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Although as-grown carbon nanotubes have relatively few defects, defects can appear at the pu-
rification stage or be deliberately introduced by irradiation with energetic particles or by chemical
treatment when aiming at the desired functionality. The defects, especially vacancies, give also rise
to a deleterious effect – deterioration of axial mechanical properties of nanotubes. By employing
molecular dynamics simulations and continuum theory we study how the Young’s modulus and
tensile strength of nanotubes with vacancy-related defects depend on the concentration of defects
and defect characteristics. We derive an analytical expression, with coefficients parametrized from
atomistic computer simulations, which relates the Young’s modulus and defect density in carbon
nanotubes. We further show that the tensile strength and critical strain of single-walled nanotubes
decrease by nearly a factor of two if an unreconstructed vacancy is present. However, this dete-
rioration in the mechanical characteristics is partly alleviated by the ability of nanotubes to heal
vacancies in the atomic network by saturating dangling bonds.

PACS numbers: 81.07.De, 61.80.Jh, 62.25.+g

I. INTRODUCTION

Carbon nanotubes (CNTs) have extremely high ax-
ial Young’s modulus of about 1 TPa [1–6] and tensile
strength approaching 60 GPa [1, 7]. These exceptional
mechanical properties along with low weight of CNTs and
recent improvements in their synthesis and purification
techniques make CNTs ideal candidates for reinforcement
of various materials, e.g., polymers [8–10]. High stiff-
ness and tensile strength of CNTs should also provide
mechanical stability for electric nano-circuits formed by
CNTs with covalent inter-tube junctions [11].

These outstanding mechanical characteristics hold for
nearly perfect CNTs. However, if CNTs have de-
fects in the atomic network, one can expect that due
to their quasi-one-dimensional atomic structure even a
small number of defects will result in some degradation
[12] of their characteristics. The defects can appear at the
stage of CNT growth and purification [13, 14], or later
on during device or composite production. Moreover,
defects in CNTs can deliberately be created by chemical
treatment [15] or by irradiation [11, 16–18] to achieve the
desired functionality.

As an example of this, defects are expected to in-
crease CNT adhesion to a polymer matrix [18, 19], which
should result in improvements of the composite mechan-
ical characteristics. Likewise, defects may enhance the
overall characteristics of bundles of single-walled nan-
otubes (SWNTs) and multi-walled nanotubes (MWNTs).
In these structures the interactions between intact nan-
otubes are governed by weak van der Waals forces, so that
the axial mechanical load is carried only by the SWNTs
at the rope perimeter [20] or by the outermost shell in
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MWNTs. Thus, creating strong defect-mediated cova-
lent bonds between SWNTs in bundles [16, 17, 21–24]
or between shells of MWNTs [25] by, for example, irra-
diation should provide load transfer to the inner tubes
(shells). On the other hand, irradiation will create not
only covalent bonds between the tubes but also defects
in the atomic network.

Very recent experiments [24] on electron irradiation of
carbon nanotube bundles followed by mechanical testing
of the bundle bending modulus (which is proportional
to the Young’s modulus) indicate that small dose irra-
diation gives rise to a very large improvement in the
mechanical properties of irradiated bundles. This result
was understood in terms of irradiation-induced inter-tube
links which provided load transfer and correspondingly
enhanced the shear modulus inside the bundle. How-
ever, high-dose irradiation resulted in deterioration of
mechanical characteristics due to accumulation of the
irradiation-induced damage, and specifically vacancies,
in the nanotube atomic network.

In addition to linking the nanotubes by covalent bonds,
irradiation has experimentally been demonstrated to give
rise to complete welding [11] and coalescence [26] of nan-
otubes thus opening new ways for electron/ion beam-
assisted engineering of nano-circuits. The driving force
for these structural transformations was found to be the
formation of vacancies with chemically reactive dangling
bonds followed by annealing of the damage in which the
bonds were saturated. However, even spatially-localized
irradiation will create defects not only in the junction
region, but also in the rest of the system due to, e.g.,
sputtered carbon atoms. This will inevitably result in
deterioration of the mechanical stability of the system.

