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The Case of a Polyhedron on a Table 1

January 22, 1991

Michael Erdmann2 Matthew T. Mason3 George Vanecek, Jr.4

Abstract

The positioning and orienting of parts is a standard problem in
manufacturing. Orienting parts is often a prelude to the assembly of parts at
tight tolerances. This paper considers the problem of orienting a part resting
on a table, by tilting the table. The initial orientation of the part is assumed
to be completely unknown. The objective is to tilt the table in a manner
that reduces the uncertainty in the part's orientation. The paper focuses on
three-dimensional polyhedral parts, with infinite friction between the parts and
the table. The paper proposes a planner that determines a sequence of tilting
operations designed to minimize the uncertainty in the part's orientation. The
planner runs in time O(n4

), where n is the number of faces of the polyhedron.
The planner produces a sequence of O(n) distinct tilts.
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1 Introduction

The positioning and orienting of parts is a key problem in manufacturing and
assembly. The localization of parts is often a prelude to more complicated assembly
operations in which several parts must be mated at precise tolerances. There are two
basic approaches for determining the position and orientation of a part. One is to
sense this information, as with a vision system. Another approach is to use mechanical
means for reorienting a part. The purpose is to act on the part in a manner that
reduces uncertainty. Uncertainty is reduced whenever an action decreases the set of
possible configurations of the part. In general, a manufacturing system will include
both sensing and mechanical modules.

The mechanical approach towards parts localization underlies the use of feeder
mechanisms, such as bowl feeders and conveyor belts. In these systems parts are
forced to slide past a series of gates. Each gate either reorients a part or filters it out
if the part arrives in an undesirable orientation. A coin sorter is a good example.

The mechanical approach has been most effective for localizing large quantities of
parts in parallel. In part this is due to the long time required to sense precisely the
location of a part using a vision system, then to apply some conditional manipulation
operation that properly reorients the part. Additionally, with large numbers of parts,
it is often not necessary to ensure that any particular part is properly oriented, merely
that a large fraction of the parts entering the system are localized efficiently. Those
that are not successfully reoriented are merely ejected from the current part of the
orienting system, and fed back into the system at the beginning.

Humans perform much of the design of feeder mechanisms, relying on years of
experience and intuition. One goal of an automated design and manufacturing system
should be to automate as well the design of the hardware and software used to
assemble the parts.

One type of orienting system in industrial use is a palletizing tray that contains
depressions shaped approximately like the parts to be oriented. Parts are dropped
onto the tray, the tray is made to shake for a while, and eventually the parts fall
into their nests in desired orientations. One important question is how to design the
parts and the nests so that the parts do in fact wind up in the desired orientations.
Another important question is to decide how the tray should be moved in order to
facilitate the orienting process.

With such a palletizing system as motivation, we consider in this paper the
problem of orienting a three-dimensional polyhedron resting on a tiltable table.
Friction is assumed to be infinite. An understanding of this problem is seen as a
first step in solving the general nest-orienting problem. We derive an algorithm for
obtaining a sequence of tilting operations of the table that minimizes the possible
resting configurations of the polyhedron. We show that any such strategy contains
at most O(n) steps, where n is the number of faces of the polyhedron.
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2 Previous Work

Previous work (Erdmann and Mason 1987) considered the problem of orienting planar
parts resting in a planar tray. The tray could be tilted, causing the part to slide into
walls and corners, thereby reorienting the part. The work implemented a planning and
execution system based on Newtonian mechanics and Coulomb friction that would
determine a sequence of tray-tilting operations guaranteed to unambiguously orient
a part in the tray, whenever such a plan existed.

Other work has focused on obtaining low-polynomial-time algorithms for planning
tray-tilting operations and for designing bowl feeders (Natarajan 1986). (Natarajan
1988) also obtained PSPACE-hardness results for the general sensorless motion
planning problem in the presence of uncertainty. (Canny 1988) has derived
NDEXPTIME-hardness results for this problem as well.

A very important mechanical operation for orienting parts is grasping. Another is
pushing. See (Mason 1982, Mani and Wilson 1985, Mason 1986, Peshkin 1986, Brost
1988, Goldberg and Mason 1990) for work in this area.

(Boothroyd et. al 1972) determined the stable resting configurations of parts
dropped onto a horizontal table. They also derived probabilities for transitions
between these states as a function of the initial potential energy of the part.

