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Abstract

In vitro cultures of endothelial cells are a widely used model system of the collective behavior of endothelial cells during
vasculogenesis and angiogenesis. When seeded in an extracellular matrix, endothelial cells can form blood vessel-like
structures, including vascular networks and sprouts. Endothelial morphogenesis depends on a large number of chemical
and mechanical factors, including the compliancy of the extracellular matrix, the available growth factors, the adhesion of
cells to the extracellular matrix, cell-cell signaling, etc. Although various computational models have been proposed to
explain the role of each of these biochemical and biomechanical effects, the understanding of the mechanisms underlying
in vitro angiogenesis is still incomplete. Most explanations focus on predicting the whole vascular network or sprout from
the underlying cell behavior, and do not check if the same model also correctly captures the intermediate scale: the pairwise
cell-cell interactions or single cell responses to ECM mechanics. Here we show, using a hybrid cellular Potts and finite
element computational model, that a single set of biologically plausible rules describing (a) the contractile forces that
endothelial cells exert on the ECM, (b) the resulting strains in the extracellular matrix, and (c) the cellular response to the
strains, suffices for reproducing the behavior of individual endothelial cells and the interactions of endothelial cell pairs in
compliant matrices. With the same set of rules, the model also reproduces network formation from scattered cells, and
sprouting from endothelial spheroids. Combining the present mechanical model with aspects of previously proposed
mechanical and chemical models may lead to a more complete understanding of in vitro angiogenesis.
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Introduction

How the behavior of cells in a multicellular organism is

coordinated to form structured tissues, organs and whole

organisms, is a central question in developmental biology. Keys

to answering this question are chemical and mechanical cell-cell

communication and the biophysics of self-organization. Cells

exchange information by means of diffusing molecular signals, and

by membrane-bound molecular signals for which direct cell-cell

contact is required. In general, these developmental signals are

short-lived and move over short distances. The extracellular

matrix (ECM), the jelly or hard materials that cells secrete,

provides the micro-environment the cells live in. Apart from its

supportive function, the ECM mediates molecular [1] and

biomechanical [2] signals between cells. Mechanical signals, in

the form of tissue strains and stresses to which cells respond [3],

can act over long distances and integrate mechanical information

over the whole tissue [4], and also mediate short-range,

mechanical cell-cell communication [2]. How such mechanical

cell-cell communication via the ECM can coordinate the self-

organization of cells into tissues is still poorly understood. Here we

propose a cell-based model of endothelial cell motility on

compliant matrices to address this problem.

A widely used approach to study the role of cell-ECM

interactions in coordinating collective cell behavior is to isolate

cells (e.g., endothelial cells isolate from bovine aortae or from

human umbilical cords or foreskins) and culture them on top of or

inside an artificial or natural ECM (e.g., Matrigel). This makes it

possible to study the intrinsic ability of cells to form tissues in

absence of potential organizing signals or pre-patterns from

adjacent tissues. A problem particularly well-studied in cell

cultures is the ability of endothelial cells to form blood vessel-like

structures, including the formation of vascular-like networks from

dispersed cells and the sprouting of spheroids. To this end, cell

cultures can be initialized with a dispersion of endothelial cells on

top of an ECM material (e.g., Matrigel, collagen, or fibrin) [5,6],
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with endothelial spheroids embedded within the ECM [7,8], or

with confluent endothelial monolayers [9–11]. Although the

conditions required for vascular-like development in these in vitro

culture systems are well established, the mechanisms driving

pattern formation of endothelial cells are heavily debated, and a

wide range of plausible mechanisms has been proposed in the form

of mathematical and computational models reproducing aspects of

angiogenesis (reviewed in [12–14]).

Typical ingredients of network formation models are (a) an

attractive force between endothelial cells, which is (b) proportional

to the cell density, and (c) inhibited or attenuated at higher cellular

densities. The attractive force can be due to mechanical traction or

due to chemotaxis. Manoussaki, Murray, and coworkers [15,16]

proposed a mechanical model of angiogenic network formation,

based on the Oster and Murray [17,18] continuum mechanics

theory of morphogenesis. In their model, endothelial cells exert a

uniform traction force on the ECM, dragging the ECM and the

associated endothelial cells towards them. The traction forces

saturated at a maximum cell density. Namy and coworkers[19]

replaced the endothelial cells’ passive motion along with the ECM

for active cell motility via haptotaxis, in which cells move actively

towards higher concentrations of the ECM. Both models also

included a strain-biased random walk term for the endothelial

cells, but they found that it had little effect on network formation;

the mechanism was dominated by cell aggregation. In their model

based on chemotaxis, Preziosi and coworkers [20,21] assumed that

cells attract one another via the secreted chemoattractant VEGF.

Due to diffusion and first-order degradation, the chemoattractant

forms exponential gradients around cells leading to cell aggrega-

tion in much the same way as that assumed in the Manoussaki and

Namy models. These chemotaxis-based hypotheses formed the

basis for a series of cell-based models based on the cellular Potts

model (CPM). Assuming chemotactic cell-cell attraction, and a

biologically-plausible overdamped cell motility, the cells in these

CPM models form round aggregates, in accordance with the

Keller-Segel model of cell aggregation [22]. Additional assump-

tions, including an elongated cell shape [23] or contact inhibition

of chemotaxis [24] are needed to transform these circular

aggregates into vascular-like network patterns. Related network

formation models studied the role of ECM-bound growth factors

[25–27] and a range of additional secreted and exogenous growth

factors [27], and studied the ability of the contact-inhibition

mechanism to produce three-dimensional blood-vessel-like struc-

tures [28]. Szabó and coworkers found that in culture, astroglia-

related rat C6 cells and muscle-related mouse C2C12 cells

organize into network-like structures on rigid culture substrates

[29], such that ECM-density or chemoattractant gradients are

excluded. They proposed a model where cells were preferentially

attracted to or preferentially adhered to locally elongated

structures. As an alternative mechanism for ‘‘gel-free’’ network

formation it was found that elongated cells can also produce

networks in absence of chemoattractant gradients [30].

Paradoxically, despite the diverse assumptions underlying the

mathematical models proposed for vascular network formation,

many are at least partly supported by experimental evidence. This

suggests that a combination of chemotaxis, and chemical and

mechanical cell-ECM interactions drives network formation, or

that each alternative mechanism operates in a different tissue,

developmental stage, or culture condition. A problem is that one

mathematical representation may represent a range of equivalent

alternative underlying mechanisms. For example, a model

representing cell-cell attraction cannot distinguish between che-

motaxis-based cellular attraction [20,21,23,24], attraction via

haptotaxis [19], direct mechanical attraction [15,31] or cell shape

dependent adhesion [29,32], because the basic principles under-

lying these models are equivalent [12,24]. As a solution to this

problem, a sufficiently correct complete description of endothelial

cell behavior should suffice for the emergence of the subsequent

levels of organization of the system, an approach that requires that

the system has been experimentally characterized at all levels of

organization.

