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Mechanical Performance of a Dental Composite: Probabilistic Failure Prediction

P.G.T. VAN DER VARST*, W.A.M. BREKELMANS', J.H.P. DE VREE', and R. DE GROOT2

Department of Cariology & Endodontology, TRIKON (Institute for Dental Clinical Research), University of Nimegen,
PO Box 9101, NL-6500HB NUmegen, The Netherlands; 'Faculty of Mechanical Engineering, University of Technology,
Eindhoven, The Netherlands; and 2Philips Competence Centre Plastics B. V., Eindhoven, The Netherlands

In clinical situations, the mechanical performances of
dental structures-for example, composite restorations-
depend on many factors. Most ofthem have a probabilistic
character. Because composites are brittle materials, their
strength should also be considered as a probabilistic
quantity. For successful prediction of mechanical failure
of structures consisting ofthese materials, a probabilistic
approach is indispensable, and a suitable definition of
equivalent stress must be introduced. An equivalent stress
facilitates the transfer of strength data of laboratory
specimens to situations where the stress state is much
more complicated.

The tensile and compressive strengths of composites
differ considerably. Of two equivalent stress definitions
that potentially describe this experimental fact (the
Drucker-Prager and the Modified von Mises equivalent
stress), the predictive capacity was investigated for a
microfine composite. In a probabilistic approach to fail-
ure, use ofthe Drucker-Prager equivalent stress appeared
to be superior, because the average failure load ofnotched
beams was predicted with an error smaller than 8%.

J Dent Res 72(8):1249-1256, August, 1993

Introduction.

The mechanical strength of dental materials has always
been an important issue in dentistry. Standardized tests
are performed to determine the various types ofstrength-
for example, tensile or compressive strength. Also, more
sophisticated methods, such as those applied in fracture
mechanics, are used to characterize mechanical failure
(Lloyd and Mitchell, 1984; Draughn, 1985; Goldman,
1985; Pilliar et al., 1986; Davis and Waters, 1987; Al-
Mulla et al., 1988; De Groot et al., 1988; Ferracane, 1988),
and fatigue studies are gaining more and more impor-
tance (Asmussen and J0rgensen, 1982; Draughn, 1985;
Soltesz et al., 1988; Zardiackas et al., 1989; McCabe et al.,
1990; Huysmans et al., 1992). Recently, the probabilistic
approach to the mechanical testing of materials was

introduced in dentistry, mainly as a method for statistical
analysis of data (De Rijk and Tesk, 1986; McCabe and
Carrick, 1986; Drummond and Miescke, 1991).

The probabilistic approach (Kittl and Diaz, 1988) has
been developed to account for the effects (size effects,
variability, processing and machining influences) of sta-

tisticallv distributed damage (porosities, micro cracks,
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and inclusions) on the initial (quasi-static) and the fatigue
strengths ofstructures. For successful prediction of struc-
tural failure, a probabilistic procedure is necessary, par-
ticularly for brittle engineering materials such as glass or
ceramics. Dental composites and, albeit to a lesser extent,
amalgams can be considered as brittle materials. So it is
logical to use the probabilistic approach to failure predic-
tion also in dentistry. Van der Varst et al. (1991) outlined
a computational and experimental method for prediction
oflong-term mechanical performance, i.e., the mechanical
lifetime of dental structures. In this method, the probabi-
listic approach is not limited to material behavior but also
includes the stochastic character of the masticatory load-
ing. Huysmans (1992) used the method for evaluation of
the long-term behavior of direct post-and-core restora-
tions with quasi-static and fatigue data. Basically, the
method described by Van der Varst et al. (1991) can be
used for pre-clinical testing, for more efficient planning of
clinical research, or for purposes of material comparison.

