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Abstract 

Many numerical integrators for mechanical system simulation are created by using discrete algorithms 

to approximate the continuous equations of motion. In this paper, we present a procedure to construct 
time-stepping algorithms that approximate the flow of continuous ODE'S for mechanical systems by 

discretizing Hamilton's principle rather than the equations of motion. The discrete equations share 

similarities to the continuous equations by preserving invariants, including the symplectic form and the 

momentum map. We first present a formulation of discrete mechanics along with a discrete variational 

principle. We then show that the resulting equations of motion preserve the symplectic form and that 
this formulation of mechanics leads to conservation laws from a discrete version of Noether's theorem. 

We then use the discrete mechanics formulation to develop a procedure for constructing mechanical 

integrators for continuous Lagrangian systems. We apply the construction procedure to the rigid body 

and the double spherical pendulum to demonstrate numerical properties of the integrators. 
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1 Introduction 

Goals. The goal of this paper is to present a systematic construction of mechanical integrators for simulat- 

ing finite dimensional mechanical systems with symmetry based on a discretization of Hamilton's principle. 

We strive for a method that is theoretically attractive and numerically competitive. Of course, we do not 
claim that the methods will be superior in very specific problems for which custom methods may be available 

(as, for example, in symplectic integrators for the solar system-see, for example, (Wisdom and Holman, 

1991)). 

Mechanical Integrators. These are numerical integration methods that preserve some of the invariants of 

the mechanical system, such as, energy, momentum, or the symplectic form. It is well known that if the energy 
and momentum map include all the integrals from a certain class (depending on the smoothness available) 

that one cannot create integrators that are symplectic, energy preserving, and momentum preserving unless 

they coincidentally integrate the equations exactly up to a time parametrization (see (Ge and Marsden, 1988) 

for the exact statement). Thus, mechanical integrators divide into two overall classes, symplectic-momentum 

and energy-momentum integrators. It is the hope that by exploiting the structure of mechanical systems, one 
can create mechanical integrators that are not only theoretically attractive, but are more computationally 

efficient and have better long term simulation properties than conventional integration schemes. The overall 

situation for mechanical integrators is of course a complex one, and it is still evolving. We refer to (Marsden 
and G. Patrick, 1996) for a recent collection of papers in the area and for additional references and to 

(Marsden, 1992) for some additional background. 
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The Main Technique of This Paper. This paper presents a method to construct symplectic-momentum 
integrators for Lagrangian systems defined on a linear space with holonomic constraints. The constraint 

manifold, Q, is regarded as embedded in the linear space, V. A discrete version of the Lagrangian is then 

formed and a discrete variational principle is applied to the discrete Lagrangian system. The resulting 

discrete equations define an implicit (explicit in some cases) numerical integration algorithm on Q x Q that 

approximates the flow of the continuous Euler-Lagrange equations on TQ. The algorithm equations are 
called the discrete Euler-Lagrange (DEL) equations. 

The DEL equations share similarities to the continuous Euler-Lagrange equations. The DEL equations 

preserve a symplectic form defined in the paper and preserve a discrete momentum derived through a discrete 

Noether's theorem. The discrete momentum corresponding to invariance of the continuous Lagrangian 

system to a linear group action is conserved, and the value of the discrete momentum approaches the value 
of the continuous momentum as the step size decreases. In general, the method does not preserve energy 

for conservative Lagrangian systems, but the numerical examples suggest that the energy varies about a 

constant value. The energy variations decrease and the constant value approaches the continuous energy as 

the step size decreases. 

We treat holonomic constraints through constraint functions on the linear space. The constraints are 

satisfied at  each time step through the use of Lagrange multipliers. 

The Examples Considered. The construction procedure is applied to two examples and numerical results 

are presented. 

1. The Rigid Body. The method is applied to the rigid body to produce evolution equations in terms 

of unit quaternions. We take the linear space, V, to be R4, and the constraint manifold, Q c V, to be 

S3. 

2. The Double Spherical Pendulum. The method is also applied to the double spherical pendulum. 

The linear space, V, is R3 x R3, and the constraint manifold, Q C V, is S2 x S2. We compare the 

integrator to an energy-momentum integrator. 

For both examples, the momentum, energy, accuracy, and efficiency is examined. The examples suggest 

that accurate results are achieved with large step sizes. 

Some of the Literature. This paper uses the discrete variational principle presented in (Veselov, 1988) 

and again in (Veselov, 1991) and (Moser and Veselov, 1991). It is shown in (Veselov, 1988) that the DEL 

equations preserve a symplectic form. The same discrete mechanics procedure is derived in (Baez and 
Gilliam, 1995) using an algebraic approach, and they also show that there is a discrete Noether's theorem 

for infinitesimal symmetry. 

Various authors have proposed versions of discrete mechanics. Some study discrete mechanics without 

the motivation of constructing integration schemes while this is a definite motivation for other authors. In 
(Maeda, 1981), the author presents a version of discrete mechanics based on the concept of a difference space. 

The author later shows how to derive the discrete equations from a discrete version of Hamilton's variational 

principle, the same discretization later used in (Veselov, 1988). (Maeda, 1981) also presents a version of 

Noether's theorem. A different approach to discrete mechanics for point mass systems not derived from a 

variational principle is shown in (Labudde and Greenspan, 1974), (Labudde and Greenspan, 1976a), and 

(Labudde and Greenspan, 197613). These algorithms preserve energy and momentum. Another discussion 

of discretizing variational principles is given in (MacKay, 1992) and in (Lewis and Kostelec, 1996). It is our 

opinion that the approach in (Veselov, 1988) we adopt in this paper is the most appealing theoretically of 

these methods and, in addition, is numerically competitive. 

