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ABSTRACT In mechanical fault diagnosis of the high voltage circuit breakers (HVCBs), it is often

expected that the fault type should be confirmed in time to avoid delaying the best time for mechanical

fault diagnosis. The traditional diagnosis method of HVBC is not so profound for the identification of

slight faults and does not consider the impact of the recall rate of fault samples on the fault diagnosis

results. In this paper, we propose a method for HVCBs mechanical fault diagnosis utilizing variational mode

decomposition (VMD) based on improved time segment energy entropy (ITSEE) and a new hybrid classifier.

Firstly, the signal is decomposed into K intrinsic mode functions (IMFs) via VMD to establish a component

matrix. Secondly, the ITSEEmethod is used to calculate the energy entropy of the matrix in time domain and

frequency domain, so as to better extract the features of slight fault types. Finally, an optimal hybrid classifier

model combined of one-class support vector machine (OCSVM) and probabilistic neural network (PNN) is

used to identify four types of vibration signals of HVCBs. The experimental results show that the accuracy

of unknown samples is 98.75%, and the recall of fault type is 100%. The experimental results show the

effectiveness of the method and have important application value for the diagnosis of HVBCs.

INDEX TERMS High voltage circuit breakers, mechanical fault diagnosis, variational mode decomposition,

improved time segment energy entropy, one-class support vector machine, probabilistic neural network.

I. INTRODUCTION

High voltage circuit breaker is an important switch device

which has the dual functions of protecting the power sys-

tem. However, the faults of HVCBs occurred constantly,

which in economic losses [1]–[3]. An inquiry about HVCB

faults by the International Council on Large Electric Sys-

tems (CIGRE) showed that the operating mechanism fault

accounts for 61% [4]. Specifically, 39% of minor faults and

44% of major faults are caused by a decrease in mechan-

ical performance [5], [6]. Such as mechanism jam, loose

screws, insufficient lubrication causes time delay and insuf-

ficient spring energy storage, etc., [5], [7]–[11]. Therefore,

it is of great significance to study the fault diagnosis of
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HVCBs. Because the mechanical vibration signal usually

contains a lot of important information related to the motion

state of HVCBs, it’s considered to be one of the most use-

ful tools for HVCB mechanical fault diagnosis in the past

decade [12], [13].

In view of the nonlinear characteristics of the vibration

signal of the circuit breaker, the time-frequency analysis

method is generally used for processing. Wavelet transform

(WT) [14], [15] can be regarded as an adjustable window

Fourier transform (FT) [16], [17], but wavelet basis functions

are often difficult to choose. Wavelet packet decomposi-

tion (WPD) has been proved that there are energy leakage

problems [18], [19]. Huang et al. [20] empirical mode decom-

position (EMD) for time-frequency analysis of HVCB vibra-

tion signals. However, the EMD method has serious modal

aliasing and is susceptible to endpoint effects [21]–[23].
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The ensemble empirical mode decomposition (EEMD)

proposed by Zhang and Zhou [24] to solve the of EMD effec-

tively. Li et al. [25] used LMD to decompose high-voltage cir-

cuit breaker signals. However, in practical applications, LMD

sometimes also suffers the same mode mixing shortcomings

as EMD does [26]. Lin et al. [27] improved the EMDmethod

and proposed an iterative filtering (IF) algorithm. However,

for non-stationary and non-linear signals, waveform distor-

tion and poor adaptability are easy to occur. Motivated by the

above considerations, VMD [28]–[33] method is applied in

signal analysis of HVCBs in this paper. TheVMDmethod has

a solid theoretical foundation and good noise robustness [22].

So the superior performance of VMD is quickly accepted in

the field of vibration signal decomposition.

At present, the following methods are generally used to

extract the mechanical fault features of HVCBs. For example,

VMD energy entropy [32], [34], empirical wavelet trans-

form (EWT) [15], [35], time-domain segmentation (TDS) [5],

time frequency entropy (TFE) [15], [35], fuzzy entropy [36],

wavelet time frequency entropy (WTFE) [15], time segment

energy entropy (TSEE) [37], envelope equal energy segmen-

tation energy entropy (EEESEE) [38], local singular value

decomposition (LSVD) [14] and envelope equal time seg-

mentation energy entropy (EETSEE) [39]. Huang et al. [37]

used TSEE method to extract features of HVCBs, which can

distinguish delay fault types well. But the frequency domain

features ignored in TSEE to a degree. Although, EETSEE

method is adopted in [39] can describe the frequency domain

features of the signal well, the time domain features are

ignored in EETSEE to a certain extent. Combining the advan-

tages of TSEE and EETSEEmethods, this paper an improved

time segmentation energy entropy (ITSEE) feature extraction

method. This method can calculate the energy entropy of

component matrix in the time domain and frequency domain

at the same time, and extract the features of HVCB vibration

signal comprehensively.

