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Graphyne is the allotrope of graphene. In this letter, four different graphynes (a, b, c, and

6,6,12-graphenes) are investigated by molecular dynamics simulations to explore their mechanical

properties and failure mechanisms. It is found that the presence of the acetylenic linkages in graphynes

leads to a significant reduction in fracture stress and Young’s modulus with the degree of reduction

being proportional to the percentage of the linkages. This deterioration in mechanical properties stems

from the low atom density in graphynes and weak single bonds in the acetylenic linkages where the

facture is initiated.VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747719]

Graphene has stirred a considerable interest around the

world since it was discovered in 2004.1 Extensive research

studies have been conducted to explore its unique properties

and potential applications.1–4 Along with the graphene surge,

attempts have been made to find its carbon allotropes, e.g.,

graphynes or graphdiynes. Like graphene, graphynes are also

one-atom-thick sheet of carbon atoms but with different

atomic bonds. In addition to the sp2 carbon bonds, graphynes

contain sp hybridized bonds. The presence of the sp carbon

atoms destroys the regular hexagonal crystal lattice of the

graphene. This allows for the formation of various types of

graphynes with different geometries.5–10 Figure 1 shows four

different types of graphynes, namely a-, b-, c-, and the

6,6,12-graphynes.11 These graphynes differ from each other

with regard to the percentage of the acetylenic linkage

(�C � C�) in their structures. In addition to studying their

electronic properties,5–11 efforts have also been devoted to

study their mechanical properties. Recently, Cranford and

Buehler12 performed an atomistic study on the c-graphyne

(see Fig. 1(d)) and found that its fracture stress and strain

show strong anisotropy. Using first-principle calculations,

Kang et al.13 found that the c-graphyne is much softer than

graphene. Yang and Xu14 explored the mechanical properties

of c-graphyne and its graphyne groups. However, the me-

chanical properties of other types of graphynes, such as the

a-, b-, and 6,6,12-graphynes considered in Ref. 11, have not

been investigated. This motivated us to investigate the me-

chanical properties of all the four different types of graph-

ynes using molecular dynamics (MD) simulations. We will

not only characterize the Young’s modulus, fracture stress,

and strain but also examine the failure mechanisms of

graphynes.

Graphynes may be regarded as formed by replacing cer-

tain percentages of carbon-carbon sp2 bonds in graphene by

the acetylenic linkages. The a-graphyne in Fig. 1(b) has a

similar atomic geometry as that of graphene in Fig. 1(a), but

all the carbon-carbon sp2 bonds have been replaced by the

acetylenic linkages. The percentages of the acetylenic link-

ages are 66.67%, 33.33%, and 41.67% for the b-, c-, and

6,6,12-graphynes, respectively. It is expected that the intro-

duction of different densities of the linkages in graphynes

should make their mechanical properties interestingly differ-

ent from those of graphene.

In the MD simulations, all the models are approximately

square with a side length of approximately 20 nm. Using gra-

phene as the reference, zigzag and armchair edges are ori-

ented along the x and y directions, respectively. The software

package LAMMPS (Ref. 15) is used for the MD simulations.

The interaction between the carbon atoms is described by the

adaptive intermolecular reactive empirical bond order (AIR-

EBO) potential,16 which has been widely used to investigate

the mechanical and thermal properties of carbon-based nano-

materials.17–24 Uniaxial tensile loading is applied either

along the x or y direction at a strain rate of 0.0005 ps�1 with

a time step of 0.5 fs. The environmental temperature is main-

tained at 300K by using the Nos�e-Hoover thermostat.25,26

Periodic boundary conditions are applied along the x and y

directions to eliminate the edge effects. Prior to loading, the

initial configuration is optimized by using the conjugate

gradient method and then the system is relaxed in NPT (i.e.,

constant atom number, pressure, and temperature) ensemble

for 100 ps. In order to overcome spuriously high tensile force

when the carbon-carbon bond length is greater than 1.7 Å,

the onset of the covalent interaction cutoff distance is

increased to 2.0 Å19–23 in the AIREBO potential.

The simulated stress-strain curves for graphynes and

graphene subjected to uniaxial tension in x and y directions

are shown in Figs. 2(a) and 2(b), respectively. In the determi-

nation of the stress, the thickness of the structures is assumed

to be 0.335 nm. Herein, the fracture stress is defined as the

peak stress and the corresponding strain is the fracture strain.