Some authors discretize the principle of least action instead of Hamilton's principle. Algorithms that 

conserve the Hamiltonian are derived in (Itoh and Abe, 1988) based on difference quotients. Differentiation 

is not used and the action is extremized using variational difference quotients. This development presents 

multistep methods with variable time steps. The least action principle is discretized in a different way 
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in (Shibberu, 1994). The resulting equations explicitly enforce energy, and it is stated that the equations 
preserve quadratic invariants. 

Various energy-momentum integrators have been developed by Simo and his co-workers. See, for example, 
(Simo and Tarnow, 1992). Recently, energy-momentum integrators have been derived based on discrete 
directional derivatives and discrete versions of Hamiltonian mechanics in (Gonzalez, 1996a). More references 
on energy-momentum methods are in the reference section of (Gonzalez, 1996a) and in (Gonzalez, 1996b). 
Symplectic, momentum and energy conserving schemes for the rigid body are presented in (Lewis and Simo, 
1995). 

There is a vast amount of literature on symplectic schemes for Hamiltonian systems. The overview of 
symplectic integrators in (Sanz-Serna, 1991) provides background and references. See also (Channell and 
Scovel, 1990) for a survey of the early work and (McLachlan and Scovel, 1996) for a presentation of open 
problems in symplectic integration. References related to the work in this paper are (Reich, 1993), (Reich, 
1994), (McLachlan and Scovel, 1995), and (Jay, 1996). In (Reich, 1993), an integration method is presented 
for Hamiltonian systems that enforces position and velocity constraints in such a way to make the overall 
method symplectic. It is shown in (McLachlan and Scovel, 1995) and in (Reich, 1994) that the algorithm also 
conserves momentum corresponding to a linear symmetry group when the constraint manifold is embedded in 
a linear space. For another treatment of algorithms formed by embedding the constraint manifold in a linear 
space, see (Barth and Leimkuhler, 199613) and (Leimkuhler and Patrick, 1996). The algorithm presented in 
this paper also embeds the constraint manifold in a linear space but only enforces position constraints. 

Comments on Other Algorithms The Verlet algorithm (Verlet, 1967) is important in molecular dy- 
namics simulation (Leimkuhler and Skeel, 1994). An extension of the Verlet algorithm to handle holonomic 
constraints is SHAKE (Ryckaert et al., 1977). SHAKE was extended to handle velocity constraints with 
RATTLE (Anderson, 1983). For a presentation of the syrnplectic nature of the Verlet, SHAKE, and RAT- 
TLE algorithms, see (Leimkuhler and Skeel, 1994). The construction method developed in this paper when 
applied to a Lagrangian with a constant mass matrix and a potential energy term produces an integration 
method similar to the SHAKE algorithm written in terms of position coordinates. However, the potential 
force terms differ as can be seen in Equation (4.8). If one applies the construction procedure with the dis- 
crete Lagrangian definition in Equation (4.20), then one can reproduce the SHAKE algorithm. One recovers 
the Verlet algorithm if the Lagrangian system has no constraints. This result also appears in (Gillilan and 
Wilson, 1992), and the discrete variational principle they apply is similar to the principle in (Veselov, 1988). 
However, they don't extend the result to constraints or more general Lagrangians and do not use the discrete 
Lagrangian definition in this paper. The emphasis in (Gillilan and Wilson, 1992) is also on calculating a path 
given end point conditions. Our procedure can handle more general Lagrangians, such as the Lagrangian 
for the rigid body in terms of quaternions. 

Accuracy The construction method produces 2-step methods that have a second order local truncation 
error. The position error in the numerical examples show second order convergence. One may be able to use 
the methods in (Yoshida, 1990) to increase the order of accuracy. 

The Role of Dissipation. Dissipation is of course very important for practical simulations of mechanical 
systems. However, our philosophy, which is consistent with that of many other authors (e.g., (Armero and 
Simo, 1996), (Chorin et al., 1978)) is that of understanding well the ideal model first, and then one can use 
a time-splitting (product formula) method to interleave it with ones favorite dissipative method one wishes 
to use. 

Energy as a Monitor. In the simulations, we use energy as a monitor to catch any obvious problems, 
as in (Channell and Scovel, 1990) and (Simo and Gonzalez, 1993). It is still unknown if this is a reliable 
indicator, but based on the Ge-Marsden result mentioned before, it may well be. Another indication is the 
analysis with energy oscillation and nearby Hamiltonian systems in (Sanz-Serna, 1991)(page 277-278) and 
(Sanz-Serna and Calvo, 1994)(page 139-140). We must note, however, that energy conservation alone does 
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not imply good performance as is shown in (Ortiz, 1986). In our examples, we observe energy oscillations 

around a constant value, which we take as a good indication. 

When comparing energy-momentum and symplectic-momentum methods, it should be kept in mind that 

energy-momentum methods should be monitored using how well they conserve the symplectic form. This 

is of course not so straightforward as monitoring using the energy, since the symplectic condition involves 

computing the derivative of the flow map (e.g., using a cloud of initial conditions). This paper does not 

directly address these questions, but it is important to keep them in mind. 