(Grossman and Blasgen 1975) considered the problem of localizing a part by
dropping the part into a dihedral corner, shaking the corner, then using probing
operations to ascertain the configuration of the part.

(Taylor, Mason, and Goldberg 1987) re-introduced sensing into the tray-tilter.
They proposed a general planning algorithm and suggested a means of comparing
sensing and mechanical operations in terms of their respective information contents.

3 Definitions

We are given a convex polyhedron resting on a horizontal table. Friction between
the table and the polyhedron is assumed to be infinite. The center of mass of the
polyhedron is assumed to lie in the interior, or possibly on the boundary, of the
polyhedron. We are given the position of the center of mass. We will use this to
decide whether a given configuration of the polyhedron on the table is stable in the
presence of gravity. Throughout the paper we will assume that all motions are quasi­
static, that is, that inertial and impact forces may be ignored.

The table has two degrees of motion freedom. One degree of freedom corresponds
to tilting the table from the horizontal, the other degree of freedom is the direction of
the horizontal axis about which the table is tilted. The typical action that one may
perform is a wobble. This action entails tilting the table from the horizontal up to
some specified angle (). The direction of the axis of rotation is chosen randomly. The
reason for a random choice is to ensure that there is a non-zero probability that any
particular side of the polyhedron will be pointing downhill. We will refer to the angle
() as the tilt angle of the action. We will restrict () to the range [0, 1r /2]. At () = 0 the
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table is horizontal, while at () = 7r /2 the table is vertical.
We assume that a single tilt of the table from its horizontal position to a tilt angle

of () occurs nearly instantaneously, in the sense that it occurs faster than any dynamic
motions of the polyhedron. The purpose of this assumption is again to ensure that
there is a non-zero probability that any particular side of the polyhedron will be
pointing downhill during a wobble action. Without this assumption some objects,
such as conical cross sections, could roll in such a way as to prevent certain faces
from ever poin ting downhill.

Often we will perform a given wobble action repeatedly, until the polyhedron has
settled into steady state. We will generally not distinguish between performing a
single wobble and performing a series of wobbles for a sufficiently long time.

The basic state of the polyhedron is a face contact with the table. The orientation
of the polyhedron about the normal to the table is in general unknown, and we
will thus not include it in the definition of state. When the table is tilted, the
polyhedron can rotate from one face to one or more adjacent faces, by tilting across
bounding edges. The conditions under which such rotations are possible will be
derived later. In general, for a given starting face, the polyhedron may be able
to rotate to more than simply one adjacent face under a wobble action of the
table. Thus the transitions between faces are non-deterministic. We can think of
these non-deterministic transitions either as adversarial or as probabilistic. We will
assume throughout this paper that the transitions are probabilistic. By this we mean
that there is some non-zero probability that a possible non-deterministic face-to-face
transition will actually be taken. Thus, over sufficiently many trials, we will see
occurrences of all possible transitions out of a given face for a given tilt angle. The
random choice of rotation axis is one approach for satisfying this assumption.

We will not worry about the values of the transition probabilities. For the purposes
of this paper the probability values do not matter. In principle they could be obtained
from experimental observation. Once known, one could determine the expected time
that a wobble needs to be performed repeatedly in order for the system to settle into
a steady state.

Here we are tacitly assuming that all face-face transitions may be viewed as
rotations across edges. The more general case in which rotations occur across vertices
may be handled in a similar manner as in this paper, although the complexity of
operations increases considerably.

The main purpose in assuming probabilistic transitions is to ensure that
possible transitions between contact states have non-zero probabilities of occurring.
Consequently, if one performs a particular wobble action repeatedly then the system
will eventually transit out of a given contact state if that is possible. The analogy to
keep in mind is that of a Markov chain. The states of the Markov chain correspond
to the face-table contacts. The Markov transitions correspond to the rotations from
one face to another. For a given series of wobbles the system will settle into one or
more possible equilibrium states. These are similar to the recurrent classes of the
Markov chain.

