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In this study, the behaviour of laminated composite plates, fiber Kevlar
29

, Al2O3 powder/epoxy and the 
suggested analytical solution for static analysis of composite plates were presented using general 
classical laminated plate theory. The Navier solutions are limited to simply support rectangular plates 
using static analysis. The results show that the effect of the deflections and stresses on the plate 
thickness–to–length ratio, aspect ratio, modulus ratio, fiber orientation and the number of layers were 
observed. The deflection and stresses on laminated composite plate decreases with the increase in the 
number of layers, fiber orientation, and thickness of the laminated plates. These results indicate that 
the improvements in mechanical properties for aircraft body applications were achieved. 
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INTRODUCTION 
 
Composite materials are defined as a combination of two 
or more materials that have quite different properties, 
which offer more desirable and unique properties than 
the individual materials. As a result, it can also be noted 
that the combination of materials do not dissolve or blend 
into each other, and the theory behind the construction of 
composite materials comes from the need to create 
strong, stiff, and light materials. Materials such as glass, 
carbon and Kevlar have extremely high tensile and 
compressive strength, but in solid form, many random 
surface flaws are present in such materials, which cause 
them to crack and fail at a much lower stress than it 
theoretically should. Fiber–reinforced composite 
materials are continuing to replace the conventional 
metals in primary and secondary aerospace and aircraft 
structural elements owing to their superior mechanical 
properties such as high strength–to–weight stiffness–to–
weight ratios. One form of these materials being used in 
current design studies of aircraft is the unidirectional 
fiber–reinforced lamina (Vasiliev and Morozov, 2001). 

The modified theory was then used to develop a new 
finite element model for  the  analysis  of  thick  laminated 
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plates composed of arbitrarily-oriented layers. The 
proposed finite element method was assessed for its 
performance, comparing its solution for three-layered 
square and rectangular laminates and FRP-faced square 
sandwich laminates with that of the three-dimensional 
elasticity solution. The central deflection and in-plane 
stresses are evaluated by varying the fiber orientation 
angle in the top and bottom layers of a rectangular 
laminate (Rao and Meyer-Piening, 1990). A unique 
approach to analyzing thick laminated composites was 
done by presenting two simple finite element methods. 
The first method used the Predictor-Corrector technique 
to extend the simple Mindlin-type element to achieve 
greater accuracy, and the second developed a new Least 
Squares element that can approximate a C1 continuous 
element.  

The Carbon-nanotubes (CNTs) have been used with 
polymers from the date of their inception to make 
composites having remarkable properties (Kanagaraj et 
al., 2007). It was shown that by combining the exact 
(Navier) solution of the specially orthotropic plate 
equilibrium equations with the Tsai-Hill failure criterion 
the initial failure analysis of fibre-reinforced laminated 
plates may be transformed into an optimization problem. 
A simple trial and error procedure was used to locate and 
evaluate the maximum value of an  initial  failure  function  



4456            Sci. Res. Essays 
 
 
 
from which the initial failure load and the corresponding 
plate deflections were derived. This approach was used 
to provide design data for the initial failure conditions in 
GFRP and CFRP simply-supported rectangular plates 
were subjected to uniform, uniform square patch and 
hydrostatic (linearly varying) load distributions. (Turvey, 
1980) The resulting transcendental equilibrium equation 
was dependent upon the unknown neutral surface. This 
neutral surface was found and, hence, the equilibrium 
problem was solved with an iteration technique.  

The approach was applied to laminates ordinarily 
thought to be symmetric, asymmetric, and un-symmetric 
about the middle surface. All laminates were found to 
exhibit coupling between bending and extension under 
bending in contrast to the usual concepts of symmetry 
and asymmetry for single modulus laminates. The effect 
of coupling due to different moduli in tension and 
compression on stresses and deflections is found to be 
generally significant for common composite materials 
such as boron/epoxy and graphite/epoxy as well as 
carbon-carbon (Jones and Morgan, 1980). The impact 
behaviour of single and multi-ply Kevlar 129 fabric 
armour systems was investigated using an explicit finite 
element code, TEXIM, developed in-house. A numerical 
model was used by (Novotny et al., 2007) to explore the 
loss in ballistic efficiency of woven fabric targets, as 
experienced early in the impact event. The effects of 
plate width-to-thickness ratio, fibre orientation, number of 
layers, thickness ratio, aspect ratio and boundary 
conditions on the displacement and stress response of 
symmetric and asymmetric laminated composite plates 
subjected to uniformly distribute normal loads were 
studied.  

The non-dimensional central deflections have been 
decreased with an increase in the plate width-to-
thickness ratio. The central deflection approaches a 
minimum of a 45° fibre orientation. The number of layers 
does not have much effect on the central deflection 
beyond six layers (Latheswary, et al., 2004). 

The overall goal of this research is to investigate the 
response of composite materials (alumina powder and 
fiber composite Kevlar-29 with epoxy resin), to predict the 
failure of delamination composite laminate plates 
theoretically by using rectangular plate with different 
angles of fiber orientation (θ) for each layer and deriving 
equations for evaluating defalcation and stresses. In this 
study the suggested analytical solution for static analysis 
of composite plates is presented using the general 
classical laminated plate theory (CLPT). The Navier 
solutions are limited to simple supported rectangular 
plates using static analysis. 
 