Outline of the Paper. The paper first presents the discrete variational principle and then derives the 

properties of the discrete Euler-Lagrange (DEL) equations in a consistent notation. The preserved symplectic 

form is derived followed by a development of the discrete Noether's theorem. The paper then uses the discrete 

variational principle (DVP) to develop a construction procedure for mechanical integrators. A construction 

procedure is presented for constrained and generalized coordinates followed by a discussion of the structure 

of the Jacobian relevant to solving the DEL equations. It is then shown that the DEL equations have a 

second order local truncation error, and that the DEL equations have a solution for a small enough time step 

as long as the continuous Euler-Lagrange equations are solvable. The definition for the discrete momentum 

is then presented. The method is applied to the rigid body (RB) and the double spherical pendulum (DSP) 

and numerical results are presented. The paper concludes with a discussion of future work. 

2 Discrete Variational Principle 

A discrete variational principle (DVP) is presented in this section that leads to evolution equations that are 
analogous to the Euler-Lagrange equations. We call the evolution equations discrete Euler-Lagrange (DEL)  

equations. The results in this section have appeared in (Veselov, 1988), (Veselov, 1991), (Moser and Veselov, 

1991) and in (Baez and Gilliam, 1995) but are rederived here in a consistent notation for completeness and 

clarity. 
Given a configuration space, Q, a discrete Lagrangian is a map IL : Q x Q + R. We will give a procedure 

that defines the evolution map for the system. The action sum is the map S : QNS1 + E% defined by 

where qk E Q and k E Z is the discrete time. The discrete variational principle states that the evolution 

equations extremize the action sum given fixed end points, qo and q ~ .  Extremizing S over ql, . . . , q ~ - 1  leads 
to the DEL equations: 

where cD : Q x Q + Q x Q is defined implicitly by (qk, qk-l) = ( ~ ~ + ~ , q ~ ) .  If D21L is invertible, then 
Equation (2.3) defines the discrete map, a, which flows the system forward in discrete time. 

3 Invariance Properties 

The symplectic structure of Q x Q is defined in this section and an equation for the symplectic form on 

Q x Q is given. It is then shown that preserves the symplectic form. We then derive a discrete Noether's 

theorem by showing that invariance of the discrete Lagrangian leads to a conserved quantity, a momentum 

map, for the flow of a .  
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3.1 Symplectic Structure 

We first define a fiber derivative by 

PIL: Q x Q -t T * Q  

(41140) (qo,D2IL(ql,q0)) 

and define the 2-form on Q x Q by pulling back the canonical 2-form on T * Q :  

w = PIL* (acAN) 
= PIL* (-dOcAN) 

= -d (PIL* ( O C A N ) )  . 

Choose coordinates, qi, on Q and choose the canonical coordinates, (qi ,p i ) ,  on T * Q .  In these coordinates, 
OCAN = dqi A dpi and OCAN = pidqi. The DEL equations are 

Continuing the ca,lculations in Equation (3.2) gives 

since the second term in Equation (3.6) vanishes. 

3.2 Preservation of the Symplectic Form 

We now show that cP preserves the symplectic form, i.e. @*w = w where @* is the pullback of @. For clarity, 
let @ ( y ,  x )  = ( u ,  v )  and write w = d(p(y ,  x ) d x )  = DlzIL(y, x ) d x  A dy. In this notation, y = v = qk+l, x = qk, 

and u = qk+2. We now show that @*w = w: 

- - w (3.13) 

We have used Equation (3.4) and the fact that d ( v ( y ,  x ) )  = d y  in deriving Equation (3.11) from Equa- 
tion (3.10). 



J.M. Wendlandt and J.E. Marsden 

3.3 Discrete Noet her's Theorem 

We now derive a discrete version of Noether's theorem. Let the discrete Lagrangian be invariant under the 

diagonal action of a Lie group G on Q, and let t E g where g is the Lie algebra of G. Invariance of lL implies 

that 

Differentiating Equation (3.14) and setting s = 0 implies that 

where cQ is the infinitesimal generator. Consider the action sum, Equation (2.1), where 0 < i < N and vary 

qk+l over s E R by qk+l (s) = exp (st)  qk+l. Since qk+l(O) extremizes S, we have 

Equation (3.16) implies that 

Subtracting Equation (3.15) from Equation (3.17) reveals that 

If we define the momentum map, J : Q x Q -+ g*, by 

then Equation (3.18) shows that the momentum map is preserved by @ : Q x Q -+ Q x Q. 

We note that this J is equivariant with respect to the action of G on Q x Q and the coadjoint action of 

G on g*. This is proved as in the case of usual Lagrangians (see (Marsden and Ratiu, 1994)). We also note 

that one can develop a theory of Lagrangian reduction in the discrete case, as with the continuous case (see 

(Marsden and Scheurle, 1993)). 

4 Construction of Mechanical Integrators 

We show in this section how to construct mechanical integrators for continuous Lagrangian systems from 
the discrete variational principle. We first show how to construct integrators for Lagrangian systems with 

holonomic constraints by enforcing the constraints through Lagrange multipliers. We call this method the 

constrained coordinate formulation. We then present a second construction procedure by choosing a set 

of generalized coordinates. The next section proves that the two methods are equivalent. We then show 

that the Jacobian used to solve the nonlinear equations for the constrained coordinate formulation has a 
special structure that can be exploited to increase simulation efficiency. Results are then presented on local 

truncation error and solvability. We finally relate the discrete-time momentum map and symplectic form to 

the continuous-time counterparts. 

