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This work presents a strategy to design three-dimensional elastic periodic structures endowed with

complete bandgaps, the first of which is ultra-wide, where the top limits of the first two bandgaps

are overstepped in terms of wave transmission in the finite structure. Thus, subsequent bandgaps

are merged, approaching the behaviour of a three-dimensional low-pass mechanical filter. This

result relies on a proper organization of the modal characteristics, and it is validated by performing

numerical and analytical calculations over the unit cell. A prototype of the analysed layout, made

of Nylon by means of additive manufacturing, is experimentally tested to assess the transmission

spectrum of the finite structure, obtaining good agreement with numerical predictions. The pre-

sented strategy paves the way for the development of a class of periodic structures to be used in

robust and reliable wave attenuation over a wide frequency band. Published by AIP Publishing.
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Periodic structures find numerous applications in physics

and engineering domains due to their peculiar properties in

wave guiding and filtering. A major example in the electro-

magnetic field is represented by photonic crystals,1,2 while

their counterparts for acoustic and elastic waves are the

so-called phononic crystals.3,4 Focusing on elastic periodic

structures, the frequency range of applications is wide:5 from

extremely high frequencies, i.e., THz region for heat transmis-

sion,6 to few Hz in the seismic metamaterial domain,7 often

taking the most from locally resonant mechanisms.8–12

Among others, the bandgap (i.e., the frequency range of pre-

vented wave transmission) is one of the most investigated

properties: a wide and complete bandgap is generally benefi-

cial to guarantee robust wave attenuation around a certain fre-

quency.4,13 In many cases, a complete bandgap is obtained by

a periodic arrangement of two or more materials,4,14 but sig-

nificant results can also be achieved for a single material,15–17

among which the one endowed with a very large complete

bandgap that the authors show in a previous paper.18 In gen-

eral, periodic structures endowed with bandgaps exhibit atten-

uation in the transmission spectrum of the finite structure

in correspondence of the bandgap frequency range.4,14,15,18

Conversely, the design presented in this paper is such that the

transmission spectrum of the finite structure is typical of a

low-pass mechanical filter: the attenuation starts in correspon-

dence of the bandgap bottom limit, and it proceeds beyond

the bandgap top limits, merging the subsequent bandgaps.

This behaviour is due to the design strategy adopted for the

unit cell of the periodic structure, which is presented both ana-

lytically and numerically, that confines the mechanical energy

of the structure in well separated frequency bands by exploit-

ing the peculiar features of modal shapes. The elastic modes

are organized such that all modes characterized by big modal

masses are confined in the first passband, while, from the

second on, all the passbands are characterized by small

modal masses, i.e., local modes. The bandgap merging is

confirmed by both numerical calculations and experimental

tests on a finite prototype. Additionally, a comparison with

a prototype of a homogeneous solid cube of the same mate-

rial, production process, and dimensions is carried out to

highlight the differences between the proposed design and

the bulk material.

The periodic structure analysed is shown in Fig. 1(a),

while a cross section of the unit cell is presented in Fig. 1(b).

The geometrical characteristics of the unit cell are [refer to

Fig. 1(b)] w1 ¼ 0:04a; w2 ¼ 0:05a; l ¼ 1:05ða� 2rÞ, with a

being the unit cell characteristic dimension and r¼ 0.33a the

sphere radius. For the prototyping and experimental activity,

the unit cell size is chosen as a¼ 0.05m, while the material is

Nylon PA1219 (Young’s modulus E¼ 1.586GPa, Poisson’s

ratio �¼ 0.4, density q¼ 1000 kg/m3, and sound velocity

v ¼
ffiffiffiffiffiffiffiffiffi

E=q
p

¼ 1259m/s).