Therefore, to understand the role of defects in mechan-
ical strength and to fully exploit the advantages poten-
tially provided by the irradiation techniques, one should
know how vacancy-related defects influence the mechan-
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ical characteristics of CNTs.

Although continuum methods [27–29] work well for
perfect materials, they cannot directly be applied to nan-
otubes with defects, as these methods assume the ma-
terial to be perfect. However, a combination of these
methods and atomistic simulations can be used for eval-
uating elastic properties of nanotubes with defects, while
only atomistic methods can be employed for simulat-
ing the plastic behavior. In this paper, by employing
atomistic computer simulations and analytical contin-
uum theory we study how the Young’s modulus and ten-
sile strength of CNTs depend on the concentration of
vacancy-related defects. Since single and multi-vacancies
might be present in post-processed nanotubes and be-
cause vacancies are the most prolific defects to appear
due to both ion [30] and electron [31] irradiation, we
concentrate on vacancies and related defects [30–33]. We
consider only SWNTs as the behavior of MWNTs with
vacancies under axial load can qualitatively be under-
stood in terms of the data for SWNTs. We derive an
expression which can be used to calculate the Young’s
modulus of defective CNTs at an arbitrary vacancy con-
centration. We also show that the ability of CNTs to
heal vacancies in the atomic network by saturating dan-
gling bonds partly alleviates the deterioration in their
mechanical characteristics.

II. COMPUTATIONAL METHODS

In our simulations, we used the classical molecular
dynamics (MD) method [34] with the reactive analyti-
cal bond-order potential model parametrized by Brenner
[35]. This model has widely been used in CNT simula-
tions and a good agreement with the results obtained by
ab initio methods have been reported [36, 37]. Berend-
sen temperature control method [38] was employed to
describe the energy exchange with the heat bath. In our
simulations of tensile strength we increased the onset of
the interaction cut-off from 1.7 Å to 2.05 Å in order to
avoid, at least partially, the overestimation of the force
required to break a bond [39]. Other details of specific
simulations are discussed in the corresponding sections.

III. CONTINUUM MODEL FOR COMPUTING

YOUNG’S MODULUS

In this section we derive an analytical expression for
the Young’s modulus of CNTs which can be used to es-
timate the Young’s modulus as a function of the defect
density. Then, in Section IV we fit the coefficients in the
expression to reproduce the results of MD simulations at
certain defect concentrations.

A. Homogeneous material

The elastic energy E(ε) of a body stretched in one
direction can be written as

E(ε) =
1

2
Y0ALε2 = γε2, (1)

where Y0 is the Young’s modulus of the homogeneous
body, A is the cross section, L is the length and ε is the
strain. The coefficient γ can be determined by fitting it
to reproduce the E(ε) curve calculated through atomistic
simulations. Then the Young’s modulus can be expressed
in terms of γ as

Y0 =
2γ

AL
. (2)

Because of the tubular structure of the SWNT there is
an ambiguity in determining the cross-section area A of
the nanotube. Formally the area can be written as A =
2πrt, where r is the tube radius and t the graphene layer
thickness, leading to a Young’s modulus Y0 = 2γ/2πrtL.
However, the thickness t is not well defined because the
layer is mono-atomic. Therefore we employ a definition
of Young’s modulus in which the normalization is not
per unit cross sectional area but per unit cross sectional
length:

Ys0 =
2γ

2πrL
=

γ

πrL
. (3)

B. Defective body

In the continuum treatment we divide the system of
length L into N sections. As will be shown, the outcome
is independent of the division details but it may help to
visualize the division by splitting the tube into N sections
of equal length, for example nanotube unit cells. We
assume here that the division can be made in such a way
that each section contains no more than one defect, i.e.,
for the defect concentration being relatively low. Each
section i is characterized by its defect type αi. Number
of sections with defect α is denoted by mα and the total
number of different defect types is M . Further, each
defect type α is characterized by its Young’s modulus Yα

and section length Lα. Defect type α = 0 stands for an
intact tube section and thus L0 denotes the length of an
elementary section without defects.