4.1 Constrained Coordinate Formulation 

We assume that we have a mechanical system with a constraint manifold, Q c V, where V is a real, finite 

dimensional vector space, and that we have an unconstrained Lagrangian, L : TV -+ R which, by restriction 

of L to TQ, defines a constrained Lagrangian, LC : TQ --+ R. We also assume that we have a vector valued 

constraint function, g : V -+ EXk, such that g-l(0) = Q c V with 0 a regular value of g. The dimension of 
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V is denoted n, and therefore, the dimension of Q is m = n - k. We first define the discrete, unconstrained 
Lagrangian, IL : V x V 4 R, to be 

where h E R+ is the time step. The unconstrained action sum is defined by 

We then extremize S : v*+' R subject to the constraint that vk E Q c V for k E (1,. . . , N - I),  

subject to g(vk) = O for all k E (1,. . . , N - I), 

to derive that 

DaL (vk+l, vk) + DlIL (vk, vk- 1) + Dg (vk) = O (no sum over k) (4.4) 

g(vk) = O  for all k E { I , . . .  , N  -1). 

Given vk and vk-1 in Q C V, i.e., g ( v ~ )  = 0 and g ( v ~ - ~ )  = 0, we need to solve the following equations 

D2L (vk+i, vrc) + DiIL (vk, vk-I) + x: '~g (vk) = 0 

9 ( ~ k + l )  = 0 (4.5) 

for vk+l and Xk.  
In terms of the original, unconstrained Lagrangian, Equation (4.5) reads as follows: 

For example, if the continuous Lagrangian system is of the form 

where M is a constant mass matrix, and V is the potential energy, then the DEL equations are 

4.2 Generalized Coordinate Formulation 

For the generalized coordinate formulation, we form the discrete Lagrangian and the action sum restricted 
to Q c V, and then perform the extremization directly on Q by using a coordinate chart. The constrained, 
discrete Lagrangian is given by 
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where LC = LIQxQ. Given a local coordinate chart, 11, : U C Rm + Q C V, where U is an open set in Rm, 

the constrained, discrete Lagrangian is 

The constrained action sum is 

N-I 

Extremizing SC : QN+l -+ R gives the discrete Euler-Lagrange (DEL) equations in terms of generalized 

coordinates, 

In terms of the original, unconstrained Lagrangian, Equation (4.11) equals 

dL dL 
D% (41) {t [g (a*, dx) - (%+I, &+I)] + [g (a*, d*) + - dv ( a * + ~ ,  dk+l) = 0, I (4.12) 

where 

We solve Equations (4.12) for qk+l given qk and qk-1 to advance the flow one time step. 

4.3 Equivalence of the Formulations 

This section proves the equivalence between the constrained and generalized coordinate formulations. 

Theorem 4.3.1 Let g be the constraint function and + be the coordinate chart defined above. Let q ~ ,  and 

qk-1 be the two initial points in the coordinate chart and let vk = $(qk) and vk-1 = +(qk-l). Let Dg(vk) and 

D$(qk) be full rank. Then the generalized formulation, Equation (4.12), has a solution for qk+l zf and only if 

the constrained formulation, Equation (4.6), has a solution for vk+l and Xk.  Furthermore, vk+l = $(qk+l). 

Proof (+=) We assume that we have a solution for vk+l for the constrained formulation. Let qk+l = 

q ! - l ( ~ ~ + ~ )  and we will show that qk+l solves Equation (4.12). Multiply the top equation in Equation (4.6) 

on the left by D % ( ~ ~ + ~ ) .  Also, substitute vk = $(qk) and vk-1 = @(qkv1) into Equation (4.6). Notice that 

g($(qk)) = 0 which implies that Dg($(qk))D$(qk) = 0 and D ~ ( ~ ~ ) D % ( + ( ~ ~ ) )  = 0. Using the substitutions 

and the fact that D ~ $ ( ~ ~ ) D % ( $ J ( ~ ~ ) )  = 0 proves that qk+l is a solution for Equation (4.12). 

(+) To complete the proof, we assume that qk+l is a solution for Equation (4.12) and show that there 
exists a Eagrange multiplier, X k ,  so that vk+l = $(qk+l) is a solution for Equation (4.6). Substitute the 

expressions for vk+l,uk, and vk-1 into Equation (4.6). The lower equation in Equation (4.6) is solved auto- 
matically since vk+l E Q. Note that T,,V = R(D$(qk)) @N(DV(qk))  and that R(D%(uk)) c N(DV(qk)). 

