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Mechanical Design, Modelling and Control of a Novel Aerial

Manipulator

Alexandros Nikou, Georgios C. Gavridis and Kostas J. Kyriakopoulos

Abstract— In this paper a novel aerial manipulation system
is proposed. The mechanical structure of the system, the
number of thrusters and their geometry will be derived from
technical optimization problems. The aforementioned problems
are defined by taking into consideration the desired actuation
forces and torques applied to the end-effector of the system.
The framework of the proposed system is designed in a CAD
Package in order to evaluate the system parameter values.
Following this, the kinematic and dynamic models are developed
and an adaptive backstepping controller is designed aiming to
control the exact position and orientation of the end-effector in
the Cartesian space. Finally, the performance of the system is
demonstrated through a simulation study, where a manipulation
task scenario is investigated.

I. INTRODUCTION

Aerial manipulation is a new scientific field which has

been gaining significant research attention and a wide variety

of structures have been proposed in the last years. These

manipulation systems possess several features which have

lately brought them in the spotlight, with their objective

mainly oriented towards performing effectively complex

manipulating tasks in unstructured and dynamic environ-

ments. Having them include active manipulation as a major

functionality, would vastly broaden the applications of these

systems, as they move from mere passive observation and

sensing to interaction with the environment. Therefore, new

scientifically applicable horizons will be introduced related

to cooperative manipulation, surveillance, industrial inspec-

tions, inspection and maintenance of aerial power lines,

assisting people in rescue operations and constructing in

inaccessible sites by repairing and assembling. Naturally,

both designing and controlling aerial manipulators could be

considered as nontrivial engineering challenges.

The first theoretical and experimental results on aerial

robots interacting with the environment were developed

in [1], [2] using a ducted-fan prototype UAV within the

framework of AIRobots project. The design of a quadrotor

capable of applying force to a wall maintaining flight stability

was performed in [3]. In [4] experimental results with a small

helicopter with grasping capabilities were derived, along with

the stability proofs while grasping. Several grippers that al-

low quadrotors to grasp, pick up and transport payloads were

introduced in [5]. An implementation of indoor gripping

using a low-cost quadrotor has been introduced in [6]. The
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authors in [7] addressed the problem of controlling multiple

quadrotor robots that cooperatively grasp and transport a

payload in three dimensions. Another significant work with

cooperative quadrotors throwing and catching a ball with a

net was performed in [8].

A dexterous holonomic hex-rotor platform equipped with

a six DoF end-effector that can resist any applied wrench was

proposed in [9]. A system for aerial manipulation, composed

of a helicopter platform and a fully actuated seven DoF

redundant robotic arm, has been introduced in [10]. Another

hex-rotor manipulator that consists of three pair of propellers

with a two-link manipulator aiming to trajectory tracking

control was studied in [11].

More recently, significant experiments using commercial

quadrotors equipped with external robotic arms have been

conducted in [12]–[14].

In this work, a completely novel aerial manipulator is

introduced. This could be considered as a small autonomous

aerial robot that interacts with the environment via an end-

effector by applying desired forces and torques in a 6 DoF

task space. The proposed system provides mechanical design

flexibility achieved through technical optimization problems.

The structural geometric distribution is the outcome of the

aforementioned problems with the main goals being oriented

towards low body volume, controllability of the system,

avoidance of possible aerodynamic interactions and effi-

ciency in performing desired manipulation tasks in dynamic

environments. The system is fully integrated as it is not a

commercial aerial robot equipped with an external robotic

arm, as many of the aerial manipulators mentioned above.

The optimal number of thrusters, their positions/orientations

and the optimal position of the end-effector on the body

structure are defined with respect to the modelling design

limitations. Taking all the above into account, the remaining

challenge is is to actually construct this novel aerial robot.

The rest of paper is organized as follows. In Section II a

functional description of the robot and the mechanical design

analysis is discussed. A mathematical model that captures

the proposed system dynamics and govern the behaviour of

the system is derived in Section III. Based on this highly

nonlinear model, an adaptive backstepping control law is

designed in Section IV. In Section V, simulation results are

presented in order to study the performance of the system.

Finally, the main conclusions are discussed in Section VI.

II. MECHANICAL DESIGN

The overall description of the Aerial Manipulator was

based on the idea of designing an aerial robot composed



of a set number n of similar thrusters and an end-effector, in

order to interact with objects in the environment. The exact

geometry of the structure will be the result of the analysis

of this section.

A. Principles of the Problem

Initially, we define the Body-Fixed frame and the End-

Effector frame as FB = {x̂B , ŷB , ẑB}, FE = {x̂E , ŷE , ẑE}.

These frames are attached to the rigid body of the aerial

manipulator as in Fig. 1. The vectors ri, re ∈ R
3 denote

the position of each thruster and the position of the end-

effector respectively with reference to the Body-Fixed frame.