The idea is to establish a failure probability p as a
function ofsome load variable. With the so-called Weibull
three-parameter function, the basic equation for the fail-
ure probability of a uni-axially and uniformly stressed
tensile specimen is:

{1 - expl - [ (cr -(e )/o ] n }
if of < a

if cr > (T
(I1)

in which c, the load variable mentioned above, is the
tensile stress applied to the specimen, and cro, arr, and m,
the Weibull parameters, are the threshold stress, the
reference stress, and the Weibull modulus, respectively.
In practice, the stress state is mostly multi-axial and also
non-uniform, and the Weibull formula (1) has to be gener-
alized. Usually, the expression

p(F) = I - explI - If((yleq (X, F) - (T,(X))/(T,.(X))n
Vr vol

x H(ueq(x,F) - ej(X)) dV} (2)

is proposed. In this formula, F is the load, vris a reference
volume, the Weibull parameters are as above, X is the
position of the material points of the structure, H is the
Heaviside step function (H = 1 if its argument is equal to

or greater than zero and H = 0 if its argument is smaller
than zero), and aeq is the so-called equivalent stress. By
allowing the Weibull parameters to depend, in a suitable
manner, on the position X, eq. (2) can also be adapted for
application to compound structures, including interfaces,
or for a description offailure dominated by surface effects.

Formula (2) can be used in two ways: first, for estima-
tion of the Weibull parameters on the basis of laboratory
data; and second, once these parameters are known, for
prediction ofthe failure probability of other structures. In
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the latter case, the analysis is usually preceded by a finite
element analysis (Dortmans and De With, 1990; Van der
Varst et al., 1991) for determination of the stress state in
the structure.

The concept of equivalent stress expresses the idea
that widely different local stress states lead to the same
failure probability for a small volume or surface element
ofthe material. So, these stress states are considered to be
equivalent, and each complete set of equivalent stress
states is characterized by a scalar quantity called equiva-
lent stress. In view ofthe central role ofequivalent stress
in formula (2), the question ofhow to define an equivalent
stress for a particular material is important. The equiva-
lent stress is a scalar representation of the three-dimen-
sional stress state which is defined by the three principal
stresses and associated directions. Obviously, this map-
ping is dependent on material characteristics such as the
initial damage. For dental composites, it is reasonable to
assume that the initial damage is isotropic. In that case,
the equivalent stress depends only on the principal stresses.

For ceramic materials, equivalent stress definitions
are derived from empirical criteria or from a variety of
principles such as independent action, normal stress
averaging, coplanar energy release rate, and maximum
non-coplanar energy release rate (Dortmans and De With,
1992). It is typical of these approaches that the starting
point is an oriented crack subjected to normal and shear
stresses and that next a summation over all possible
directions of the crack normal is performed. Therefore, a
classification of these approaches as 'micro fracture me-
chanics' methods is justified. In this paper, a phenomeno-
logical approach is pursued. A set of equivalent multi-
axial stress states is displayed as a surface in the three-
dimensional space spanned by the principal stresses (Fig.
1). Each surface is characterized by a constant value ofthe
equivalent stress. Because the equivalent stress is uniquely
related to the failure probability, these surfaces may be
referred to as 'equi-probability of failure' surfaces. The
dependence of the equivalent stress on the principal
stresses url, (2 and a3 is mathematically expressed as:

(Jeq= (eq(Tl,vr(21 CF) (3 )

The right-hand side should be invariant when the
three principal stresses are interchanged. This can be
achieved by formulating aeq in terms of I1, IV and I3V the
three invariants of the stress tensor (Timoshenko and
Goodier, 1970). Although there are several possibilities to
do so, it is common practice to apply the formulation:

(eq 0 eq(Ip J2, I3), (4)

with:

I1 =71 + (2 + (39 (5)

J= 2112 - 6I2

I(of - 02)2 + (02 - a3) + (a3 - cr1)2 (6)

13 '1'2' 3 (7)

It is well-known that for dental composites the uni-
axial compressive strength is about 5 to 10 times the uni-

axial tensile strength. This vast difference between com-
pressive and tensile strengths implies that the equivalent
stress at least should depend on II and J2. To keep matters
as simple as possible, it makes sense to assume that the
equivalent stress is independent of I3, because this only
implies that the surfaces of equi-probability of failure
possess rotational symmetry with respect to the hydro-
static axis.