Since D%(vk) is full rank and dim(R(D%(vk))) = dim(N(D%(qk))), R(D?(vk)) equals N ( @ $ J ( ~ ~ ) ) .  We 
then split the left-hand side in Equation (4.6) into a component in R(D$(qk)) and an orthogonal component 

in N ( D ~ $ ( ~ ~ ) ) .  The component in R(D$(qk)) is zero by Equation (4.12) and the fact that R(D%(v~) )  = 

N ( I I ~ ( ~ * ) ) .  We can then find a Lagrange multiplier, Xk,  to make the component in N(D~;C~(~~) )  equal to 
zero since R(D%(v*)) = N ( D ~ ( ~ * ) ) .  Therefore, there exists a Xk so that vk+l = $(qk+l) solves Equa- 

tion (4.6). 
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Figure 1: Comparison of Continuous and Discrete Formulations of Mechanics 
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In Figure 1, we illustrate the relationships between constrained and generalized coordinate formulations 

for discrete-time mechanics as well as continuous-time mechanics. The figure also points out where the 

discrete-time equations approximate the flow of the continuous-time equations. The results for continuous- 

time mechanics are summarized on the left side of the figure. We assume we are given an unconstrained 

Lagrangian with constraint functions as shown in the upper left corner. One can use generalized coordinates 

and apply Hamilton's principle to produce the Euler-Lagrange equations or one can use constrained coor- 
dinates and enforce the constraints through Lagrange multipliers. The right side of the figure summarizes 

the results for discrete-time mechanics. Given the continuous, unconstrained Lagrangian, one can form the 

discrete, unconstrained Lagrangian. One can proceed analogously to continuous-time mechanics by using 

generalized or constrained coordinates. We discuss in Section 4.5 how the discrete equations approximate 

the continuous-time equations. 

4.4 Jacobian. Structure 

For the numerical examples presented later in this paper, we solve the DEL equations, Equation (4.5)' 

using Newton-Raphson equation solvers. These solvers require the construction of a Jacobian formed by 

differentiating Equation (4.5) with respect to vk+l and Xk to get 

where 

For many applications, the nearly symmetric Jacobian, Equation (4.14), is a sparse matrix and sparse matrix 
techniques can be used in the Newton-Raphson steps to increase the simulation efficiency. For tree structured 

multibody systems, one can show that the linear equations involving the Jacobian can be solved in linear 

time. Sparse matrix techniques and symplectic integration are also used for multibody systems in (Barth 

and Leimkuhler, 199613). 

To improve the scaling of the entries in the Jacobian, one can multiply the DEL equations by powers of 

h. For the rigid body example in Section 5.1, we solve the following equations for vk+l and PI, = hXk:  

to produce a Jacobian of the form 

For the double spherical pendulum example, we solve 

to produce a Jacobian of the form 
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4.5 Local Truncation Error and Solvability 

Results on truncation error and solvability are presented in this section. To calculate the truncation error, 

we first insert an exact solution of the differential equations into the algorithm equations in Equation (4.12), 
and then expand the resulting equation in terms of the step size h. To calculate the expansion, it is easier 

to first expand Equation (4.12) about 

and then expand the result into powers of h. This lengthy calculation which we do not reproduce here reveals 

that the local truncation error of the method is second order. The first term, hO, is zero since q ,q  satisfy 
the continuous Euler-Lagrange equations. The second term, hl, is zero through a cancellation of terms. The 

h2 term is non-zero, and the coefficient is a lengthy expression involving second, third, and fourth partial 

derivatives of L : TV -i R. 
If one uses the following definition for the discrete Lagrangian: 

then the resulting DEL equations will only be first order accurate for a general Lagrangian. There is no 
cancellation of terms in the h1 term as there is with the definition in Equation (4.1). However, in some cases, 

the resulting DEL equations may be explicit while the DEL equations from the definition in Equation (4.1) 

are implicit, An example of this occurring is if the continl~ous Lagrangian is in the form in Equation (4.7), 

and there are no constraints. 
The existence of a solution for the continuous-time equations is related to the solvability of the generalized 

coordinate discrete equations. One can show that if Dz2L is non-singular and if the Jacobian of the constraints 

is full rank, then for a sufficiently small time step, the generalized coordinate DEL equations are solvable for 

q k + l .  This is proved by showing that the DEL equations have a solution for h = 0 by taking the limit and 
then by using the implicit function theorem to conclude that there is a solution in a neighborhood of h = 0. 

Theorem 4.3.1 then implies that there is also a solution for the DEL equations with Lagrange multipliers. 

4.6 Symplectic Form and Discrete Momentum Map 

The integrators created through the construction procedure are symplectic-momentum integrators, however, 

this statement requires clarification which we present in this section. The integrators are symplectic in that 

the map produced on T*V or T*Q is a symplectic map. Also, if the Lie group acts linearly on V, then the 

continuous flow of the Euler-Lagrange equations and the discrete map produced from the DEL equations 

preserve the same momentum map on T*Q. 
However, if one integrates the continuous equations exactly or accurately and uses the result to initialize 

the discrete equations, one will notice that the value of the momentum map will differ from the value of the 

momentum map for the continuous system. The difference arises from the difference in the assignment of 
the momentum coordinate in T*V through the fiber derivative. In the continuous case, the momentum is 

D2L while in the discrete case, we choose to use -hD2L. We multiply by a -h from the definitions given in 

Equation (3.1) because -hD& converges to D2L as h 0. 

If the Lagrangian of a continuous system is invariant to the action of a group, and if the constraints are 

also invariant under the group action, i.e. 