The total tube length can now be expressed either in
terms of defect types or in terms of sections as follows

L =

M
∑

α=0

mαLα =

N
∑

i=1

Lαi
. (4)

Analogously to Eq. 1 the elastic energy of a stretched
defective body divided into N sections can be written as

E =
1

2
Y ALε2 =

N
∑

i=0

1

2
Yαi

ALαi
ε2
i
, (5)
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where Y is the Young’s modulus of the whole body and
Yαi

, Lαi
and εi are Young’s modulus, the equilibrium

length and the strain of section i, respectively. When
stretched, the strain for the whole body can be written

as ε = (
∑

N

i=0 ℓi − L)/L or for each section as εi = (ℓi −

Lαi
)/Lαi

, where ℓi is the stretched length of section i.
Consequently, the stretching force is

F = −
Y A

L

(

N
∑

i=0

ℓi − L

)

, (6)

or, as the force acts equally on each of the sections (anal-
ogously to a system of springs in series),

F = −
Yαi

A

Lαi

(ℓi − Lαi
). (7)

By multiplying both sides of the latter equation by
Lαi

/Yαi
L we get

F
Lαi

Yαi
L

= −
A

L
(ℓi − Lαi

). (8)

Finally, by summing over all the sections and applying
Eq. 4 we arrive at

F = −

(

N
∑

i=0

Lαi

Yαi
L

)−1

A

L

(

N
∑

i=0

ℓi − L

)

. (9)

Then from the comparison to Eq. 6 we obtain the Young’s
modulus of the whole body as

Y =

(

N
∑

i=0

Lαi

Yαi
L

)−1

⇔
1

Y
=

N
∑

i=0

Lαi

Yαi
L

. (10)

This can be further simplified to the following form

Y0

Y
=

M
∑

α=0

mαLα

L

Y0

Yα

, (11)

where the terms corresponding to similar defect sections
have been combined and the summation now goes over
the M different defect types (α = 0 refers to intact tube
sections). The expression relates the linear defect con-
centration nα = mα/L and Young’s modulus by

Y0

Y
=

m0L0

L
+

M
∑

α=1

nαLα

Y0

Yα

. (12)

Now remembering that Ys0/Ys = Y0/Y and expressing
the total length of intact sections as the difference be-
tween the total length and the length of the defective

sections (m0L0 = L −

∑

M

α=1 mαLα, Eq. 4), we obtain
the final form of the defect concentration and Young’s
modulus relation:

Ys0

Ys

= 1 +

M
∑

α=1

nαaα, (13)

where

aα = Lα(
Y0

Yα

− 1) = Lα(
Ys0

Ysα

− 1). (14)

The parameter aα can be fitted to reproduce experimen-
tal or simulation data. We emphasize that the result
is independent of how the division into tube sections is
made. This can be seen by employing the formula recur-
sively.

IV. RESULTS AND DISCUSSION

A. Young’s modulus and tensile strength of intact

nanotubes

In order to have a reference point for nanotubes with
defects, we have first computed Young’s moduli of perfect
SWNTs. The results are presented in Table I. For the
Young’s modulus our simulations give a value of 0.7 TPa,
insensitively to tube chirality and diameter. This is in
line with the experimental values of CNT Young’s mod-
ulus around 1 TPa [1, 2, 4, 7] and with previous simula-
tions using the Brenner potential [28, 40, 41].

We have also evaluated the critical strain and tensile
stress by fixing atoms at one end of the tube and applying
a force that increases linearly in time to the other end
until the tube breaks, see Fig. 1. The force is increased
with a rate of 0.8 eVÅ−1ps−1. We have aimed to model
the tube fracture at low temperatures (i.e. T ∼ 0 K) but
because the onset of the fracture requires fluctuations,
the temperature was kept at 10 K.

The calculated critical strain and tensile strength are
also listed in Table I. In accordance with other similar
simulations [39, 40, 42], the values proved to be higher
than the experimental values which approach 60 GPA for
tensile strength [1, 7] and 12% for the yielding strain [7].
In part, this is due to the cut-off problem [39] typical for
Tersoff-like potentials, for which the atomic interaction
energy is artificially driven to zero at a certain separation
between atoms. This in turn causes the corresponding
inter-particle force to be overestimated, as can be seen
from the force-strain curves with various cut-offs for a
(5,5) nanotube given in Fig. 1. In order to circumvent
this problem, we have increased the onset of interaction
cut-off from 1.7 Å to 2.05 Å in the simulations.