The problem of how a suitable equivalent stress for
dental composites should be defined was considered some
years ago by De Groot (1986). Instead of a probabilistic
approach, he proposed to use a critical value of the so-
called Drucker-Prager (DP) stress:

rdp=2k 2k 12

or of the Modified von Mises' (MVM) stress:

amvm k- II + 21 /(k- 1)2 I12 + 2J2

(8)

(9)

as failure criterion (k is the ratio of compressive strength
to tensile strength). This approach was tested for two
types ofdental composites. The results were rather disap-
pointingin the sense that the critical values of a and also
those of umvm, which should have been equa for two
different and independent experiments, differed in fact by
a factor of approximately 2.5. However, a rough analysis
ofthe experimental data ofDe Groot (1986) suggests that
this large difference was probably not caused by a com-
pletely wrong definition ofthe equivalent stress but might
be attributed to the fact that a deterministic approach was
used.

Both the DP and the MVM stress can serve as appro-
priate definitions of equivalent stress in a probabilistic
approach and can take the difference in compressive and
tensile strengths of composites into account. So, the aim
of our study was to investigate, within the setting of a
probabilistic theory of failure, the predictive capabilities
ofeach ofthese definitions of equivalent stress. First, the
Weibull parameters (O, (r, and m were estimated from
failure data (three-point bend tests) ofrectangular beams.
Next, the average failure loads of differently shaped
specimens (notched beams), also tested in three-point
bending, were predicted. These predictions were com-
pared with experimental data of notched specimens frac-
tured in a three-point bend test.

Materials and methods.

Three-point bend tests with rectangular beam (RB) speci-
mens.-Specimens (16 x 2 x 2 mm) of composite filling
material for anterior or posterior use (Silux®, a BisGMA
resin with colloidal silica particles, average size 0.04 gm;
filler content 51% by weight, according to the manufac-
turer, batch nos. 060884, 5502U, 4Y1 and 121384 5502U,
4BC1, 3M Co., St. Paul, MN) were produced by insertion
ofthe paste into a brass mold, followed by polymerization
with a visible-light source (Translux', Kulzer& Co. Bereich
Dental, D-6382 Friederichsdorf 1, Germany) through a
glass cover. Each specimen was illuminated three times,
each time for 40 s. Before being tested, all specimens were
stored in tap water at 37°C for one day. The specimens
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PROBABILISTIC FAILURE PREDICTION OFA COMPOSITE

Distributed loadSurfaces of equal
failure probability p

h

CiY P=P1

Fig. 1-Example of surfaces of equal failure probability p in the
space spanned by the principal stresses (F2,0JVand v3 Equivalent
stress definition according to Drucker-Prager. Surfaces are cones
with: p, < P

were fractured in a three-point bend test (Fig. 2) with an
Instron testing machine (cross-head speed, 0.5 mm/min),
and load-deflection (F,u) curves were recorded. Young's
modulus E was determined according to (Williams, 1973):

E= bu-h {1+3(1+2) 2I}

Distributed load

(10)

in which F and u are the load and the corresponding
deflection, respectively, during linear elastic behavior.
The height and width of the specimens are denoted by b
and h, while s is the span (Fig. 2). Poisson's ratio v was
taken to be 0.3, a value well within the range found in the
literature (Whiting and Jacobsen, 1980).

For an RB specimen, loaded with a force F, the maxi-
mum bend stress (J equals

=-3Fs (11)

2bh2

Application of the basic equation (2) for the failure
probability, assuming that the Weibull parameters are

constant throughout the material and applying simple
beam theory, with the choice of either if or (r as the
definition of the equivalent stress gives the same failure
probability p

p(J; c., (r,m) = 1 - exp{ - (x tf(/(i, m) H(( - i)
- al(dr/(k (T), m) H(a - k f)I, (12)

with ax and the function 4i as defined by Kittl and Diaz

1988):

bs(To-)m (13)
2v (

r '

oi(,' m) E1 {(t -1Ym+1/t1 dt. (14)

Note that instead of the fracture load F, the maximum
bend stress if is used as the load-related variable in the
failure probability. The reference volume vr can be chosen
arbitrarily as vr = bhs = 48mm3. The value ofk was derived
from values of tensile and compressive strength as given
by the manufacturer, k = 8. From the failure data ofthe RB