There are two types of recurrent classes, those that contain a single state and
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those that contain several. The single-state classes correspond to stable resting
configurations of the polyhedron on the (tilted) table. A recurrent class containing
several states corresponds to a series of contact states between which the polyhedron
rolls for the given tilt angle. For example, such a recurrent class might correspond
to a tumbling motion of the polyhedron for a sufficiently steep tilt angle. If one now
stops the tumbling motion, by returning the table to horizontal, then one's knowledge
of the system's state is the entire recurrent class. In other words, the system could
be in any of the face-table contacts comprising the recurrent class.

4 Problem Statement and Results

The basic problem is to orient the polyhedron. In other words, given initial
uncertainty as to the resting configuration of the polyhedron, one would like to
execute a series of wobbles at different tilt angles that minimizes the number of
possible face-table contacts of the polyhedron. Ideally, the result is a single stable
face-table contact.

The more general phrasing of the problem is as follows. We are given a polyhedron.
The polyhedron need not be convex. However, since the only possible contacts
between a polyhedron and a table are those on the convex hull of the polyhedron, we
can assume without loss of generality that the polyhedron is convex.

The polyhedron has faces F = {f}, ... ,In}. We will represent a face-table contact
by the face fi that is in contact with the table. We are given a set of possible initial
contacts, Fr ~ F, all of which are stable resting configurations of the polyhedron on
the table, and we are given a set of final contacts, FF ~ F. The problem is to find
a sequence of tilt angles O}, O2 ,, •• ,Of. that are guaranteed to reorient the polyhedron
from the initial set of possible contacts, Fr, into some subset of the final contacts,
FF.

In this paper we demonstrate an algori thm for determining the existence of such a
strategy. The algorithm takes O(n4

) time, and produces f = O(n) number of actions.

5 Example

A useful example to keep in mind is the polyhedral version of an unfair coin.
See Figure 1. Specifically, we will assume that the coin consists of two large parallel
faces fo and f n+!, and a set of small identical facets fl" .. ,In that approximate the
circumference of the coin. (We use the term 'facet' merely to distinguish the faces
on the circumference of the coin from the large side faces of the coin.) The center
of mass of the coin is symmetric with respect to these facets, but it is offset slightly
closer to the face fn+! than to the face fo. The point is that for sufficiently small tilt
angles, the coin, if upright initially, will roll on the small facets, but not fall over onto
either of the flat faces. For slightly greater tilt angles, the coin can both roll and fall
stably onto face fn+!' For yet larger angles the coin can both roll and fall stably onto
either face fo or face fn+!' As one increases the tilt angle further the coin begins to
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Figure 1: A thin polyhedral coin. The center of mass is biased t.o fa.vor one of the large
flat. faces. It is symmetric with respect t.o the facet.s that comprise the circumference
of the coin.
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Figure 2: Description of tlte transition angle Vij between two faces of a polyhedron.

tumble. First it tumbles between face 10 and the slllall facets, but eventually settles
into stable equilibrium on face J:.+l' As the till angle is increased further yet, the
coin tumbles hetween all faces. The details of this behavior will be derived in tlte
remaiuder of tlte paper.

6 Transition Angles

Given two adjacent faces Ii aud Jj on the polyhedron, we define Oij as the till angle
that causes the polyhedron to rotate from face Ii to face Ij. Specifically, if face Ji
of the polyhedron is in coutact with the table, and the table is wobbled at an angle
greater thau Oij, the polyhedron may rotate away from face Ii, and one of the possible
resulting face contacts is face Ii. Note that we are not saying anything about the
stability of the face contact Ii before the rotation or of the face contact Ii after the
rotation. We are saying merely that a rotation from Ii to Ii is possible if the tilt
angle is greater than Oij, and indeed that it has non-zero probability of occurring. It
is quite possible that contact Ii is unstable before the rotation, and it is quite possible
that the polyhedron will continue to rotate after having made contact between the
table and face Ii.

Let edge eij be the common edge bet ween the two faces Ii and Ii. Consider
rotating the polyhedron about the edge eij. Then Oij is the angle of rotation that
moves the center of mass from above face Ii to just above face Ii. Here "above" is
measured in terms of the direction of gravity. See Figure 2.

There are essentially three cases:

• First, if two faces Ii and Ii are not adjacent, we take Ojj = +00 since no direct
rotation from Ii to Ii is possible without first rotating through some other
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face-table contact .