In the research of mechanical fault diagnosis, the most

widely used pattern recognition methods are artificial neural

networks (ANN) and support vector machines (SVM), which

have been studied and applied for several years. At the same

time, deep learning and transfer learning methods are grad-

ually applied in fault diagnosis [40]–[43]. The convergent

rate of back propagation neural network (BPNN) is slow,

and the training time of BPNN is long. SVM is used to deal

with classification problems with small training sample sets

[32], [34]. But the penalty factor and kernel function param-

eters of the SVM method are difficult to determine either.

Shao et al. [41] proposed a new method based on enhanced

deep gated recurrent unit (GRU) and complex wavelet

packet energy moment entropy for bearing fault prediction.

Han et al. [42] proposed a novel deep adversarial convolu-

tional neural network (DACNN) which integrates the adver-

sarial learning framework into convolutional neural network,

is proposed for intelligent fault diagnosis of mechanical sys-

tems. However, in the field of HVCB fault diagnosis, more

practice is needed to verify the applicability of the above

two methods. In practical applications, it is difficult to obtain

a large number of vibration signal samples due to the few

operation of HVCB. PNNwas used for mechanical fault diag-

nosis of HVCBs, which showed superior classification per-

formance under the condition of small sample data [44]–[46].

The OCSVM classifier model has been adopted to iden-

tify mechanical faults in HVCBs in [17], which can detect

unknown fault categories outside the test set. Based on the

above analysis, in this paper, a parameter optimizedOCSVM-

PNN hybrid classifier is proposed to identify mechanical

vibration signal types of HVCBs. Considering that the param-

eters of the classifier also have some influence on the fault

diagnosis results. Therefore, on the basis of k-fold cross

validation [32], the optimal parameters of OCSVM and PNN

classifier are determined by grid search (GS) optimization

and loop traversal methods.

The main contribution of this paper is to propose: 1) a new

method of ITSEE feature extraction based on VMD signal

decomposition. The feature extraction method can well solve

the problem that the slight fault type signal and the normal

signal are easy to be confused and difficult to distinguish.

2) a new hybrid classifier of OCSVM-PNN. This method not

only has high recognition accuracy, but also pays attention

to the recall of fault samples, which solves the malpractice

of huge economic loss caused by mistaking fault samples as

normal samples. To our knowledge, this study is the first in

the literature to explore the superiority of the fault sample

recall for fault diagnosis. Firstly, using VMD to decompose

HVCB signals into a series of IMFs with physical signifi-

cance. Secondly, in order to distinguish the slight fault signal

from the normal signal, the ITSEE feature extraction method

is used to simultaneously extract the features of signal in time

and frequency domains, and calculate the energy entropy of

component matrix. Finally, the OCSVM-PNN hybrid clas-

sifier with optimal parameters is used for fault diagnosis

and all fault types are correctly identified. By analyzing and

comparing the fault data of HVCB, the newmethod proposed

in this paper can not only ensure the accuracy of recognition

results, but also improve the recall of fault signal samples.

And the experimental results show the effectiveness of the

new method.

II. RELATED WORK

A. VIBRATION DATA ACQUISITION

The experiment adopts ZW-12G/630-20 (YueqingWei Chuan

Electric Co., Ltd., Zhejiang, China) type vacuum HVCB

as the analysis object. The vibration signal was collected

using a LC0159 piezoelectric acceleration sensor (Lance

Technologies Inc., Hebei, China). NI USB6002 data acqui-

sition card is used to record the data and convert the ana-

log signals into digital signals. The maximum sampling rate

of 50 kS/s. LabVIEW [30], [47], [48] software to write the

signal acquisition system. In addition, AFT-0931 signal con-

ditioner, trigger circuit and DC voltage-stabilized power also

play crucial roles in supplying to buildHVCBvibration signal
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FIGURE 1. The vibration signal acquisition system of HVCB. (a) overall
framework of the system; (b) main hardware diagram.

acquisition system. Fig. 1 shows the circuit breaker vibration

signal data acquisition system.

B. FAULT DIAGNOSTIC PROCESS

The new mechanical fault diagnosis method proposed in

this paper consists of four steps: data acquisition, signal

decomposition, feature extraction, and fault identification.

Fig. 2 shows the specific process of the fault diagnosis

method. The vibration data collected by HVCB is decom-

posed into different modal numbers by VMD, and then the

component matrix is divided. In order to make the slight

fault feature more obvious, then the ITSEE method is used

for feature extraction. In fault recognition, OCSVM only

detects normal samples and makes corresponding decisions.