From the curves of Fig. 1 it is seen that by increasing
the cut-off we do not affect the force-strain curve at inter-
particle distances shorter than the cut-off as long as the
cut-off remains smaller than the distance to the second
closest neighbor. We interpret the bond rupture force as
the maximum force outside the cut-off peak region. The
bond rupture point for a cut-off onset values of 1.9 Å and
2.05 Å is marked by ’X’ in Fig. 1. In the case of 1.7 Å
cut-off onset the artificial peak in force covers this point.

It is well known that the nanotube fracture behavior
depends on temperature and simulation time as well the
loading rate [39, 40, 42, 43]. We note that in this study
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we did not account for possible formations of topological
defects in strained nanotubes [44–46], because ab initio

calculations indicate that the formation energy of these
defects is very high [37, 47]. Finally, as we discuss below,
one can expect that a small number of defects is always
present in the nanotubes used for mechanical testing. We
stress, however, no matter what the origin of the discrep-
ancy between the absolute values of the experimental and
calculated tensile strength is, in this work we are inter-
ested more in vacancy-mediated changes rather than in
absolute values of tensile characteristics.

TABLE I: Young’s modulus, critical strain ε and tensile
strength σ of perfect nanotubes. Ys0 refers to surface based
Young’s modulus and Y0 to conventional Young’s modulus
(see Eqs. 2 and 3). The graphite interlayer distance t = 3.35 Å
has been used as the thickness of a nanotube shell in comput-
ing Y0 and σ.

Tube Diameter Ys0 Y0 ε σ
(Å) (N/m) (GPa) (GPa)

(5,5) 6.78 230 690 0.260 240
(9,0) 7.05 220 669 0.22 220

(10,10) 13.56 240 700 0.27 240
(17,0) 13.31 230 690 0.21 220
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FIG. 1: Force-strain curves for an ideal (5,5)-nanotube at
10 K temperature with three different cut-off radii. The on-
set of the cut-off function can be perceived as an artificial
peak. The flat regime depicts a sudden bond elongation to
a length corresponding to the cut-off. Thus the beginning of
this plateau, ’X’, corresponds to the largest value of force out-
side the cut-off peak and will be interpreted as bond rupture.

B. Vacancy-related defects on walls of carbon

nanotubes

Vacancy-related defects can appear in nanotubes dur-
ing purification or as a result of irradiation. In the latter

case collisions of energetic particles – electrons or ions –
with CNTs displace carbon atoms in the nanotube net-
work from their original positions thus giving rise to va-
cancies in the graphitic shells and to carbon interstitials
in the inter-tube regions. Energetic electrons produce
mostly single vacancies by knocking out carbon atoms
in the nanotube network [48], whereas heavy ions can
easily give rise to multi-vacancies by sputtering several
adjacent carbon atoms. These vacancies can transform
into other vacancy-related defects by saturating some of
the dangling bonds [30–33]. For a single vacancy, this re-
construction results in the appearance of a pentagon ring
accompanied by the protrusion of the atom with a dan-
gling bond by 0.5−0.7 Å out of the plane, as in graphite
[49]. Multi-vacancies reconstruct in more complex struc-
tures as described later.

It is intuitively clear that vacancies have a much
stronger effect on the axial mechanical characteristics of
individual SWNTs than interstitial atoms. Therefore, in
this work we dwell only on vacancies. Assuming that the
vacancies have been formed under irradiation, we simu-
lated the response of defective SWNTs to axial mechani-
cal load. We calculated the Young’s modulus and tensile
strength of four nanotubes with different chiral indices:
(5,5)-, (9,0)-, (10,10)-, and (17,0)-tubes. These particular
tube indices were chosen in order to observe the possible
diameter and chirality effects.

