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ABSTRACT 

Sandwich structures with folded cores are regarded as a promising alternative to conventional 

honeycomb sandwich structures in the aerospace industry. This paper presents a parametric study 

on the mechanical properties of a variety of Miura-based folded core models virtually tested in 

quasi-static compression, shear and bending using the finite element method. It is found that the 

folded core models with curved fold lines exhibit the best mechanical performances in 

compression and shear while the multiple-layered models outperform the other folded core models 

in bending. Furthermore, the folded core models are compared to a honeycomb core model with 

the same density and height. In this case, it is shown that the honeycomb core has the best 

performance in compression while the folded cores have comparable or even better performances 

in the shear and bending cases. The virtual test results reported in this paper can provide 

researchers with a general guideline to design the most suitable folded core structure for a certain 

application. 
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1 INTRODUCTION 

Composite sandwich structures, typically consisting of two thin and stiff faces separated by a thick 

lightweight cellular core, have many successful applications in the aerospace industry where 

weight-saving is a paramount design goal. In this context, honeycomb cores made of aluminum or 

Nomex paper are the most commonly used core type today due to their excellent weight-specific 

mechanical properties. However, honeycomb cores are known to suffer from an undesirable 

moisture accumulation problem whereby the condensed moisture is trapped inside the sealed 

hexagon cells leading to deterioration of the mechanical performance over time [1].  

 

Folded cores, made by folding sheet material into a three-dimensional structure according to the 

principle of origami – an ancient art of paper folding, do not have the moisture accumulation 

problem because of the existence of open channels in such structures. Moreover, they allow for 

tailored mechanical properties with a wide range of possible configurations. Therefore, they 

emerge as a promising alternative to conventional honeycomb cores and have seen a surge in 

research interest from the aerospace industry in recent years. For example, in the transnational 

project CELPACT, the fabrication cost and impact performance of three different advanced 

cellular core concepts, i.e. folded core, selected laser melted lattice core were evaluated and 

compared [2]. Besides, the aircraft manufacturer Airbus presented a sandwich fuselage concept 

VeSCo which incorporates folded cores as a sandwich core material [3] and has made a 4.5 m2 test 

assembly consisting of approximate 165,000 creases [4]. 

 

While specimen manufacturing and mechanical testing remain routine procedures, numerical 

analysis based on the finite element (FE) method, as an established time- and cost-efficient tool, 

has been widely adopted in the development of new composite structures. Besides, FE simulations 

can provide analysis details such as the cross-sectional stress/strain data that are usually difficult 

to be obtained experimentally. As a result, a number of numerical studies of folded-core sandwich 

structures, such as virtual in- and out-of-plane quasi-static compression and shear tests [5-9], low- 

and high-velocity impact simulations [10-12], residual bending strength simulations after impact 

[13] and macro- and multi-scale modelling [7,11], are available in the literature. However, most 

folded cores used in research works are made of two simple Miura-based unit cell geometries with 



zigzag and chevron shapes [14]. So far, the authors are not aware of any literature on 

computational or experimental study of folded core structures beyond these two simple cases. 

Consequently, the mechanical properties of other folded configurations remain unexplored.  

 

This paper presents a parametric study on folded cores with different geometric parameters based 

on the standard Miura folding pattern [15] and its variation forms subject to out-of-plane 

compression, in-plane shear and bending using the finite element method. To facilitate the 

parametric modelling, a new origami geometric design approach, known as the vertex method [16], 

is used to generate the various folded core models in this study. Furthermore, the weight-specific 

mechanical properties of the folded core models were compared to those of a honeycomb model 

with the same density. 

 

The layout of the paper is arranged as follows. First, the mechanical behaviors of eight folded core 

models with the standard Miura origami folding pattern are simulated and compared. Second, 

eight folded core models with curved fold lines are virtually tested. Third, further two folded core 

models with multiple layers are considered. Fourth, the mechanical performances of the folded 

core models are compared with those of a honeycomb core model. Finally, a brief discussion 

concludes the paper. 

