
ORIGINAL PAPER

Mechanical feasibility and decentralized control algorithms

of small-scale, multi-directional transport modules

Tobias Krühn1 • Simon Sohrt1 • Ludger Overmeyer1

Received: 28 August 2014 / Accepted: 27 July 2016 / Published online: 11 August 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In this paper, we describe a conveyor matrix

consisting of small-scale, multi-directional transport mod-

ules that are considerably smaller than the transported

packets. If a large number of these modules are combined

into a matrix, the emerging network solves transport tasks

through cooperation of the modules. The control of the

system is decentralized: Each module has its own control

and derives its actions only from its own sensor and

received messages from neighboring modules. Both the

mechanical feasibility of the modules and the control

algorithms are presented. We show that collision-free

routes can be planned by the decentralized controlled

system. Lastly, we present the necessary algorithms to

detect and prevent deadlocks.

Keywords Decentralized control � Distributed control �

Intralogistics � Warehousing � Material handling �
Multiagent systems � Deadlock prevention

1 The need for flexibility as a result of modern

distribution structures

Warehousing systems face new challenges. Smaller and

smaller batch sizes and quantities, caused by product

individualization (Mass Customization) and e-commerce,

lead to considerable demands on the internal material flow

[1, 13]. Product life cycles are becoming shorter, while the

marketing supported by modern means of communication

and online trading becomes faster. As a result, warehouse

systems need to become more flexible to ensure quick

response times to faster changing requirements [2].

In contrast to these requirements, today’s material han-

dling systems are inflexible from the mechanical and

control perspective. Individual elements in conveyor sys-

tems are dedicated to specific tasks such as sorting,

sequencing, rotating or transportation of goods. A short-

term adjustment of the layout of a conveyor system causes

high costs and downtime [5]. In addition, layout changes to

existing systems necessitate a reconfiguration of the con-

trol. Therefore, conveyor systems need to become more

flexible. This relates both to the mechanical implementa-

tion as well as to the control of these systems [2, 6, 11].

In this paper, we present the latest results for a new kind

of continuous conveyor, which consists of small-scale,

multi-directional transport modules [12]. Each of these

modules is considerably smaller than the packets and can

convey in any direction. If a large number of these modules

are combined into a matrix, the emerging network solves

transport tasks through cooperation of the modules. The

resulting conveyor system is able to perform tasks such as

transporting, rotating, separating and merging as well as

buffering and sequencing [7]. In this article, the mechanical

realization and algorithms for controlling the modules are

shown.

2 Related research

The modules presented in this paper belong to the class of

plug-and-work material handling systems which design

principles are defined in [2]. In this paper, we will only

look into plug-and-work conveyor systems that have both

& Simon Sohrt

simon.sohrt@ita.uni-hannover.de

1 Institute of Transport and Automation Technology, Leibniz

Universität Hannover, An der Universität 2, 30823 Hannover,

Germany

123

Logist. Res. (2016) 9:16

DOI 10.1007/s12159-016-0143-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s12159-016-0143-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12159-016-0143-x&domain=pdf

proven their mechanical feasibility and disclosed their

control algorithms.

MAYER and FURMANS describe in [10] algorithms

for a completely decentralized controlled conveyor system.

The FlexConveyor platform is built out of multiple, iden-

tical modules that can be easily plugged and unplugged.

One module is at least the size of one packet. The platform

is capable of decentralized generation of topological

information, routing and deadlock avoidance. Complex

transport tasks of multiple items with different sources and

destinations can be performed. The platform is used as the

basis for a sorting system [23] and a storage system [22].

During the initialization phase, every FlexConveyor

module compiles a routing table using a Distance-Vector

Routing approach. In this table, the topology information

and the distance to the sinks (also called metrics) are

stored. After the creation of the routing table, routes can be

created for individual packages. Deadlocks are detected

and avoided during the transportation phase. Due to the

similarities to the modules described in this paper, the

control algorithms of the FlexConveyor modules were used

as a basis for designing our control algorithms.

KARIS PRO [15] combines the aspects of conveyors

and autonomous guided vehicles. The vehicles cannot only

perform the transport of single items but are designed to

form two different functional clusters. As a discontinuous

cluster, KARIS vehicles connect to each other in order to

transport items that are multiple times larger than the

vehicles. As a continuous cluster, several KARIS vehicles

form a conveyor line to realize high throughput of goods.

Two different algorithms for creating continuous clusters

have been implemented and analyzed in a simulation

environment [27]. The algorithms are capable of creating

continuous cluster on maps where only the global coordi-

nates of the packet source and sink are known. In contrast

to the FlexConveyor, the control algorithms have only been

shown to work for maps with a single source and a single

sink. To the knowledge of the authors, no investigation has

been performed about the avoidance of collisions and

deadlocks of packets.

Apart from continuous conveyors, decentralized con-

trolled automated guided vehicles (AGV) can be used to

conduct the transport process. An example is the cellular

transport system: swarm algorithms are used to control the

autonomous vehicles’ behavior. Moreover, optimization

can be attained by using swarm algorithms for localization,

navigation, collision avoidance, task allocation and trans-

portation tasks [8, 20].