L : T V - + R  

L ( G . v , G . 6 )  = L ( v , ~ )  

9 (G.  v) = 9 (v) > 

where the action of G on v E V is represented as G.v, then the flow of the Euler-Lagrange equations preserve 

the momentum map, 

J : T V - + g * ,  
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where 

If the group G also acts linearly on V, then the discrete Lagrangian is also invariant to the group action 
through the following calculation: 

F'rom a similar derivation to the derivation in Section (3.3), one can show that the following momentum map 

defined by the relation 

is conserved by the flow of the DEL equations. 
We now calculate -hD2L and notice 

As h --+ 0, the discrete momentum value, -hD21L, converges to the continuous momentum value, DzL. 
Therefore, the quantities that depend on the discrete momentum value, such as the discrete momentum map 

defined to be -hJ, converge to  their continuous counterparts as h + 0. 

5 Numerical Examples 

We apply the construction procedure to produce mechanical integrators for the rigid body (RB) and the 
double spherical pendulum (DSP). We choose to use constrained coordinates instead of generalized coordi- 
nates to avoid coordinate singularities and coordinate patching. We use unit quaternions to create the rigid 
body algorithm, and use the position of the two masses for the double spherical pendulum. We compare the 
double spherical pendulum algorithm to an energy-momentum algorithm presented in (Wendlandt, 1995) 
based on the work in (Gonzalez, 1996a). 

5.1 Rigid Body 

The algorithm presented here updates quaternion variables based on the previous two quaternion variables. 
The configuration manifold is taken to be Q = S3 c V where V = R" Quaternions were used instead of 
using V = Rg with the six orthogonal constraints of SO(3) primarily to avoid a large number of Lagrange 
multipliers. The constraint function is g(v) = v . v - 1 and is enforced with Lagrange multipliers. 

Rigid body integrators that preserve certain mechanical properties have been created by several re- 
searchers. A symplectic integrator which preserves the momentum and energy is presented in (Lewis and 
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Simo, 1995). An energy-momentum integrator is presented in (Simo and Wong, 1991). A symplectic- 
momentum integrator is presented in (McLachlan and Scovel, 1995). A rigid body integrator based on a 

discrete variational principle and in terms of 3 x 3 matrices with constraints is presented in (Moser and 

Veselov, 1991). It would be interesting to compare in more detail the integrator in (Moser and Veselov, 
1991) to the quaternion-based integrator in this section. 

We first attach a body frame to the rigid body and represent the frame as a matrix, R  E S0(3) ,  which 

maps vectors in the body frame, B, to vectors in the spatial (inertial) frame, S. The rotation matrix is then 

thought of as a mapping, R  : B -+ S. 

We now present a background in quaternions. Consult (Murray et al., 1994) for more information on 
quaternions. A unit quaternion is a four parameter representation of SO(3). The quaternion consists of a 

scalar value, q,, and a vector with three components which we denote q, = (q,, q,, q,). The following formula 

constructs a SO(3) matrix, A, from its unit quaternion representation, a: 

where 

A useful property of the unit quaternion representation is that if A, 3, and C E SO(3) are represented 

by unit quaternions, a, b, and c, respectively, then C = A B  if and only if c = f a  * b where * represents 

quaternion multiplication. If c = a * b, then c, = a, * b, - a, . b, and c, = a,b, + b,a, + a, x b,. Also, 

the conjugate of a denoted ti is given by ti = (a,, -a,). For unit quaternions, ti is the inverse of a, in that 

a * Zi = (1,0,0,0). An additional fact about quaternions is that if w = Av and a is a unit quaternion that 
represents A, then (0, w) = a * (0, v) * ti where (0, w) is a quaternion formed from the vector w. 

If R : B --t S is the rotation matrix representing the orientation of the rigid body, then the body angular 

velocity vector, wb, is given by ijb = R ~ R .  Another fact about quaternions is that if r is the unit quaternion 

representing R, then F * + = (0, wb/2). 

Using the above relationship for the body angular velocity, we construct the continuous Lagrangian, 

L : TV -+ R, to be 

where 1 is the inertia matrix. The constraint is the unit norm constraint for quaternions, q2 + q, . q, = 1. 

The Lagrangian in Equation (5.3) is invariant under left quaternionic multiplication, i.e. 

where r is a unit quaternion. The invariance leads to conservation of angular momentum. 

The discrete Lagrangian, L : TV --t R, is chosen to be 

y + x  y - x  
L ( ~ , x )  = (T1 h). 

We first simplify the body angular velocity term to get 
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Restricted to Q, y * y = 5 * x = (1,0,0,0). Simplifying restricted to Q gives 

Equation (5.7) is an approximation to the body angular velocity, (0, wb). The simplified discrete Lagrangian 
restricted to Q is then 

and the discrete Lagrangian on all of V x V is then taken to be equal to Equation (5.8). Since we are 
extremizing S restricted to Q, the extension of lL to V \ Q is arbitrary. 

The discrete Lagrangian in Equation (5.8) is also invariant under left quaternionic multiplication, i.e. 

where r is a unit quaternion, and the invariance leads to conservation of discrete momentum which converges 
to the continuous momentum as the step size decreases, as we have seen. 