 
MICRO-MECHANICAL BEHAVIOR OF LAMINA 

 
The mechanics of the materials approach is that certain simplifying 
assumptions are made regarding the mechanical behavior of a 
composite material. The  most  prominent  assumption  is  that  the  

 
 
 
 
strains in the direction of the fiber of a unidirectional fibrous 
composite are the same in the fiber as in the matrix. Since the 
strain in both matrix and fiber are the same, it is obvious that 
sections normal to the 1–axis that were planed before being 
stressed remain planed after stressing. The foregoing is a 
prominent assumption in the usual mechanics of materials 
approaches such as in beam, plate, and shell theories. The basis, 
the mechanics of materials expressions will be derived for the 
apparent orthotropic moduli of a unidirectionally-reinforced fibrous 
composite material.  

 
 
Composite reinforcement 

 
Composite reinforcement by particle (Al2O3 +epoxy) 

 
The quantity of the particle that was added to the matrix material to 
manufacture the composite material was calculated by the weight 
fraction and the equal ratio of the particle weight to the composite 
material weight (Decolon, 2002):  
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The mass (mi) of the composite is made up of the masses of the 
matrix (mm) and the filler particle (mp): 
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By re – writing Equation (3) in form of volume and density: 
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By dividing by vi, Equation (4) becomes: 
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, which is the volume fraction for the powder .  
 

ppmmi VV ρρρ +=                                                                    6  

 
Note that since Vm = Vi – Vp  it must have   
 

pm VV −= 1                                                                                   7  

 
By substituting Equation (7) into Equation (6) gives us:  
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Composite reinforcement by fiber and (Al2O3 +epoxy) 
 
The mass of the composite is: 
 

ifc mmm +=                                                                              9   

 
So” 
  
mc:     the mass of the composite  
 mf:   the mass of the fiber  
 mi  :  this mass from Equation (3) 
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Then:  

so  

c

f

f
v

v
V =  is the volume fraction of the fiber  

and  

c

i

i
v

v
V =  is the volume fraction of the particles and epoxy  

And noting that Vf + Vi = 1 , the density of the composite is given as: 
  

ifffiiffc VVVV ρρρρρ )1( −+=+=                          11 

 
 

Determination of E1: The first modulus to be determined is that of 
the composite in the 1–direction, that is, in the fiber direction. 
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Determination of E2: The apparent Young's modulus (E2) in the 
direction transverse to the fiber is considered next. 
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Determination of υ12 : The so–called major Poisson's ratio (υ12) 
can be obtained by an approach similar to the analysis for E1. The 
major Poisson's ratio is: 
 

ffii VV ννν +=12  

 

Determination of G12: The in–plane shear modulus of a lamina 

(G12) is determined in the mechanics of materials approach by 
assuming that the shearing stresses on the fiber and composite 
material by the particles are the same. 
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MACRO-MECHANICAL BEHAVIOR OF A LAMINA 

 
The study of composite material behavior is  where  the  material  is  
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presumed homogeneous; the effects of the constituent materials 
are detected only as averaged apparent properties of the 
composite. The stress and strain relationship as shown by 
(Crawford, 1998): 
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The relation between shear stress τxy and the shear modulus G12 is 
given by: 
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τ
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In the analysis of composites, it is convenient to use matrix notation 
because this simplifies the computations very considerably. Thus 
we may write the above equations as:  
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Or in abbreviated form: 
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Where [ ]S  is called the compliance matrix.  

Using matrix notation, Equation (15) may be transposed to give 
the stresses as a function of the strains:  
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This may also be written as: 
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Where [ ]Q  is the stiffness matrix and its terms will be: 
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Figure 1. Unidirectional reinforced lamina. 

 
 
 
The previous analysis is a preparation for the more interesting and 
practical situation where the applied loading axis does not coincide 
with the fiber axis; this is illustrated in Figure 1. 
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, ( )θθτθθσθθστ 22

12 sincoscossincossin −++−= xyyx
, 

[ ] [ ][ ]xyT σσ σ=12  and [ ]σT  

 
Where c = cosθ and s = sinθ. 

In shorthand form, this matrix equation may be written as: 
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Where [ ]σT  is called the stress transformation matrix; similar 

transformations may be made for the strains so that: 
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Where:  
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Note the modification to [ ]σT   gives the strain transformation 

matrix Tε 
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Which provides an overall stiffness matrix 
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The displacement (w) yield expressions for the strains εx , εy and γxy 
at any point of the plate. 
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The rectangular plate, in general, has two sides a and b, where the 
plate is simply supported on all edges and subjected to a distributed 
constant load P0 (Vinson, 2005). This approach is called the 
‘Navier’ solution. The boundary conditions can then be formulated 
as:  
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The method consists of a Fourier serial development of an arbitrary 
load like the following:  
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Where the load factor pmn for each m,n can be taken from tables or 
calculated by standard Fourier coefficient calculations, expressed 
as:  
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We can now express the displacement function as a Fourier series:  
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has its own displacement expressed as: 
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Cmn is given by the equation:  
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And the displacement then becomes:  
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Where pmn is given by the first expression in Equation (20). For the 
case when the load p(x,y) is a constant p0 , after one integration. 
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This equation is the solution for the vertical displacement of the 
composite plate.  
 
