation number[(
∆m − ηag2

ma∆a + 2Km|M|2 + Km + Kcross|B|2 + 2gmbRe[B]
)2

+

(
κm

2
+ ηag2

ma
κa

2

)2
]
|M|2 = ηaκ1g2

maε
2
d. (S18)

Similarly, we get the equation for the phonon excitation number[(
ωb + Kcross|M|2

)2
+

(
κb

2

)2
]
|B|2 = g2

mb|M|
4. (S19)

In our experiment, the drive power is scanned from 4.7 dBm to 23.7 dBm, which gives the magnon excitation number |M|2 ∈
[1012, 1015], and the phonon excitation number |B|2 ∈ [106, 1010]. Thus, the phonon excitation number is much smaller than
that of the magnon. Using our parameters gmb/2π = 1.22 mHz, Km/2π = −6.5 nHz, and Kcross/2π = −5.4 pHz, the magnon
frequency shift δωm = 2Km|M|2 + Km + Kcross|B|2 + 2gmbRe[B] ≈ 2Km|M|2. Therefore, Eq. (S18) is reduced to[(

∆m − ηag2
ma∆a + 2Km|M|2

)2
+

(
κm

2
+ ηag2

ma
κa

2

)2
]
|M|2 = ηaκ1g2

maε
2
d. (S20)

This is a cubic equation of the magnon excitation number |M|2, and given as Eq. (4) in the main text. Under certain conditions,
all the three solutions of |M|2 are real, among which there are two stable solutions. The stable solutions can be measured in the
experiment, and it shows a hysteresis loop by varying the drive power.

V. EFFECTIVE SUSCEPTIBILITY OF THE MECHANICAL MODE

The magnon-phonon radiation-pressure-like coupling gives rise to the magnomechanical backaction on the mechanical mode,
which is manifested as the mechanical frequency shift (i.e., the magnonic spring effect) and the increased (reduced) linewidth
associated with the cooling (amplification) of the mechanical mode. The frequency shift and the linewidth variation can be eval-
uated from the effective susceptibility of the mechanical mode. In what follows, we show in detail how the effective mechanical
susceptibility is derived.

The linearization of the Langevin equations (S14) yields a set of linearized quantum Langevin equations for the quantum
fluctuations (δm, δa, δx, δp), where δx = (δb + δb†)/

√
2 and δp = i(δb† − δb)/

√
2 denote the fluctuations of two mechanical
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quadratures (position and momentum). By taking the Fourier transform, we obtain the following equations in the frequency
domain:

− iωδm = −

(
i∆̃m +

κm

2

)
δm − igmaδa − i

√
2Gmbδx +

√
κmmin,

− iωδm† = −

(
−i∆̃m +

κm

2

)
δm† + igmaδa† + i

√
2G∗mbδx +

√
κmm†in,

− iωδa = −

(
i∆a +

κa

2

)
δa − igmaδm +

√
κaain,

− iωδa† = −

(
−i∆a +

κa

2

)
δa† + igmaδm† +

√
κaa†in,

− iωδx = ω̃bδp,

− iωδp = −ω̃bδx − κbδp −
√

2
(
G∗mbδm + Gmbδm†

)
+ ξ,

(S21)

where ∆̃m ' ∆m + 2Km|M|2 includes the magnon frequency shift dominantly caused by the magnon self-Kerr effect, and ω̃b =

ωb +Kcross|M|2 includes the mechanical frequency shift due to the magnon-phonon cross-Kerr effect. Gmb = gmbM is the effective
radiation-pressure-like coupling strength. Note that we adopt an equivalent model of dealing with the mechanical damping
and input noise, where the damping rate κb and the Hermitian Brownian noise operator ξ are added only in the momentum
equation [68]. Solving separately the two equations for each mode, we obtain the following equations:

δm = χm(ω)
(
−igmaδa − i

√
2Gmbδx +

√
κmmin

)
,

δm† = χ∗m(−ω)
(
igmaδa† + i

√
2G∗mbδx +

√
κmm†in

)
,

δa = χa(ω)
(
−igmaδm +

√
κaain

)
,

δa† = χ∗a(−ω)
(
igmaδm† +

√
κaa†in

)
,

δx = χb(ω)
(
−
√

2G∗mbδm −
√

2Gmbδm† + ξ
)
,

δp =
−iω
ω̃b

δx,

(S22)

where we define the natural susceptibilities of the magnon, cavity, and mechanical modes as