For abnormal samples, OCSVM treats them as abnormal

points. The anomaly samples detected by OCSVM are taken

as PNN test samples. Finally, using optimized OCSVM-PNN

hybrid classifier to identify the specific fault type.

III. METHODS AND TECHNIQUES

A. OVERVIEW OF VMD METHOD

VMD is a new adaptive signal decomposition method pro-

posed by Dragomiretskiy and Zosso in 2014 [28]. Searching

the optimal solution of the variational model by the method

of continuous iteration, the frequency center and bandwidth

of each IMF component can be continuously updated. Finally,

VMD signal decomposition algorithm can be divided into the

construction and solution of constrained variational problem.

Assume that each mode component is a finite bandwidth

with a center frequency ωk and the original ft is decomposed

intoK IMF components. The corresponding constrained vari-

ational model is expressed as follows:

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where ∗ represents convolution, uk (t) is the mode function,
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of modes,
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where α is the quadratic multiplication factor, λ(t) is the

Lagrange multiplier.

The alternate direction method of multipliers is adopted

to solve the saddle point of the above augmented Lagrange

function, while un+1
k ,ωn+1

k , λn+1 are alternately updated. The

updates of un+1
k , ωn+1

k , λn+1 can be written as:

ûn+1
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∑

i 6=k
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2
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2
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ûn+1
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(5)

where symbol ^represents Fourier transform, the mode

ûn+1
k (t) can be obtained as the real part of the inverse Fourier

transform of ûn+1
k (ω).

In summary, the steps of the VMD algorithm are given as

follows:

(1) Initialize û1k , ω
1
k , λ̂

1, and n;

(2) Update uk and ωk according to Equations (3) and (4);

(3) Update λ according to Equation (5);

(4) Repeat the iteration above, for a given e > 0, if the

criterion

K
∑
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∥

∥

∥
ûn+1
k − ûnk

∥

∥

∥

2

2

∥

∥ûnk

∥

∥

2

2

< e (6)

is satisfied, then stop iteration and output the results of K

narrow band IMF components, else return to step (2).
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FIGURE 2. The specific process of the fault diagnosis method.

TABLE 1. Parameters of the simulated vibration signal.

1) SIMULATION SIGNAL DECOMPOSITION

BASED ON VMD

The vibration signal of high voltage circuit breaker consists

of a series of vibration events. If the vibration generated by

the motor action is not considered, the vibration event process

is regarded as exponentially decaying sinusoidal signals, then

the composite signal can be described as [35]:

X (t) =

n
∑

i=1

Aie
−αi(t−ti) sin (2π fi (t − ti)) u (t − ti) (7)

where is the number of vibration events, u(t) is the unit step

signal, ti is the starting time of each vibration component,Ai is

maximum amplitude of the i-th vibration event, fi is the main

frequency of each vibration component, αi is the attenuation

coefficient of the amplitude. The parameter of the simulation

signal is shown in Tab. 1.

The simulated vibration signal is simulated by Matlab

2018 and 4000 sampling points are collected in total, sam-

pling frequency is set to 40kS/s, sampling time is set to

0.1s. The composite vibration signal is shown in Fig. 3. The

number of sub-vibration events is 5, and t1-t5 in the figure are

the start times of 5 vibration events.

FIGURE 3. Simulated time domain waveform of vibration signal.

In mechanical fault diagnosis, signal decomposition meth-

ods such as WT [14], [15], IF [27], EMD [21], [23], [37],

LMD, and EEMD [24] have been effectively applied. The

pros and cons of each method have been discussed in detail in

the Introduction section. Here, we decompose the simulation

vibration signal (the signal in Fig. 3). Mainly analyze the

vibration events of VMD and the original vibration signal,

as shown in Fig. 4. In addition, the performance of VMD is

also compared with IF, EMD, LMD, and EEMD methods.

The original vibration events and IMF decomposed by these

four methods are shown in Fig. 5.

By comparing the degree of correlation between eachmode

and the original vibration event, the performance of each

signal processing method can be determined. When K = 5,

the five IMFs decomposed by the VMD method are similar

to the five vibration events of the original signal in Fig. 4(a).

This indicates that the signal decomposed by VMD is closer

to the original signal with better fidelity, and the decomposed

IMF is less, which means the speed is fast and the distortion

of the signal is reduced. In other words, the VMDmethod can

completely decompose the vibration signal, which has good
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FIGURE 4. Signal decomposition. (a) Vibration components of simulation
signal; (b) IMFs decomposed by VMD.

physical meaning. Therefore, the VMDmethod is an effective

tool for time-frequency analysis of HVCBs.