 

2 STANDARD MIURA FOLDED CORES 

 

2.1 Geometric models 

Using a set of geometric parameters to define the folded configuration of a unit cell is a commonly 

employed modelling technique of folded cores in the literature [4]. However, this approach lacks 

flexibility in that a new set of geometric parameters and their relationships must be established 

when a different type of folded core is studied. In this paper, an alternative modelling technique, 

known as the vertex method for designing developable origami structures, is used to generate the 

geometric models of folded cores, in which ݉ input points in the x-z plane, denoted by their 

position vectors ࢞࢏ࢂ ൌ ሾݔ௜௫ 0 ݅ ,௜௫ሿ୘ݖ ൌ 1, 2, … ,݉, and ݊ ൅ 2 input points in the y-z plane, 



denoted by their position vectors ࢐࢟ࢂ ൌ ൣ0 ௝௬ݕ ݆ ,௝௬൧୘ݖ ൌ 0, 1, … , ݊ ൅ 1 are first specified in a 

Cartesian coordinate system, respectively and then ݉ ൈ ݊ vertices ࢐,࢏ࢂ of the target folded core 

geometric model are obtained using the following equation 

  ࢐,࢏ࢂ ൌ ൥ݔ௜,௝ݕ௜,௝ݖ௜,௝൩ ൌ ࢐࢟ࢂ ൅ ࢞࢏ࢂ࢐൧࡭ൣ 	, ݅ ൌ 1, 2, … ,݉; 	݆ ൌ 1, 2, … , ݊,  (1) 

where ൣ࢐࡭൧ is a 3 ൈ 3 matrix given by 

  ൣA௝൧ ൌ ێێێۏ
1ۍ 0 00 0 ሺെ1ሻ௝ ୡ୭ୱఏೕషభାୡ୭ୱఏೕୱ୧୬ሺఏೕషభିఏೕሻ0 0 ሺെ1ሻ௝ ୱ୧୬ఏೕషభାୱ୧୬ఏೕୱ୧୬ሺఏೕషభିఏೕሻ ۑۑۑے

ې
,  (2) 

where the angular variable ߠ௝ is determined by 

  sin ௝ߠ ൌ ࢐శ૚࢟ࢂሺ∙ࢠ࢏ ࢐࢟ࢂି ሻቛ࢐ࢂశ૚࢟ ࢐࢟ࢂି ቛ ,  (3) 

  cos ௝ߠ ൌ ࢐శ૚࢟ࢂሺ∙࢟࢏ ࢐࢟ࢂି ሻቛ࢐ࢂశ૚࢟ ࢐࢟ࢂି ቛ ,  (4)	
where ࢟࢏ ൌ ሾ0 1 0ሿ୘  and ࢠ࢏ ൌ ሾ0 0 1ሿ୘  are the unit vectors of the y and z axis, 

respectively, and ‖࢛‖ denotes the norm of a vector ࢛.  

 

Figure 1 shows the input points in the x-z and y-z planes used to generate the models in this 

section, which are defined by four parameters, i.e. ߙ, ݄௫, ߚ and ݄௬. By fixing ݄௬ to 10 mm 

and choosing different combinations of values for the other three parameters, eight unit cell 

models known as standard Miura origami structures are obtained, as shown in Fig. 2. The core 

density ߩ௖ can be obtained by 

  ௖ߩ ൌ ௧೘ௌ೘௏ೠ  ,௠ߩ (5) 

where ݐ௠, ܵ௠ and ߩ௠ are respectively the thickness, total area and material density of the sheet 

from which a unit cell of the core is folded and ௨ܸ is the spatial volume of the unit cell, defined 

by 

  ௨ܸ ൌ ܵ௨ܪ௖,  (6) 

where ܵ௨ is the base area of the unit cell and ܪ௖ is the core height, as illustrated in Fig. 3. Since 

the weight-specific mechanical properties of the folded cores are concerned, a unified core density 

equal to 0.05ߩ௠ is used for all models studied in this paper. According to Eqn. (5), the thickness 



of the sheet material is given by 

  ௠ݐ ൌ 0.05 ௏ೠௌ೘.  (7) 

Table 1 summarizes the geometric properties of the eight unit cell models considered in this 

section. It is found that ݐ௠ is not affected by ݄௫ given the other input parameters are fixed. The 

larger ݄௫ is, the larger the amplitude of the flatwise zigzag fold lines is. With the increase in ߙ 

or ݐ ,ߚ௠ becomes smaller whereas the folded core becomes denser in the x- or y-direction.  

 

2.2 FE models 

The finite element analysis was performed in the FE solver ABAQUS/Explicit (SIMULIA Inc., 

USA) due to its good capability to cope with large nonlinear deformations, post-buckling 

behaviors and complex contact conditions. Because the main purpose of this paper is to study the 

structural influence on the mechanical properties of folded cores, both the faces and the core are 

assumed to be made of 5052-O aluminum alloy and a bilinear isotropic plastic material model [17] 

is employed for simplicity. For quasi-static loading cases, the strain rate effect is not considered. 

The detailed material parameters are summarized in Table 2.  