The DEL equations for the RB and relevant Jacobian are created in Mathernatica (Wolfram, 1991) and 
exported to C-code for simulation. The initial conditions and RB parameters are 

We must first initialize the rigid body integrator by choosing two initial quaternion values. We do this by 
using an Euler step with q = q*(O, wb/2) with h = 10-~s.  We then use the DVP integrator with h = 1 0 ~ ~ s  to 
set the second initial point for h = 10-~s,  10-~s ,  10-~s ,  and 10-Is. The system is simulated for 30 seconds. 
To calculate errors in energy, momentum, and position, we first choose a standard value. We use the energy 
and momentum given initially after the first Euler step at h = 1 0 - ~ s  as the standard energy and momentum 
values. We use the results of the 30s simulation with h = 1 0 - ~ s  as the standard position variables. We use 
the following formula to calculate errors for each simulation: 

where m is the length of the vector vt, vf is the standard value at the ith sample, and N is the number of 
samples. The results of the simulations are tabulated in Table 1. The table lists CPU time on a SGI Indy 

Table 1: Simulation Results for the Rigid Body Simulation 

(1 100 MHZ IP22 Processor, FPU: MIPS R4610 Floating Point, CPU:MIPS R4600 Processor), quaternion 
error, energy error, and momentum error. 

Figure 2 is a log-log plot of CPU time in seconds versus time step in seconds. The CPU time drops off 
nearly linearly as the time step increases. The CPU time is corrected for the time it takes to initialize each 
simulation with the h = 1 0 ~ ~ s  simulation. 

h (s) 
0.0001 
0.001 
0.01 
0.1 

Quaternion Error 

0.0 
0.00000395996880 
0.00039966872027 
0.03647626533327 

CPU time (s) 

97.620 
9.905 
1.397 
0.301 

Energy Error 

0.00000062559469 
0.00006274300332 
0.00627440600000 
0.62167959600000 

Momentum Error 

0.00000016714624 
0.00001686683194 
0.00168665680795 
0.16652140510229 
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-0.5 1 I I I I I 

0 5 10 15 20 25 30 
--- h = 0.1s time (s) - h = 0.0001s 

Figure 4: Quaternion Coordinate Versus Time 

The quaternion error versus time step is shown in Figure 3. The plot shows a second order relationship 

between error and time step. 

Figure 4 compares the plot of the quaternion, q,, versus time for the simulations at h = 1 0 - ~ s  and 

h = 10-'s. The trajectory for the large time step exhibits the same qualitative behavior as the small time 

step, but the deviations increase for longer simulation times. 

The energy error versus time step is shown in Figure 5. The figure reveals a second order relationship be- 

tween energy error and time step. The energy for the h = 10-~s  simulation deviates between 32.9999993595 

and 32.9999993495. The energy for the simulation at h = 1 0 - ~ s  deviates between 32.999937235J and 
32.9999372355. There is no deviation in energy for the h = 1 0 - ~ s  and h = 10-'s simulations. 

For each time step, the constant value of the discrete momentum map is conserved, however, as explained 

in Section 4.6, the value converges to the continuous momentum value as the step size decreases. The 
convergence of the discrete momentum is shown in Figure 6. The figure reveals a second order relationship 

between momentum error and time step. The angular momentum for each simulation should remain constant, 

but there are small deviations (f lop9) in the data for the h = 1 0 ~ ~ s  simulation. There are no deviations in 

the momentum value for the other simulations. 

5.2 Double Spherical Pendulum 

The double spherical pendulum consists of two constrained point masses. The configuration space is Q = 

S2 x S2 and the linear space is V = R3 x R3. The position of the first mass is ql = (xl, yl, zl),  and the 

position of the second mass is 42 = (x2, y2, 22). The constraint equation, given by the pendulum length 
constraints, is 

The DSP Lagrangian system is of the form in Equation (4.7), and the DEL equations for this system are 
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Figure 5: Energy Error Versus Time Step for the Rigid Body Simulation 
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Figure 6: Momentum Error Versus Time Step for the Rigid Body Simulation 
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of the form in Equation (4.8). The DVP algorithm for the DSP is the SHAKE algorithm: 

where 

and m l  and m2 are the masses. 
We compare the simulation from the discrete variational principle (DVP) construction to  an energy- 

momentum (EM) formulation based on the construction procedure in (Gonzalez, 1996a), and applied to the 

DSP in (Wendlandt, 1995). The EM algorithm for the DSP is 

where pi is the momentum for the ith mass, p is the six vector of momentum formed by stacking pl and p2, 

and 

The following parameters are used for the DSP: ml = 2.0Kg, m2 = 3.5Kg, l1 = 4.0m, l2 = 3.0m, 

and g = 9.81m/s2. The initial conditions are XI = 2.820m, yl = 0.025m, 2 2  = 5.085m, ya = 0.105~1, 

= 3.381m/s, y1 = 2.506m/s, x2 = 2.497m/s, and y2 = 10.495m/s. The position and velocity of the z- 
coordinate is determined from the constraints, and the z-coordinate for both masses is taken to be negative. 

The output of the EM simulation at  a time step of 0.0001s is used as the standard and initializes the second 

step in the DVP simulations. The results of the EM simulations and the DVP simulations are summarized in 

Table 2. The table contains the CPU time, position error, energy error and momentum error for the EM and 
the DVP simulations. The energy and momentum error for the EM simulations are zero. Equation (5.10) is 

used to calculate the errors for the DSP simulations. 

Figure 7 is a plot of CPU time versus time step for the EM and DVP simulations. The DVP simulations 

are slightly faster for each time step and both CPU times drop off nearly linearly with increasing time step. 