FIG. 1. Analysed periodic structure: (a) prototype in Nylon PA1219 of

dimensions 0.150m� 0.150m� 0.150m of the periodic structure composed

of 3� 3� 3 unit cells and (b) a unit cell cross-section to define the structural

parameters.a)Electronic mail: alberto.corigliano@polimi.it
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In the proposed structure of Fig. 1(a), the main longitudi-

nal wave propagation mechanism is characterized by spheres

that move as rigid bodies and box-like connections that

exploit the flexural stiffness of the beams [refer to Fig. 2(b)].

A one-dimensional mono-atomic spring mass chain approxi-

mation is introduced to model such a wave propagation phe-

nomenon [refer to Fig. 2(a)]. The parameters m and k of such

a chain are defined as the mass of the sphere, m ¼ 4=3qpr3,
and the longitudinal stiffness of the box-like connection,

k ¼ abksb, respectively. The coefficient a ¼ 1=2 accounts for

the combination of the stiffnesses associated with the two

couples of beams (each couple is attached to one sphere),

while b¼ 2 accounts for the sum of the stiffnesses of the two

orthogonal beams (the two beams attached to one sphere).

The stiffness of the single beam is ksb ¼ 24EI=l3el [refer to

Fig. 2(c)], where I ¼ 1=12w2w
3
1; lel ¼ l=3� w1=2. The rigid

part is a representation of the beam’s portion that is attached

to the sphere. The non-dimensional frequency value of

the low-passband limit calculated with this scheme is20

fnd ¼ fa=v ¼ 2=ð2pÞ
ffiffiffiffiffiffiffiffiffi

k=m
p

a=v ¼ 0:06663 (refer to the red

dashed horizontal line in Fig. 3).

The numerical phononic band structure is calculated

by means of the Solid Mechanics Module of COMSOL

Multiphysics v5.3, and it is shown in Fig. 3: the first bandgap

is characterized by a gap to mid-gap ratio of 159.2%, with

non-dimensional frequency limits equal to 0.06560 and

0.57815. The analytical prediction of the first bandgap low

limit differs only by 1.59% from the numerical one.

The first bandgap is the widest complete bandgap in

terms of the gap to mid-gap ratio for three-dimensional elastic

periodic structures. Moreover, the periodic structure exhibits

an opening frequency of the bandgap that is half of the one

reported in the previous paper,18 with the same material and

dimensions. This is due to the more compliant connection

between the spheres, which exploits the flexural stiffness of

the connecting beams instead of the axial one.

The most important result of this paper is the conception

of a periodic structure in which the bandgap limits are over-

stepped in the transmission spectrum, so that the bandgaps in

Fig. 3 are basically merged, approaching the behaviour of a

low-pass mechanical filter. Such a physical property is con-

nected to the specific organization of the vibrating modes

that are now thoroughly examined. The modes which define

each bandgap limit in the phononic band structure of Fig. 3

are reported in Fig. 4. It must be noticed that the mechanical

features of the modes in the limit bands (i.e., deformation

mechanisms in terms of modal masses and modal stiffnesses)

do not change significantly from one symmetry point to the

other, the only differences being the propagation direction

and the relative phase between periodically repeated points.

The opening mode of the first bandgap involves the

whole unit cell, and it is therefore labelled as “global”: the

spheres can be seen as lumped masses with rigid motion,

while the connecting beams play the role of elastic springs,

undergoing flexural deformation. This mode, which is per-

fectly interpreted by the simple model in Fig. 2, occurs at

low frequency mainly due to the significant modal mass. The

closing mode of the first bandgap (refer to Fig. 4) is charac-

terized by a local deformation of the box-like connection,

while the spheres are almost unaffected. The modal mass is

significantly lower than the one of the opening mode, while

the modal stiffnesses are comparable, relying mainly on the

flexural deformation of the beam connections. As a conse-

quence, this mode is characterized by high frequency, and it

FIG. 2. Spring mass chain model: (a) mono-atomic spring-mass chain, (b)

assumed mode shape (normalized with respect to the maximum displace-

ment) for longitudinal wave propagation in the periodic structure, and (c) its

simplified structural model.