• Second, consider the polyhedron resting with face Ii on the table in its horizontal
orientation. Let rij be the vector perpendicular to the edge eij that points from
eij to the center of mass of the polyhedron. Define the normal cylinder above Ii
to be the semi-infinite region of ~3 as the region resulting by sweeping the face
along the direction of the normal. If the center of mass of the polyhedron lies
in the normal cylinder above face Ii then the polyhedron will not rotate across
edge eij' Said differently, if faces Ii and Ij were semi-infinite planes, then the
face-table contact of the polyhedron on face Ii would be stable. In this case,
the angle (}ij is well-defined. It is simply the angle between the vector rij and
the inward normal to face Ii. Clearly 0 ~ (}ij ~ 1r /2 .

• Third, if the center of mass does not lie in the normal cylinder to the face Ii
then the contact is unstable, and thus must rotate. In this case we take (}ij to
be -00.

For the example of Figure 1, we obtain the following transition angles. For
transitions between any two facets on the circumference of the coin, the tilt angle
is TJ, where TJ = 1r / n. It is the same angle for all the facets since the center of mass is
symmetrically located with respect to the facets. For rotation from a facet to the face
10, the tilt angle is 0:, whereas from a facet to the face In+! the tilt angle is {3. Since
the center of mass is closer to In+! than to 10, 0: is larger than {3. In order to rotate
in the opposite direction, that is, from face In+! to the facets on the circumference
of the coin, the tilt angle must be at least 1r/2 - p. Similarly, in order to rotate from
10 to the facets, the tilt angle must be at least 1r/2 - 0:. Observe, of course, that in
general the coin will tumble rather than remain stably poised on its circumference if
the tilt angle is this large.

In short, we have

(}i,O - 0:, for 1 ~ i ~ n,

().. - TJ, for 1 ~ i, j ~ n and Ii - j I= 1,1,3

(}i,n+! - {3, for 1 ~ i ~ n,

(}o . - 1r/2 - 0:, for 1 ~ j ~ n,,3

(}n+!,i - 7r/2-{3, for 1 ~ j ~ n,

with 0 < TJ < {3 < 0: < 7r/4 and thus 7r/2 - 0: < 7r/2 - {3.

7 Transition Graphs

For any tilt angle (), we define a directed graph, G, that represents the possible
transitions due to repeated wobbling at angle (). The vertices of the digraph are
labeled with the faces of :F. There is an edge between the vertices labeled with Ii
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and Ii if the transition angle Oij is less than O. In other words, if the tilt angle is
greater than the transition angle then a rotation from Ii to Ij is possible. The case
o= Oij is meta-stable. We will not worry about it here, since it will not arise in the
remainder of the paper. We observe that the digraph is planar since it is a subset of
the face-adjacency graph of a convex polyhedron.

Let us now sort the angles {Ojj}, yielding the following distinct set of angles:

-00 = 00 < Ot < ... < Om < Om+! = +00,

with OJ E [0,11"/2] for i = 1, ... ,m, and m:S n.
We now define action Ao to be the null action which holds the tray in its horizontal

position. Corresponding to Ao one can construct a very simple digraph Go, in the
manner outlined above. The only transitions in this digraph are those from unstable
face-table contacts to other face-table contacts.

Furthermore, for each OJ, i = 1, ... , m, we define A j to be the action consisting
of repeated wobbling of the table at tilt angle OJ + ~, where 0 < ~ < OJ+! - fh. This
action involves tilting the table at an angle slightly greater than OJ, but not as great
as OJ+!. Corresponding to A we obtain an appropriate digraph Gj • We observe for
the graphs Go, ... ,Gm , that for i < j the graph Gj is a subgraph of Gj •

The graphs Go, ... , Gs for the coin example of Figure 1 are displayed in Figures 3
and 4, and correspond to the following actions:

Ao table is horizontal.

At wobble table with tilt angle "7 + €.

A2 wobble table with tilt angle j3 + ~.

A3 wobble table with tilt angle a + ~.

A4 wobble table with tilt angle 11"/2 - a + €.

As wobble table with tilt angle 11"/2 - j3 + ~.

Given the polyhedron as a planar face-adjacency graph with e directed edges
labeled by the transition angles, we observe that each graph G j may be computed in
time O(e). If we are given the polyhedron simply as a set of oriented hyperplanes,
then construction of the face-adjacency graph can be done in time O(n3 ).