An overview of control algorithms for AGVs can be

found in [16–18]. Most AGVs used in the industry are still

controlled centrally [24]. The degree of decentralization of

the control depends on the type of path planning that is

used. [18] defines three different kinds of path planning:

open path, closed path and autonomous navigation. Both

open path and closed path rely on the a priori creation of

the paths by humans. The decentralized controlled AGVs

then follow the predefined paths. Fully autonomous navi-

gated vehicles can be realized by using potential fields

[18, 19, 21]. In this case, the AGVs start with a topological

map of their surroundings. The AGVs then calculated a

potential field using the map and alter the field every time

an obstacle is detected. Potential deadlock situations are

resolved by backing up [25] or by replanning the route

[17].

Since the FlexConveyor platform is conceptually com-

parable to the modules described in this paper, our

approach is modeled after the algorithms described in [10].

Because the control algorithms for the KARIS vehicles can

only deal with single sources and sinks, they are dismissed

as a basis for our algorithms. The utilization of the routing

algorithms for AGVs was considered, but ultimately not

pursued. The main reason was that the deadlock avoidance

algorithms for AGVs need unoccupied space around them

to work. This requirement is not given for our modules.

The available space is defined beforehand by the number of

deployed modules.

3 Mechanical feasibility of small-scale conveyor

modules

A matrix consisting of multiple identical conveyor modules

is only able to perform tasks like transporting and rotating

of packets, if the modules are sufficiently small enough. A

first prototype was shown in [14] that demonstrated the

ability of modules to convey and rotate goods. These

prototypes lacked the necessary electronics to control the

motors and to communicate with neighboring modules.

Before any control algorithms can be developed, it is

necessary to show the feasibility of small-scale conveyor

modules both from a mechanical and a control point of

view.

The dimensions of the realized prototype modules are

65 9 65 mm. They consist of a tilt disk driven by two

identical, collinear mounted motors for varying the tilt

angle and for propulsion. Figure 1 shows the module

matrix integrated in an evaluation setup and the detailed

view of a prototype. The evaluation setup consists of

multiple conventional conveyors along with a matrix con-

sisting of 16 active and 20 passive small-scale modules.

Figure 2 shows the interior of a module. The active mod-

ules are all identical and dynamically exchangeable during

the runtime of the system.

Each module contains a microcontroller (8-bit RISC, 8

kB RAM) and four optical communication interfaces with

a full-duplex bandwidth of 115 kBit/s each. The drivers are

16 Page 2 of 14 Logist. Res. (2016) 9:16

123

servo motors with attached power amplifiers. The maxi-

mum conveying speed is 2 m/s. When several modules are

combined to form a conveyor matrix, it has a carrying

capacity of 125 kg/m2. For a typical packet of

600 mm 9 400 mm, this corresponds to a weight of 30 kg.

The demonstrator shows that the mechanical design of the

matrix is possible.

The implemented software contains the communication

system, engine control and functions such as feeding,

separation or turning of packets. The communication

within the matrix is decentralized. Via the adapter module,

the matrix is given a sequence of actions. An example:

accept a packet from direction A, turn the packet around

90� and eject the packet in direction B. The execution of

these actions is carried out automatically by the module

matrix. Modules determine where the packet is on the

matrix using light sensors. More details of the realized

prototypes can be found in [26]. As a critical element

regarding the computational power, the communication

interface has been identified. Since the mechanical feasi-

bility of the modules has been proven, it is possible to use

the modules to implement complex routing algorithms.

Fig. 1 Evaluation setup of multiple conveyors and view of the module matrix

Fig. 2 Detailed view of a module

Logist. Res. (2016) 9:16 Page 3 of 14 16

123

4 Guaranteeing the control’s scalability by local

neighborhoods

Since the number of modules can become very large, the

control of a module must not depend on the states of all

other modules in the matrix to keep the system scalable.

Problems must be solved on the basis of local information,

coming from a limited number of modules in the local

neighborhood. The size and shape of neighborhoods

depend on the maximum size of the packets that need to be

conveyed. Therefore, it is independent of the system size.

Since each transport module is smaller than the packets,

modules must form groups to conduct the transport pro-

cess. To transport a packet, a route reservation from source

to sink is necessary (see Fig. 3). If multiple packets are

moving on the matrix without a previous route reservation,

they can meet each other where an evasion is not possible.

The packets might not be able to move back due to sub-

sequent packets, so that the system comes to a deadlock.

Route reservation appears as a classic route planning

problem as it occurs in networked communications. How-

ever, the consideration of the physical dimensions of

packets represents a fundamental difference to previously

known algorithms. If packets should be transported through

a bottleneck where they physically do not fit, then transport

is not possible. In communication networks, this problem is

not taken into account. Therefore, the modules have to

consider the size of the packets.

Moreover, routes in the module matrix are arbitrarily

long and thus depend indirectly on the system size. The

algorithms working on the routes may therefore not be

dependent on the state of the entire route. To achieve this

independence, information along the route can only be

passed from module to module. This results in a significant

delay in the exchange of information between more distant

parts of the module matrix. The developed algorithms are

thus designed so that delays in the exchange of messages

are considered.