The thruster orientations are given by the unit vectors F̂i ∈
R

3, i = 1, ..., n, the thrust forces are defined as λi and

the propulsion vectors are given by λi F̂i. At this point,

it is assumed that the total system is considered to be a

rigid body and, without loss of generality, the End-Effector

frame and the Body frame have the same orientation. Thus,

the actuation force applied to the end-effector is Fact
∣
∣
B

=

Fact
∣
∣
E

∈ R
3, where

∣
∣
B
,
∣
∣
E

denote the expressions to the

frames FB , FE respectively. The corresponding actuation

torque is obtained via the formula Tact
∣
∣
B
= Tact

∣
∣
E
+re×fe

where Tact
∣
∣
E

= r × fe is the torque produced by the

end-effector. The terms r, fe denote the displacement vector

(length of the lever arm) and the vector force that tends to

rotate a gripped object from the end-effector.

Fig. 1: Aerial Manipulator Frame Configuration System

B. Forces and Torques

The forces transmitted essentially through the end-effector

are written as
n∑

i=1

(λi F̂i) +W = Fact
∣
∣
B

(1)

where W ∈ R
3 is the vector that corresponds to the total

weight of the system. By separating the weight as ws =
W − n w, where w ∈ R

3 is the weight of each thruster, (1)

is modified as

F λ+ n w + ws = Fact
∣
∣
B

(2)

where λ = [λ1 · · ·λn]
τ ∈ R

n and F = [F̂1 · · · F̂n]
τ ∈ R

3×n.

Similarly, the torque from each thruster is Ti = ri ×
(λiF̂i) = λiS(ri)F̂i. The well-known skew-symmetric ma-

trix S(·) ∈ R
3×3 is defined as a × b = S(a) b for the

cross-product × and any vectors a, b ∈ R
3. The torque due

to the weight is calculated as

TW = rG×W =

n∑

i=1

ri×w+rs×ws =

n∑

i=1

S(ri)w+S(rs)ws

where rG is the centre of gravity of the system and rs
is the centre of gravity of the system, when omitting the

mass of each thruster (mthr). The reaction torque of each

thruster is τi = µ (λ F̂i) where µ is a coefficient that

represents the relationship between the thrust force and the

reaction torque [15]. Therefore, by combining all torques the

following equation holds

n∑

i=1

{

λi S(ri) F̂i

}

+ µ

n∑

i=1

(

λi F̂i

)

+
n∑

i=1

S(ri) w + S(rs) ws = Tact
∣
∣
B

(3)

Using the matrices

r =
[
r1 · · · rn

]τ
∈ R

3×n, F̄ = Fact
∣
∣
B
− n w − ws (4)

E(r, F ) =
[

S(r1) F̂1 · · · S(rn) F̂n
]
∈ R

3×n (5)

in (2),(3) we get






F λ = F̄

E λ = Tact
∣
∣
B
− µ F̄ −

n∑

i=1

S(ri) w − S(rs) ws
(6)

By defining the matrix D(r, F ) =

[
F

E(r, F )

]

∈ R
6×n, from

the system (6) it is implied that

D(r, F ) λ =WR (7)

where the augmented wrench vector WR ∈ R
6 is given by

WR =






F̄

Tact
∣
∣
B
− µF̄ −

n∑

i=1

S(ri)w − S(rs)ws




 (8)

C. Negative Thrust Forces

It is clear that when solving (7), the vector that corre-

sponds to the thrust force λ can obtain any value in R
6.

However, the thrusters are optimally designed to produce

thrust force towards a specific direction, which we set to

correspond to the positive values of λi. In order to alleviate

the problem of negative λi, a conservative solution is adopted

in this analysis, which is based on the idea of introducing

one additional thruster. Thus, (7) is rewritten as

n∑

i=1

λi ti =WR (9)

where

D(r, F ) = [t1 t2 · · · tn] and ti =

[
F̂i

S(ri) F̂i

]

∈ R
6 (10)



for all i = 1, ..., n. The vector

ta = −

n∑

i=1

ti =







−
n∑

i=1

F̂i

−
n∑

i=1

{

S(ri)F̂i

}






=

[
F̂a

S(ra)F̂a

]

(11)

that corresponds to the additional thruster is introduced.

Using (11), the position vector ra and the direction F̂a
of the new thruster should satisfy the equations F̂a =

−
n∑

i=1

F̂i , S(F̂a) ra = −
n∑

i=1

{

S(F̂i) ri

}

.

If we assume that (7) results in some negative thrust

forces, then the set σN = {k : λk < 0, k = 1, ..., 6} denotes

the indexes for every negative thrust force and σP =
{1, 2, 3, 4, 5, 6}−σN the corresponding set of positive thrust

forces. Observing that λk < 0 ⇔ (−λk) > 0, ∀ k ∈ σN ,

(9) can be separated in

∑

i∈σP

λi ti +
∑

k∈σN

λk tk =WR

⇔
∑

i∈σP

λi ti +
∑

k∈σN

(−λk) (−tk) =WR (12)

Now, from (11) the following can be exported

ta = −

n∑

i=1

ti = −
∑

i∈σP

ti −
∑

j∈σN

tj (13)

It is obvious that

−
∑

j∈σN

tj = −tk −
∑

j∈σN

j 6=k

tj , ∀ k ∈ σN (14)