The role of cell traction and ECM mechanics during in vitro

angiogenesis have been characterized experimentally particularly

well, making it a good starting point for such a multiscale

approach. Endothelial cells apply traction forces on the extracel-

lular matrix, as demonstrated by a variety of techniques, e.g.,

wrinkle formation on elastic substrates [9], force-generation on

micropillar substrates [33], and traction force microscopy [6,34].

Using scanning electron microscopy, Vernon and Sage [9] found

that ECM ribbons radiate from endothelial cells cultured in

Matrigel, suggesting that the traction forces locally reorient the

extracellular matrix. The cellular traction forces produce local

strains in the matrix, which can affect the motility of nearby cells

[2]. Thus endothelial cells can both generate, and respond to local

strains in the extracellular matrix, suggesting a feedback loop that

may act as a means for mechanical cell-cell communication [2]

and hence coordinate collective cell behavior. Here, we use a

hybrid cellular Potts and finite element model to show that a set of

assumptions mimicking mechanical cell-cell communication via

the ECM suffices to reproduce observed single cell behavior

[35,36], pairwise cell interactions [2], and collective cell behavior:

network formation and sprouting.

Results

Response of endothelial cells to static strains in ECM
First we set out to capture, at a phenomenological level, the

response of endothelial cells to static strains in the ECM in absence

of cellular traction forces. When grown on statically, uniaxially

stretched collagen-enriched scaffolds, murine embryonic heart

endothelial (H5V) cells orient in the direction of strain, whereas

cells grown on unstrained scaffolds orient in random directions

Author Summary

During the embryonic development of multicellular
organisms, millions of cells cooperatively build structured
tissues, organs and whole organisms, a process called
morphogenesis. How the behavior of so many cells is
coordinated to produce complex structures is still incom-
pletely understood. Most biomedical research focuses on
the molecular signals that cells exchange with one
another. It has now become clear that cells also commu-
nicate biomechanically during morphogenesis. In cell
cultures, endothelial cells—the building blocks of blood
vessels—can organize into structures resembling networks
of capillaries. Experimental work has shown that the
endothelial cells pull onto the protein gel that they live in,
called the extracellular matrix. On sufficiently compliant
matrices, the strains resulting from these cellular pulling
forces slow down and reorient adjacent cells. Here we
propose a new computational model to show that this
simple form of mechanical cell-cell communication suffices
for reproducing the formation of blood vessel-like struc-
tures in cell cultures. These findings advance our under-
standing of biomechanical signaling during morphogene-
sis, and introduce a new set of computational tools for
modeling mechanical interactions between cells and the
extracellular matrix.

Modeling Mechanical Cell-Matrix Feedback
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[37]. Because the collagen fibers make the scaffold stiffen in the

direction of strain, we hypothesized that the observed alignment of

cells is due to durotaxis, the propensity of cells to migrate up

gradients of substrate rigidity [38] and to spread on stiff substrates

[39,40]. In our model we assumed (a) strain stiffening: a strained

ECM is stiffer along the strain orientation than perpendicular to it,

such that (b) due to durotaxis the endothelial cells preferentially

extend pseudopods along the strain orientation, along which the

ECM is stiffest, giving cells the most grip. To keep the ECM

mechanics simulations computationally tractable, we assumed an

isotropic and linearly elastic ECM. With these assumptions it is not

possible to model strain stiffening explicitly. We therefore

mimicked strain stiffening by assuming that stiffness is an

increasing, linear function of the local strain.

Durotaxis was modelled as follows, to reflect the observation

that focal adhesion maturation occurs under the influence of local

tension [41]: At low local stiffness, we applied standard cellular

Potts dynamics to mimic the iterative formation and breakdown of

ECM adhesions, producing ‘‘fluctuating’’ pseudopods. However, if

the stiffness was enhanced locally, we assumed that the resulting

tension in the pseudopod led to maturation of the focal adhesion

[41,42], stabilizing the pseudopod as long as the tension persists.

To mimic such focal adhesion maturation in the cellular Potts

model, we increased the probability of extension along the local

strain orientation, and reduced the probability of retraction (see

Methods for detail).

Figure 1 A shows the response of the simulated cells to uniaxial

stretch along the vertical axis. With increasing values of the

durotaxis parameter ldurotaxis (see Eq. 8), the endothelial cells

elongate more. To test the sensitivity of the durotaxis model for

lattice effects, we varied the orientation of the applied strain over a

range ½0 { 180� 0 and measured the resulting orientation of the

cells. Figure 1 shows that the average orientation of the cells

follows the orientation of the stretch isotropically. Thus the

durotaxis component of our model phenomenologically repro-

duces published responses of endothelial cells to uniaxial stretch

[37].

Generation of strains in ECM due to cellular traction
We next attempted to mimic the forces applied by cells onto the

extracellular matrix, in absence of durotaxis. Traction-force

microscopy experiments [34,39] show that endothelial cells

contract and exert tensional forces on the ECM. The forces are

typically directed inward, towards the center of the cell, and forces

concentrate at the tips of pseudopods. A recent modeling study by

Lemmon and Romer [43] found that an accurate prediction of the

direction and relative magnitudes of these traction forces within

the cell can be obtained by assuming that each lattice node i
covered by the cell pulls on every other node the cell covers, j, with
a force proportional to their distance, di,j. Because this model gives

experimentally plausible predictions for fibroblasts, endothelial

cells, and keratocytes [43], we adopted it to mimic the cell-shape

dependent contractile forces that endothelial cells exert onto the

ECM. Figure 2 shows the contractile forces (black) and resulting

ECM strains (blue) generated in our model by two adjacent cells.

The traction forces and ECM strains become largest at the cellular

Figure 1. Simulated cellular responses to static strains. Cells do not generate traction forces in this figure. (A) Cell length as a function of the
durotaxis parameter, ldurotaxis, on a substrate stretched along the vertical axis. (B) Cell orientation as a function of the stretch orientation (simulated
with ldurotaxis~ 10). Error bars show standard deviation for n~ 100. Insets show five simulations per value tested.
doi:10.1371/journal.pcbi.1003774.g001

Figure 2. Visualization of simulated traction forces (black
arrows) and resulting matrix strains (blue line segments)
generated in the proposed hybrid cellular Potts and finite
element simulation model.
doi:10.1371/journal.pcbi.1003774.g002

Modeling Mechanical Cell-Matrix Feedback
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‘‘pseudopods’’, qualitatively agreeing with traction force fields

reported for endothelial cells [34].

Mechanical cell-ECM feedback qualitatively reproduces
effect of substrate stiffness on cell shape and motility
The two previous sections discussed how the simulated cells can

respond to and induce strain in the ECM in an experimentally

plausible way. To test how the simulated cells respond to the

strains they generate themselves, we studied the behavior of

simulated, single cells in presence of both the cell traction

mechanisms and the durotaxis mechanisms. During each time

step, we used the Lemmon and Romer [43] model to calculate

traction forces corresponding to current cell positions. Next, we

started the finite element analysis from an undeformed matrix,

calculating steady-state strains for the current traction forces. To

simulate cell movement, which was biased by the local matrix

strains using the durotaxis mechanism, we then applied one cell

motility simulation time step, or Monte Carlo step (MCS; the

MCS is the unit of time of our simulation; see Methods for detail

and Discussion for an estimate of the real time corresponding to an

MCS). After running the CPM for one MCS we again relaxed the

matrix such that the next step started with an undeformed matrix.