Altogether, large scale tasks must be reduced to spatial

and temporal local problems. The following sections

explain the implemented algorithms for routing and dead-

lock prevention.

5 Calculating the routing table considering packet

dimensions

Before a packet can be conveyed, the topological infor-

mation must be created. During the initialization process,

every module generates a routing table. For every combi-

nation of packet size and sink, a metric is generated.

Creation of the metric is modeled after the creation of the

routing table for the FlexConveyor modules [10]. The main

difference is that the FlexConveyor modules do not take

the packet size into account.

First each module determines, for all four directions, the

estimated virtual cost of moving a transportation unit in the

respective direction. The calculated costs are added to the

remaining costs of the adjacent module. After the

remaining costs for all four directions are calculated, the

best direction is selected and the remaining costs and

directions are stored. This procedure extends the distance-

vector algorithm. The extension of JAFFE and MOSS [4] is

used to provide better convergence and to avoid the count-

to-infinity problem. GARCIA–LUNA–ACEVES showed that this

algorithm can be implemented in local neighborhoods [3].

Due to the two-dimensional propagation of the metric and

the small size of the modules relative to the packets size,

the term field is used to describe the semi-continuous

metric in this work.

Figure 5 shows an example of the development of the cost

field for a sink in a transport matrix. To distinguish various

sinks, the sinks and the corresponding fields are marked with

colors. All blue color scales and directional arrows shall

apply mutatis mutandis for the blue marked sink.

Initially, all modules have infinitely high residual costs,

since no sink is known (Fig. 4a). After starting the system, a

sink module is initialized that creates a metric field for every

packet format that it can accept. In order to keep the example

simple, only the creation of the metric field for a 5 9 5

packet is shown and only the distance is used as ametric. The

destination module shares its remaining costs with its

neighbors, which then recalculates their residual cost

(Fig. 4b). In the image, a light color of a field stands for a low

value of the residual cost and a dark for a high value. With

each time step, the information continues to spread.Fig. 3 Without route reservation, the system will run into deadlocks

16 Page 4 of 14 Logist. Res. (2016) 9:16

123

For each module, the metric is calculated in the

assumption that the packet is located centrally above the

module. The modules at the edge of the matrix are there-

fore not suitable for the planning of routes, because the

packet would hit the system boundary. Consequently, they

get a high metric value and are shown in dark (Fig. 4).

The procedure described requires that for each packet

format, a separate metric is calculated. However, formats

can be combined. If no suitable metric exists for a packet

format, the next largest is used. Since all metrics need the

information about the distance of the module to the nearest

system boundary, this information is calculated a priori and

stored in a base metric (Fig. 5).

New metrics can not only be created by sinks, but by

regular modules on the matrix as well. The process is

described as follows: A module is informed by one of its

neighboring modules of the existence of a metric for sink 1

and the packet format 5 9 7. It now checks if the distance

to the system boundaries allows the creation of both a

metric for sink 1 with the packet format 5 9 7 and a metric

for sink 1 with the packet format 7 9 5. After creating the

metrics, it calculates their respective values.

Figure 6 shows the necessity for creating new metrics

on the transport matrix: The displayed system includes a

bottleneck that can only be passed by packets with the

format 5 9 7. The effect of the bottleneck on the metric

field for the packet format 7 9 5 is shown in Fig. 6a: A

local minimum is created between the packet source and

the bottleneck. The calculated gradients for this metric are

shown in Fig. 6c. All packets with the format 7 9 5 are

transported according to these gradients. Once the local

minimum of the metric is reached, the packet is rotated.

After rotating the packet, the metric depicted in Fig. 6b is

relevant for calculating the gradients for the movement

Fig. 4 Field propagation in a module matrix

Logist. Res. (2016) 9:16 Page 5 of 14 16

123

Fig. 5 A new metric is

generated for each sink and

format

Fig. 6 Metric and Gradient

fields shown for different packet

formats

16 Page 6 of 14 Logist. Res. (2016) 9:16

123

(shown in Fig. 6d). Since the destination of the system can

only accept packets with the format 7 9 5, another rotation

is necessary to complete the conveying process.

Since routes in the matrix can be planned freely, it is

first necessary to determine how multiple routes may relate

to one another. Figure 7 shows the basic situations for

which an assessment is determined. Each arrow represents

a route segment. For example, a route may be branched

(a) or merged (b). Thus, the situations shown in Fig. 7a and

Fig. 7b are acceptable: Fig. 7a shows a route coming from

the west, branching into two routes, running north and

south. Figure 7b shows two route segments, coming from

the east and west, merging into a route running south.

Because, these situations are normal for routes, low costs

arise. Furthermore, multiple routes in the same direction

may exist on a module (c). A straight route also results in

low costs (d).

In addition, situations exist that may present a valid

plan, but reduce system efficiency. Route branches close to

one another result in intersections whose neighborhoods

overlap (e). The superposition of intersections place

increased demands on the avoiding of deadlocks. The same

applies for route merges that take place not in the same

module, but in a neighborhood (f), or for routes with clo-

sely spaced direction changes (g).