Combining (13), (14) we obtain

−tk = ta +
∑

i∈σP

ti +
∑

j∈σN

j 6=k

tj , ∀ k ∈ σN (15)

By substituting (15) into (12) we have

∑

i∈σP

λi ti +
∑

k∈σN

(−λk)

[

ta +
∑

i∈σP

ti +
∑

j∈σN

j 6=k

tj

]

=WR

Defining

∆ =
∑

k∈σN

(−λk) > 0, Ek =
∑

j∈σN

j 6=k

(−λj) > 0 (16)

and rearranging the terms we result in

∑

i∈σP

(
λi +∆

)
ti +

∑

k∈σN

Ek tk +∆ ta =WR (17)

From (17) the thruster redistribution among all thrusters after

adding the new thruster is provided. It has been proven

that the issue of negative thrust forces can be alleviated

with adding one extra thruster. This equation can be better

analysed in Fig. 2 in which the thrust redistribution algorithm

is depicted. The variables λ′, λ′i, λ
′
k denote the initial thrust

forces and the other variables the thrust force after the

redistribution, plus the additional thrust force λa. Thus, the

six thrust forces (not necessary all positive) are equivalent

to seven thrust forces, all positive with redistributed thrust

forces as in (17). By using the additional thruster, (4), (8)

are reformed into

F̄ = Fact
∣
∣
B
− (n+ 1) w − ws (18)

WR =






F̄

Tact
∣
∣
B
− µ F̄ −

n+1∑

i=1

S(ri) w − S(rs) ws




 (19)

Fig. 2: Thrust Force Equivalence

D. Aerodynamic Interaction

At this point, the aerodynamic interaction between the

operation thrusters is investigated. The aerodynamic effects

produced by each thruster, are based on experiments that took

place in Control Systems Lab NTUA on a 8× 4.7SF APC

propeller accompanied with the Neu Motor NEU 1902/2Y -

2035 motor, which produces at 17550 rpm, a λmax = 28N
thrust force. The surface, corresponding to every thruster,

that approximates these effects is described by a third order

equation in (SI). By expressing this equation in the thruster

frame FTi
= {x̂′i, ŷ

′
i, ẑ

′
i}, i = 1, ..., 6, a we get

−0.06 ≤ x′i ≤ 0.91 (20)

(y′i)
2 + (z′i)

2 ≤
[
−1.1(x′i)

3 + 1.56(x′i)
2 − 0.3(x′i) + 0.11

]2

Hence, the aerodynamic effects of the air flow throughout the

rotor are extended from x = −0.06m to x = 0.91m. The x
axis shows the length of the aerodynamic effect of the exit

flow. In order to understand this, one should consider the

rotor/blade to be positioned at x = 0. On the other hand,

y axis shows the distance of the effect measured from the

rotation axis of the blade, where at position (x = 0, y =
0.102m) (SI) is the blade radius in approximation (because

of the existence of an offset).

An arbitrary point p = [x y z]
τ

expressed in FB and the

corresponding p′i = [x′i y
′
i z

′
i]
τ

expressed in FTi
, can be

linked together by the equation p = {TR
FTi

FB
(ri, F̂i)} p′i,

where TR
FTi

FB
(ri, F̂i) is the appropriate homogeneous frame

transformation corresponding to the translation and orien-

tation vectors (ri, F̂i). By combining the previous coordi-

nates transformation equation with the constraints (20), a

set of constraints that can be described in matrix form as

G(ri, F̂i, p) ≤ 0, is produced. The distance between two

such volumes i, j can be defined and evaluated via the

optimization problem (P1) of Table I.



E. Design Problem

Given a particular structure defined by the matrices

(r, F ), for a set of required actuation forces and torques

(Fact
∣
∣
E
, Tact

∣
∣
E
) it is necessary to find the associate levels of

the thrust forces λi. Since WR ∈ R
6, in order for (7) to have

a solution for λ ∈ R
n, the conditions {rank(D) = 6, n ≥ 6}

are required. The rank condition is adequate from a strict

mathematical perspective but from a practical point of view,

as (7) leads to the thrust forces values λ ∈ R
n, the sought

solutions should not be very sensitive to small deviations.

This is partially achieved by using the condition number

κ(D) = σmax(D)/σmin(D) where σ(D) =
√

eig(DτD)
are the singular values of the matrix D, eig(·) denotes

the eigenvalues of a matrix and σmax(D), σmin(D) are the

maximum and minimum singular values of the matrix D
respectively. Thus, a low condition number κ(D) ≥ 1 is

required [16]. Although the condition number is bounded

to take feasible values (not equal to zero/infinity) when

σ(D) → 0, the matrix D(r, F ) might be ill-conditioned i.e.

det(D(r, F )) → 0. Thus, σ(D) ≥ ǫ1 > 0. Furthermore, to

avoid the fan interaction an other constraint is introduced

as dij(ri, F̂i, rj , F̂j) ≥ ǫ2 > 0, ∀i, j = 1, 2, . . . , n, α. Note

that, similarly to (P1), the position re should be introduced

to the design problem as the intersection avoidance between

a sphere (with radius Re) that encloses the end-effector,

and the thrusters. This sphere, when expressed in the End-

Effector frame FE , is given by (x′e)
2 + (y′e)

2 + (z′e)
2 ≤ R2

e .