8 Recurrent Classes

For each digraph Gj we can construct its recurrent classes. For our purposes a
recurrent class of a digraph is a maximal set of vertices in the digraph in which
any vertex is reachable from any other vertex by some sequence of edge transitions.
In particular, a recurrent class has no edges that lead out of the class. Vertices that
are not members of some recurrent class are called transient states. If a system starts
inside of a recurrent class, then it will remain there. If a system starts in a transient
state, then the assumption of probabilistic transitions ensures that eventually the
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Figure 3: Three of the six transition graphs for the example of Figure 1. Graph G j

represents the transitions possible when the table is wobbled at a tilt angle fllightly
greater tha~ OJ. See also Figure 4.
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Figure 4: The remaining three transition graphs for the example of Figure 1. Gra.ph
Gi represents the transitions possible when the table is wobhled at a tilt angle slight.Iy
greater than Oi. Sec also Figure 3.
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system will move into some recurrent class, and remain within that class. Once
in a given recurrent class, the state of the system is known to be one of the vertices
comprising the class. In general, after application of action Ai, the state of the system
is known simply to lie within the union of some subcollection of the recurrent classes
of the graph G;. The objective of a certainty-maximizing strategy is to make this
union as small as possible by executing an appropriate sequence of actions.

Let us denote the collection of recurrent classes of Gi by {Cia}, where a runs over
some index set containing at most n elements.

We observe that the set of recurrent classes of a graph G; can be computed in
time O(n3

) using a transitive closure algorithm.
Consider the recurrent classes for the graphs in Figures 3 and 4. If we leave the

table horizontal, then the coin can rest on any face, and thus the recurrent classes of
Go are all the singleton face sets. There are n recurrent classes. If we tilt the table
slightly more than 77 then the coin can roll on its circumference. Thus G1 contains
three recurrent classes, two of which are the large faces, and the third of which is
the cycle of facets along the circumference of the coin. Once the table is wobbled at
an angle slightly greater than 13, then the coin can fall onto face !n+l' Thus in G2
there are now only two recurrent classes, given by the two flat faces. The facets on
the circumference of the coin have become transient states, all of which eventually
wind up on face fn+!' For G3 , there are again two recurrent classes, but now the
coin can fall onto either face fo or fn+!' As the table is wobbled with angle slightly
greater than 1r /2 - a, face fo becomes a transient state as well. Thus G4 contains a
single recurrent class, given by face fn+!' Finally, if the tilt angle is made very large,
then the coin can tumble randomly. Thus Gs has one recurrent class, consisting of
all possible face-table contacts.

9 Forward Projections

Consider a set of possible face-table contacts C and some action A. We define the
forward projection of C under action Ai as the set of final face-table contacts that
might be attained at steady state after application of .4;, given that the system
starts in a state of C. We write this as FAi(C). Clearly FAi(C) is a subset of the
possible recurrent classes. Furthermore, FAi(C) may be computed in time O(n) using
a marking algorithm. Specifically, we do a depth-first search inside G i starting from
C, marking vertices as we go until no more vertices can be marked. All vertices that
are part of a recurrent class are retained.

Suppose that C is a recurrent class of graph Gj • In other words, C is some possible
collection of states resulting from application of action Aj • If one now applies action
Ai, for i < j, the system must wind up in some subset of the states of C. This is
because the edges of G i are a subset of the edges of Gj and because no edges lead out
of the recurrent class C by definition of recurrent class. Said differently, if {CiaIC}
are the recurrent classes of Gi that are subsets of C, then the forward projection of
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C under action Ai is the union of these recurrent classes:

10 Three Lemmas

We now prove three lemmas. The first lemma shows that whenever a certainty­
maximizing strategy applies first action Ai and next action Aj , with i < j, then
the strategy might as well apply the sequence of actions Ai, A i+!, ... , Aj . The second
lemma establishes a similar result for the opposite case in which i > j. Together these
two lemmas show that any certainty-maximizing strategy need only step through
wobbles in sequential order. In other words it is never necessary to apply actions Ai
and Aj with Ii - jl > 1.