Conversely, the number of IMFs we obtained through

IF, EMD, LMD and EEMD methods are more than the

original IMF numbers, especially EMD, LMD and EEMD.

In Fig. 5(a), the IF is decomposed into 6 IMFs. Among

them, the first mode contains several components that differ

in frequency, the last one is the trend and the other modes

are actual IMFs. Fig. 5(b), Fig. 5(c) and Fig. 5(d) shows that

the number of IMFs decomposed by EMD, LMD and EEMD

is often more than the number of original vibration events.

Although IF performs better in overcoming singular point

sensitivity, IF has almost the same performance as EMD.

Among them, EMD decomposes the signal into 10 IMFs.

Not only are the number of iterations increased, but also the

mode aliasing problem appears in the IMFs, especially for the

third mode. The LMD is decomposed into 9 IMFs. Although

LMD is better than EMD in terms of end effect suppression.

In this study, LMD is similar to EMD, and it also has some

disadvantages of EMD algorithm. EEMD can alleviate the

modal aliasing caused by EMD to a certain extent. However,

EEMD decomposes the signal into 12 IMFs, which is much

larger than the number of original vibration events. It can

be seen that the characteristics (such as spectrum) of each

mode obtained by IF, EMD, LMD and EEMD are unclear or

untrue to some extent. VMD also has a shortcoming, there

is no unique measurement standard in the selection of K

value. Even so, it does not affect the superior decomposi-

tion performance of the VMD method. In summary, VMD

has excellent decomposition characteristics for processing

nonperiodic vibration signals. Therefore, the VMD method

is used to process the measured signal of HVCBs in this

paper.

2) DETERMINING THE NUMBER OF K MODES OF VMD

When using VMD for signal decomposition, the parameter

K needs to be determined in advance. Termination of the

number of modes according to the approach degree of the

center frequency [49]. When the center frequency between

the twomodal functions is close to each other, it is considered

that there is over-decomposition. Taking a measured signal

of a normal condition as an example, the central frequency

variation of each mode can be obtained by VMD decompo-

sition under different K . Fig. 6 is the determination of modal

number by VMD method.

As can be seen from Fig. 6, more modal components with

similar center frequencies appear whenK is taken as 8, which

means that there is phenomenon of over-decomposition [35].

Therefore, in this paper, the number of modal compo-

nents K of VMD signal decomposition is taken as 7, that

is, K = 7.

B. FEATURE EXTRACTION BY IMPROVED TIME SEGMENT

ENERGY ENTROPY METHOD

According to the energy distribution of the modal compo-

nents decomposed by VMD, the energy distribution features

of each sub-event are added on the basis of the time seg-

ment energy entropy (TSEE) [37] feature extraction method.

The energy entropies in time and frequency domains are

respectively calculated to increase the discrimination of slight

fault signal features. The specific steps of the improved time

segment energy entropy (ITSEE) feature extraction method

is given as follows:

(1) The original multi-component signal s(t) to obtain a

series of modal components with real physical

meanings fk (t).

(2) The component matrix is composed of the modal com-

ponent fk (t). The number of rows of the component matrix is

the number of modal components. The number of columns

of the component matrix is the length of the modal func-

tion signal (ie, the number of sampling points). Fig. 7 show

the component matrix of a normal state signal decomposed

by VMD.

(3) For the measured signal, according to the duration

of the signal and the validity of feature, the component

matrix is divided into 20 segments along the time axis. Then,

20matrices can be obtained, which contains 7 time-frequency

blocks respectively.

(4) Normalize the energy Ei,j of all time-frequency block

Bi,j(i = 1, 2, · · ·, 7;j = 1, 2, · · ·, 20) to the interval [0,1].

Let E be the energy of the whole component matrix. The

normalization equation is defined as follows:

ei,j = Ei,j/E (8)
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FIGURE 5. Comparison of signal decomposition. (a) IMFs decomposed by IF; (b) IMFs decomposed by EMD; (c) IMFs decomposed by LMD; (d) IMFs
decomposed by EEMD.

FIGURE 6. Selection of VMD modal number.

(5) With Hj as a part of the signal feature energy distri-

bution (time segment energy entropy), the following can be

obtained from the basic information entropy theory:

Hj = −

7
∑

i=1

ei,j · log ei,j j = 1, 2, · · ·, 20 (9)

(6) If Ei(i = 1, 2, · · ·, 7) is the total energy of each sub-

event, then, with Qi as another part of the signal feature

energy distribution (frequency segment energy entropy):

Qi = Ei/E (10)

FIGURE 7. Component matrix and it’s time segmentation.