We have considered SWNTs with a single vacancy
(one atom removed), with a double vacancy (two ad-
jacent atoms knocked out) and with a triple vacancy
(three adjacent atoms missing), as depicted in Figs. 2(a-
c). In what follows, these configurations will be referred
to as non-reconstructed defects. In each tube the non-
reconstructed double and triple vacancy defects have two
axially distinguishable orientations separated by 120 de-
grees (only one configuration is shown in Fig. 2). These
atomic configurations are metastable but can survive for
macroscopic times at low temperatures [30, 32], or when
the atoms with dangling bonds are bonded to a surround-
ing medium, e.g., a polymer matrix.

The other type of defects studied here are the vacancy-
related defects, i.e., vacancies in SWNTs relaxed to the
global minimum energy configuration. In order to find
these low energy configurations, the non-reconstructed
vacancies were thermally annealed at a temperature of
3000 K for 40 ps before the system was slowly cooled
down at an average rate of 5 K/ps using the Berendsen
thermostat [38]. These configurations are presented in
Fig. 2(d-f) for (10,10) armchair tubes and in Fig. 2(g-i)
for (17,0) zig-zag tubes. The vacancy configurations in
the other studied SWNTs are similar to those shown in
Fig. 2.

C. Young’s modulus of nanotubes with defects

We have calculated the Young’s moduli of SWNTs
with one vacancy but different tube lengths. These cor-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2: Atomic networks of SWNTs with non-reconstructed
(a-c) and reconstructed (d-i) single (a,d,g), double (b,e,h) and
triple (c,f,i) vacancies. Only the front wall of each tube is
shown. The bottom row configurations correspond to a (17,0)
zig-zag SWNT, and the others to a (10,10) armchair SWNT.

respond to linear defect concentrations of 1/25 Å−1 (one
defect per 25 Å), 1/50 Å−1, 1/100 Å−1, 1/150 Å−1, and
1/200 Å−1. Both non-reconstructed and reconstructed
vacancies were examined. The energy of a given structure
was calculated as the tube length was increased from its
non-stretched equilibrium value. Then the Young’s mod-
ulus Ys was determined from the smooth curve fitted to
the simulation points. The results are presented in the
form of Eq. 13 (with M = 1) in Fig. 3, which presents
the inverse of the scaled Young’s modulus as a function
of defect concentration for non-reconstructed and recon-
structed vacancies. From this figure it is evident that
the inverse scales linearly with the defect concentration,
which validates the use of the continuum theory (Eq. 13).
Different symbols refer to the type of the vacancy and are
explained in the figure caption.

The data in Table II shows the dependency of the
Young’s modulus on the defect type, i.e., the coefficients
aα for each defect type. As expected, single vacancies,
whether reconstructed or non-reconstructed, decrease the
Young’s modulus least whereas the larger vacancies more.
The reconstruction matters for double and triple vacan-
cies but not so much for single vacancies. This can be
understood in terms of the vacancy geometries presented
in Fig. 2. The “hole size” for the reconstructed single
vacancy is practically the same as before the reconstruc-
tion. Also, the difference between the behavior of thin
(5,5) and (9,0) tubes and the thicker (10,10) and (17,0)
tubes is as expected, i.e. the defective region is a much
smaller portion of the tube circumference in the thicker
tubes and therefore the Young’s modulus is not so sensi-
tive to the defects nor to the order of vacancy or recon-
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FIG. 3: Inverse of the scaled Young’s modulus Ys0/Ys, (where
Ys0 is the surface based Young’s modulus of a perfect tube)
plotted as a function of the defect concentration (or 1/L) for
four different nanotubes with single, double and triple va-
cancies. Circles refer to single vacancies, triangles to double
vacancies and diamonds to triple vacancies. Filled symbols
stand for reconstructed defects, whereas open symbols are
for non-reconstructed defects. Non-reconstructed double and
triple vacancies have two possible axial orientations which re-
sult in different Ys behavior and two separate data sets. The
lines have been obtained by fitting the continuum Eq. 13 (with
M = 1) to each data set.