Finally, the third lemma shows that nothing is to be gained by loops of actions
of the form Aj,Aj_I, ... ,Ai,Ai+!, ... ,Aj, for i < j. As a result, we see that any
certainty-maximizing strategy should be of the form .40, AI, . .. , Aj, Aj_I,' .. , Ai, with
o ~ i ~ j ~ m. This then proves that any certainty-maximizing strategy has length
O(n).

Lemma 1 considers the difference between two simple strategies. In one strategy
one applies a single action Aj . In the other strategy one first applies some action Ai
with a lower tilt angle, and then applies action A j • The claim of the lemma is that
the possible final contacts of the polyhedron in the two-action case are a subset of
those in the single-action case. Thus a certainty-maximizing strategy would prefer
the two-action sequence.

Lemma 1 Let f represent a face-table contact, and let i < j. Then

Proof. The edges of Gi are a subset of the edges of Gj . o

The inclusion can in general be strict. Furthermore, the lemma need not hold for
i > j. Fortunately, however, this other version of the lemma does hold if one replaces
the single state f by a recurrent class corresponding to a tilt angle that is at least as
steep as OJ. This observation is the essence of the next lemma.

Lemma 2 Let C be a recurrent class of the graph G lI for some f. Suppose that
i < j ~ f. Then

Proof. Let {CjaIC} be the recurrent classes of Gj that are subsets of C. Then

a
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since each Cja IC is a subset of C. o

Finally, we like to show that certain kinds of action loops are unnecessary.
Specifically, it is never necessary to first perform a wobble at a given tilt angle,
then wobble at a lower tilt angle for a while, only to wobble again at the original tilt
angle. Induction on the claim of the following lemma establishes this fact.

Lemma 3 Let the state of the system be known to lie in some collection of 1'ecurrent
classes {Cj ,(3} of the graph Gj • If one now applies action A j - I followed by action A j ,

then the resulting set of states of the system is unchanged.

Proof. By definition of forward projection

FAJFAj_1(U C jJ3 )) = UFA] (FA]_1 (C jJ3 )),

J3 ,(3

showing that it is enough to establish the lemma for a single recurrent class C of Gj •

Therefore define, as usual, {Cj-I,aIC} to be the collection of recurrent classes of G j - I

that are subsets of C, and observe that

for each such recurrent class, since Cj-I,aIC ~ C and since C is a recurrent class. 0

11 The Algorithm

Recall that we are given an initial set of face-table contacts Fr and possibly a
final set of desired contacts FF. As we indicated in the previous section, the
three lemmas establish that a certainty-maximizing strategy should be of the form
Ao,All ... ,Aj,Aj_ll ... ,Aj, for some i and j with 0 :::; i :::; j :::; m. There are
O(n2

) choices of i and j. For each such choice we can forward project the set Fr
through the relevant set of actions to obtain the possible resulting contact states of
the polyhedron. Since forward projections can be computed in time O(n) this yields
a straightforward O(n4 ) algorithm for obtaining the result of all possible certainty­
maximizing strategies applied to Fr. By ordering the choices of i and j properly this
may be reduced to an O(n3

) algorithm. If the final set FF is specified as well, then
one can check, for each choice of i and j, whether the forward projection is a subset
of FF. This decision may easily be implemented in time O(n).

It remains to construct all of the graphs {Gj } and their recurrent classes. As
indicated, this may be accomplished in time O(m n3 ) = O(n4 ). (Recall that m is the
number of distinct tilt angles Ojj obtained.)

As a final comment, we observe that in general it is not enough simply to perform
actions with increasing tilt angles, ending with Aj. Instead, it is sometimes indeed
necessary to include actions in which the tilt angles are again reduced, ending with
some A, for i < j, as suggested by the statement of the algorithm. As an example,
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imagine that the face in+! in the coin example of Figure 1 is replaced with two
smaller, unsymmetric faces that are nearly, but not quite coplanar. Thus the faces
are distinguishable only for small tilt angles. A strategy for orienting the coin would
consist of first increasing the tilt angle until the coin winds up on the recurrent class
corresponding to the two subfaces of in+! , then reducing the tilt angle until the two
subfaces are distinguishable, with the coin at rest on one particular subface of in+!.
(For the example as drawn in Figure 1, there is no need to decrease the tilt angle.
Rather one increases the tilt angle slightly beyond 7r /2 - a, at which point the coin
comes to rest on the face in+d