(7) Therefore, the ITSEE method is expressed as:

Iv = [H1,H2, · · ·,H20,Q1,Q2, · · ·,Q7] (11)

Iv is used as the input vector of OCSVM-PNN hybrid

classifier to diagnose HVCBs faults. It is worth noting that

in order to reflect the energy distribution of each IMF com-

ponent, step (6) is the newly added feature sequence on the

basis of TSEE, i.e., ITSEE.

C. OCSVM AND PNN HYBRID CLASSIFIER

1) OCSVM

Different to SVM, OCSVM [17] is a classifier that

only recognizes certain categories of interest, which is
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FIGURE 8. The principle of OCSVM.

applicable to the field where it is difficult to obtain negative

samples. Considering the characteristics of HVCB fault sam-

ples of difficult to obtain, OCSVM is adopted which can

detect abnormal samples well and ensure recall of abnormal

samples.

Let X = [x1, x2 · ··, xn] ∈ Rn×m be the training data set,

thenX contains n×m− dimensional feature vectors extracted.

The principle of OCSVM shown in Fig. 8. The kernel

function is needed in OCSVM to map the original low-

dimensional feature space Rn×m to the high-dimensional fea-

ture space H: xi → φ(xi) then a high-dimensional space

hyperplane w · φ(xi)− b = 0 is established. It is necessary to

solve the quadratic programming problem as shown in (12)

and (13).

minF (w, b, ξi) =
1

2
‖w‖2 +

1

vn

n
∑

i=1

ξi − b (12)

s.t. (w · φ (xi)) ≥ b− ξi, ∀i, ξi ≥ 0 i = 1, 2, · · · n (13)

where w and b represent the normal vector and the intercept

of the hyperplane respectively, ξi is the slack variable, the

error limit v ∈ (0, 1) is used to control the upper of the

outliers number in the training set, xi is a m-dimensional

eigenvector.

To solve the quadratic programming problem, the

Lagrange function is given as follows:

L (w, ξ, b.a, β)

=
1

2
‖w‖2 +

1

vn

n
∑

i=1

ξi

−

n
∑

i=1

αi ((w · φ (xi)) − b+ ξi) −

n
∑

i=1

βiξi (14)

where ai ≥ 0 and βi ≥ 0 are Lagrange multipliers.

Taking the partial derivatives of variables w, ξi and b, and

making them equal to zero. The following Equations can be

obtained:

w =

n
∑

i=1

αiφ (xi) (15)

n
∑

i=1

αi = 1 (16)

αi =
1

vn
βi (17)

By simplifying the above equations, the following dual

problems can be obtained:

min
1

2

n
∑

i=1

n
∑

j=1

αiαjK
(

xi, xj
)

(18)

s.t. 0 ≤ αi ≤
1

vn
,

n
∑

i=1

αi = 1 (19)

where K = (xi, xj) = f (xi)f (xj) is the kernel function.

Finally, the classification decision function of OCSVM is

calculated by:

f (x) = sgn

(

n
∑

i=1

αiK (xi, x) − b

)

(20)

where b =
∑n

i=1 αiK (xi, xj), sgn(x) represents the sign

function.

For a given test sample z, the OCSVM function is used for

decision making. If fz is greater than 0, the test sample will

be judged as the target sample. Conversely, it will be judged

as the non-target samples.

2) PNN

PNNwas proposed by D.F. Specht in 1989 [44], which devel-

oped from the radial basis function neural network (RBFNN).

The most important advantage of PNN is that the training of

network is easy and instantaneous [50]. Besides, the sparse

samples are adequate for network performance. PNN is a

four-layer feed-forward neural network [45], i.e., input layer,

pattern layer, summation layer and decision layer (or output

layer). The network structure is shown in Fig. 9.

Assuming that an input vector to be classified is

X = [x1, x2 · ··, xn] for input layer. The number of neurons

in the pattern layer is the same as the number of training

samples.

The summing layer simply sums the outputs of the training

samples of the same category in the pattern layer, so the

connection mode of the network here is not a full connection.

The decision layer is Y = [y1, y2 · · · yk ] and its output

is binary output. That is, the corresponding position of the

output layer will output 1, otherwise 0.

3) CLASSIFIER PERFORMANCE INDEXES

Generally, the categories we focus on are positive and the

other categories are negative, so the results of the classi-

fier on the test datasets will have four cases. Tab. 2 is an
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FIGURE 9. The structural diagram of probabilistic neural networks.

TABLE 2. Obfuscation matrix.