Therefore, the constraint associated with the end-effector is

dei(re, ri) ≥ Re > 0, ∀i = 1, 2, . . . , n, α. An optimization

is also required to minimize the volume of the system, by

using the norm J(r) = ‖r‖2. Taking all the above into

consideration, the design problem is essentially recast to the

optimization problem (P2) from Table I. The optimization

parameters are chosen as K = 5, ǫ1 = 10−3, ǫ2 =
10−2 m, Re = 10−2 m.

(P1)

dij(ri, F̂i, rj , F̂j) = min
pi,pj

‖pi − pj‖

s.t. G(ri, F̂i, pi) ≤ 0

G(ri, F̂i, pj) ≤ 0

(P2)

min
r,re,F̂

J(r)

s.t. σ(D) ≥ ǫ1
dij ≥ ǫ2, ∀ i, j = 1, 2, . . . , n, α
dei ≥ Re, ∀ i = 1, 2, . . . , n, α

F̂a = −
n
∑

i=1

F̂i

S(F̂a) ra = −
n
∑

i=1

S(F̂i) ri

1 ≤ κ(D) ≤ K

TABLE I

OPTIMIZATION PROBLEMS

F. Solving the Optimization Problem

It should be noted that when solving the optimization

problem (P2), each time the inner problem (P1) should be

solved. There are 45 decision variables of the optimization

problem, which correspond to the seven position vectors

(ri) of the thrusters, the position vector (re) of the end-

effector and the direction vectors (F̂i) of the seven thrusters.

This issue, entails the necessity of solving 28 optimization

problems for each evaluation attempt of the outer problem

(P2).

The inner problem, that refers to the avoidance of the fan

interaction, is smooth but in terms of the outer problem

(P2) is nonsmooth and nonlinear. The objective function

and the constraints of the problem (P1) are continuous

and this problem, according to the inputs, has one and

only one global minimum. Using the appropriate rotation

and transformation matrices, the (P1) was solved by the

active-set strategy [17],[18]. On the other hand, the design

problem (P2) has nonsmooth, discontinuous and nonlinear

inequality constraints, but smooth objective function. Con-

sequently, a non-gradient-based methodology that searches

disjoint feasible regions, is utilized. For the pre-search of the

design space, a Latin Hypercube (LHS) [19] was chosen, in

order to ensure that the points are distributed throughout the

search space. The Latin Hypercube sampling is known to

provide better coverage than the simple random sampling

[20]. Following this, a Generalized Pattern Search (GPS)

direct search algorithm [21],[22] was used.

The thrust force (λ) and the momentum (Q) can be

calculated from [23],[24] as

{

Q = πρ CQ R5 Ω2

λ = πρ Cλ R
4 Ω2

⇔ Q =
CQ
Cλ

R λ (21)

where the term
CQ

Cλ
R corresponds to the coefficient µ, R

is the radius of the rotor and ρ,Ω denote the air density

and the rotational speed of the rotor respectively. Applying

a combination of the Blade Element Theory [24] and the

Momentum Theory [15], using the modified versions pro-

posed in [23] and invoking the experimental results extracted

by our lab on the APC propeller, it was calculated that

Cλ = 0.008, CQ = 0.0095, µ = 0.1473, R = 0.124m. By

solving the optimization problems, with the results depicted

in Table II, the matrix D(r, F ) is full rank and using (7),

the thrust forces can be calculated as λ = D−1 WR. All the

constraints were satisfied and a low volume body structure

with condition number κ(D) = 3.36 resulted. The wrench

vector WR can be determined by substituting the desired

actuation forces/torques (Fact
∣
∣
E

, Tact
∣
∣
E

) in (19). The maxi-

mum thrust force and torque which can be applied from the

system are λmax = 28N and 3Nm respectively. The values

of the components, proposed for the Aerial Manipulator,

are the following: the motor and the propeller (0.12kg),
the frame (0.66kg), the battery (0.25kg) and the electronic

components (0.15kg). The total mass of the proposed system

is m = 1.90kg. Ultimately, the production of a carefully

studied framework (Fig. 3) was achieved by using the 3D

CAD Package SolidWorks. Using this Package, the system

parameter values of the Table II have been evaluated.