Fig. 2-Experimental set-up (three-point bend test of simply
supported beams) for the RB specimens (A) and the NB specimens
(B). The span s = 12 mm, height h = 2 mm, width b = 2 mm, and the

notch depth q (various sizes) are also indicated. Drawing not to scale.

specimens, estimation of the parameters ax, o. and m was

performed according to the maximum likelihood method
(Dudewicz and Mishra, 1988). This implies that, forknown
failure data ui (i = 1, 2, . . . n), the parameters ax, cr, and m
were determined by maximization of the likelihood func-
tion:

n

7T (ap((r; (x-, a 0, m)la(rI(r = cri.
= 1

(15)

To ensure that the estimates for a-, uO, and m have

physical meaning, the estimation was performed under
the constraints 0 < ox, 0 < c(J < miniul,.. ,1 CTnnE and m >1.

With the results for a, ifo, and m, the estimate for iT was
derived from eq. (13).

Three-point bend tests with notched beam (NB) speci-
mens.-From the same type of composite filling material,
rectangular beam specimens were first made following
the procedure as described above. Next, the set of speci-
mens was divided into 3 groups. In each specimen of each
group, a notch [depth q: 0.5 mm (group I), 1 mm (group
II), or 1.5 mm (group III)] was machined with a 0.15-mm-

thick diamond disk (537/220H superdiaflex Horico Hopf
Ringleb & Co. GmbH, Berlin, Germany) under water

coolant (Fig. 2). Storage and testing equipment and con-

ditions were the same as for the RB specimens. The

specimens were fractured in a three-point bend test (Fig.
2), and the loads at fracture were recorded. The notch

depth q was measured with a measuring microscope.

1251Vol. 7-2 iVo. 8'
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Sample mean and sample variation ofthe load at fracture
and the notch depth were determined for each of the
groups.

Prediction of the failure probability of the NB speci-
mens: general analysis.-Because of the limited accu-
racy with which the notch could be machined, the notch
depth should also be considered as a random variable,
since the strong influence ofnotch depth on the strength
of the specimens cannot be neglected. The failure prob-
ability p, determined by application ofthe basic formula
(2) to a notched specimen, is in fact a conditional prob-
ability p(Flq), the condition being that the notch depth
has a known value. Let P(q;g), itq(g), and Vq(g) denote the
probability distribution density, expected value, and
variance of the notch depth, respectively, of the speci-
mens of group g:

gq(g) = f q 4(q;g) dq, (16)

Vq(g) = I {q - ,u(g)}2 4:(q;g) dq. (17)

The expected value RF,(g) and variance of the failure
load VF(g) of the specimens of group g is then

=F(g)=f1F1q(q) +(q;g) dq, (18)

VF(g) = f[VFlq(q) + WFjq(q) - jiF(g)}2] 4(q;g) dq. (19)

Here, the functions uFlq(q) and VFJ(q) are the condi-
tional expected value and conditional variance, respec-
tively, of the failure load F:

PFjq(q) = F F ap(Fq) dF = F {i1 - p(Fjq) I dF, (20)0 aF 0

VFlq(q)=YFIF - FFq(q)2 dF

= 2 .FF {1-p(Flq)} dF - 4,FIq(q))1. (21)
0

Sample mean and sample variance are unbiased esti-
mators of RF(g) and VF(g). Agreement ofthe experimental

results with the predictions can be examined by compari-
son of the sample mean and the sample variance of the
data with the predicted values for iF(g) and VF(g). More-
over, the standard deviation of the mean of a sample of
size n is VF(g)/n. For calculation of the predicted values
of RF(g) and VF(g), data about 4(q;g) and the conditional
failure probability p(Flq) are required.

The probability distribution density 4(q;g) ofthe notch
depth.-It was assumed that the notch-depth distribu-
tions differed only by a translation. Particularly, it was
assumed that 4(q;g) was normally distributed, with Ri (g)
as the expected value, and that the variance Vq(g) was the
same for all three groups. Provided the last assumption is
true, the arithmetic mean of the sample variances of the
three groups is an unbiased estimator of the variance
Vq(g).