 

S4R, the four-node quadrilateral shell element with reduced integration and hourglass control, is 

the element of choice in the simulation. With this particular element type, the mesh density has a 

strong influence on the accuracy of the simulation results. Although a coarser mesh reduces the 

computational time, it is not able to accurately represent the post-buckling behavior of the facets. 

Therefore, convergence testing of different element sizes ranging from 0.15 mm to 0.4 mm was 

firstly performed for all eight unit cell models in Fig. 2 subject to compressive loads in the 

thickness direction. The results converged for element sizes below 0.2 mm. Therefore, the 0.2 mm 

element size is used for all subsequent analysis unless otherwise specified. In the virtual tests, 

each folded core model consists of four unit cells in a 2ൈ2 array, as shown in Fig. 4. The numbers 

of elements in the eight folded core models used in the virtual tests range from 29696 for M17 to 

98832 for M12. 

 

Three types of virtual tests, i.e. compression, shear and bending, were considered. In the virtual 



compression test, two rigid plates RP1 and RP2, parallel to the x-y plane, were attached to two 

ends of the model in the thickness direction using the tie constraint, as shown in Fig. 5(a). The 

general contact algorithm was employed to model the self-contact of the folded core and the 

surface-to-surface contact between the core and each rigid plate. Rigid plate RP1 was fixed both 

translationally and rotationally, and rigid plate RP2 was displaced half of the thickness, i.e. 5 mm, 

towards RP1, resulting in a maximum loaded compressive strain of 50%. The loading rate was 

chosen as 500 mm/s to ensure quasi-static results while allowing the simulation to complete within 

a reasonable computational time. In the virtual shear test, the same model as that in the 

compression test was used, as shown in Figs. 5(b-c). Rigid plate RP1 was still completely fixed. In 

two load cases, rigid plate RP2 was displaced 5-mm in the y- and x-directions, respectively with 

its translational degree of freedom in the thickness direction unconstrained, resulting in a 

maximum loaded shear strain of 50%. The loading rate was still set as 500 mm/s to ensure the 

simulation was conducted quasi-statically. In the virtual bending test, the two rigid plates used in 

the previous tests were replaced by two 1-mm thick faces made of the same material as the core to 

form a sandwich structure, as shown in Fig. 6. The faces are meshed with S4R elements with the 

same element size for the core. Two load cases were performed separately. In the first load case, 

two rigid plates RP3 and RP4 were attached to two y-directional ends of the model, as shown in 

Fig. 6(a). The two rigid plates were rotated about the x axis by 0.01݈௬ and െ0.01݈௬, respectively 

to bend the sandwich structure in the x-direction to a resultant curvature of 0.02. In the second 

load case, two rigid plates RP5 and RP6 were attached to the x-directional ends of the model, as 

shown in Fig. 6(b). Then, they were rotated about the y axis by 0.01݈௫ and െ0.01݈௫, respectively 

to bend the sandwich structure in the y-direction to a resultant curvature of 0.02. In both bending 

load cases, the loading rate was chosen as 100 rad/s to ensure quasi-static results.  

 

2.3 Results 

The effective compressive stress-strain curves of models M11 to M18 in the virtual compression 

test are plotted in Fig. 7 where a logarithmic scale is used for the strain axis to better illustrate 

regions of small strains. According to the curves, the behaviors of the folded cores under 

compression are characterized by three distinct stages, i.e. pre-buckling (stage I), folding (stage II) 

and densification (stage III). In the first stage, the folded cores behave linear-elastically up to an 



average strain of 0.06% where yield of the material begins to propagate. The compressive 

stiffnesses ܧ௖ of the eight models in the linear-elastic range are listed in the second column of 

Table 3. It is noted that ܧ௖ increases with the increase in ߙ, ݄௫ or ߚ and is more sensitive to 

the change of ߚ than to that of ߙ. In the second stage, buckling followed by folding of the facets 

occurs, which is accompanied by softening of the folded cores in the thickness direction. Since the 

facets do not buckle and fold at the same time, two sub-stages can be identified. Specifically, the 

facets in the outer two x-directional rows buckle and fold at first, as shown in Fig. 8(a), followed 

by buckling and folding of the facets in the middle two x-directional rows, as shown in Fig. 8(b). 

The third stage features densification of the folded cores where the facets come into contact with 

each other and/or with the rigid plates, as shown in Fig. 8(c), resulting in an increase in the 

compressive stress. Figure 9 compares the absorbed compressive energies per area, i.e. the surface 

under the stress-strain curve, of the eight models. It is noted that models with smaller ߙ and ݄௫ 

absorb more compressive energy than those with larger ߙ and ݄௫, and the energy absorption 

capacity is less sensitive to ߚ. 