From Fig. 2, it is seen that graphene displays a linear stress-

strain relationship when the tensional strain is small (say

<0.05); thereafter the stress increases nonlinearly with the

strain until fracture occurs. However, all the graphynes
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display approximately linear stress-strain relationships

before fracture, indicating that graphynes are more brittle

than graphene. Fig. 2 clearly shows that graphene has a

higher fracture stress in both x and y directions than the

graphynes. Our simulated fracture stresses of graphene are

125.18 and 103.56GPa in the x (zigzag) and y (armchair)

directions, respectively, which are somewhat close to 137

and 105GPa obtained by Pei et al.22 and to 107 and 90GPa

obtained by Zhu et al.19 These results agree well with the ex-

perimental value of 123.5GPa.3 The fracture strains of gra-

phene in zigzag and armchair directions are 0.191 and 0.134,

respectively, which are in very good agreement with 0.2 and

0.13 given by Zhu et al.19 From Table I, it can be seen that

the fracture stresses of graphynes range from 32.48 to

63.17GPa, which are about 1/3 to 1/2 of those of graphene.

It is also observed from Table I that the fracture stress and

strain of graphene and graphynes in the zigzag (x) direction

are higher than those in the armchair (y) direction. The

direction-dependent properties can be explained as follows.

Fig. 1 shows that some bonds in graphene and graphynes are

parallel to the y (armchair) direction, while no bonds in those

structures are parallel to the x (zigzag) direction. When the

tensile loading is applied in the y direction, those bonds par-

allel to the y direction will undergo stress and deformation

directly in the bond-length direction, which causes the bond

elongation and breaking. In contrast, when the same tensile

loading is applied in the x direction, the loading is not in the

bond-length direction, thereby it has not so strong effect on

the bond elongation in the bond-length direction. This differ-

ence in the bond orientation results in anisotropic fracture

properties.

It can be seen from Fig. 2 and Table I that graphene pos-

sesses the highest fracture stress in the x directions, followed

by c-, 6,6,12 -, b-, and a-graphynes. The same trend is also

observed in the y direction. It is interesting to find from Table I

that the fracture stresses of the four different graphynes depend

heavily on the percentage of the acetylenic linkages in their

structures. The fracture stress of graphynes decreases with

increasing linkages. This may be attributed to the different

atom densities of the structures caused by the different percen-

tages of the linkages. With the increase of the linkages in

graphynes from c-graphyne (33.33%) to a-graphyne (100%),

the atom density drops from 29.61 to 18.92 atoms/nm2.

The sparser carbon atoms in the structures lead to less bond

connections and consequently a smaller fracture stress.

From Table I, it is also found that the 6,6,12-graphyne

possesses the highest degree of directional anisotropy with

36.61% difference in fracture stress. This is because all the

graphynes and graphene have hexagonal symmetry except

6,6,12-graphyne.11 Malko et al.11 reported that 6,6,12-graph-

yne possesses the directional anisotropy in electronic property.

This directional anisotropy in mechanical and electronic

FIG. 1. Bonding structures of graphene and

graphynes. (a) Graphene; (b) a-graphyne;

(c) b-graphyne; (d) c-graphyne; (e) 6,6,12-

graphyne.

FIG. 2. Stress-strain curves of graphynes and graphene under tensile loading

(a) in the x (zigzag) and (b) y (armchair) direction.
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properties could make 6,6,12-graphyne more versatile in

potential applications.

In contrast to the fracture stress, the fracture strains of

graphynes display an opposite trend with respect to the per-

centage of the acetylenic linkages as shown in Fig. 2 and

Table I. The fracture strains increase with increasing per-

centage of the linkages. The presence of the linkages in

graphyne leads to a reduction in fracture stress, but it makes

the graphyne flexible and thereby it enhances the fracture

strain accordingly. As the linkages make the graphyne less

rigid, they have a strong effect on the Young’s modulus.