struction. Chirality dependence is observed only in the
non-reconstructed vacancies because the axial orientation
of higher order vacancies influences the result. In general
reconstructed vacancies result in stiffer tubes than non-
reconstructed but some orientations of non-reconstructed
vacancies appear to affect the stiffness less than the corre-
sponding reconstructed defects, especially for the larger
tubes. The reason for this is that the relative decrease in
the size of holes in reconstruction is smaller for the large
tubes. Therefore, as the bonds of an atom with a dan-
gling bond are stiffer than regular sp2 bonds, a favorable
local bond orientation in the non-reconstructed vacancy
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TABLE II: The coefficients aα (Eq. 13) necessary to calcu-
late the Young’s modulus of a defective nanotube. The bold-
face numbers represent the aα values corresponding to re-
constructed vacancies and the values in parenthesis the non-
reconstructed vacancies. The two numbers inside the paren-
thesis for the double and triple vacancies represent the two
alternative orientations of the non-reconstructed defects. The
Young’s modulus for an arbitrary defect concentration can be
computed by plugging in the values to Eq. 13.

Tube Y0 a1 a2 a3

1 atom 2 atoms 3 atoms
missing missing missing

(GPa) (Å) (Å) (Å)
(5,5) 690 1.2 (1.2) 1.4 (1.7/2.8) 1.8 (2.2/3.6)
(9,0) 670 1.1 (1.1) 1.2 (1.3/2.1) 1.6 (2.4/3.6)

(10,10) 700 0.8 (0.5) 1.0 (0.7/1.3) 1.2 (1.0/1.5)
(17,0) 690 0.8 (0.5) 1.0 (0.7/1.0) 1.2 (1.2/1.7)

may result in a stiffer tube than the reconstructed va-
cancy for small deflections.

The values of coefficients aα provided in Table II can
be used to compute the Young’s modulus for an arbi-
trary defect concentration. For example, if we have (5, 5)
nanotubes with single, double and triple vacancies with
concentrations of 10−4Å−2 or 1 defect every 50 Å for the
single vacancies and 10−5Å−2, that is 1/500 Å−1, for the
double and triple vacancies, Eq. 13 predicts the Young’s
modulus as

Y0

Y
=1 + a1n1 + a2n2 + a3n3

Y =0.97Y0.
(15)

Essentially, these numbers show that the averaged defect
concentration has to be very high to cause a noticeable
decrease in the Young’s modulus. Even for relatively high
concentrations used in the example the decrease in the
Young’s modulus is predicted to be only about 3 %.

D. Tensile strength of nanotubes with defects

In order to calculate the tensile strength and critical
strain of nanotubes with defects, we have used the same
simulation setup as for intact SWNTs. The results for
defective structures are presented in Fig. 4 where the re-
duced critical strain ε̃ = ε/ε0 and the reduced tensile
strength σ̃ = σ/σ0. Here ε0 refers to the critical strain
and σ0 to the tensile strength of a pristine nanotube. The
significance of defect reconstruction can be clearly seen –
the tubes with reconstructed vacancies are much stronger
than the tubes with non-reconstructed defects. The re-
sults are also chirality dependent, i.e. in zig-zag tubes
the reconstruction heals the carbon network to almost
ideal strength, ca. 95% of the critical strain and tensile
strength in an ideal tube. Reconstructed single and dou-
ble vacancies are equally strong within the presentation
accuracy and the structure with a reconstructed triple

vacancy is only slightly weaker. This can be understood
if the stress concentration factor [50] of each defect type
is considered. As visible in Fig. 2, if a zig-zag tube is
loaded axially, the load spreads symmetrically on the de-
fect region bonds. On the other hand, in the armchair
case (see Fig. 2(d-f)) the load spreads unevenly on re-
spective bonds, that is, the stress concentration factor is
larger locally. Thus the corresponding bonds are the first
to yield and result in critical strains of ca. 70% and ten-
sile strengths of ca. 85− 90% of the perfect tube values.
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FIG. 4: Tensile strength and critical strain of nanotubes with
defects. Filled symbols correspond to reconstructed vacancies
and open symbols to non-reconstructed vacancies. Squares
are the reference values for perfect tubes, circles stand for
tubes with a monovacancy, triangles with a double vacancy
and diamonds for tubes with a triple vacancy.