Fig. 3: Aerial Manipulator 3D Caption of the Framework

Param. Description Value Units

m Total Mass 1.90 kg
mthr Thruster Mass 0.12 kg

IG
Moment of

Inertia Tensor

[

0.3488 0.0683 −0.0457
0.0683 0.1588 0.0144
−0.0457 0.0144 0.4081

]

kg m2

rG

Centre of
Gravity
Position

[0.0737 0.0083 − 0.0781]τ m

re
End-Effector

Position
[−0.23 0.015 0.23]τ m

rs
Centre of Grav.

from (3)
[0.1267 −0.0052 −0.1900]τ m

J(r)
Total Structure

Volume
1.80018 m3

g
Gravitational
Acceleration

9.81 m/s2

ri

r1 = [0.43 − 0.15 − 0.44]τ

m

r2 = [0.08 − 0.22 − 0.14]τ

r3 = [0.1 − 0.9− 0.2]τ

Thruster
Positions

r4 = [−0.34 0.25 0.006]τ

r5 = [0.184 0.359 −0.254]τ

r6 = [−0.22−0.44−0.04]τ

r7 = [0.51 0.79 − 0.06]τ

F̂i

F̂1 = [0.08 0.39 0.92]τ

F̂2 = [−0.33 − 0.90 0.29]τ

F̂3 = [0.13 −0.87 −0.48]τ

Thruster
Orientations

F̂4 = [0.56 0.08 0.82]τ

F̂5 = [0.83 0.11 − 0.55]τ

F̂6 = [−0.66 0.57 − 0.49]τ

F̂7 = [−0.59 0.62 − 0.51]τ

TABLE II

AERIAL MANIPULATOR PARAMETERS

III. MATHEMATICAL MODEL OF THE AERIAL

MANIPULATOR

In this section, the kinematic and dynamic equations of

motion in case there are no interaction forces and torques

from the environment applied to the end-effector are pre-

sented.

A. Kinematic Model

Fig. 1 shows the reference frames defined to derive the

kinematic and dynamic model of the proposed system. The

Earth-Fixed inertial frame is defined as FA = {x̂A, ŷA, ẑA}

and it should be noted that the Body-Fixed frame’s origin

does not coincide with the centre of gravity G. The position

of FB relative to FA can be represented by p = [x y z]
τ
∈

R
3 and the corresponding orientation by the rotation angles

Θ = [φ θ ψ]
τ

∈ R
3. The translational and rotational

kinematic equations of the moving rigid body are given (see

[25]) in matrix form by

ξ̇ =

[
ṗ

Θ̇

]

=

[
Jt(Θ) O(3×3)

O(3×3) Jr(Θ)

] [
v
ω

]

(22)

where O(3×3) is the 3 × 3 zero matrix, v = [vx vy vz]
τ
∈

R
3, ω = [ωx ωy ωz]

τ
∈ R

3 denote the translational velocity

and the angular velocity of FB relative to FA respectively,

both expressed in the Body-Fixed frame. The transformation

matrices Jt(Θ), Jr(Θ) ∈ R
3×3 are given by

Jt(Θ) =





cθcψ sφsθcψ − sψcφ sθcφcψ + sφsψ
sψcθ sφsθsψ + cφcψ sθsψcφ − sφcψ
−sθ sφcθ cφcθ



 (23)

Jr(Θ) =





1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ



 (24)

The position of the end-effector with respect to FA is pe =
[xe ye ze]

τ
= p+Jt(Θ) re ∈ R

3. Its derivative is obtained as

ṗe = Jt(Θ) v − Jt(Θ) S(re) ω, using the formula J̇t(Θ) =
Jt(Θ)S(ω) from [26]. The Body-Fixed and the End-Effector

frame have the same orientation with reference to FA, as

mentioned in Section II, hence Θe = Θ. By combining the

last results the following kinematic equation holds

ξ̇e =

[
ṗe
Θ̇

]

=

[
Jt(Θ) −Jt(Θ) S(re)
O(3×3) Jr(Θ)

]

︸ ︷︷ ︸

J(ξe)

[
v
ω

]

(25)

where Θe is the orientation of FE relative to FA. The

Jacobian matrix of the system J(ξe) ∈ R
6×6 relates in

a straightforward way the linear velocity ṗe and the rate

of change in the rotational angles Θ̇ of the end-effector

expressed in FA, with the Body-Fixed velocities v, ω.

B. Dynamic Model

The dynamic equations can be conveniently written with

respect to the Body-Fixed frame by using the Newton-Euler

formalism (the main concept is discussed extensively in [27],

[28]), as

M

[
v̇
ω̇

]

+ C(ν)

[
v
ω

]

=

[
F
∣
∣
B

T
∣
∣
B

]

(26)

where

M =

[
mI3 −mS(rG)

mS(rG) IB

]

, M > 0, Ṁ = 0 (27)

is the inertia matrix,

C =

[
mS(ω) −mS(ω)S(rG)

mS(rG)S(ω) −S(IBω)

]

, C = −Cτ (28)

is the Coriolis-centripetal matrix, I3 is the 3 × 3 identity

matrix, m is the total mass of the system, IB is the inertia



tensor expressed in FB and ν = [vτ ωτ ]
τ

∈ R
6 is the

vector of the Body-Fixed velocities. The inertia tensor can be

written as IB = IG−mS(rG)S(rG) where IG is the inertia

tensor relative to the body’s centre of gravity. The vectors

F
∣
∣
B
, T

∣
∣
B

∈ R
3 describe the forces and torques acting on

the system expressed in the Body-Fixed frame and can be

derived as
[
F
∣
∣
B

T
∣
∣
B

]