FIGURE 10. Simulation of (a) Fault I and (b) Fault III.

obfuscation matrix. TP means for the number of the true pos-

itive samples. FP stands for the number of the false positive

samples. FN means for the number of the false negative sam-

ples. TN stands for the number of the true negative samples.

In the field of machine learning, the indicators commonly

used to measure the classifier performance include accuracy,

recall etc. These indexes are applicable to the evaluation of

classification problems.

Accuracy is the ratio of the number of samples correctly

identified by the classifier to the total number of samples in

the test set. The formula for calculation is as follows:

Accuracy =
TP+ TN

TP+ FN + FP+ TN
(21)

FIGURE 11. Time domain waveform of vibration signal (a) Normal state;
(b) base screw looseness; (c) delayed action; (d) the energy storage
spring shedding.

Recall indicate howmany positive categories in the sample

are correctly predicted. The definition is as follows:

Recall =
TP

TP+ FN
(22)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

According to the common mechanical faults of circuit break-

ers, three types of mechanical faults are simulated experimen-

tally: base screw looseness (Fault I), delayed action (Fault II),

the buffer spring shedding (Fault III). The simulated Fault I
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FIGURE 12. Decomposition of measured signals by VMD method (a) Normal; (b) Fault I; (c) Fault II; (d) Fault III.

and Fault III are shown in Fig.10 (a) and (b). Among them,

the delay fault (Fault II) is mainly caused by the delay action

of the electromagnetic mechanism of the circuit breaker or

the insufficient lubrication and jamming of the operating

mechanism.

Through the data acquisition system, the vibration signal

samples in the normal state and the three fault states are

collected respectively, with 50 groups each state. The wave-

forms of four different types of original vibration signals

are shown in Fig. 11. The sampling frequency is 40 Ks/s

and the sampling time is 0.2s. It can be seen intuitively

from Fig. 11 that the time domain waveforms of normal

state and Fault II are very similar except that there is a time

delay. Normal state is different from Fault I and Fault III in

instantaneous frequency and instantaneous amplitude. The

main reason for these differences is due to the change of

mechanical components in the process of impact or friction

when a fault occurs.

A. SIGNAL DECOMPOSITION

According to the previous chapter, the number of modes of

VMD isK = 7, and other parameters are set as default values.

Inputting four types of vibration signal data, and VMD signal

decomposition is shown in Fig. 12.

From the output results of VMD in Fig. 12, it can be seen

that the amplitudemodulation and frequencymodulation sub-

components of vibration signals of the four different states are

similar, but there are also some differences. For the normal

signal and Fault I, the difference between them is not obvious.

This is because the mechanical state of the loose screw has

little influence, which belongs to slight fault (Fault I). And

each mode component of normal signal is most similar to

the Fault II, where the main difference is the time delay.

The vibration signal of Fault II has the significant time delay

compared with other types of signals. However, the modal

component of the Fault III signal is more different from the

other three types of signals.
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TABLE 3. Frequency energy feature of ITSEE.

FIGURE 13. Feature curves of four types of signals. (a) Normal; (b) Fault I; (c) Fault II; (d) Fault III.

B. FEATURE VECTOR EXTRACTION

AND ANALYSIS

Based on the ITSEE feature extraction method, the energy

distribution features of each sub-event are added, at the

same time, the signal is extracted in the time domain and

the frequency domain. Tab. 3 is the energy feature entropy

(Qi) of ITSEE in the frequency segment. For clarity, each

type of signal lists only four sample features. As can be

seen from Tab. 3 that the four vibration signals under the

same signal type have similar frequency entropy vectors,

while different types of vibration signals have different val-

ues. For normal signal and Fault I, the difference between

the eigenvalues of Q3 and Q5 are obvious, and easy to

distinguish.

Fig. 13 shows the feature distribution of four mechanical

vibration signals of the ITSEE method and the dimension of

each feature is 20+7. The first 20 feature sequences (left side

of the dotted line) are the Hi features extracted by feature

extraction step (5), which reflect the energy distribution in the

time domain. The last 7 feature sequences (right side of the

dotted line) are theQi features extracted by feature extraction

step (6), which reflect the energy distribution in the frequency

domain.

It can be seen from Fig. 13 that the trend of characteristic

curve between the same type of vibration signals is similar.

While the characteristic curves of different types of vibration

signals have obviously differences. The specific analysis is

given as follows:
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TABLE 4. VMD-energy entropy feature.

(1) Between the characteristic curves of Fault I and Nor-

mal, there is no obvious difference in the first 20 feature

sequences. But the normal type of vibration signal has two

peaks on the last 7 feature sequences. This is due to the

fact that when mechanical failure occurs, the vibration events

change as the mechanical state changes. This indicates that

ITSEE can distinguish Fault I and Normal well.