Thus we currently did not consider cell memory of substrate

strains.

As Figure 3 and Video S1 demonstrate, in this model matrix

stiffness affects both the morphology and motility of the simulated

cells. On the most compliant substrate tested (0.5 kPa) the

simulated cells contract and round up, whereas cells spread

isotropically on the stiffest substrate tested (32 kPa). Overall, the

cellular area increases with substrate stiffness (Figure 3 B). On

matrices of intermediate stiffnesses (around 12 kPa) the cells

elongate, as reflected by measurements of the cell length (Figure 3

C) and eccentricity (Figure 3 D) that both have maximum values at

around 12 kPa. Such a biphasic dependence of cellular morphol-

ogy on the stiffness of the ECM mimics the behavior of endothelial

cells [39] and cardiac myocytes [36] in matrices of varying

stiffness. The dependence of cell shapes on substrate stiffnesses is

due to the transition from fluctuating to adherent pseudopods with

increasing stiffness. Focal adhesions of cells on soft substrates all

remain in the ‘‘fluctuating’’ state, irrespective of the local strains.

On intermediate substrates, some pseudopods, due to increased

traction, move to an extended state (mimicking a mature focal

adhesion), generating more traction in this direction. Hence an

initial stochastic elongation self-enhances in a feedback loop of

increasing traction and strain stiffening. Such a self-enhancing cell-

elongation starting from an initial anisotropy in cell spreading has

previously been suggested by Winer et al [44]. Extensions

perpendicular to the long axis of an elongated cell do not occur

since there is insufficient traction and the volume constraint is

limiting. At matrices of high stiffness all pseudopods attempt to

extend, mimicking the formation of static focal adhesion, until the

volume constraint becomes limiting. This makes the cells spread

more on stiff substrates than on soft substrates, with weaker

volume constraints (lower values of l ) producing a stronger effect

of substrate stiffness on cell shape and cell area (Figure S1).

We also measured the random motility of the cells by

characterizing their dispersion coefficients, which we derived from

the mean square displacements of the cells (Figure S2; see section

Morphometry for detail). The dispersion coefficients show biphasic

behavior, with the highest motilities occurring at around 12 kPa

(Figure 3 E). The biphasic dependence of the dispersion to

substrate stiffness is in accordance with in vitro behavior of

neutrophils [45], and smooth muscle cells [46]. Here it is typically

thought to be due to a balance of adhesion and actin

polymerization, or due to the interplay between focal adhesion

dynamics and myosin-based contractility [45]. In our model, the

effect is more likely due to the appearance of eccentric cell shapes

at intermediate stiffnesses; as a result, only the tips of the cell

generate sufficient strain in the matrix to extend pseudopods,

producing more persistent motion than the round cells at stiff or

soft substrates. It will be interesting to see if a similar relationship

between cell shape and cell motility holds in vitro. Thus the model

rules for cell traction and stretch guidance based on durotaxis and

strain stiffening suffice to reproduce an experimentally plausible

cellular response to matrix stiffness.

Mechanical cell-ECM feedback coordinates behavior of
adjacent cells
Strains induced by endothelial cells on a compliant substrate

with low concentrations of arginine-glycine-aspartic acid(RGD)-

containing nonapeptides can affect the behavior of adjacent cells

[2]. On soft substrates (5.5 kPa or below) the cells reduced the

motility of adjacent cells, whereas on stiff substrates (33 kPa) such

an effect was not found. On substrates of intermediate stiffness

(5.5 kPa), adjacent endothelial cells repeatedly attached and

detached from one another, and cells moved more slowly in close

vicinity of other cells, than when they were on their own. Because

the extent to which cells could affect the motility of nearby cells

depended on matrix compliancy, mechanical traction forces could

act as a means for cell-cell communication [2]. To test if the simple

strain-based mechanism represented in our model suffices for

reproducing such mechanical cell-cell communication, we initiated

the simulations with pairs of cells placed adjacent to one another at

a distance of fourteen lattice sites corresponding to a distance of

35 mm, and ran a series of simulations on substrates of varying

stiffness (Figure 4 A and Video S2).

The cells behaved similar to the single cell simulations

(Figure 3), with little cell-cell interactions at the lower and higher

stiffness ranges. Consistent with previous observations [2], cell

pairs on substrates of intermediate stiffness (12 kPa) dispersed

more slowly than individual cells (paired two-sample t-test at 5000
MCS, p,0.05 for 12 kPa), whereas individual cells and cell pairs

dispersed at indistinguishable (p,0.05) rates on stiff (14 kPa or

more) or soft (10 kPa or below) substrates (Figure 4, B-D) and
Figure S3).

Also in agreement with the previous, experimental observations

[2], on a simulated substrate of intermediate stiffness (12 kPa) the cells

responded to the matrix strains induced by the adjacent cell by

repeatedly touching each other, and separating again (Figure 4 E).
The contact duration of cells on soft and stiff substrates, when they get

close enough to each other, are typically longer than for intermediate

substrates. This behavior is also similar to observations in vitro[2]. As

one might expect that strongly adherent cells will not repeatedly

touch and retract, but rather stay connected upon first contact, we

investigated the effect of cell adhesion on these parameters (Figure

S4). Consistent with this intuition, for stronger adhesion, the contact

count tends to be reduced and the contact durations tend to increase,

but the overall trend holds: at intermediate matrix stiffnesses we

continue to observe more frequent cell contacts than for more soft or

more stiff matrices. Thus the observed pairwise cell behavior is

primarily driven by durotaxis.

Mechanical strain can also coordinate the relative orientation of

cells. Fibroblasts seeded on a compliant gel tend to align in a head-

to-tail fashion along the orientation of mechanical strain [47].

Bischofs and Schwarz [48] proposed a computational model to

explain this observation. Their model assumes that cells prefer the

direction of maximal effective stiffness, where the cell has to do the

least work to build up a force. This work is minimal between two

Modeling Mechanical Cell-Matrix Feedback
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aligned cells, because maximum strain stiffening occurs along the axis

of contraction. Interestingly, visualization of our model results

(Figure 1 C) suggested similar head-to-tail alignment of our model

cells at around 12 kPa. To quantify cell alignment in our simulations,

we measured the angle a between the lines l1 and l2, defining the long

axes of the cells (Figure 4 F). We classified the angles as acute

(avp=2; i.e. no alignment) or obtuse (a§p=2; alignment). At matrix

stiffnesses up to around 10 kPa, about one fourth of the angles a were

obtuse, corresponding to the expected value for uncorrelated cell

orientations. However, at 12 kPa and 14 kPa significantly more than

a fourth of the angles a between the cell axes were obtuse (55/100 for

12 kPa, p,161028 and 52/100 for 14 kPa, p,161028, binomial

test), and for substrate compliancies of 8 to 16 kPa significantly more

of the angles awere obtuse than for 4 kPa (p,0.01 for 8 kPa, and p,
1610212 for 10 kPa to 16 kPa; two-tailed Welch’s t-test), suggesting

that the mechanical coupling represented in our model causes cells to

align in a head-to-tail fashion.