The conditional failure probability p(Fkq).-To obtain
p(Flq), a finite element (FE) stress analysis of the NB
specimens was performed. The material was assumed to
be isotropic, homogeneous, and linear elastic. Young's
modulus E was determined from the experimental data
for the RB specimens, and Poisson's ratio v was taken to
be 0.3. For reasons of symmetry, only a quarter of the
specimens need to be considered, and a finite element
mesh of this part of the specimens was generated (Fig. 3)
by use of 20-node isoparametric elements with 8 integra-
tion points (Gauss-Legendre integration). Symmetry con-
ditions were enforced with appropriate boundary condi-
tions. Four different values ofq were considered. For each
value of q, the FE analysis needs to be performed only
once, since by taking either aeq = adp or aeq = amvm it can be
shown that:

areq(at load F) =FFn eq(at load Fn)
eq F0 e

(22)

for F > 0 and Fn > 0. Application of eq. (2) to the NB
specimens and discretization of the volume integrals
using 8-point Gauss-Legendre integration yield:

ne 8

p(Flq) = 1 - expE - 4v { I wei I(Cr(ei) (F,q) - u ATJr
Vre=1 i=1 ei eq ,q - r)/l

x H(cr(qi) (F,q) - (no)}]
Distributed load

Symmetry plane

Notch

z-axis

y-axis

-as

Simple support

Fig. 3-Mesh ofa quarter NB specimen. Load on the mesh is one-
fourth ofthe total load. Planes ofsymmetry: (I) backside ofthe mesh
and (II) left-hand side ofthe mesh (above notch). Symmetry enforced
by suppression of appropriate displacements (in the x direction for
the points of plane I and the y direction for plane II). Shown is the
mesh for q = 1.00 mm. Specimens were analyzed for notch depth
values q = 0.50, 1.00, 1.50, and 1.65 mm, with a mesh consisting of,
respectively, ne = 395, 403, 385, and 500 elements.

(23)

in which the reference volume v is as before (v = bhs =
48 mm3), ne is the total number of elements, a0, ar, and
m are the estimated values for the Weibull parameters,
0q1(ei) (F,q) is the value ofthe equivalent stress in integra-
tion point i of element number e of a beam with notch
depth q and loaded with a total force of F. The quantities
we are the volume fractions associated with the integra-
tion points of the elements. The results of a FE analysis
are primarily the values ofthe principal stresses in every
integration point of every element, and from this the
values of a q(ei) (F,q). In every FE analysis, the computa-
tion of the stiffness matrix involves numerical integra-
tion over the volume of each element, a procedure for
which the volume fractions w

e
must be evaluated any-

way. The FE program was adapted to output these
quantities. For each value ofthe notch depth q, from the
results of the FE analysis and the DP and the MVM
equivalent stress as definition for a,eq the failure prob-
abilities p(FJq) were determined. The results for p(Flq)
were used to determine numerically the conditional av-

J Dent Res August 1993
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TABLE 1

RESULTS OF THE BEND TES

WITH THE RB SPECIMEN'

Number of specimens, n

Young's modulus E ± SD (GPa)

Average bend strength + SD (MPa)

Threshold stress c, (MPa)

Reference stress (T (MPa)

Weibull modulus m (-)

erage t (q) and variance V}Fq(q), again for
values o the notch depth. With the aic
fitting procedures, these values for ptflq(q) a
used to establish polynomials represent
tional average pt, (q) and variance VFq(q)
functions of the notch depth q. These pc
gether with I(q;g), were used to determir
the predicted group means RF(g) and gr
VF(g), according to eqs. (18) and (19).

Results.

For both the RB and the NB specimen.
between load and deflection was found to
the onset of (sudden) failure.

Experiments with the RB specimens.-
tains the number of specimens, Young's r

age bend strength [bend strength is relate
load according to equation (11)] and the
ues for the Weibull parameters. In Fig. 4
failure probability, defined as i/(n+1) (n
and i is rank number), has been plotted a

the ranked (in increasing order of magnitude) bend

'TS strength data. Fig. 4 also shows a graph of the failure
probability according to the Weibull approach [formula
(12)] with use of the estimated values of u , CF. and m.