Non-reconstructed vacancies result in much lower tube
strength. Thus, the significance of the defect size with re-
spect to the tube circumference can be seen very clearly.
For example, for armchair tubes the symbols in Fig. 4
corresponding to non-reconstructed single vacancy and
one orientation of the double and triple vacancy clamp
together around critical strain 65%, tensile strength 85%.
The reason for this, again, is the stress concentration
factor. These symbols correspond to vacancies shown
in Fig. 2(a-c). If any of these configurations is viewed
in the axial direction, the portions of defective cross-
circumference are identical and the stress concentration
factors are equal because of axially similar bond orienta-
tions in the defect region. The single vacancy is slightly
stronger than the double vacancy, which on the other
hand exceeds the triple vacancy in strength. This is be-
cause fracture is an activated process and a larger hole
size allows more fluctuation at the constituent bonds.
Thereby the multiple vacancies break little earlier even
at low 10 K temperature. In a similar manner, the other
orientations of the double and triple vacancy in armchair
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tubes span the same cross-circumferential section and re-
sult in apparently similar strength. For zig-zag tubes the
axial orientations differ 30 degrees which causes the non-
reconstructed single vacancy and one orientation of dou-
ble vacancy to result in similar strengths. The second
pair is the remaining double vacancy orientation and a
triple vacancy and the third, the weakest, is a triple va-
cancy in which the three missing atoms are along the
circumferential zig-zag line of atoms.

It should be noted that increasing the temperature
would add to the difference between the symbols corre-
sponding to different vacancy orders because of increased
fluctuations. Nevertheless, the results show clearly how
the tensile strength varies with defect type and chirality
and how large the relative drops in tensile strength are.
Unlike the Young’s modulus, the tensile strength is prac-
tically independent of tube diameter because in uniform
axial loading the size and form of the defect define how
much load the first-to-fail defect region bonds carry. A
particular defect has practically the same form and ori-
entation in tubes of same chirality but different diameter
and thus the load has the same magnitude and spreads
similarly in the bond region. There is a small diame-
ter dependence visible in Fig. 4 due to smaller binding
energy in thin tubes and slightly larger fluctuations.

V. SUMMARY AND CONCLUSIONS

In this paper, we have studied theoretically the effects
of vacancy-related defects on the mechanical character-
istics of single-walled carbon nanotubes. Specifically, we
have calculated the Young’s modulus and tensile strength
of SWNTs with vacancies for different defect concentra-
tions and vacancy types.

We have found that the nanotube Young’s modulus de-
pends weakly on the vacancy concentration: a relatively
high defect density of one vacancy per 50 Å gives rise to
a small decrease in the Young’s modulus: about 3 % only.
Double and triple vacancies have a stronger effect on the
modulus, but vacancy reconstructions by saturating dan-
gling bonds diminish the degradation for the majority of
the tubes and vacancy orientations studied.

We have further shown that vacancies have a much
stronger effect on the tensile strength of nanotubes. Our
simulations indicate that the tensile strength can degrade
to 60 % of the intact tube value if vacancies are present.
For the critical strain the effect can be even more dele-
terious. The critical strain of the defective SWNT can
be half of the intact tube value. Similar to the nanotube
Young’s modulus, the degradation of tensile character-
istics is partly alleviated by the ability of the nanotube
carbon network to heal the vacancy damage by saturat-
ing the dangling bonds. However, even reconstructed

defects decrease the tensile characteristics by 5 − 10 %
for the zig-zag tubes and 10−15 % (tensile strength) and
25 − 30 % (critical strain) for the armchair tubes. Over-
all, the tensile characteristics, especially if defects were
present, were observed to be chirality dependent. This is
consistent with the previous reports on tensile strength
dependence on chirality for intact tubes [39].

These results indicate that the Young’s modulus of
nanotubes with defects will essentially be the same un-
less the vacancy concentration is extremely high. On
the other hand, the tensile strength will substantially
drop due to the quasi-one-dimensional atomic structure
of SWNTs already if a single vacancy is present – the
tensile strength of a SWNT is governed by the “weak-
est” segment of the tube. Given that a small number of
defects are always present in nanotubes, this may explain
why the theoretically predicted Young’s modulus agrees
well with the experimentally measured values, while the
tensile characteristics are much worse.