FIG. 3. Phononic band structure of the periodic structure: f is the dimen-

sional frequency and v ¼
ffiffiffiffiffiffiffiffiffi

E=q
p

sound velocity in the medium. The horizon-

tal red dashed line is the analytical approximation of the bandgap opening

frequency obtained with the spring-mass chain model shown in Fig. 2(a).

The considered Irreducible Brillouin Zone (IBZ) is provided.

FIG. 4. Elastic mode shapes (normalized with respect to the maximum dis-

placement) at lower and upper bounds of the bandgaps reported in Fig. 3. The

symmetry points are not specified since the modes of each bandgap limit pre-

sent the same mechanical characteristics. To improve the understanding of

the mode shapes, the frontal semi-sphere is omitted where necessary.
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is called “local” since it does not involve the entire unit cell.

Being the modal masses associated with boundaries of the

first bandgap significantly different, an ultra-wide complete

three-dimensional bandgap arises, as in the case of the

diatomic spring-mass chain described in the literature.21

Overall, the infinite periodic structure is characterized by a

set of global modes at low frequencies, ranging from the

rigid body motions to all the modes involving the spheres as

modal masses, and several bands of local modes at higher

frequencies, each one implying the deformations of single

components of the unit cell. More specifically, the second

passband, as already commented, presents local modes that

involve the connecting beams, while the third passband

mainly presents modes with local deformations of the

spheres (refer to Fig. 4). It must be stressed that the mode at

the upper limit of the first bandgap and all the modes in the

second passband are characterized by the wave propagation

that does not involve the motion of the spheres (refer to

Fig. 4), although complying with the Floquet-Bloch bound-

ary conditions: for the periodic material architecture, this

leads to the conclusion that few repetitions of the unit cell

are sufficient to obtain a drastic reduction of the wave propa-

gation also in this frequency range.

To confirm such a behaviour, a prototype of the considered

structure [see Fig. 1(a)] made of 3� 3� 3 unit cells and unit

cell length a¼ 0.05m is manufactured using Selective Laser

Sintering (SLS) with Nylon PA12.19 This finite structure is

both numerically analysed and experimentally tested to assess

the transmission spectrum with reference to the C-X direction

of the Irreducible Brillouin Zone (IBZ):18 the input and output

reference areas are shown in Figs. 5(b) and 5(c), respectively.

The numerical transmission spectrum for the periodic

structure is calculated by means of both the Solid Mechanics

Module of COMSOL Multiphysics v5.3 and ABAQUS CAE

v6.13 to double-check the results, by applying a harmonic

force, and considering first a purely linear elastic behaviour

of the Nylon to demonstrate the bandgaps merging without

the additional effect of material loss. The numerical linear

elastic transmission spectrum without losses is reported in

Fig. 5(a) as the blue solid line, while the boundary frequency

of the bandgaps is highlighted with vertical blue dashed

lines: the two are in good agreement in terms of wave attenu-

ation frequency bands. Although the prototype is made of

just 3� 3� 3 unit cells, the transmission spectrum presents a

level of attenuation up to 11 orders of magnitude between

the input and output accelerations in the first two bandgap

regions. It must be pointed out that the numerical output sig-

nal is far from the machine precision in both the Finite

Element solvers. Therefore, the attenuation up to 230 dB is

considered reliable. It can be seen that the numerical trans-

mission spectrum without losses presents a clear attenuation

(of around 75 dB with 40 dB spikes) in the second passband:

this confirms that the local modes that characterize this pass-

band cannot be excited properly by the input force. The

same concept applies to the third passband: to emphasize

this effect, a bold line is drawn in correspondence of 50 dB

of attenuation. This result vouches that it is possible to over-

step the top limits of the bandgaps, and the related pass-

bands, in three-dimensional elastic periodic structures, at

least along the C-X IBZ path.