Mechanical cell-cell communication drives biologically-
realistic collective cell behavior
After observing that the local, mechanical cell-ECM interactions

assumed in our model sufficed for correctly reproducing many aspects

of the behavior of individual endothelial cells on compliant matrices

and of the mechanical communication of pairs of endothelial cells on

compliant matrices, we asked what collective cell behavior the

mechanical cell-cell coordination produced. When seeded subcon-

fluently onto a compliant matrix (e.g., Matrigel), endothelial cells tend

to organize into polygonal, vascular-like networks [5,6,49,50]. To

mimic such endothelial cell cultures, we initialized our simulations with

(approximately) 450 cells uniformly distributed over a lattice of

3006300 pixels (0.7560.75mm2), corresponding to a cell density of

800 endothelial cells per mm2. In accordance with experimental

observations on gels with low concentrations of collagen [6] or RGD-

peptides [2], after 3000 MCS networks had not formed on soft

matrices (0.5-4 kPa) or on stiff matrices (16-32 kPa) (Figure 5 A): The
cells tended to form small clusters (Figure 5 A). Interestingly, on

matrices of intermediate stiffness after around 300 MCS the cells

organized into chains (8 kPa) or network-like structures (10 kPa and

12 kPa) similar to vascular network-like structures observed in

endothelial cell cultures [5,6,49,50]. The optimal stiffness (<10kPa)

for network formation is slightly lower than the stiffness of the substrate

(<12kPa) on which single cells elongate the most (Figure 3 A). In
comparison with a single cell, the collective pulling of a cell colony

creates larger strains in the substrate. Consequently, the strain

threshold inducing cell elongation is crossed at smaller substrate

stiffness.

Figure 5 B and Video S3 show a time-lapse of the development

of a network configuration on a substrate of 10kPa. The cells

organized into a network structure within a few hundred MCS.

The network was dynamically stable, with minor remodeling

events taking place, including closure and bridging of lacunae.

Figure 5 C shows such a bridging event in detail. In an existing

lacuna (1800 MCS) stretch lines bridged the lacuna, and

connected two groups of cells penetrating the lacuna (1980

MCS). The cells preferentially followed the path formed by these

stretch lines (2150 MCS) and reached the other side of the lacuna

by 2400 MCS. Such bridging events visually resemble sprouting in

bovine endothelial cell cultures on compliant matrices (Figure 5 D,
Video S4, and [6]). To stay close to the experimental conditions

used for the observations of pairwise endothelial cell-cell interac-

tion on compliant substrates [2] that we compared the simulations

of pairwise interactions with, in this experiment we used a 2.5 kPa

gel functionalized with 5 mg/ml RGD peptide - a stiffness at which

no network-formation is found in our simulations. Although we

thus do not yet reach full quantitative agreement between model

and experiment, note that network formation occurs at substrate

stiffness of 10kPa on polyacrylamide matrices enriched with a low

(1 mg/ml) concentration of collagen [6].

We next asked if the mechanical model could also reproduce

sprouting from endothelial spheroids [7,8]. Video S5 and Figure 6

shows the results of simulations initiated with a two-dimensional

spheroid of cells after 3000 MCS. On soft (0.5–8 kPa) and on stiff

(32 kPa) matrices the spheroids stayed intact over the time course

of the simulation. On matrices of intermediary stiffness (10–

Figure 3. Simulated individual cell responses to mechanical cell-ECM feedback. (A) Single cells on substrates of varying stiffness after 100
MCS. Line pieces indicate strain magnitude and orientation. (B) cell area (a( s ) ) of cells; (C) cell length (length of major axis if the cell is seen as an

ellipse) as a function of substrate stiffness (D) cell eccentricity (j ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 { b2 =a2

p
, with a and b the lengths of the cell’s major and minor semi-axes)

as a function of stiffness. Mean and standard deviation shown for n~ 100 in panels B-D. (E) Dispersion coefficients of individual, simulated cells,
derived from a linear fit on the mean square displacements (Figure S2); n~1000. Error bars indicate 95% confidence intervals of linear fits.
doi:10.1371/journal.pcbi.1003774.g003

Modeling Mechanical Cell-Matrix Feedback
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12 kPa) the spheroids formed distinct sprouts, visually resembling

the formation of sprouts in in vitro endothelial spheroids [7,8]. On

the 14 kPa and 16 kPa matrices the cells migrated away from the

spheroid, with some cell alignment still visible for the 14 kPa

matrices. Observation of a sprout protruding from a spheroid at

10 kPa suggests that a new sprout starts when one of the cells at

the edge of the cluster protrudes and increases the strain in front of

it. In a positive feedback loop via an increase in perceived stiffness

the strain guides the protruding cell forward. The strain in its wake

then guides the other cells along (Figure 6 C).

Discussion

In this paper we introduced a computational model of the in

vitro collective behavior of endothelial cells seeded on compliant

substrates. The model is based on the experimentally supported

assumptions that (a) endothelial cells generate mechanical strains

in the substrate [34,43], (b) they perceive a stiffening of the

substate along the strain orientation, and (c) they extend

preferentially on stiffer substrate [37]. Thus, in short, the

assumptions are: cell traction, strain stiffening, and durotaxis.

The model simulations showed that these assumptions suffice to

reproduce, in silico, experimentally observed behavior of endo-

thelial cells at three higher level spatial scales: the single cell level,

cell pairs, and the collective behavior of endothelial cells. In

accordance with experimental observation [36,39], the simulated

cells spread out on stiff matrices, they contracted on soft matrices,

and elongated on matrices of intermediate stiffness (Figure 3). The

same assumptions also sufficed to reproduce experimentally

observed pairwise cell-cell coordination. On matrices of interme-

Figure 4. Simulated cell-cell interactions on substrates of varying stiffnesses. (A) Visualization of cell shapes and substrate strains in
absence of external strain. Line pieces indicate strain magnitude and orientation. (B-D) Mean square displacement of individual cells (blue errorbars)
and cell pairs (red errorbars) on simulated substrates. (B) 4 kPa; (C) 12 kPa; (D) 32 kPa. Error bars in panels B to D indicate standard deviation for
n~100. (E) Number of cell-cell contacts made over 500 MCS between two simulated cells initiated at a distance of fourteen lattice sites from each
other. Error bars show standard deviation over n~100 simulations (F) Quantification of head-to-tail alignment of cells. An obtuse angle between the
two cells’ long axes indicates that cells are oriented head-to-tail. Plotted is the fraction of Monte Carlo steps over MCS 20-500 that the two cells are
aligned head-to-tail. Shown are means and standard deviations over 100 independent simulations on a field of 0.2560.25 mm2 (1006100 pixels).
Insets: examples of acute (left) and obtuse (right) cell configurations.
doi:10.1371/journal.pcbi.1003774.g004
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diate stiffness, endothelial cells slowed down each other (Figure 4

B) and repeatedly touched and retracted from each other (Figure 4

E and Video S2), in agreement with in vitro observations of bovine

aortic endothelial cells on acrylamide gels [2]. Also, in agreement

with experimental observations of fibroblasts on compliant

substrates [47] and previous model studies [48] the cells

repositioned into an aligned, head-to-tail orientation (Figure 4

F). The model simulations further suggest that these pairwise cell-

cell interactions suffice for vascular-like network formation in vitro

(Figure 5) and sprouting of endothelial spheroids (Figure 6).