=

[
F λ−m g Jτt (Θ) e3

E λ+ µ F λ−m g S(rG) J
τ
t (Θ) e3

]

=

[
F
E

]

λ

︸ ︷︷ ︸
propulsion

forces/torques

+

[
O(3×6)

µ F

]

λ

︸ ︷︷ ︸
reaction

torques

−m g

[
I3

S(rG)

]

Jτt (Θ)e3
︸ ︷︷ ︸

gravitational

forces/torques

(29)

where e3 = [0 0 1]
τ
. Combining (26), (29) and solving with

respect to [v̇τ ω̇τ ]
τ

we get
[
v̇
ω̇

]

= −M−1C(ν)

[
v
ω

]

+M−1

[
F

E + µ F

]

λ

−m g M−1

[
I3

S(rG)

]

Jτt (Θ) e3 (30)

⇔ ν̇ = H(ν) +G(ξe)
︸ ︷︷ ︸

B(ξe,ν)

+N λ (31)

where the matrices are defined as

H(ν) = −M−1 C(ν) ν,N =M−1

[
F

E + µ F

]

> 0 (32)

G(ξe) = −m g M−1

[
I3

S(rG)

]

Jτt (Θ)e3 (33)

B(ξe, ν) = H(ν) +G(ξe), B : R6 × R
6 → R

6 (34)

IV. NONLINEAR CONTROL OF THE AERIAL

MANIPULATOR

A manipulation task is usually given in terms of the

desired position and orientation of the end-effector. The

objective of this section is to design a controller for the aerial

manipulator ensuring that the position pe(t) and the orien-

tation Θ(t) of the end-effector track the desired Cartesian

trajectory ξdes(t) =
[
pτe,des(t) Θ

τ
des(t)

]τ
∈ R

6 asymptotically

while all the closed loop signals remain bounded for all

t ≥ 0. Firstly, by using formulas (25), (31) the aerial

manipulator model, including the kinematics and dynamics,

can be written as

(S) :

{

ξ̇e = J(ξe) ν

ν̇ = B(ξe, ν) +N θ⋆λ λ+ d(ξe, ν, t)
(35)

where d : R6 × R
6 × R+ → R

6 represents the unmodelled

nonlinear dynamics and the environmental disturbances. The

unknown matrix θ⋆λ = diag{θ⋆1 , . . . , θ
⋆
6} ∈ R

6×6 with

θ⋆i ∈ [θmin, θmax] = [0.1, 1], is introduced to model the

control actuation failures and the modeling errors among

the thrusters of the system, e.g. if θ⋆i = 0.8 then the i−th

actuator has 20 % controller effectiveness reduction. The

control inputs of the system are the six independent thrust

forces λi(t), i = 1, . . . , 6 as mentioned in Section II. The

matrix N is full rank with low condition number which

constitutes a vital result of the control oriented optimization

from Section II.

The system (35) is highly nonlinear, cascaded and fully

actuated in the well-known strict feedback form, with vec-

tor relative degree 2. For such systems, the backstepping

controller design has proven to be successful [29], [30].

Due to the fact that the system is in the presence of the

uncertainties θ⋆λ and the disturbances d(ξe, ν, t), a robust

adaptive controller will be designed in order to tackle them.

The aim is to study if the proposed system with the resulting

geometry from the optimization problems (P1), (P2), the

system specifications from Table II and the aforementioned

uncertainties/disturbances from (35), is capable to perform

specific trajectory tasks efficiently. In order to design the

controller of the system (35), the following assumptions are

required:

Assumption 1: The states of the system ξe, ν are available for

measurement ∀t ≥ 0 for the following control development.

Assumption 2: The desired trajectories ξdes are known and

bounded functions of time (ξdes ∈ L∞) with known and

bounded derivatives (ξ̇des, ξ̈des ∈ L∞). Assumption 3: The

disturbance d(ξe, ν, t) = [d1(ξe, ν, t) · · · d6(ξe, ν, t)]
τ

is

unknown but bounded with |di(ξe, ν, t)| ≤ ∆i where ∆i

are unknown positive constants for all i = 1, . . . , 6 and

t ≥ 0. Assumption 4: It is assumed for all t ≥ 0 that

−π
2 < θ(t) < π

2 . This ensures that the Jacobian matrix is

nonsingular since det(J(ξe)) = 1/cθ. This assumption is

likewise utilized in [26], [31].