Finally, within the framework of the continuum the-
ory we have derived an expression which can be used to
calculate the Young’s modulus of defective CNTs at an
arbitrary vacancy concentration, unless the defect con-
centration is so high that there are several defects in a
specific nanotube unit cell. Thus, knowing the irradia-
tion dose and defect production rate one can readily eval-
uate the drop in Young’s modulus, which is indispensable
for the qualitative explanation of the recent experimental
data on the behavior of Young’s modulus of irradiated
nanotube bundles [24]. Note also that the defect con-
centration and ideally the defect types can be estimated
by probing the electronic structure of nanotubes by us-
ing various experimental techniques such as Raman, elec-
tron spin resonance and optical absorption spectroscopy.
Thus, simultaneous monitoring of the nanotube mechani-
cal properties and defect concentration can shed light on
the properties of irradiation-induced defects in carbon
nanotubes.

Since our initial submission, similar results for the frac-
ture behavior of nanotubes with defects have also been
obtained [51] with the use of density functional theory,
semiempirical methods and molecular mechanics.
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nen, and J. Keinonen, Phys. Rev. B 63, 245405 (2001).
[31] P. M. Ajayan, V. Ravikumar, and J.-C. Charlier, Phys.

Rev. Lett. 81, 1437 (1998).
[32] A. V. Krasheninnikov and K. Nordlund, J. Vac. Sci. Tech-

nol. B 20, 728 (2002).
[33] A. V. Krasheninnikov, K. Nordlund, and J. Keinonen,

Phys. Rev. B 65, 165423 (2002).
[34] M. P. Allen and D. J. Tildesley, Computer Simulation

of Liquids (Oxford University Press, Oxford, England,
1989).

[35] D. W. Brenner, Phys. Rev. B 42, 9458 (1990).
[36] Y. Xia, Y. Ma, Y. Xing, Y. Mu, C. Tan, and L. Me, Phys.

Rev. B 61, 11088 (2000).
[37] M. B. Nardelli, B. I. Yakobson, and J. Bernholc, Phys.

Rev. B 57, 4277 (1998).
[38] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gun-

steren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81,
3684 (1984).

[39] T. Belytschko, S. P. Xiao, G. C. Schatz, and R. S. Ruoff,
Phys. Rev. B 65, 235430 (2002).

[40] B. I. Yakobson, M. P. Campbell, C. J. Brabec, and
J. Bernholc, Comp. Mat. Sci. 8, 341 (1997).

[41] T. Xiao and K. Liao, Phys. Rev. B 66, 153407 (2002).
[42] C. Wei, K. Cho, and D. Srivastava, Appl. Phys. Lett. 82,

2512 (2003).
[43] C. Wei, K. Cho, and D. Srivastava, Phys. Rev. B 67,

115407 (2003).
[44] T. Dumitrica, T. Belytschko, and B. I. Yakobson, J.

Chem. Phys. 118, 9485 (2003).
[45] P. Zhang, P. E. Lammert, and V. H. Crespi, Phys. Rev.

Lett. 81, 5346 (1998).
[46] G. G. Samsonidze, G. G. Samsonidze, and B. I. Yakob-

son, Phys. Rev. Lett. 88, 065501 (2002).
[47] M. B. N. Q. Zhao and J. Bernholc, Phys. Rev. B 65,

144105 (2002).
[48] F. Banhart, Rep. Prog. Phys. 62, 1181 (1999).
[49] A. A. El-Barbary, R. H. Telling, C. P. Ewels, M. I. Heggie,

and P. R. Briddon, Phys. Rev. B 68, 144107 (2003).
[50] R. W. Herzberg, Deformation and Fracture Mechanics of

Enigineering Materials (John Wiley & Sons, Inc., USA,
1996).

[51] S. L. Mielke, D. Troya, S. Zhang, J. Li, S. Xiao, R. Car,
R. S. Ruoff, G. C. Schatz, and T. Belytschko, Chem.
Phys. Lett. 390, 413 (2004).