Figure 5. Simulated network formation assay. (A) Simulated collective cell behavior on substrates of varying stiffness, with a uniformly
distributed initiated configuration of cells. (B) Time lapse showing the development of a polygonal network on a 10kPa substrate (time in MCS).
Panels A and B represent a 0.7560.75 mm2 area (300|300 pixels) initiated with 450 cells. (C) Close-up of simulated network formation on a 10 kPa
substrate, showing the reconnection of two sprouts. Time in MCS. (D) Time lapse imaging of bovine aortic endothelial cells seeded onto a 2.5 kPa
polyacrylamide gel functionalized with RGD-peptide. Arrows indicate cells that join together and elongate into a network. Time scale is in hours. Scale
bar is 50 mm.
doi:10.1371/journal.pcbi.1003774.g005
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The correlation between pairwise cell-cell interactions and

collective cell behavior observed in our computational model

parallels observations in vitro. Cells elongate due to positive

feedback between stretch-guided extension and cell traction, as

previously suggested by Winer et al. [44]. Elongated and spindle-

shaped cells are considered indicative of future cell network

assembly [6]. Our model suggests that the elongated cell shapes

produce oriented strains in the matrix, via which cells sense one

another at a distance. In this way new connections are

continuously formed over ‘‘strain bridges’’ (see, e.g., Figure 5

C,D and Video S4), while other cellular connections break,

producing dynamically stable networks as illustrated in Video S3.

Such dynamic network restructuring was also observed during

early embryonic development of the quail embryo [51] and in

bovine aortic endothelial cell cultures (Figure 5 D and [6]), but not

in human umbilical vein endothelial cell cultures [23,50]. Also in

agreement with experimental results, the collective behavior

predicted by our model strongly depends on substrate stiffness.

The strongest interaction between cell pairs is found on substrates

of intermediate stiffness, enabling network formation [2], whereas

network assembly does not occur on stiffer or on softer

substrates[6].

These agreements with experimental results are encouraging,

but our model also lacks a number of properties of in vitro

angiogenesis that pinpoint key components still missing from our

description. We compared the simulation of pairwise cell-cell

interactions with previous experiments conducted on polyacryl-

amide gels, functionalized with RGD ligands [2], which have

linear elastic behavior for small deformations [52–54]. Strain-

stiffening of polyacrylamide gels has been reported for deforma-

Figure 6. Simulated spheroid assay. (A) Collective behavior in a simulation initiated with a two-dimensional "spheroid" of cells, on substrates of
varying stiffness. (B) Time lapse showing a sprouting spheroid on a 10kPa substrate. Time in MCS. Panels A and B represent a 0.7560.75 mm2 area
(3006300 pixels) initiated with a spheroid consisting of 113 cells; (C) Close-up of sprouting on a 10 kPa substrate. Time in MCS. Black line pieces
indicate strain magnitude and orientation.
doi:10.1371/journal.pcbi.1003774.g006
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tions over 2 mm [55]. Thus with pixels in our model measuring

2.5 mm62.5 mm, strain-stiffening seems a reasonable assumption.

Nevertheless, a possible alternative interpretation of the cell pair

simulations is that the increased tension generated in pseudopods

pulling on the matrix leads to a higher probability of focal

adhesion maturation[41,42]. A further issue is that in our

simulations, single cells dispersed somewhat more quickly on soft

gels than on stiff gels (Figure 3 E and Figure S2). This model

behavior contradicts experimental observations that endothelial

cells move fastest on stiff substrates [2]. Another open issue

concerns the time scales of our simulations. In the present paper

time we use the Monte Carlo step as a (computational) unit of

time. To estimate the actual time corresponding to 1 MCS, we

scale the single cell dispersion coefficients shown in Figure 3 E to

experimental dispersion coefficients of bovine endothelial cells on

compliant substrates in vitro [2]. Reported dispersion coefficients

of endothelial cells range from around 1 mm2=min (on substrates

of 500 Pa) to around 10 mm2=min (on substrates of 5500 Pa) (as

derived from the MSDs in Figure 3a,c in [2] and based on

MSD(t)~4Dt; cf. Eq. 13). The dispersion coefficients of single

cells in our simulations are in the range of 0:03{0:08 mm2=MCS

(Figure 3), assuming pixels of 2:5|2:5 mm2. Thus, based on fitting

of single cell dispersion rates, the estimated length of 1 MCS is 0.5

to 3 seconds. The typical time scale of a vascular network

formation simulation is around 3000 MCS (Figure 5), i.e.,
12:5 min to 2:5 hr for these time scale estimates. In experiments,

network formation takes longer, around 24 hr. Thus in our

current model the time scales of cell dispersion and network

formation do not match exactly. A possible reason of this

discrepancy is the short persistent length of cell motility in

standard cellular Potts models. To better match the time scales of

single cells and collective cell behavior in our model, in our future

work we will increase the persistence length of the endothelial cells

by using the available cellular Potts methodology [56–58], or

model the subcellular mechanisms of cell motility in more detail,

e.g. by including mean-field models of actin polymerization

[59,60]. A further open issue is the interaction between substrate

mechanics and cell-substrate adhesivity. Although the model

correctly predicts the absence of network formation on stiff

substrates, it cannot yet explain the observation that reducing the

substrate adhesivity of the endothelial cells rescues network

formation on stiff substrates [6]. On compliant gels endothelial

cells must secrete fibronectin to form stable networks, whereas

fibronectin polymerization inhibitors elicit spindle-like cellular

phenotypes associated with network formation on stiff matrices,

under conditions where networks do not normally form [6]. To

explain these observations, straightforward future extensions of the

model will include a more detailed description of cell-substrate

adhesion, combined with models of ECM secretion and proteolysis

[13,25,27,61].

The current model also assumes a uniform density (i.e., the

infinitesimal strain assumption) and thickness of the extracellular

matrix, whereas under some culture conditions the endothelial

cells have been reported to pull the extracellular matrix

underneath them [62], producing gradient in matrix density

and/or thickness. To describe the role of viscous deformations of

the extracellular matrix in morphogenesis, Oster and Murray

[17,18] developed a continuum mechanical model of pattern

formation in mesenchymal tissues. Their model assumed (a) that

cells exert contractile forces onto the surrounding extracellular

matrix, that will (b) locally deform the ECM, resulting in passive

displacements of cells along with the ECM, and (c) produce density

gradients in the ECM along which cells move actively due to

haptotaxis. These mechanisms together produce periodic cell

density patterns. Manoussaki et al. [15] and Namy et al.[19]

applied this work to investigate mechanical cell-ECM interactions

during angiogenesis, and demonstrated that the mechanism can

produce vascular-like network patterns. In their model they also

included an anisotropic diffusion term to simulate preferential

movement along the local strain-direction, but the term was

neither necessary nor sufficient for network formation. This

finding contradicts our model in which strain-induced sprouting is

the driving force of network formation and sprouting. The two

models represent the two extremes of network formation on visco-

elastic matrices. Here, the Manoussaki et al. [15] and Namy et al.