Routes in opposite directions, as in situation (h), are not

allowed. Figure 7h shows two route segments, coming

from east and west, very close to each other. No matter if

these route segments belong to the same route or not, this

situation is illegal. Further route planning would result in a

situation where overlapping routes run in different direc-

tions. Packets would not be able to path both routes. To

implement this criterion, the target module checks if the

route overlaps with the neighborhood of another route.

Parallel running routes whose neighborhoods overlap

should be excluded as (i). The reason for the two prohi-

bitions is that possible deadlocks arise from these situations

which are not covered by the implemented deadlock pre-

vention. For the deadlock prevention, only intersections

and direction changes are monitored.

For every pending packet, the module matrix plans a

route a priori (i.e., before the conveying process on the

matrix begins). A route through the matrix is made up of

multiple route segments. A single module does not know

the complete route through the system, but only its own

route segment and the route segment of the neighbors of its

von Neumann neighborhood.

Route reservation is done in a 2-way handshake. First,

the route is planned and kept in the state in progress. The

planning runs from source to sink from module to module.

The next route segment is created according to the

matching metric (see Fig. 5). If the route reaches the sink,

it is reserved and the route segments switches from in

progress to reserved. When the reservation reaches the

source, the route is confirmed, and the packet can be

transported. Since an exclusive route is planned for every

packet, it is deleted as soon as the packet was conveyed.

Before switching a route segment to reserved, the

modules have to ensure that this does not create a pro-

hibited routing situation according to Fig. 8. Furthermore,

the planning of an undesirable route should be avoided.

Since route segments are planed according to the metric

value, the calculation of the metric can be altered to take

the distance to other routes into account. A route segment

with the state in progress alters the metric considerably less

than a route segment with the state reserved.

A first calculation of the metric value M was described

in [7]. By taking the state of the routes into account the

formula is as follows:

Fig. 7 Permitted, undesirable

and not permitted routing

situations—named a to i

Logist. Res. (2016) 9:16 Page 7 of 14 16

123

M ¼ minðMR _MN;iÞ with

MN;i ¼ MD þMs;i þ
SR �M0;i if route exists

SR �MG;i if opposing route exists

(

Ms,i Depends on the neighboring modules distance to the

system boundary. Ms,i becomes ? if the boundary

is too close to convey a packet

MR Are the costs for rotating the packet if necessary

MN,i Is the metric value of neighbor i from von Neumann

neighborhood

M0,i Is the transport cost to move a packet by one

module in the direction of an existing route for this

neighbor i

MG,i Is the transport cost to move a packet by one

module against the direction of an existing route for

this neighbor i

MD Routing costs only based on the physical distance of

one module to another

Fig. 8 Influence of routes on

the metric values

16 Page 8 of 14 Logist. Res. (2016) 9:16

123

SR Factor to consider the state of the route. SR for

reserved routes is bigger than SR for in progress

routes

The quotient of MG,i/M0,i defines the maximum detour a

planned route will accept before the system tries to plan a

new route conflicting with an existing route. The already

existing route will then be re-planned. If this is not desired,

the value of MG,i/M0,i must be larger than the longest route

in the system. The determination of the specific values

depends on the desired system behavior.

Routes that are near to each other and run in the same

direction are combined to save system resources. The

quotient MD/M0,i defines what near means in that case,

because the routing costs along existing routes are smaller

than on free modules. The larger the quotient, the more the

system tries to merge routes in larger areas.

Every time a module changes its metric value, the

neighbors are informed and hence update their metric.

Thus, each time a packet is inserted into the system and a

new route is planned, the metric values of the modules may

change.

The computation and memory requirements for the

calculation of the metrics depends upon the number of

observed sizes nFormat and the number of possible sinks

nSink, since for each combination, a metric is calculated.

The cost of computing all metrics is thus:

fmetricðnformat; nSinkÞ 2 Oðnformat; nSinkÞ:

The effects of newly planned routes on the metric values

are depicted in Fig. 8. Figure 8a shows the metric values of

the matrix without any routes. In Fig. 8b, a route was

successfully reserved from the packet source 1 to the sink

1. The metric value of all modules with a route segment

becomes lower since M0,i B MD,i. Modules in the vicinity

of the route are affected as well: If the merging and

branching of routes is permitted according to Fig. 7, the

metric value of these modules is consequently lowered.

However, if the merging or branching of the route would

lead to an undesirable or unpermitted situation as depicted

in Fig. 7, the metric value is increased accordingly. This

increase is depicted in Fig. 8b: Since merging or branching

a route in zone A would directly oppose the already

existing route, the metric value is altered to prohibit

merging and branching. The metric value in zone B is only

increased slightly since merging and branching in this zone

would not create an unpermitted situation, but only an

undesirable situation.

Figure 8c shows the metric field if a route from source 2

to sink 1 is reserved. The metric values on and near the

route are altered accordingly. Figure 8d shows the suc-

cessful merging of two routes to the same sink. The route

coming from source 2 was reserved slightly before the

route coming from source 1. Therefore, the route coming

from source 1 was merged with the already existing route

to save system resources. In contrast to Fig. 8b, the route

from source 1 is now vastly different.