The position error for the EM and DVP simulations is shown in Figure 8. Both simulations show a 

second order relationship between position error and time step. The error for the EM simulation is slightly 

greater than the error for the DVP simulation for h > 1 0 ~ ~ s .  
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Figure 7: CPU Time Versus Time Step for the DSP Simulation 
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Figure 8: Position Error Versus Time Step for the DSP Simulation 
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Table 2: Simulation Results for the DSP Simulation 

The y position of the second mass is shown in Figure 9 for the EM and DVP simulations for h = 0.0001s 

and h = 0.1s. Both the EM and DVP simulations at h = 0.0001s overlap and cannot be distinguished when 
plotted on the same graph. For both the EM and DVP simulations, reasonably accurate and fast trajectories 

are produced at large time steps, h = 0.1s. Both simulation methods may have uses in interactive simulation 

applications, such as design and animation, where real-time, reasonably accurate simulations are important. 
The error in energy versus time step is shown in Figure 10. The DVP energy error appears to drop off 

as the square of the time step, at least for the large time steps. The energy error is zero for all time steps 
for the EM simulation. The energy for the DVP simulation at h = 0.0001s deviabes between 24.9444951095 

and 24 .94449mJ  and deviates between 20.9108057935 and 25.583335766J for h = 0.1s. 

The error in the momentum about the z-axis is shown in Figure 11. The momentum error for the EM 

simulation is zero for all time steps. The DVP algorithm should preserve momentum but for the smallest time 

step, h = 0 .0001~~  the momentum varies between 199.8254671nm2/s to 199.8254671@m2/s. The variation 

may be due to numerical errors. The momentum is constant for the other time steps. Again, the constant 

discrete momentum value approaches the value of the continuous momentum as the step size decreases. 

Figure 12 shows the energy for the DVP simulations versus time for h = 0.1s and 0.01s in the lower 

graph. The upper graph shows energy versus time for h = 0.001s and 0.0001s. The energy oscillates about a 

constant value, and the constant value approaches the true energy. The amplitude of the oscillations decrease 

as the step size decreases. The fluctuations in energy appear to be related to the constraint forces. The 
middle graph is a plot of the multipliers versus time, and the fluctuations in the multipliers is correlated to 

the fluctuations in energy. This relationship has also been noticed in (Barth and Leimkuhler, 1996a), and 

they use variable step size to decrease the energy oscillation. 

h (s) 

0.0001 

0.001 

0.01 

6 Conclusion 

CPU time (s) 

73.648 

103.871 

9.065 

13.250 

1.152 

1.549 

0.211 

0.263 

Method 

DVP 

EM 
DVP 

EM 
DVP 

EM 
DVP 

EM 

This paper presented a procedure to construct mechanical integrators for Lagrangian systems and applied the 

method to the rigid body and the double spherical pendulum. The discrete Euler-Lagrange (DEL) equations 

share similarities to the continuous equations of motion and preserve a symplectic form and invariants 

resulting from group invariance of the Lagrangian. 
There are many areas of future work and development. We list a few of these here. 

Energy-Momentum Integrators. One may proceed analogously to the derivation in this paper to  create 

energy-momentum integrators possibly based on discretizing the principle of least action. 

Position Error 

0.00000023292428 

0.0 

0.00001146362264 

0.00001214070733 

0.00113498458508 

0.00122489163701 

0.09575837631416 

0.11843736345452 

Nonholonomic Systems. The method presented in this paper treats holonomic constraints and one 

would like to generalize the method to treat nonholonomic constraints, as in (Bloch et al., 1996). For 

nonholonomic systems, the standard symplectic form is not preserved, and there are momentum equations 
and not conservation laws. Also, energy can be conserved in these systems. One has to develop algorithms 

taking into account these effects. 

Energy Error 

0.00000647521262 

0.0 

0.00032685721927 

0.0 

0.03223741607973 

0.0 

2.66479215701329 

0.0 

Momentum Error 

0.00000254701662 

0.0 

0.00017074600001 

0.0 

0.01696175300000 

0.0 

1.55996134500002 

0.0 
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--- h = 0.1s time (s) - h = 0.0001s 

Figure 9: Position Coordinate Versus Time for the DSP Simulation 
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Figure 10: Energy Error Versus Time Step for the DSP Simulation 
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Figure 11: Momentum Error Versus Time Step for the DSP Simulation 
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Figure 12: Energy and Multipliers Versus Time for the DSP Simulation 



Mechanical Inteorators Derived from a Discrete Variational Princiwle 

Multistep Methods and Time Step Control. It seems possible to modify the method to construct 
multistep mechanical integrators to increase the accuracy of the method. One would also like to modify the 
method to allow variable time steps to improve efficiency. 

External Forces. It would also be desirable to generalize the method to include external forces. This 
should be straightforward since they can be included in Hamilton's principle in standard fashion. One would 
also like to add control forces and dissipative forces to simulate controlled mechanical systems. The first 
author is currently using the techniques presented in this paper to develop a multibody simulator to simulate 
control systems for human models (Wendlandt and Sastry, 1996). 

Spacetime Integrators Since the method here is variational by nature and focuses on the temporal 
behavior, it should be helpful in the development of spacetime integrators by synthesis with existing finite 
element methods. 

We first would like to thank Andrew Lewis for pointing out (Baez and Gilliam, 1995). We would also like 
to thank Richard Murray and Abhi Jain for help with an initial investigation into mechanical integrators. 
We appreciate the useful comments and discussions provided by Francisco Armero and Oscar Gonzalez. We 
also thank Robert MacKay and Shmuel Weissman for useful discussions. 
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