[19] models represent patterning on viscous matrices, in which

cellular traction forces pull the matrix together while inducing little

strain or stress. Our model would represent elastic materials, in

which pulling forces induce local strains. Future extensions of the

model will include matrix remodelling (e.g., by assuming a matrix

thickness field) allowing us to study the full range of viscoelastic

matrices.

Apart from these biological issues, we made several mathemat-

ical simplifications that we will improve upon in future models of

cell-ECM interactions. In the current model, for mathematical

simplicity, we assumed that after each Monte Carlo step the

matrix was undeformed again. Thus we currently did not consider

cell memory of substrate strains. Further developments of the

model presented here will improve on this issue, because actin

filament dynamics are typically influenced by the past evolution of

substrate deformations, e.g., due to reorientation of matrix fibers

[62]. For computational efficiency, we assumed linearly elastic

materials and infinitesimal strain in the finite element simulations,

and mimicked durotaxis via a perceived strain-stiffening (Eq. 9)

where cells perceive increased ECM stiffness due to local strain. In

our ongoing work we are interfacing the open source package

FEBio (http://febio.org) with the cellular Potts package Compu-

Cell3D (http://compucell3D.org). This will allow us to run our

model with any ECM material available to users of FEBio,

including strain-stiffening materials. Using an actual strain

stiffening material may lead to longer-range interactions between

cells, because locally stiffer regions may channel the stress between

the cells [63]. A further technical limitation of our model is that we

currently only run two-dimensional simulations, representing cells

moving on top of a two-dimensional culture system. The ongoing

interfacing of FEBio and CompuCell3D will pave the way for

modeling cell-ECM interactions in three-dimensional tissue

cultures. We also plan to model fibrous extracellular matrix

materials in more detail.

A quite puzzling aspect of vascular network formation and

spheroid sprouting is that so many alternative, often equally

plausible computational models can explain it (reviewed in [12]).

Including the present model, there are at least three alternative

computational models based on mechanical cell-ECM interactions

[15,16,19,31,64], a series of models assuming chemoattraction

between endothelial cells [20,21,23,24,65,66] and extensions

thereof [25,27,67], and models explaining network formation in

absence of chemical or mechanical fields [29,30,32]. Each of the

models explains one aspect of vascular network formation or a

response to an experimental treatment that the other models

cannot explain, e.g. the relation between spindle-shaped cell

phenotypes and network formation [23,30], the requirement of

VE-cadherin signaling for network formation and sprouting

[24,29], the binding and release of growth factors from the

ECM [25,26], the role of mechanical ECM restructuring and

haptotaxis [15,19,31], the response of vascular networks to toxins

[27], or the role of intracellular Ca2z signaling [57]. Among these

alternative models, we must now experimentally falsify incorrect
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mechanisms, and fine-tune and possibly combine the remaining

models to arrive at a more complete understanding of the

mechanisms of angiogenesis. To this end, we are currently

quantitatively comparing the kinetics of patterns produced by

chemotaxis-based, traction-based, and cell-elongation based mod-

els with the kinetics of in vitro networks [23,50]. The resulting,

more complete model would likely contain aspects of each of the

available computational models and assist in explaining the

conflicting results obtained from the available experimental

systems, culture conditions, and in silico models of angiogenesis.

Methods

To model the biomechanical interactions between endothelial

cells and compliant matrices, we developed a hybrid of the cellular

Potts model (CPM) [68,69] to represent the stochastic motility of

the endothelial cells, and a mechanical model based on the finite

element method (FEM) [70] of the compliant extracellular matrix.

Related CPM-FEM models were proposed for the simulation of

load-induced bone remodeling [71,72], and recently a related

approach was proposed in a model study of cell alignment [73]. A

documented simulation code is provided as part of the Supporting

Information (Supporting Text S1 and Code S1) and a detailed list

of parameter values is given in Table S1.

Cellular Potts model
The CPM represents cells on a regular square lattice, with one

biological cell covering a cluster of connected lattice sites. To

mimic random cell motility, the CPM iteratively expands and

retracts the boundaries of the cells, depending on the passive forces

acting on them and on the active forces exerted by the cells

themselves. These are summarized in a balance of forces,

represented by the Hamiltonian,

H~

X

s[cells

l
a(s){A(s)

A(s)

� �2

z

X

(~xx,~xx0)

J(s(~xx),s(~xx0))(1{d(s(~xx),s(~xx0))):
ð1Þ

The first term is an (approximate) volume constraint, with a(s)

the actual volume of the cells, A(s), a resting volume, and l an

elasticity parameter that regulates the permitted fluctuation

around the resting volume. In contrast with the original

formulation of the CPM [68], the deviation of the cell from its

target volume is taken relative to the target volume, by analogy

with the (non-dimensional) engineering strain. Alternative, similar

volume constraints can be chosen [67]. We use a value A(s)~50

for all cells; the medium does not have a volume constraint. The

second term represents cell-cell and cell-medium adhesion, where

J(s(~xx),s(~xx0))§0 is the contact cost between two neighboring

pixels, and d, the Kronecker delta. Throughout the manuscript we

use neutral cell-cell adhesion settings; J(s(~xx),s(~xx0))~2:5 at cell-

cell interfaces, and J(s(~xx),0)~1:25 at cell-medium interfaces,

with s(~xx)w0 and s(~xx0)w0. In other words, cells have no

preference for adhering to other cells or the medium. For these

neutral cell adhesion parameter settings, cells will still adhere

weakly to one another (a remedy for this effect was proposed in

[74]). Additional terms in the Hamiltonian represent the cells’

responses to ECM mechanics, and will be described in more detail

below.

The CPM iteratively selects a random lattice site ~xx0 and

attempts to copy its state, s(~xx0), into a randomly selected adjacent

lattice site~xx. To reflect the physical, ‘‘passive’’ behavioral response

of the cells to their environment, the copy step is always accepted if

it decreases the Hamiltonian. To account for the active random

motility of biological cells, we allow for energetically unfavorable

cell moves, by accepting copies that increase the Hamiltonian with

Boltzmann probability,

P(DH)~
1 if DHv0

e{DH=T if DH§0,

�
ð2Þ

where DH is the change in H if the copying were to occur, and

Tw0 parameterizes the intrinsic cell motility. It represents the

extent to which the active cell motility can overcome the reactive

forces (e.g. volume constraint or adhesions) in the environment.

We assume that all cells keep the same motility and thus set T to

be constant throughout the simulations. During one Monte Carlo

step (MCS), we perform n copy attempts, with n equal to the

number of sites in the lattice. To prevent cells from splitting up

into two or more disconnected patches, we use a connectivity

constraint that rejects a spin flip s(~xx0)?~xx if it would break apart

the retracting cell s(~xx).