After a route has been reserved, the transport process

starts. Since the reservation of a route only guarantees that

a packet can be conveyed without a collision, possible

deadlock situations have to be identified and prevented

during the transport process.

6 Local and global deadlock prevention

After routes are planned, packets may be moved across the

conveying matrix. In the next step, the absence of dead-

locks must be ensured.

To avoid deadlocks, two different cases have to be

considered. On the one hand, global deadlocks can occur

[9]. This refers to a system state in which multiple packets

wait on another cyclically. On the other hand, local dead-

locks can occur at intersections. Figure 9 demonstrates a

local deadlock situation. If both packets are moved in the

Fig. 9 Local deadlock situation

Logist. Res. (2016) 9:16 Page 9 of 14 16

123

crossing region, neither of the two packets can pass through

the area. A packet might not be able to back off due to

following packets.

The example shows that on the conveying matrix,

deadlocks are possible that do not occur in conventional

conveyor systems and which are not solved by MAYER. This

is due to the fact that crossing areas are created dynami-

cally during runtime and can overlap each other.

To guarantee the absence of deadlocks, the neighbor-

hood of a crossing is always occupied by a maximum of

one packet. The dimension of the crossing area depends on

the dimensions of the involved packets. Since information

on all scheduled routes is present at the central module at

the crossing, this one is defined as the crucial element. A

module is called intersection module if it contains routes in

different directions or a route changes its direction on the

module. Since this module has the route information, it also

defines the size of the neighborhood. For this purpose, it

sends a message to all modules in the neighborhood

NCrossing belong to the crossing area.

Acceptance of a packet at a crossing occurs in two steps:

First, the intersection module accepts a packet and informs

its neighborhood. If a module is a member of several

crossing neighborhoods, it has to decide in the second step

for the adoption of an acceptance from exactly one of the

two intersections.

At any time, the intersection module can only accept one

pending packet. After the decision is made, it remains until

the packet leaves the crossing. The decision can only be

reverted, if the already accepted packet is blocked.

Otherwise, it may happen that the last accepted packet

enters the crossing, while another is released (race

condition).

The entrance of packets in a crossing region is defined

by the following rules:

1. If a module is in no crossing neighborhood, a packet

may enter it at any time.

2. If a module is in exactly one crossing neighborhood, it

may be entered by a packet only if the intersection

module has accepted the entrance of that packet.

3. If a module is in multiple crossing neighborhoods and

all crossings have accepted the same packet, the packet

may enter.

4. If a module is in multiple crossing neighborhoods and

the associated intersection’s modules have accepted

different packets, one packet must be chosen. The

packet is selected by the intersection module, which is

aware of the routes of all packets involved.

5. If there is no module that knows all the routes, the

older packet is selected. This is possible since every

packet introduced into the system is provided with a

time stamp by its respective source. If the time stamp

is identical, the system randomly selects one of the

packets.

Figure 10 shows an example where the rules 3 and 4 are

explained. In Fig. 10a, P1 is already on crossing 1 and

wants to enter crossing region 2. At the same time, P2
wants to enter crossing 2. The intersection module 2 now

can choose freely one of the packets. If it chooses P1, rule 3

applies. P1 may enter the overlapping area; there is no risk

of a deadlock.

However, if intersection module 2 accepts P2, rule 4

applies. Figure 10b shows the situation. The intersection

module 1 knows all routes. In accordance with rule 4, P1 is

accepted. Otherwise, a deadlock occurs.

Fig. 10 Danger of local deadlock: If P2 is accepted by the overlapping area, the system comes to a deadlock

16 Page 10 of 14 Logist. Res. (2016) 9:16

123

If two crossings are overlapping, but none of the mod-

ules knows all the routes, usually rule 5 applies. Figure 11

shows the situation. As long as all modules in the overlap

region 2 behave the same way, there is no risk of a dead-

lock. The global deadlock prevention was implemented as

it is described by MAYER with extensions to fit the module

matrix [10].

7 Verifying the control algorithms in a simulation

environment

Since only up to four conventional conveyors can be

attached to the prototype described in chapter 3, a simu-

lation environment was written to simulate the behavior of

conveyor matrices with different sizes and a different

number of sources and sinks. The simulation is based on

the multi-agent simulation framework MASON [28]. It was

used to verify the propagation of metric values, the plan-

ning and reservation of routes and the detection and

avoidance of deadlocks. Figures 4, 6 and 8 were created by

using the simulation environment.

In the simulation, both space and time are discrete.

Conveyor modules are positioned in cells in a grid. Con-

trols of the modules are modeled as state machines. The

states of the individual controls of the modules are all

updated simultaneously. This is achieved by utilizing a

global scheduler that informs the individual controls to

update their state. The global scheduler only informs the

controls to update their state after all controls from the

previous update cycle have finished updating.

Different topologies are created by placing modules on

the grid. Packet sources and sinks are created by assigning

a special property to modules: These special modules are

allowed to create or delete packets from the simulation

environment. Inertia of packets is neglected. Packets either

do not move at all or move with the maximum speed which

is 10 % of the width of a module per update step. Force

transmission between the modules and the packets is

assumed to be ideal: Effects of slippage are neglected.