12 Special Case: Orienting Generic Polygons in
the Plane

In the case of a two-dimensional planar polygon resting on a one-dimensional table,
there is no need to perform a wobble of the table. Instead the table may be tilted
either to the right or to the left, yielding either clockwise or counterclockwise rot.ations
of the polygon, respectively. We can define the transition angles {()ii} similarly as
we did before. In the case that no two of the angles ()ii are equal there is a simple
strategy for orienting the polygon. It consists of tilting the table at an angle slightly
less than the maximum of the {()ii}. The polygon will rotate until it winds up on the
unique edge whose outgoing transition angle is equal to this maximum. The choice of
whether to rotate right or left is determined by the direction of the maximum angle.

13 Conclusions and Future Work

This paper has explored automating the design of mechanical systems for orienting
three-dimensional parts. The paper focused on the problem of orienting a three­
dimensional polyhedron resting on a tiltable table. The polyhedron could be
reoriented by wobbling the table. A wobble consisted of repeatedly tilting the table
up to a specified tilt angle about a randomly chosen tilt axis.

The paper proposed a planner that determines a sequence of tilting operations
designed to minimize the uncertainty in the part's orientation. The planner runs in
time O(n4

), where n is the number of faces of the polyhedron. The planner produces
a sequence of O(n) different wobbles.

The problem of orienting parts is a ubiquitous task in industrial assembly. The
automated design of feeder equipment for orienting parts is thus an important
problem. This paper suggests that a combination of probabilistic and geometric
analyses may be used to design such feeder equipment.

The results presented in this paper suggest that parts may be oriented with very
simple systems. Testing the practical validity of these systems requires further work.
Future work should focus on the physical implementation of the system discussed
in this paper. Additional work should consider the automated design of orienting
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systems for more complicated parts. Parallel orienting of several parts at once is one
further direction to explore.

...

16



14 Bibliography

Boothroyd, G., Redford, A. H., Poli, C., and Murch, L. E. 1972.
Statistical Distributions of Natural Resting Aspects of Parts for Automatic Handling.
lvlanufacturing Engineering Tmnsactions. 1:93-105.

Brost, R. C. 1988. Automatic Grasp Planning in the Presence of Uncertainty.
International Journal of Robotics Research. 7(1):3-17.

Canny, J. F. 1988. The Complexity of Robot Motion Planning. Cambridge, Mass.:
MIT Press.

Erdmann, M., and Mason, M. T. 1988. An Exploration of Sensorless
Manipulation. IEEE Journal of Robotics and Automation. 4(4), (1988):369-379.

Grossman, D. D., and M. W. Blasgen. 1975. Orienting Mechanical Parts
by Computer-Controlled Manipulator. IEEE Tmnsactions on Systems, Man, and
Cybernetics. SMC-5:561-565.

Goldberg, K., and Mason, M. 1990. Bayesian Grasping. Proceedings of the 1990
IEEE International Conference on Robotics and Automation, pp. 1264-1269.

Mani, M., and W. Wilson. 1985. A Programmable Orienting System for Flat
Parts. Proc., NAMRI XIII.

Mason, M. T. 1982. Manipulator Grasping and Pushing Operations. AI-TR­
690. Cambridge, Mass.: Massachusetts Institute of Technology, Artificial Intelligence
Laboratory.

Mason, M. T. 1986. Mechanics and Planning of Manipulator Pushing Operations.
International Journal of Robotics Research. 5(3):53-71.

Natarajan, B. K. 1986. An Algorithmic Approach to the Automated Design of
Parts Orienters. Proceedings of the 27th A nnual IEEE Symposium on Foundations of
Computer Science, pp. 132-142.

Natarajan, B. K. 1988. The Complexity of Fine Motion Planning. International
Journal of Robotics Research. 7(2):36-42.

Peshkin, M. A. 1986. Planning Robotic Manipulation Strategies for Sliding
Objects. Ph.D. Thesis. Carnegie-Mellon University, Physics Department.

Taylor, R. H., Mason, M. T., and Goldberg, K. Y. 1987. Sensor-Based
Manipulation Planning as a Game with Nature. Proceedings, Fourth International
Symposium of Robotics Research.

17


	Mechanical Parts Orienting: The Case of a Polyhedron on a Table
	Report Number:
	

	tmp.1307986960.pdf.ZJfKO