Model of compliant substrate based on finite element
method
A two-dimensional model describes the compliant substrate on

which the cells move. Deformations are calculated using the finite

element method (FEM; reviewed in [70]). The FEM represents the

substrate as a lattice of finite elements, e, with each element

corresponding to a pixel of the CPM. To obtain the finite element

equations, the weak formulation (associated with the total potential

energy) of the governing equations of the displacement u of the

substrate is set up, in order to obtain the finite element equations,

Ku~ f , ð3Þ

with stiffness matrix K , displacement u, and forces f . The vector

u~½ux1 ,uy1 ,ux2 ,:::uxn ,uyn �
T
contains the displacements of all nodes,

which are the unknowns that the FEM calculates based on the

active forces exerted onto the material, presented in f . In this

paper f only consists of traction forces that the cells apply onto the

ECM, unless stated otherwise. In a two-dimensional analysis the

forces f are divided by the thickness they are working on. For this

we assume an effective substrate thickness t~10 mm. We impose

boundary conditions of u~0 at the boundary of the CPM grid,

this means that the substrate is fixed along the boundaries.

To a first approximation, in this work we consider an isotropic,

uniform, linearly elastic substrate [48,75] and we apply infinites-

imal strain theory: We assume that material properties, including

local density and stiffness are unchanged by deformations. The

global stiffness matrix K is assembled from the element stiffness

matrices K
e
(see Supporting Text S1 and [70]), which describe the

relation between nodes of each element, e,

K
e
~

ð

Ve

BTDBdVe: ð4Þ

where B—the conventional strain-displacement matrix for a four-

noded quadrilateral element (see Supporting Text S1 and [70])—

relates the node displacements ue to the local strains, as,
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E~Bue: ð5Þ

The strain vector E is a column notation of the strain tensor E

and D is the material property matrix. Assuming plane stress

conditions,

D~
E

1{v2

1 n 0

n 1 0

0 0 1
2
(1{n),

0
B@

1
CA ð6Þ

where E is the material’s Young’s modulus, and n is Poisson’s

ratio. Throughout this study, we use a Poisson’s ratio n~0:45 and

Young’s moduli ranging from E~0:5 kPa to E~32 kPa, which

are plausible values for most cell culture substrates [48,53,76]. For

more details of the derivation of Eq. 3, and the entries in B, see

Supporting Text S1 and [70].

As a reference configuration for the displacements we used an

unstretched substrate, u~0. Thus, after each Monte Carlo step

(during which the cells positions and shapes have changed) the

substrate is assumed to be undeformed, such that the stiffness

matrix, K , is constant in time. This prevents expensive calculations

that would be necessary for recalculating K in each iteration.

Although the previous displacements do not influence the new

deformation of the substrate, they are used as an initial guess for

solving Ku~ f , in order to reduce the number of iterations

necessary to converge to the FEM solution.

Mechanical cell-substrate coupling
To simulate cell-substrate feedback we alternate the cellular

Potts model (CPM) steps with a simulation of the substrate

deformations using the finite element method. We assume that

cells apply a cell-shape dependent traction on the ECM and the

cells respond to the resulting ECM strains by adjusting their cell

shape. Using the CPM grid as the finite element mesh, the pixels

of the CPM become four-node square elements in the FE-mesh.

Adopting the model by Lemmon & Romer [43], we assume that

each node i covered by a CPM cell pulls on all other nodes j in the

same cell, at a force proportional to distance ~ddi,j . The resultant

force ~FFi on node i then becomes,

~FFi~m
X

j

~ddi,j , ð7Þ

where Dx is the lattice spacing and m gives the tension per unit

length. This parameter has been scaled to m~0:01 nN=mm, such

that the total cell traction corresponds to experimentally reported

values [77]. The resultant forces point towards the cell centroid,

and are proportional to the distance from it (Figure 2). In this way

a CPM configuration yields a traction force F , which are collected

in the forces f for the finite element calculation. To calculate the

resulting ECM strains, we solve Ku~f for the node displacements

u with a preconditioned conjugate gradient (PCG) solver [78], and

derive the local strains using Eq. 5. The reference configuration for

the displacements is an unstretched substrate, u~0. After a

sufficiently accurate solution for the FEM equations has been

obtained by the PCG solver, we run a Monte Carlo step of the

CPM. After each MCS, which changes cell positions, the substrate

is assumed to be undeformed again, for the sake of simplicity.

Thus, the stiffness matrix, K , is constant in time.

We assume durotaxis, i.e., the CPM cells preferentially extend

pseudopods on matrices of higher stiffness (e.g., because of strain

stiffening). By analogy with chemotaxis algorithms [79] at the time

of copying we add the following durotaxis term to DH in response

to the strain- and orientation-dependent ECM stiffness E,

DHdurotaxis~

{g(~xx,~xx0)ldurotaxis h(E(E1))(~vv1:~vvm)
2
zh(E(E2))(~vv2:~vvm)

2
� �

,
ð8Þ

with g(~xx,~xx0)~1 for extensions and g(~xx,~xx0)~{1 for retractions,

ldurotaxis is a parameter,~vvm~ d~xx{~xx0~xx{~xx0, a unit vector giving the copy

direction, and E1 and E2, and v1 and v2 eigenvalues and eigenvectors

of E representing the principal strains and strain orientation. We use

the strain E(~xx) in the target pixel when considering an extension,

and for retractions we use the strain in the source pixel, E(~xx0). Thus
we consider the strain in the ECM adjacent to the pseudopod. The

sigmoid h(E)~1=(1z exp ({b(E{Eh))), with threshold stiffness

Eh, and b, the steepness of the sigmoid, mimics maturation of focal

adhesions under the influence of tension [41]. The tension in focal

adhesions will increase with higher local matrix stiffness, E, because

the matrix will deform less easily. The sigmoid function starts at

zero, goes up when there is sufficient stiffness, and eventually

reaches a maximum. This means that a certain level of stiffness is

needed to cause a cell to spread. Alternative forms of h(E) can be

used: For an overview see Figure S5. Due to limitations of our

current finite element code and for reasons of computational

efficiency, we assumed a linearly elastic, isotropic material in the

FEM, thus precluding explicit strain stiffening effects in the FEM

calculations. Instead, we implemented the effect of strain-stiffening

in the cell response, where cells perceive increased ECM stiffness as

a function of the principal strains E1 and E2,

E(E)~E0(1z(E=Est)1E§0) ð9Þ

where E0 sets a base stiffness for the substrate, and Est is a

stiffening parameter. The indicator function 1E§0~ 1,E§0; 0,f
Ev0g indicates that strain stiffening of the substrate only occurs

for substrate extensions (E§0); compression (Ev0) does not stiffen

or soften the substrate.