 
RESULTS AND DISCUSSION 
 
In discussing the deflection results for composite 
laminated plates are under different constant loads, the 
results are the response, stresses and inter – laminar 
shear stresses solution by first order shear deformation 
theory for symmetric, cross – ply and angle – ply, 
laminate plats subjected to the static loading. Square 
simply supported four-layer laminated plates with layers 
of equal thickness and subjected to uniformly distributed 
load are considered to study the effect of the plate width-
to-thickness ratio. Both cross-ply and angle-ply laminates 
with symmetric is analyzed. The elasticity method of 
structural analysis embodies the determination of 
stresses and/or displacements by employing equations of 
equilibrium and compatibility in conjunction with the 
relevant force–displacement or stress–strain 
relationships, so the maximum loads on the components 
of an aircraft’s structure generally occur when the aircraft 
is undergoing some form of acceleration or deceleration, 
such as in landings, take-offs and manoeuvres within the 
flight and gust envelopes.The results are shown in 
Figures 2 to 4. It is seen from Figure 4 that the central 
deflection decreases with increase in b/h ratio up to b/h = 
20 and then remains practically constant in all cases. 
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Figure 2. Central deflection for different fiber orientations of laminated plates with the aspect ratio. 
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Figure 3. Central deflection for different fiber orientations of laminated plates with the E1/E2 ratio. 

 
 
 
    These results compared with element formulation done 
by Latheswary et al. (2004). The results for deflections, 
stresses are presented showing the effect of plate side – 
to – thickness ratio, aspect ratio, and material orthotropic. 

Figure 2 shows the effect of the aspect ratio on the 
deflection for different fiber orientations. It is noted that 

the deflection of the laminated plate increases with an 
increase in the aspect ratio. And it is also affected by the 
number of layers, thickness and the modulus ratio. Figure 
3 shows the effect of the (E1/E2) ratio on the deflection of 
cross–ply and angled–ply laminated plates for simply 
supported laminated plates. The  deflection  of  laminated 
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Figure 4. Central deflection for different fiber orientations of laminated plates with different b/h ratios. 
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Figure 5. Stress σx for different fiber orientations of laminated plates with the aspect ratio. 

 
 
 
plates decreases with an increase in the (E1/E2) ratio. 
Figure 4 shows the (b/h) ratio of simply supported cross–
ply and angled–ply laminated plates and the results were 
compared with finite element formulation done by 
Latheswary et al. (2004). 

It is clear that the deflection of laminated plates 
decreases with an increase in the (h/a) ratio, and its 
deflection decreases with an increase in h. The static 
analysis of composite laminated plates is obtained by 
using an analytical solution and the results show the
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Figure 6. Stress σx for different fiber orientations of laminated plates with the E1/E2 ratio.  
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Figure 7. Stress σx for different fiber orientations of laminated plates with different b/h ratios. 

 
 
 
effect of the aspect ratio, modulus ratio and fiber 
orientation on the stress in the x-direction. Figure 5 
shows the effect of the aspect ratio on the maximum 
stress σx for different fiber orientations for composite 
laminate plates. The figure shows that the stress σx 
increase with the increasing of the aspect ratio. Figure 6 
shows the effect of the (E1/E2) ratio and the stress σx for 
cross–ply and angled–ply, with simply supported 
laminated plates.  

The figure shows that the stress σx increases with an  
increase of the (E1/E2) ratio and its increase with an 
increase in E1. In addition, the σx for the angled–ply 
laminated plate was less than the cross–ply laminated 
plate. The effect of the (b/h) ratio is shown in Figure 7, 
with the stress σx for the cross–ply laminate and the 
angle–ply laminate; the figure shows that the stress σx 
decreases with an increase in the (h/a) ratio and that it 
decreases with an increase in the thickness (h). 



 
 
 
 
Conclusions 
 
The main conclusions for this study are as follows: 
 
1. The angle of ply (θ = 45°) for laminated plates was 
found to represent a lamination angle at which the 
minimum deflection and stresses occurred for simply 
supported laminated plates.  
2. The amplitude values for angled–ply (45/-45/45/-45) 
laminated plates were less than for cross–ply (0/90/0/90) 
laminated plates.  
3. Increasing the number of layers, the (E1/E2) ratio, or 
the thickness–to–length (h/a) ratio of laminated plates 
decreased the deflection of the laminated plates. The 
decrease of the aspect ratio of the plates decreased the 
deflection of the laminated plates.  
4. The stress (σx) increases with an increase in the 
number of layers, but it decreases for both the aspect 
ratio (a/b) and the thickness (h), or increases the E1/E2 
ratio of the laminated plates. 
 
The results indicate that the improvements in mechanical 
properties of aircraft body applications were achieved. 
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