Modules can send messages to all modules in their

neighborhood in every update step. A neighborhood is

defined as a coherent group of modules without gaps.

Figure 12 depicts the von Neumann, the Moore and a

rectangular neighborhood. A module can be a member of

several overlapping neighborhoods at the same time. The

communication lag that would occur on real hardware is

neglected, since communication between modules in a

neighborhood only takes one update step. We allow this

neglect, because the speed of sending data packets is sev-

eral orders of magnitudes faster than the speed of con-

veying physical packets.

The simulation environment was used to determine the

effect of both control parameters (described in chapter 5)

and deployment parameters on the throughput of the sys-

tem. The topology of the matrix, the rate at which packets

Fig. 11 Complex situation of overlapping crossings and multiple

pending packets

Fig. 12 Different module

neighborhoods

Logist. Res. (2016) 9:16 Page 11 of 14 16

123

are created, packet shapes and packet sizes are defined as

deployment parameters. Creation rate for packets is mod-

eled as follows:

PA ¼
Packets

Simulation step
:

In this paper, we will give a short overview of the

influence of deployment and control parameters on packet

throughput for an example layout. A more detailed

throughput analysis was performed by KRÜHN and can be

found in [26]. The examined layout is shown in Fig. 13.

Deployment parameters that were constant are the size and

the shape of both the matrix and the packets: Packets and

the matrix in this first setup were always square, and the

sides of the matrix were three times as large as the packets

sides. Altered deployment parameters were the packet

creation rate and the number of simulated conveyors that

are connected to the matrix. Either 8 conveyors were used

or 12. A simulated conveyor can act both as a packet

source and as a packet sink.

Control parameters were varied for both the layout with

8 sources and sinks and 12. Since the packets were quad-

ratic, no rotation of packets was necessary. Consequently

MR had no influence on the metric value. The value of MG/

M0 was set larger than the longest route in the system;

therefore, the system never replans reserved routes. MD/M0

was set to match the size of the packets to prevent the

overlapping of routes and instead encourage the merging of

routes. SR was twice as big for reserved routes than for in

progress routes. The only control value that was altered

during the simulation was the influence of the distance to

the system boundaries by altering Ms. Figure 14 shows the

result from 100,000 simulation steps.

The throughput of (a) is never reached in the scenario

(b). If Ms has a high value packets are conveyed closer to

the boundary of the matrix and a circular packet flow

emerges; the center of the matrix is not used. As seen in

Fig. 14, the influence ofMs on the throughput is significant.

It is remarkable that a high Ms has a positive effect on the

throughput in (a) and a negative one in (b). One possible

explanation for this effect could be the number of cross-

ings: The circular packet flow that emerges for high Ms

values leads to the creation of 4 crossings in the scenario

(a). If the value for Ms is decreased and routes are planned

more freely, up to 9 crossings can develop. Since every

crossing has to be checked for possible deadlock scenarios

and has to synchronize itself with neighboring crossings

(see chapter 6), the throughput is decreased. A high value

for Ms leads to a circular flow with eight crossings for

scenario (b) while a low value leads to a route network with

nine. The higher number of crossings seems to be com-

pensated by the additionally used space.

To test the hypothesis that the number of crossings and

their synchronization is the reason for the decrease in

throughput, a second layout (see Fig. 15) was simulated. In

this second layout, no crossing is a neighbor of another one.

Figure 15 shows that the throughput with separated

crossings is higher than without separated crossings. The

Fig. 13 Conveyor matrix as a hub

Fig. 14 Throughput for a

matrix with the size 3 9 3

16 Page 12 of 14 Logist. Res. (2016) 9:16

123

synchronization of crossings is thus the main factor of the

decrease in throughput. The simulation results show that

the control algorithms are capable of conveying packets

without the occurrence of collisions or deadlocks.

8 Summary

Today, installed intralogisitic systems are designed to run

for many years. Extensions and modifications of these

systems are expensive and time consuming and therefore

often uneconomic. Powered by recent developments such

as shorter product life cycles and mass customization,

system manufacturers are looking for ways to improve

future delivery technology significantly. The aim is both

autonomous and flexible adjustment of a conveyor system

to changing conditions as well as their improved versatility.

As shown in this paper, small-scale, multi-directional

conveyor modules have been developed which, fitted

together to form a larger matrix, can solve material han-

dling tasks. Mechanically they are able to do all regular

tasks, such as sorting, merging, turning and sequencing,

and thus offer a unique opportunity to map all the tasks on

the same base module. However, so far we have lacked the

ability to control a large number of these modules.

This paper discussed how a scalable, decentralized

control can be implemented. The steps were:

• The dynamic formation of module neighborhoods that

jointly solve a task,

• Planning and reservation of routes for packets, includ-

ing the ability to reschedule these over time,

• Synchronization of crossing areas to prevent local

deadlocks,

• The implementation of an algorithm to prevent global

deadlocks,

• Verification of the algorithms in a simulation

environment.

The essential core of the algorithms is that decisions are

made solely on the basis of local information. Interactions

over longer distances can be achieved by information

passing from module to module. The resulting time delay is

taken into account by the algorithms. It follows that an

exchange of information over long distances on the module

matrix is possible, but is decoupled in time. The system

remains scalable.