Morphometry
To characterize the random motility of single cells and cell

pairs, we measured the cells’ mean square displacement,

MSD(t)~S(C(S,t){C(S,0))2T, ð10Þ

with C(S,t), the centroid of cell S at Monte Carlo step (‘‘time’’) t,

given by

C(S,t)~
1

DC(S,t)D

X

~xx[C(S,t)

~xx, ð11Þ

with C(S,t), the set of coordinates of the lattice sites comprising

cell S at MCS t,
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C(S,t)~ ~xx : ~xx[Z2 ^ s(~xx,t)~S
� 	

, ð12Þ

and ~xx~ x1,x2f g. The MSD is a reliable measure of random

motility [80] and it can be directly compared with experimental

data (e.g., [2]).

The dispersion coefficient, defined as

D~ lim
t??

1

4t
S(C(S,t){C(S,0))2T, ð13Þ

is derived from the slope of the MSD, and is used as a measure of

the motility of random walkers. The length, orientation and

eccentricity of cells were estimated from the inertia tensors I(S) of

the cells, defined as [81],

I (S)~

X
~xx[C(S)

(x2{C2(S))
2

{

X
~xx[C(S)

(x1{C1(S))(x2{C2(S))

{

X
~xx[C(S)

(x1{C1(S))(x2{C2(S))
X

~xx[C(S)
(x1{C1(S))

2

0
@

1
A: ð14Þ

Assuming cells are approximately ellipse-shaped, the length of

cell s is approximated as l(s)~4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2(I(S))=DC(S)D

p
, with e2(I(s))

the largest eigenvalue of I(S). The eccentricity of a cell is defined

using the eigenvalues of the inertia tensor I(s) as

j(s)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

e1(I(S))

e2(I(S))

� �2
s

, where e1(I(S))ƒe2(I(S)) are the

eigenvalues of I(S). An eccentricity close to zero corresponds to

roughly circular cells and cells with an eccentricity close to unity are

more elongated. The orientation of the cell is given by the

eigenvectors of the inertia tensor I(S).

Endothelial cell culture
Bovine aortic endothelial cells (BAECs) (VEC Technologies,

Rensselaer, NY) were cultured through passage 12. Cells were

kept at 370C and 5% CO2 and fed every other day with

Medium 199 (Invitrogen, Carlsbad, CA) supplemented with

10% Fetal Clone III (HyClone, Logan, UT), 1% MEM amino

acids (Invitrogen), 1% MEM vitamins (Medtech, Manassas,

VA), and 1% penicillin-streptomyocin (Invitrogen). Polyacryl-

amide hydrogels were synthesized as previously described [6].

Briefly, a gel mixture was prepared from MilliQ water,

HEPES, TEMED (Bio-Rad, Hercules, CA) and a 5%:0.1%

ratio of acrylamide to bis-acrylamide (Bio-Rad) to generate

substrates with a Young’s modulus of 2,500 Pascals. Polymer-

ization was initiated by the addition of N-6-((acryloyl)amido)-

hexanoic acid (synthesized according to Pless et al. [82]) and

ammonium persulfate (Bio-Rad) into the gel mixture. Follow-

ing polymerization, gels were incubated with 5 mg=ml RGD

peptide (GCGYGRGDSPG) (Genscript), followed by ethanol-

amine (Sigma). Gels were stored in PBS overnight. Hydrogels

were sterilized with ultraviolet light before cell culture. A T-75

flask with a confluent BAEC monolayer was seeded onto the

hydrogels at 350,000 cells per gel (approximately 1,375 cells

per mm2). The gels were maintained at 370C and 5% CO2 for

three days prior to imaging. After replenishing with fresh

complete media, the cells on hydrogels were visualized with a

Zeiss Axio Observer.Z1 inverted spinning disc microscope with

a Hamamatsu ORCA-R2 digital camera. Images were

captured every 30 minutes for 24 hours.

Supporting Information

Figure S1 Simulated responses of individual cells to

mechanical cell-ECM feedback as a function of the

values of the volume restriction, l. Columns: area (left), cell

length (middle) and eccentricity (right). Mean and standard

deviation shown for n~100 after 500 MCS on simulated

substrates of stiffness varying from 0.5 kPa to 32 kPa.

(PDF)

Figure S2 Mean square displacements of individual

cells on simulated substrates of stiffness varying from

0.5 kPa to 32 kPa. Mean square displacement shown over

n~1000 cells.

(PDF)

Figure S3 Mean square displacement of individual cells

(blue errorbars) and cell pairs (red errorbars) on

simulated substrates of stiffness varying from 0.5 kPa

to 32 kPa. Error bars indicate standard deviation for n~100.

(PDF)

Figure S4 Number of cell-cell contacts made over 500

MCS (left column) and contact duration (right column)

over 500 MCS between two simulated cells initiated at a

distance of fourteen lattice sites from each other on

simulated substrates of stiffness varying from 0.5 kPa to

32 kPa, for intercellular contact energies varying from

J(s(~xx),s(~xx0))~0:5 (adhesive cells) to J(s(~xx),s(~xx0))~4 (re-

pulsive cells), with s(~xx)§1 and s(~xx0)§1; J(s(~xx),0)~1:25
for all simulations.

(PDF)

Figure S5 Effect of form of model function h(E) on cell

shapes on substrates of different stiffnesses. (A) Standard,

sigmoid function, as used in main text, h(E)~

1=(1z exp ({b(E{E0))) with E0~15000, b~0:0005, and

ldurotaxis~10. (B) Saturated function, h(E)~(E=E0)=(1zE=E0),

with E0~15000 and ldurotaxis~25. (C) Piecewise linear function,

h(E)~fE=a, EƒEmax, E§Emaxg, with Emax~30000, a~30000,

and ldurotaxis~20. (D) Gaussian function, h(E)~

exp {(E{E0)
2=(2c2)

� �
, with E0~15000 and c~2000,

ldurotaxis~10. Insets show typical cell shape for regions indicated

by red bars.

(PDF)

Protocol S1 C and Matlab source code used for the

simulations.

(ZIP)

Table S1 Parameter settings of the simulation model.

(PDF)

Text S1 Documentation of C and Matlab code used for

the simulations, including a detailed description of the

finite-element model.

(PDF)

Video S1 Behavior in silico of a single cell on substrates

of 4 kPa, 12 kPa, and 32 kPa, for a duration of 500 MCS

per simulation. Parameter settings as in Figure 3.

(MOV)

Video S2 Pairwise cell-cell interactions in silico on

substrates of 4 kPa, 12 kPa, and 32 kPa, for a duration

of 500 MCS per simulation. Parameter settings as in Figure 4.

(MOV)

Video S3 Network formation in silico on a substrate of

10kPa, for a duration of 3000 MCS. Video represents a

(14)
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0:75|0:75 mm2 area (300|300 pixels) initiated with 450 cells.

Parameter settings are as in Figure 5.

(MOV)

Video S4 Network formation of bovine aortic endothe-

lial cells on a 2.5 kPa polyacrylamide gel functionalized

with RGD-peptide. Time lapse images were captured in

30 minute intervals over an 8 hour time period. Image size as in

Figure 5 D.
(MOV)

Video S5 Sprouting in silico from a spheroid on a

substrate of 10kPa, for a duration of 3000 MCS. Video

represents a 0:75|0:75 mm2 area (300|300 pixels) initiated with

450 cells. Parameter settings are as in Figure 6.

(MOV)
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