Notch depth of the NB specimens.-Fig. 5 illustrates
18 the probabilistic character ofthe notch depth. For each of

5.11 +0.36 the three groups, the differences between the specimen
notch depths and the group sample mean Spq(g) were

68 + 8 calculated. The empirical notch depth probability-the
ratio between rank number and sample size plus 1-was

40.5 plotted against the (ranked) difference between the speci-

5.3 men notch depth and the group sample mean. Sample size
n, sample mean Spj9(g), and sample variation SVq(g) ofthe

3.05 three groups are given in Table 2. When the F-test with
the ratios of the group sample variations are used as test
statistics, the null hypothesis that the variance of the

each ofthe four notch depth is the same for each group was tested (confi-
I of numerical dence level 95%) against the alternative that the group
ind VFq(q) were variances differ. The null hypotheses could not be rejected
;ing the condi- (Table 2). Therefore, the random variable q was consid-
as continuous ered to be normally distributed with S.q(g) as an estimate
lynomials, to- of pq(g) and with equal population variance for all groups.
ie numerically Consequently, the average 0.00357 of the sample vari-
oup variances ances of the groups is an estimate of the population

variance. Fig. 5 also shows the cumulative probability
distribution applied for prediction ofRF(g) and V,(g) by use
of eqs. (18) and (19).

Experimental failure data of the NB specimens. The
s, the relation results (sample size, sample mean, and sample standard
be linear up to deviation) are displayed in Table 3.

Predictions of the failure probability of the NB speci-
-Table 1 con- mens. Prior to the final computations, several test calcu-
nodulus, aver- lations were made to establish an optimal number of
,d to the failure elements. For the system under consideration, the quar-
estimated val- ter beam, this number was approximately 400 (Fig. 3).
the empirical The predictions concerning the conditional average yFq(q)

is sample size and variance VFq(q) could be fitted by the following poly-
5S a function of nomials:

1.0-

,0
.-
-
.-

~Q

:, 0.5
f0a)

0;U-

* Experiment
- Theory

50 75 100

Bend strength (MPa) -

Fig. 4 Experimental and derived theoretical failure probability
as function of the bend stress for the RB specimens. Average values
(+ SD) are: 68 + 8 MPa (experiment) and 68 + 7 MPa (theory).

A

0
A

I

O group I
A group 11
A group III
- fitted curve

u.uv
-0.2 0.0 0.2

(notch depth - group mean) (mm)

Fig. 5 Experimental data of the cumulative notch depth prob-
ability and the derived probability curve. This curve is a normal
distribution with zero mean and 0.06 mm standard deviation.

0.0

.-

0
; 0.5-

.,q

no! -
A ..

Vol1.72 NO). 12'53
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TABLE 2

DATA OF THE NOTCH DEPTH q AND THE RESULTS OF THE F TEST

Sgq(g) SVq(g) Compared Test Statistic 95% Confidence Interval
g n (mm) (mm2) Groups Type and Value for Test Statistic

I 10 0.52 0.00289 I and II SVq(I)/SVq(II) 0.236-3.536

= 0.892

II 11 1.02 0.00324 II and III SVq(II)/SVq(III)

= 0.709 0.149-2.800

III 8 1.64 0.00457 III and I SVq(I)/SVq(III) 0.131-2.654

= 0.632

(q) - {16.90 - 13.37 q + 2.30 q2 (DP)
'Flq q) 113.90 - 11.31 q+2.07 q2 (MV), (24)

V (q) = J14.00 - 22.41 q + 12.46 q2- 2.43 q3 (DP)
Flq 18.69 - 13.94 q + 7.75 q2- 1.50 q3 (MVM). (25)

Note that the constants in these equations have differ-
ent dimensions because the dimensions of q, ,uFjq(q), and
V 1q(q) are mm, N, and N2, respectively. Table 3 contains
the results of the theoretical predictions when either the
DP or theMVM equivalent stress was used. The predicted
values were calculated with use ofthe formulae (18), (19),
(24), and (25) and the results for 4+(q;g) as described above.
Also, the values of the standard deviation of the mean
were added to the table.