(2) For Fault II and Normal, the last 7 frequency domain

feature sequences are roughly consistent. But in the first 20

time-domain feature sequences, there is a significant time

delay between Normal and Fault II.

(3) The first 20 feature sequences and the last 7 feature

sequences of Fault III are quite different from other types

of signal features. In other words, the energy distribution of

Fault III along the time axis and frequency band is clearly

different from the other three types of signals.

To validate the superiority of the ITSEE feature extraction

method proposed in this study, we follow the feature extrac-

tion methods in the literature [32], [34], [36], and extract

the VMD energy entropy and VMD fuzzy entropy of the

intrinsic mode function (IMF) respectively for experimental

comparison. Tab. 4 and Tab. 5 respectively correspond to the

entropy values of VMD signal features. For clarity, only four

data samples of each type are listed. Fig. 14 shows the feature

distribution trends of VMD energy entropy and VMD fuzzy

entropy for four vibration signal types. As can be seen from

Fig. 14 (a), there is no significant difference in the VMD

energy entropy feature distribution between the normal signal

and the other three fault signals. That is, the VMD energy

entropy method is difficult to distinguish the four types of

signals, especially for Normal signal and Fault I (slight fault).

In Fig. 14 (b), VMD fuzzy entropy feature extraction can

well distinguish Fault I and Fault III signals. However, it is

almost difficult to distinguish between the features of Normal

signal and Fault II (delay signal). This feature can be clearly

FIGURE 14. Energy entropy and fuzzy entropy feature distribution of four
types of vibration signal. (a) VMD energy entropy; (b) VMD fuzzy entropy.

seen from Tab. 5 that the entropy values of Normal signal

and Fault II in E2, E4, E5 and E7 are not much different.

To sum up, the ITSEE feature extraction method proposed in

this paper can clearly distinguish four types of signals, which

verifies the effectiveness of the feature extraction method.

In the following sections, we will use the four signal features
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TABLE 5. VMD-fuzzy entropy feature.

TABLE 6. OCSVM-PNN diagnosis results.

extracted by ITSEE method for classifier recognition and

fault diagnosis.

C. FAULT DIAGNOSIS USING HYBRID CLASSIFIER

OCSVM-PNN

For four types of signals, 50×4 groups of vibration data sam-

ples are collected in data acquisition. Among them, randomly

select 30 × 4 groups as training samples, and the remaining

20 × 4 groups as test samples. Fig. 15 shows the diagnosis

flowchart of OCSVM-PNN hybrid classifier.

In order to improve the recognition ability of OCSVM

classifier to test samples, it is necessary to adjust the error

limit v and the kernel function parameter g. For the actual

measured signals in this paper, the 10-fold cross validation

method commonly used in engineering is combined with the

GSmethod to solve the parameter optimization problem [32].

After repeated experiments, the optimal parameter combi-

nation is v = 0.11 and g = 0.01. In the training process,

the 10-fold cross validation method is used to optimize the

smoothing parameters δ to improve the classification perfor-

mance of PNN. The mean-square error (MSE) of the actual

output and the predicted output of the classifier is averaged,

and then calculate the standard deviation. Fig. 16 shows

the optimization trend of PNN parameter δ. It can be seen

from Fig. 16 that the mean value of MSE under the same

parameter δ first rise after falling. When the mean value of

MSE is the minimum value, the trend of standard deviation of

MSE is relatively gentle. At this time, the optimal smoothing

parameter δ = 1.0, the corresponding mean value of MSE is

0.03849, and the standard deviation is 0.01986.

The classification results of OCSVM-PNN hybrid classi-

fier are shown in Tab. 6. There is a normal sample recog-

nized by the OCSVM-PNN classifier as the type of Fault I.

Although OCSVM-PNN failed to identify all the normal

samples, it has not identified fault samples as normal samples.

And the accuracy of three fault types are 100%. This indicate

that the fault type signal samples can all be identified under

the premise of ensuring accuracy, which reduces the proba-

bility that the fault type is misdiagnosed as the normal type.

That is, OCSVM-PNN hybrid classifier model can effectively

identify all fault signals, especially for slight faults (Fault I),

which can also be accurately classified. We select BPNN

and SVM classifier to repeat the above experiment, and the

comparative results are shown in Tab. 7.

As illustrated in Tab. 6 and Tab. 7, the accuracy of

OCSVM-PNN classifier model for identifying Normal sam-

ples is 90%, which is significantly higher than that of BPNN

and SVM classifiers. OCSVM-PNN can identify all samples

of the Fault I, Fault II and Fault III. For the Fault I, the accu-

racy of BPNN and SVM are 85% and 90%, respectively.