As a first step toward the realization of the module

matrix, an experimental system has been developed. This

demonstrates the feasibility and shows first mechanical

functions, such as the transportation and the turning of

packets. At the same time, it is clear that further devel-

opment work in the area of hardware is necessary.

To reduce the design space and to reduce costs further,

integration of the electronics is desirable in the future. For

example, two motor amplifiers are currently installed per

module, which are significantly oversized. An integration

of the motor amplifiers and the control is possible on a

single board. Our current works show that a drastic

reduction of manufacturing costs in the field of mass pro-

duction is possible.

In summary, it can be stated that the design, manufac-

ture and control of a very large number of small-scale

modules is possible by reducing complex transport tasks to

spatial and temporal local problems.

Acknowledgments This contribution was done within the scope of

the research projects ‘‘Cognitive Logistic Networks (CogniLog)’’ and

‘‘Vernetzte, kognitive Produktionssysteme (netkoPs)’’. The research

project ‘‘Cognitive Logistic Networks (CogniLog)’’ was funded by

the German federal state of Lower Saxony with funds of the European

Regional Development Fund (ERDF) and the research project

‘‘Vernetzte, kognitive Produktionssysteme (netkoPs)’’ was funded by

the German Federal Ministry of Education and Research. We would

also like to thank the reviewers for their comments that helped to

improve the manuscript.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

Fig. 15 Conveyor matrix with

separated crossing areas

Logist. Res. (2016) 9:16 Page 13 of 14 16

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Cox WM, Alm R (1998) The right stuff: America’s move to mass

customization. In: Federal Reserve Bank of Dallas, Annual

Report, pp 3–26

2. Furmans K, Schönung F, Gue KR (2010) Plug-and-work material

handling systems. In: Progress in material handling research,

pp 132–142

3. Garcia-Luna-Aceves JJ. (1988) A distributed, loop-free, shortest-

path routing algorithm. In: INFOCOM’88. Networks: evolution

or revolution, Proceedings of the Seventh Annual Joint Confer-

ence of the IEEE Computer and Communcations Societies, IEEE,

pp 1125–1137

4. Jaffe J, Moss F (1982) A responsive distributed routing algorithm

for computer networks: communications, IEEE transactions on.

In: Communications, IEEE transactions on. doi:10.1109/TCOM.

1982.1095632 30, Nr. 7, pp 1758–1762

5. Jodin D, Hompel MT (2006) Sortier- und Verteilsysteme:

Grundlagen, Aufbau, Berechnung und Realisierung. Springer

(VDI-Buch). ISBN 978–3–540–29071–1

6. Kamagaew A, Stenzel J, Nettstrater A, ten Hompel M (2011)

Concept of cellular transport systems in facility logistics.

Automation, Robotics and Applications (ICARA), 2011 5th

International Conference on, pp 40, 45. doi: 10.1109/ICARA.

2011.6144853

7. Krühn T, Radosavac M, Shchekutin N, Overmeyer L (2013)

Decentralized and dynamic routing for a cognitive conveyor. In:

International Conference on Advanced Intelligent Mechatronics

(AIM), pp 436–441. IEEE/ASME, Wollongong

8. Günther WA (2012) Algorithmen und Kommunikationssysteme

für die Zellulare Fördertechnik Forschungsbericht zum IGF-

Vorhaben 16166 N der AiF-Forschungsvereinigung Bun-

desvereinigung Logistik (BVL) e.V. München, Dortmund. ISBN/

ISSN 978-3-941702-26-4

9. Mayer S, Furmans K (2010) Deadlock prevention in a completely

decentralized controlled materials flow systems. Logist Res

2:147–158. doi:10.1007/s12159-010-0035-4

10. Mayer S, Furmans K (2009) Wissenschaftliche Berichte des

Institutes für Fördertechnik und Logistiksysteme der Universität

Karlsruhe (TH). Bd. 73: Development of a completely decen-

tralized control system for modular continuous conveyors.

Universitätsverlag Karlsruhe

11. Nettstraeter A, Nopper JR, Prasse C, Hompel MT (2010) The

internet of things in logistics. In: Smart objects: systems, tech-

nologies and applications (RFID Sys Tech), 2010 European

Workshop on, pp 1–8

12. Overmeyer L, Ventz K, Falkenberg S, Krühn T (2010) Interfaced

multidirectional small-scaled modules for intralogistics opera-

tions, logistics research, vol 2. Springer, Heidelberg, pp 123–133

13. Seibold Z, Stoll T, Furmans K (2013) Layout-optimized sorting

of goods with decentralized controlled conveying modules. Sys-

tems Conference (SysCon), IEEE

14. Ventz K, Hachicha MB, Radosavac M, Krühn T, Overmeyer L

(2012) Aufbau hochfunktionaler Intralogistik-Knoten mittels

kleinskaliger Module als Cognitive Conveyor, 8. Fachkolloquium

der Wissenschaftlichen Gesellschaft für Technische Logistik e.V.