χm(ω) =
1

i
(
∆̃m − ω

)
+ κm

2

, χ∗m(−ω) =
1

−i
(
∆̃m + ω

)
+ κm

2

,

χa(ω) =
1

i (∆a − ω) +
κa
2
, χ∗a(−ω) =

1
−i (∆a + ω) +

κa
2
,

χb(ω) =
ω̃b

ω̃2
b − ω

2 − iκbω
.

(S23)

Solving the first four equations in Eq. (S22) for δm and δm†, and inserting their solutions into the equation of δx, we obtain

δx = χb,eff(ω)

ξ+ i
√

2G∗mbχm(ω)
(
i
√
κmmin+

√
κagmaχa(ω)ain

)
1 + g2

maχa(ω)χm(ω)
−

i
√

2Gmbχ
∗
m(−ω)

(
−i
√
κmm†in+

√
κagmaχ

∗
a(−ω)a†in

)
1 + g2

maχ
∗
a(−ω)χ∗m(−ω)

 , (S24)

where χb,eff is the effective mechanical susceptibility, defined as

χb,eff(ω) =
(
χ−1

b (ω) − 2i|Gmb|
2 (
χma(ω) − χ∗ma(−ω)

))−1
, (S25)

with χma(ω) = 1
χ−1

m (ω)+g2
maχa(ω) . The change of the mechanical frequency and linewidth can be extracted from the effective suscep-

tibility: the real part of χ−1
b,eff

(ω) − χ−1
b (ω) corresponds to the mechanical frequency shift

δωb = −Re
[
2i|Gmb|

2 (
χma(ω) − χ∗ma(−ω)

)]
+ Kcross|M|2, (S26)

where we write together the frequency shift due to the cross-Kerr effect, and the imaginary part of χ−1
b (ω) − χ−1

b,eff
(ω) yields the

variation of the mechanical linewidth

δΓb = Im
[
2i|Gmb|

2 (
χma(ω) − χ∗ma(−ω)

)]
. (S27)
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VI. REFLECTION SPECTRUM OF THE PROBE FIELD

Here we show how to derive the reflection spectrum of the probe field under the strong drive field. The Hamiltonian including
the probe field is given in Eq. (S12). The reflection spectrum can be conveniently solved by including the strong pump effects
into the linearized Langevin equations. Following the linearization approach used in Sec. IV and Sec. V, the Hamiltonian (S12)
leads to the following Langevin equations for the classical averages in the frequency domain:

− iωM = −

(
i∆̃m +

κm

2

)
M − igmaA − i

√
2GmbX,

− iωA = −

(
i∆a +

κa

2

)
A − igmaM − i

√
κ2εpδ(ωp − ωd − ω),

− iωX = ω̃bP,

− iωP = −ω̃bX − κbP −
√

2G∗mbM,

(S28)

where X = (B + B∗)/
√

2 and P = i(B∗ − B)/
√

2 denote the classical averages of the mechanical position and momentum. Note
that, same as Eqs. (S14) and (S21), the above equations are provided in the frame rotating at the drive frequency ωd.

Solving the above equations, we obtain

A(ω) =
i
√
κ2

(
1 − 2i|Gmb|

2χb(ω)χm(ω)
)

−g2
mb(ω)χm(ω) − χ−1

a (ω)
(
1 − 2i|Gmb|

2χb(ω)χm(ω)
)εp. (S29)

Using the input-output theory, Aout = εp + i
√
κ2A, we therefore achieve the reflection spectrum of the probe field

r(ω) ≡
Aout

εp
= 1 −

κ2

(
1 − 2i|Gmb|

2χb(ω)χm(ω)
)

−g2
mb(ω)χm(ω) − χ−1

a (ω)
(
1 − 2i|Gmb|

2χb(ω)χm(ω)
) . (S30)
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