The Young’s moduli of graphynes and graphene can be

obtained from the stress-strain data in Fig. 2 by using the

Hooke’s law r ¼ E� at small strain level (� 0:02Þ. This is to
assure that the structures are in the linear deformation region

and Hooke’s law is valid for the determination of the Young’s

modulus. The Young’s moduli of graphene and graphynes are

listed in Table I. Similar to the trend of fracture stresses, gra-

phene possesses the highest Young’s modulus of 0.995 TPa

and 0.996 TPa in the x and y directions, respectively, which

agree well with the experimental value of 1 TPa.3 For graph-

ynes, the presence of the acetylenic linkages leads to a signifi-

cant reduction in Young’s modulus. A higher percentage of

the linkages in graphyne results in a lower Young’s modulus

due to lower atom densities of the structures. The Young’s

modulus of graphynes ranges from 0.12 to 0.505 TPa, which

is much lower than that of graphene. It can be seen that the

6,6,12-graphyne demonstrates a strong anisotropy in Young’s

modulus. For the other graphynes and graphene, their Young’s

moduli in the x and y directions are rather close, indicating lit-

tle anisotropy in Young’s modulus.

In order to explore the fracture mechanism of graph-

ynes, we now study the stress distributions and the fracture

processes of graphynes. Herein, the fractured morphologies

of 6,6,12-graphyne are demonstrated in Fig. 3 for the illustra-

tive purpose. When the graphynes are subjected to the x-

axial tension, the acetylenic linkages in the inclined direction

show a higher stress than the linkages in the vertical (y)

direction (see the stress distribution before fracture in Fig.

3(a)), meaning that the inclined linkages undergo a larger

tensile deformation. Since the single bonds are weaker than

the triple ones, the bond breaking will occur at the single

bonds in the inclined linkages upon further deformation.

This can be confirmed from the corresponding fractured

morphology in Fig. 3(b). The zoomed view in Fig. 3(b)

clearly displays that the bond breaking occurs in the single

bonds (highlighted in blue) of the inclined acetylenic link-

ages at the fracture strain. Therefore, the single bonds in the

linkages undermine the fracture properties. Under tension,

the single bonds in the linkages break first and become the

origin of the crack as shown in Fig. 3. Then the crack spreads

to all the directions on further loading, causing the graphyne

to rupture finally.

For the graphynes under the y-axial tension, the vertical

acetylenic linkages in graphynes show higher stress as shown in

Fig. 3(d). Since the single bonds are weaker than the triple

ones, bond breaking is expected to occur at the single bonds in

the vertical linkages upon further tension deformation, which is

TABLE I. Fracture stresses, strains, and Young’s moduli of graphynes and graphene.

Model

Percentage of

acetylenic linkage

Atom density

(atoms/nm2)

Stress (GPa)
Difference in

stresses (%)

Strain
Difference in

strains (%)

Young’s

modulus (TPa)

x y x y x y

a 100 18.92 36.36 32.48 10.69 0.178 0.156 12.37 0.12 0.119

b 66.67 23.13 46.26 38.06 17.72 0.162 0.130 19.54 0.261 0.26

6,6,12 41.67 28.02 61.62 39.06 36.61 0.147 0.116 21.54 0.445 0.35

c 33.33 29.61 63.17 49.78 21.20 0.148 0.112 24.09 0.505 0.508

Graphene 0 39.95 125.2 103.6 17.27 0.191 0.134 29.93 0.995 0.996

FIG. 3. The 6,6,12-graphyne under tensile

loading. (a) Stress distribution at strain of

0.1 under tensile loading in the x direction;

(b)-(c) morphologies at strains of 0.145

and 0.147 before and after fracture for the

x-direction loading; (d) stress distribution

at strain of 0.1 under tensile loading in the

y direction; (e) fractured morphology at

fracture strain of 0.116 for the y-direction

loading.
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supported by the zoomed fractured part in Fig. 3(e) and matches

very well with the high stress distributions in Fig. 3(d).

In summary, we have studied the mechanical properties

and failure mechanisms of graphynes under uniaxial tension

by using MD simulations. It is found that the presence of the

acetylenic linkages in graphynes has a pronounced effect on

the mechanical properties. The fracture stress and Young’s

modulus decrease with increasing percentage of the linkages.

But it is the reverse trend for the fracture strain. The induced

effects by the linkages stem from the low atom density with

the associated less bond connections and the weak single

bonds in the linkages. Among the four different graphynes,

6,6,12-graphyne displays very obvious directional anisotropy

in the mechanical properties. Along with its highly aniso-

tropic electrical conductivity,11 6,6,12-graphyne may be

more versatile in potential applications. The present work

offer insights for better understanding the mechanical prop-

erties and failure mechanism of graphynes.
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