(WGTL), S. 19–36: Otto-von-Guericke-Universität Magdeburg.

doi:10.2195/lj_Proc_ventz_de_201210_01

15. Furmans K, Seibold Z, Trenkle A, Stoll T (2014) Future

requirements for small-scaled autonomous transportation sys-

tems. In: Production Environments, 7th International Scientific

Symposium on Logistics Proceeding

16. Taghaboni-Dutta F, Tanchoco JMA (1995) Comparison of

dynamic routing techniques for automated guided vehicle sys-

tems. Int J Prod Res 33(10). doi:10.1080/00207549508945352

17. Le-Anh T, De Koster MBM (2004) A review of design and

control of automated guided vehicle systems. Eur J Oper Res

171(1):1–23. doi:10.1016/j.ejor.2005.01.036

18. Qiu L, Hsu WJ, Huang SY, Wang H (2002) Scheduling and

routing algorithms for AGVs: a survey. Int J Prod Res

40(3):745–760. doi:10.1080/00207540110091712

19. Arambula Cosı́o F, Padilla Castañeda MA (2004) Autonomous

robot navigation using adaptive potential fields. Math comput

Model 40(9–10):1141. doi:10.1016/j.mcm.2004.05.001

20. Kamagaew A, Stenzel J, Nettstrater A, Hompel M (2011)

Ten.:concept of cellular transport systems in facility logistics.

Automation, Robotics and Applications (ICARA), 2011 5th

International conference on. IEEE, Wellington, pp 40–45. ISBN:

978-1-4577-0329-4. doi:10.1109/ICARA.2011.6144853

21. Weyns D, Boucke N, Holvoet T (2006) Gradient field-based task

assignment in an AGV transportation system. AAMAS ’06 pro-

ceedings of the fifth international joint conference on autonomous

agents and multiagent systems, pp 842–849. ISBN:1-59593-303-

4. doi:10.1145/1160633.1160785

22. Uludag O (2014) GridPick: a high density puzzle based order

picking system with decentralized control. Karlsruhe Institute of

Technology, Auburn University, Karlsruhe

23. Seibold Z, Stoll T, Furmans K (2013) Layout-optimized sorting

of goods with decentralized controlled conveying modules. In:

Systems Conference (SysCon), 2013 IEEE International,

pp 628–633, 978-1-4673-3107-4

24. Smolic-Rocak N, Bogdan S, Kovacic Z, Petrovic T (2010) Time

Windows based dynamic routing in multi-agv systems. IEEE

Trans Automat Sci Eng 7(1):151–155. doi:10.1109/TASE.2009.

2016350

25. Schwarz C, Schachmanow J, Sauer J, Overmeyer O, Ullmann G

(2013) Coupling of a discrete event multi agent simulation with a

real time multi agent simulation. In: Proceedings of the 11th

International Industrial Simulation Conference

26. Krühn T (2015) Dezentrale, verteilte Steuerungen flächiger

Fördersysteme für den innerbetrieblichen Materialfluss, Berichte

aus dem ITA, 01/2015, ISBN: 978-3-95900-014-7

27. Stoll T (2012) Dezentral gesteuerter Aufbau von Stetigförderern

mittels autonomer Materialflusselemente, Wissenschaftliche

Berichte des Instituts für Fördertechnik und Logistiksysteme des

Karlsruher Instituts für Technologie; 78, KIT Scientific Publish-

ing, Karlsruhe. ISBN: 9783866448667

28. Luke S (2015) Multiagent simulation and the MASON library,

manual version 19. http://cs.gmu.edu/*eclab/projects/mason/

manual.pdf

16 Page 14 of 14 Logist. Res. (2016) 9:16

123

http://dx.doi.org/10.1109/TCOM.1982.1095632
http://dx.doi.org/10.1109/TCOM.1982.1095632
http://dx.doi.org/10.1109/ICARA.2011.6144853
http://dx.doi.org/10.1109/ICARA.2011.6144853
http://dx.doi.org/10.1007/s12159-010-0035-4
http://dx.doi.org/10.2195/lj_Proc_ventz_de_201210_01
http://dx.doi.org/10.1080/00207549508945352
http://dx.doi.org/10.1016/j.ejor.2005.01.036
http://dx.doi.org/10.1080/00207540110091712
http://dx.doi.org/10.1016/j.mcm.2004.05.001
http://dx.doi.org/10.1109/ICARA.2011.6144853
http://dx.doi.org/10.1145/1160633.1160785
http://dx.doi.org/10.1109/TASE.2009.2016350
http://dx.doi.org/10.1109/TASE.2009.2016350
http://cs.gmu.edu/%7eeclab/projects/mason/manual.pdf
http://cs.gmu.edu/%7eeclab/projects/mason/manual.pdf

	Mechanical feasibility and decentralized control algorithms of small-scale, multi-directional transport modules
	Abstract
	The need for flexibility as a result of modern distribution structures
	Related research
	Mechanical feasibility of small-scale conveyor modules
	Guaranteeing the control’s scalability by local neighborhoods
	Calculating the routing table considering packet dimensions
	Local and global deadlock prevention
	Verifying the control algorithms in a simulation environment
	Summary
	Acknowledgments
	References