• Step 1: To begin with the backstepping controller design,

the position-orientation error of the end-effector is defined as

z1 = ξe − ξdes ∈ R
6. By differentiating it and using (25) we

get

ż1 = J(ξe) ν − ξ̇des (36)

We view ν as a control variable and we define a virtual

control law νdes ∈ R
6 for (36). The error signal representing

the difference between the virtual and the actual controls

is defined as z2 = ν − νdes ∈ R
6. Thus, in terms of

the new state variable, (36) can be rewritten as ż1 =
J(ξe) z2 + J(ξe) νdes − ξ̇des. Consider now the positive

definite and radially unbounded quadratic Lyapunov function

V1(z1) =
1
2‖z1‖

2 = 1
2z
τ
1 z1. By differentiating it with respect

to time yields

V̇1 = zτ1 ż1 = zτ1

{

J(ξe) νdes − ξ̇des

}

+ zτ1J(ξe)z2 (37)

The stabilization of z1 can be obtained by designing an

appropriate virtual control law

νdes = J−1(ξe)
{

ξ̇des −K1z1

}

(38)

where the matrix K1 ∈ R
6×6,K1 = Kτ

1 > 0 represents the

first controller gain to be designed. Hence, the time derivative

of V1 becomes V̇1 = −zτ1K1z1+z
τ
1J(ξe)z2. The first term of

on the right-hand of this equation is negative and the second

term will be canceled in the next step.

• Step 2: For the second step we define the matrices of the

parameter estimation errors as ∆̃ = [∆̃1 · · · ∆̃6]
τ = [(∆̂1 −



∆1) · · · (∆̂6−∆6)]
τ and θ̃λ = diag{(θ̂1−θ

⋆
1), . . . , (θ̂6−θ

⋆
6)}

where ∆̂i, θ̂i are the estimations of the unknown parameters

∆i, θ
⋆
i respectively. The time derivative of the error z2 is

ż2 = B(ξe, ν) +N θ⋆λ λ+ d(ξe, ν, t)− ν̇des. The Lyapunov

function candidate in this step is chosen as

V2(z1, z2, ∆̃, θ̃λ) = V1+
1

2
zτ2 z2+

1

2
∆̃τΓ−1

∆ ∆̃+
1

2
tr(θ̃τλΓ

−1
θ θ̃λ)

where Γθ = Γτθ > 0,Γ∆ = Γτ∆ > 0 are diagonal adaptation

gain matrices and tr(·) denotes the matrix trace. The time

derivative of V2(z1, z2, ∆̃, θ̃λ) is obtained as

V̇2 = −zτ1K1z1 + zτ2 {J
τ (ξe)z1 +B(ξe, ν) +N θ⋆λ λ− ν̇des}

+ zτ2d(ξe, ν, t) + ∆̃τ Γ−1
∆

˙̂
∆ + tr(θ̃τλΓ

−1
θ

˙̂
θλ) (39)

Using the −zτ1K1z1 ≤ −λmin(K1)‖z1‖
2, zτ2 d(ξe, ν, t) ≤

zτ2 sgn(z2)∆ and adding and subtracting the terms

zτ2Nθ̂λλ, zτ2 sgn(z2)∆̂ in (39) the following inequality

holds

V̇2 ≤ −λmin(K1)‖z1‖
2 + zτ2

{
Jτ (ξe)z1 +B(ξe, ν)− ν̇des

+ sgn(z2) ∆̂ +N θ̂λλ
}
− zτ2Nθ̃λλ

− zτ2 sgn(z2) ∆̃ + ∆̃τ Γ−1
∆

˙̂
∆ + tr(θ̃τλΓ

−1
θ

˙̂
θλ) (40)

where λmin(K1) denotes the minimum eigenvalue of matrix

K1, sgn(z2) = diag{sgn(z2,1), ..., sgn(z2,6)} and sgn(·)
denotes the sign function. Rearranging the terms and using

the property aτ b = tr(b aτ ), ∀a, b ∈ R
n we get

V̇2 ≤ −λmin(K1)‖z1‖
2 + zτ2

{
Jτ (ξe)z1 +B(ξe, ν)− ν̇des

+ sgn(z2) ∆̂ +N θ̂λ λ
}
+ ∆̃τ

{
Γ−1
∆

˙̂
∆− sgn(z2)z2

}

+ tr{θ̃τλ(Γ
−1
θ

˙̂
θλ −Nτz2 λ

τ )} (41)

Given the form of V̇2 from (41) the adaptive control law

and the corresponding parameter estimation update laws for

the nonlinear system (35) to be designed, are

λ(ξe, ν, ∆̂, θ̂λ) = (θ̂λ)
−1N−1

{
ν̇des −B(ξe, ν)− Jτ (ξe)z1

− sgn(z2) ∆̂−K2z2} (42)

˙̂
∆ = Γ∆{sgn(z2)z2 − σ ∆̂} (43)

˙̂
θλ = Γθ Proj(θ̂λ, N

τz2 λ
τ ) (44)