Discussion.

Because during the experiments linear material behavior
up to failure was observed and failure occurred rather
suddenly, the composite can be considered as brittle. So,
the material falls within the class for which a probabilistic
approach is deemed necessary (Kittl and Diaz, 1988).

TABLE 3

EXPERIMENTAL AND PREDICTED RESULTS

FOR THE NB SPECIMENS

Group g I II III

Sample size n 10 11 8

Sample mean (N)

* Experiments 11.5 5.9 1.2

* Predicted + SD mean

* DP 10.6±0.8 5.6±0.4 1.2±0.1

*MVM 8.6±0.6 4.5±0.3 0.9±0.1

Standard deviation (N)

* Experiments 0.7 0.8 0.5

* Predicted

* DP 2.4 1.3 0.4

* MVM 1.9 1.0 0.3

Moreover, the linearity ensures that a FE analysis of the
type that was performed here is capable of predicting the
stresses at the onset of failure.

The value ofYoung's modulus (Table 1) is in the upper
range ofthevalues (Silux: 3.3 - 5.3 GPa) givenbyReinhardt
and Vahl (1983), and the bend strength of the RB speci-
mens (Table 1) compares well with the value (Silux: 67.1
+ 3.1 MPa) found by Boyer et al. (1984).

Estimation of the Weibull parameters was performed
under the constraints that m > 1 and 0 < u0 < min((il ....
0jn1. The first condition is necessary because the hazard
function can be expected to be an increasing function of
the stress (Batdorf, 1984), whereas a value ofm smaller
than 1 would lead to a decreasing hazard function for the
material. The second condition stems from the observa-
tion that, within the setting ofthe theory, a failure stress
smaller than aw is absolutely impossible. So, for a consis-
tent estimation procedure, ar should be smaller than the
smallest failure stress (bend strength) actually recorded
during the experiments.

Often, the threshold stress or is assumed to be zero in
advance. The advantage ofthis assumption is that param-
eter estimation is considerably simplified. However, set-
ting the threshold value to zero is tantamount to restrict-
ingthe set ofadmissible parameters, and from mathemat-
ics it is known that the maximum of any function over a
restricted set is smaller than or, at best, equal to the
maximum over the non-restricted set. Consequently, to
ensure that the maximum likelihood estimates are actu-
ally found, the threshold stress should not be set to zero in
advance. The smallest failure stress (bend strength) re-
corded during the experiments with the RB specimens
was approximately 52 MPa. Compared with this value,
the estimate of 40.5 MPa for the threshold stress cannot
be considered as negligibly small.

The maximum likelihood principle for parameter esti-
mation is intuitively appealing, but for small sample sizes
the estimates may be biased. No information is available
about the bias ofthe MLH estimates ofthe parameters of
the probability distribution (12) for the RB specimens.
However, assuming that known results about the bias of
the two-parameter Weibull distribution [a special case of
the distribution (1)] also apply (at least qualitatively) to
the present study, the reference value is expected to be
biased only slightly, and the Weibull modulus m is under-
estimated by some 10% (Bain and Engelhardt, 1991).
Whatever the bias of the estimates may be, the curve of
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the estimated failure probability ofthe RB specimens fits
the experimental data quite well (Fig. 4).

Since the manner in which the notches were made was
the same for all three groups, the notch depth variance is
expected to be the same for each group. This expectation
is supported by the data, because the F-test revealed that
the null hypothesis (notch depth variance is the same for
each group) cannot be rejected (Table 2). The application
ofthe F-test implies that the underlying population should
be normal. Theoretically, this cannot be true, because the
notch depth cannot be smaller than zero nor greater than
2 mm (the beam height), whereas a normally distributed
random variable may range from --o to +±. However, the
standard deviation is much smaller than the difference
between the average notch depth values and the notch
depth limits. Therefore, the range: average + 4.5 times
standard deviation, a range that contains more than
99.99% ofthe probability mass, does not exceed the limits
of the notch depth. So, for all practical purposes, the
normal distribution could be considered as a suitable
candidate for approximating the notch depth distribution.
Fig. 5 shows that a normal distribution fits the data rather
well. Since a particular distribution is needed anyway,
because otherwise the predictions .tF(g) and VF(g) cannot
be computed, a normal distribution was used for this
purpose. As a corollary, it was possible to use the F-test
instead of a nonparametric test such as Wilcoxon's test to
decide whetherthe notch depth distributions ofthe groups
differ only by a translation.