Experimental tests are conducted on the Nylon proto-

type: the excitation is applied in the orthogonal direction

with respect to the input surface using an inertial actuator, a

VibeTribe-Mamba with 20W power and a frequency range

from 40Hz to 20 kHz. Two PCB Piezotronics 353B15 accel-

erometers, with a sensitivity of 10mV/g and a resonant fre-

quency of 70 kHz, are glued at the centers of the top [input,

refer to Fig. 5(b)] and bottom [output, refer to Fig. 5(c)]

faces of the prototype. The data acquisition chain is com-

pleted by an 8-channel PCB Piezotronics 483C05 ICP
VR

Sensor Signal Conditioner and a NI 9205 module, with 16-

bit resolution. Tests are performed with a slow sweep sine

input from 0.2 kHz to 20.0 kHz, both sweep up and sweep

down. A user routine in Matlab performs the post processing.

It must be noticed that the maximum attenuation that can be

measured with the current experimental setup is of 75 dB

(i.e., 3.75 orders of magnitude).

The experimental transmission spectrum (thick black

solid line in Fig. 6) clearly shows that the finite structure

FIG. 5. Transmission analysis: (a) Numerical linear elastic transmission

spectrum of the proposed design without losses (blue solid line) in the C-X

IBZ path. The frequency limits of the (linear elastic) bandgaps reported in

Fig. 3 are highlighted by vertical blue dashed lines. (b) Numerical and

experimental reference area for the input signal. (c) Reference area for the

output signal.

FIG. 6. Transmission analysis: the experimental transmission spectrum of

the proposed design (thick black solid line) and of the homogeneous cube

(thin green solid line) and numerical transmission spectrum of the proposed

design considering losses (red dashed line). All the transmission spectra are

along the C-X IBZ path.
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behaves like a mechanical low-pass filter in the audible fre-

quency range: after the bandgap opening, the output signal

remains around 3.75 orders of magnitude lower than the

input until 20 kHz, with only 3 cell periodicity.

To investigate damping and other bulk material proper-

ties of the Nylon PA12, a second prototype, a homogeneous

solid cube of the same dimensions, is manufactured with

SLS: its transmission loss quantifies the bulk characteristics

of the material (e.g., damping as a function of the excitation

frequency), independently from the geometry of the struc-

ture. This comparison is sound since the smallest dimension

in the periodic structure is sufficiently larger than the pixel

precision of the SLS technique procedure, which are 2.0mm

and 0.1mm, respectively. The solid cube presents a smoothly

decreasing transmission spectrum in the dB scale versus fre-

quency (refer to the thin green solid line of Fig. 6): this indi-

cates that the transmission loss increases as frequency

increases. This characteristic is used to define a frequency-

proportional loss factor for the Nylon PA12. A complex stiff-

ness modulus is introduced, namely, ~E ¼ Eð1þ igxÞ, where
i is the imaginary unit, x is the circular frequency, and the

parameter g has been obtained through the analysis of the

transmission loss on the homogeneous cube. The identified

value is g ¼ 1:5 ls.
The numerical transmission spectrum considering losses

is reported as the red dashed line in Fig. 6, showing that the

amplitudes of the frequency response related to the second

passband and above are beyond the experimental threshold

of 75 dB and therefore cannot be captured by the experiment.

In this work, the merging of subsequent bandgaps in a

three-dimensional, single material, elastic periodic structure

is presented, approaching the behaviour of a low-pass

mechanical filter for elastic waves in the audible frequency

range. The presented design is endowed with the widest

bandgap in terms of the gap to mid-gap ratio for 3D elastic

periodic structures. The strategy to obtain such properties is

described, relying on the modal analysis of the unit cell and

on structural separation of global and local mode bands. This

design leads to a generation of periodic structures to be used

in robust and reliable wave attenuation over a wide fre-

quency band.
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