where K2 = Kτ
2 > 0 is the second controller gain matrix,

σ is a strictly positive gain (σ-modification rule [32]) and

the projection operator Proj(·, ·) is the same as the one in

[33] with the parameter δ to be designed. By substituting

(42), (43), (44) into (41) and using the property ∆̃τ ∆̂ =
1

2
‖∆̃‖2 +

1

2
‖∆̂‖2 −

1

2
‖∆‖2 the following inequality holds

V̇2 ≤ −λmin(K1)‖z1‖
2 − λmin(K2)‖z2‖

2+

tr
{

θ̃τλ

[

Proj(θ̂λ, y)− y
]}

︸ ︷︷ ︸

≤ 0, y = Nτz2 λ
τ

−
σ

2
‖∆̃‖2 −

σ

2
‖∆̂‖2 +

σ

2
‖∆‖2

︸ ︷︷ ︸

≤−σ
2
‖∆̃‖2+σ

2
‖∆‖2

The projection operator invoked from [33] contributes to the

negative semi-negativeness of the Lyapunov function since

by definition tr
{

θ̃τλ

[

Proj(θ̂λ, y)− y
]}

≤ 0, ∀y. Moreover,

it guarantees that if θ̂i(0) ∈ [θmin, θmax] is chosen, then

θ̂i(t) ∈ [θmin − δ, θmax + δ], ∀i = 1, ..., 6, ∀t ≥ 0 for suitable

δ > 0. The last result protects the term (θ̂λ)
−1 in (42) from

singularity. By defining w̄ = σ
2 ‖∆‖2 > 0 we result in

V̇2 ≤ −λmin(K1)‖z1‖
2−λmin(K2)‖z2‖

2−
σ

2
‖∆̃‖2+ w̄

from which it follows that both errors z1, z2 and the param-

eter estimation ∆̃ are uniformly ultimately bounded with re-

spect to the sets Ω1 =
{

z1 ∈ R
6 : ‖z1‖ ≤

√

w̄/λmin(K1)
}

,

Ω2 =
{

z2 ∈ R
6 : ‖z2‖ ≤

√

w̄/λmin(K2)
}

and Ω∆ =
{

∆̃ ∈ R
6 : ‖∆̃‖ ≤

√

2 w̄/σ
}

. Invoking that z1, z2 are

bounded and ξdes, νdes ∈ L∞ then ξe, ν ∈ L∞. Since

∆̃,∆, θ̂λ, θ
⋆
λ, ν̇des are bounded then ∆̂, θ̃λ, λ ∈ L∞. Based

on the above, it is proven that all closed loop signals remain

bounded.

One important issue associated with the controller de-

sign is the analytical form of the time derivative of

νdes, which can be obtained from (38) as ν̇des =

J−1(ξe)
{

ξ̈des − J̇(ξe) νdes −K1 ż1

}

, and the time deriva-

tive of J(ξe), which can be calculated by using the J̇r(Θ) =
∂Jr
∂φ

φ̇+
∂Jr
∂θ

θ̇, J̇(ξe) =

[
J̇t(Θ) −J̇t(Θ)S(re)

O(3×3) J̇r(Θ)

]

.
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V. SIMULATION RESULTS

In this section, the results of a numerical simulation sce-

nario are presented in order to demonstrate the performance

of the proposed system. The dynamic model in (35) is uti-

lized with system parameters which are depicted in Table II.



15 % controller effectiveness reduction is chosen with θ⋆ =
0.85 diag{1, 1, 1, 1, 1, 1}. The end-effector is forced to track

the trajectory pe,des(t) = [cos(0.5t) sin(0.5t) 1.5 + 0.3t]
τ

with regulated orientation at Θdes =
[
π
3
π
6 − π

4

]τ
with

reference to the Earth-Fixed frame. The initial conditions

of the system are set to pe(0) = re, p(0) = Θ(0) =
v(0) = ω(0) = 0(3×1). The disturbance is set as d(t) =
[0.5 0.4 sin(2t) 0.4 cos(t) 0.5 0.5 cos(0.8t) 0.6 sin(t)]τ rep-

resenting the unmodelled forces/torques and external distur-

bances. The initial values of the parameters estimations are

set to θ̂1(0) = · · · = θ̂6(0) = 0.7 and ∆̂1(0) = · · · =
∆̂6(0) = 0. The controller gains are chosen as K1 =
diag{1, 1, 1, 0.3, 0.3, 0.3},K2 = 8 diag{1, 1, 1, 1, 1, 1}. The

adaptation gains are selected as σ = 1.5, Γ∆ =
13 diag{1, 1, 1, 1, 1, 1},Γθ = 0.1 diag{1, 1, 1, 1, 1, 1}. The

parameter of the projection operator is set to δ = 0.05. Fig. 4

shows the position and orientation tracking errors. The thrust

forces are provided in Fig. 5. This paper is accompanied by a

video demonstrating the simulation procedure of this Section.

Due to space limitations, a video with an additional Scenario

in better quality (HD) can be found at

https://www.youtube.com/watch?v=DXnzu6XOrXs

VI. CONCLUSIONS

Aerial robots physically interacting with the environment

could be very useful for many applications. In this paper,

we have presented the mechanical design of a novel aerial

manipulator which was the result of technical optimization

problems. A mathematical model for the kinematics and dy-

namics was derived in order to design an adaptive nonlinear

controller to study the system while performing manipulation

tasks. The simulation results illustrate the effectiveness of

the proposed system and the controller to achieve tracking

irrespectively of actuator failures, unmodelled dynamics and

external disturbances. Future work mainly involves the con-

struction of the aerial robot and the conduction of experimen-

tal trials for the proposed framework with the actual system,

in order to verify the theoretical results of this paper.
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