It can be seen that the latter two classifier models can not

accurately identify samples with slight faults (Fault I). At the
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TABLE 7. BPNN and SVM diagnosis results.

FIGURE 15. The diagnosis flowchart of OCSVM-PNN hybrid classifier.

FIGURE 16. Parameter optimization of PNN.

same time, BPNN classifier is also unable to fully identify

the Fault II. For mechanical fault diagnosis, it is often hoped

that the fault type can be found in time to avoid delaying the

optimal fault diagnosis time. Therefore, the fault diagnosis

ability of OCSVM-PNNhybrid classifier is better than BPNN

and SVM.

TABLE 8. The recall performance indexes of classifier.

In the practical application of HVCBs mechanical fault

diagnosis, the loss of identifying the fault samples as nor-

mal samples is much more serious than that of identifying

the normal samples as fault samples. Therefore, this paper

believes that the performance of the classifier can not only

focus on the accuracy, but also require a high recall rate of the

signal sample recognition results. According to the confusion

matrix of the recognition result, the performance index of the

classifier recall rate shown in Tab. 8 is obtained.

As shown in Tab. 8, each mechanical state contains

20 samples and all fault samples are regarded as positive

samples. For two different classifiers, the recall of OCSVM-

PNN to Normal signal samples is 0.95, which is significantly

higher than that of BPNN and SVM. The main reason for the

obvious difference is that Fault I (loose base screw) is a slight

fault, which is easily confused with Normal type signals. Not

only can BPNN and SVM classifiers fail to correctly identify

Fault I and Normal, but also the ability of BPNN to recognize

Fault II is poor. For the recall of three fault signal samples,

the BPNN and SVMclassifiers are only 0.93 and 0.97. But the

recall of OCSVM-PNN to fault signal samples reached 1.00.

This shows that the OCSVM-PNN can accurately identify all

fault samples and can correctly classify Normal and Fault I.

It is proved that OCSVM-PNN classifier model has superior

classification effect.

In order to further analyze the superiority of OCSVM-PNN

hybrid classifier scheme, Tab. 9 comprehensively compares

the various performance indicators of BPNN and SVM. For

all test samples, the accuracy of BPNN and SVM classifiers

are 91.25% and 93.75%, and the accuracy of OCSVM-PNN

is as high as 98.75%, which shows the good classification

ability of the hybrid classifier model. At the same time, this

paper considers that the economic loss caused by identifying
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TABLE 9. Comparison of model performance.

slight faults as normal faults is much greater than the eco-

nomic losses caused by identifying normal states as fault

states. Thus, compared with the BPNN and SVM classifiers,

the recall of OCSVM-PNN for the three types fault sam-

ples is 100%, which can effectively detect fault signals. The

OCSVM-PNN model can not only ensure accuracy, but also

identify the samples of slight faults (Fault I) to the greatest

extent. So as to reduce the probability of missing the best

maintenance opportunity of the equipment when the slight

fault is recognized as normal state. From the training time

point of view, BPNN training time is the longest, which

also verifies the shortcomings described by BPNN in the

Introduction. The diagnosis time of OCSVM-PNN is 1.13s.

Compared with BPNN and SVM classifier, OCSVM-PNN

has fastest recognition speed and greatly improves the effi-

ciency of fault diagnosis. Therefore, we can conclude that the

OCSVM-PNN hybrid classifier model not only has high

classification accuracy and fast speed, but also has high recall

of fault samples. It has better fault detection capability and

is more suitable for circuit breaker fault diagnosis which

requires a higher reliability.

V. CONCLUSION

This paper presents a new method for mechanical fault

diagnosis of HVCBs. The simulation and practical test

results demonstrate the following advantages of the new

method:

1) Compared with traditional signal decomposition

(IF, EMD, EEMD), VMD can better display the character-

istics of vibration signals and the decomposed modes have

more clear physical meaning.

2) Based on the original feature extraction method,

the ITSEEmethod adds the feature sequence of energy distri-

bution in the signal frequency domain, whichmore effectively

and comprehensively highlights the features of the signal in

time and frequency domains. For example, when distinguish-

ing Normal and Fault I type signals (slight fault), the feature

sequence extracted by ITSEE method makes the features

between signals more obvious.

3) OCSVM-PNN hybrid classifier model not only

improves the accuracy, but also improves the recall of fault

samples. Especially in the fault diagnosis of HVCBs with

slight fault type (Fault I), the OCSVM-PNN hybrid classifier

shows significant advantages. The hybrid classifier model

can effectively reduce the probability of missing the best

maintenance time because of identifying slight faults as

normal types.
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