Table 3 contains the final and most basic results ofthis
study. Comparison of the average failure loads showed
that, when the DP equivalent stress was used, the differ-
ence between prediction and experiment was 8% for group
I, 5% for group II, and virtually zero for group III. Only for
group I was the observed sample mean just outside the
predicted interval (average + standard error ofthe mean)
for the sample mean. The difference between predicted
and experimental average, when the MVM equivalent
stress was used, was larger, and the observed sample
means fell outside the predicted intervals. Therefore, it is
concluded that the DP definition for the equivalent stress

is to be preferred over the MVM definition and, as far as

average values are concerned, that the use of the DP
equivalent stress leads to sufficiently accurate predic-
tions. For materials that are comparable (in composition
and structure) with the material investigated in this
paper, it can be expected that the DP definition ofequiva-
lent stress will also be appropriate. However, for other
types ofcomposites, the DP definition ofequivalent stress

may not be valid, because there is no reason to assume

that a single definition applies to such a large class of
materials. After all, the question of how an equivalent
str-ess for a particular material should be defined can be
settled only by experimentation.

For both equivalent stress definitions, larger differ-
ences occurred between predictions and observations of
the standard deviation (SD). While the experimental data
suggest more or less constant values, the predicted SD's
decreased with increasing notch depth. For group I, the
predicted SD was ca. 3.5 (DP) to 2.5 (MVM) times the

experimental value. For group III, the predicted and

experimental values were ofcomparable magnitude. These
differences might be attributed to an increase ofthe actual
value of the Weibull modulus m caused by the machining

of the notch. Generally, the machining of the notches is
expected to have a damage-increasing effect. Particularly
in the region near the notch tip, the region where the
stresses are highest anyway, it is conceivable that the
machining of the notches increased locally the density of
the most probable flaw sizes. This would mean that the
dispersion of the flaw size distribution decreased, and
since this dispersion is thought to be proportional to 1/m
(Freudenthal, 1968), the machining of the notches may
have led to a value ofm for the specimens that was higher
than the value used for calculation of the predictions.

The DP definition of the equivalent stress seems pres-
ently the best measure for assessment of mechanical
performance ofdental structures consisting ofcomposites
of the type considered here. Indeed, used in conjunction
with the Weibull approach (3) for the failure probability
and using one set of material parameters k, uro, O and m,
failure of specimens in quite different experimental situ-
ations (uni-axial tension, uni-axial compression, three-
point bending ofRB and NB specimens) can be predicted.
The accuracy of the average values is, for all practical
purposes, sufficient. Combined with a probabilistic ap-
proach to short- and long-term mechanical failure [the
predictive pre-clinical testing method outlined byVan der
Varst et al. (1991)], it is possible to model mechanical
aspects of the clinical situation more realistically. The
manner in which the random character ofthe notch depth
was incorporated is basically the same as the manner of
including clinical shape differences, for example, those
between restorations ofthe same type. Fatigue properties
can be taken into account by determination ofthe Weibull
modulus, the threshold and reference stresses, and the
ratio of compressive to tensile strength during fatigue
experiments. The fatigue behavior of the materials also
determines the influence of the stochastic nature of mas-
ticatory and para-functional loading. Ifdamage growth is
independent of the sequence of the load cycles in a given
load history, Van der Varst et al. (1991) described how to
include this influence. Note that the probabilistic ap-
proach is complementary to the methods which use more

traditional material parameters. While the latter are

based on a local description of material behavior, the
former focuses on the performance of materials in dental
structures operating in normal circumstances.

For the future, it would be interesting to investigate
how the Weibull parameters depend on clinically impor-
tant factors of a more qualitative nature, such as, for
example, the dexterity of the dentists, location and acces-

sibility of a restoration, or the handling characteristics of
the materials.
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