 

Figures 10(a) and (b) show the effective shear stress-strain curves of models M11 to M18 in the 

virtual shear tests in the y-z and x-z planes, respectively. Similar to the compression loading case, 

three stages, i.e. pre-buckling, folding and densification, are observed in both of the shear loading 

cases while the folding stage can be further divided into sub-stage 1 – buckling and folding of the 

facets in the outer two y-directional rows and sub-stage 2 – buckling and folding of the facets in 

the middle two y-directional rows. The representative deformed shapes of model M11 in folding 

sub-stage 1 (at 2% strain), folding sub-stage 2 (at 20% strain) and densification stage (at 50% 

strain) during shear loading in the y-z plane are shown as an example in Figs. 11(a), (b) and (c), 

respectively. The shear stiffnesses in the y-z plane ܧ௦ଵ and in the x-z plane ܧ௦ଶ of models M11 to 

M18 in the linear-elastic range are listed in the third and fourth columns of Table 3, respectively. 

In the y-z plane, the shear stiffness ܧ௦ଵ increases with the increase in ߙ or ݄௫ but decreases 

with the increase in ߚ. In the x-z plane, the shear stiffness ܧ௦ଶ increases with the increase in ݄௫ 

or ߚ but decreases with the increase in ߙ. Figures 12(a) and (b) compare the absorbed shear 

energies per area in the two shear loading cases. It is consistently observed in both cases that 

models with smaller ߙ, ݄௫ or ߚ absorb more shear energy than models with larger ߙ, ݄௫ or ߚ 



do. For the y-z plane loading case, ߚ has the greatest influence on the energy absorption capacity 

whereas for the x-z plane loading case, ߙ plays a decisive role to the energy absorption capacity.  

 

Figures 13(a) and (b) respectively show the bending moments in the x-direction normalized by ݈௫ 

and in the y-direction normalized by ݈௬ of models M11 to M18 plotted against the curvature. In 

both the x-directional and the y-directional bending cases, the bending moment first increases 

linearly with the curvature until yield of the material occurs, then continues to increase with a 

reduced slope up to buckling of the sandwich structure and finally decreases sharply afterwards. 

The pre-buckling (a) and post-buckling (b-c) deformed shapes of model M11 in the x- and 

y-directional bending cases are shown in Figs. 14(a) and (b), respectively. It is noted that both 

cases involve buckling of both the folded core and the upper face. The bending stiffnesses in the 

linear-elastic range and the bending moments and curvatures at buckling point of models M11 to 

M18 are listed in Table 4. For the x-directional bending case, the bending stiffness ܫܧ௫ increases 

with the increase in ݄௫ or ߚ. Both of the critical bending moment ܯ௫௖௥ and curvature ݇௫௖௥ at 

buckling point increase with the increase in ߙ or ߚ. For the y-directional bending case, the 

bending stiffness ܫܧ௬ decreases with the increase in ߙ, ݄௫ or ߚ. While the critical bending 

moment ܯ௬௖௥ and curvature ݇௬௖௥ at buckling point also decreases with the increase in ݄௫, they 

increase with the increase in ߙ or ߚ on the contrary.  

 

3 FOLDED CORES WITH CURVED FOLD LINES 

 

3.1 Model description 

In this section, the influence of curved fold lines on the mechanical properties of folded cores is 

investigated. According to discussion in section 2.3, model M11 has overall the best energy 

absorption performances under compressive and shear loads. Therefore, folded core structures 

with curved fold lines that are modified from model M11 are considered.  

 

The x-z plane inputs used to generate the unit cell models in this section are shown in Fig. 15 

where the input points ࢞࢏ࢂ ,	݅ ൌ 1, 2, … are densely located on the solid curved line consisting of 

four sub-segments each of which is a part of a circle and tangential to the solid-dotted lines at 



intersection points. The y-z plane inputs are the same as those of model UM11 and hence are not 

shown here. It is noted that the unit cell geometry can be totally determined by a single parameter ߛ. When ߛ is equal to zero, model UM11 is gained. By varying ߛ from π/2 to െπ/2, eight 

unit cell models are generated. The larger the absolute value of ߛ is, the more curved the fold line 

is. The geometric properties of these models are listed in Table 5. It is noted that the wall thickness ݐ௠ increases with the decrease in the absolute value of ߛ and models with the same absolute 

value of ߛ have the same ݐ௠.  

 

The eight folded core models M21 to M28 used in the virtual tests in this section are shown in Fig. 

16, each of which consists of four unit cells in a 2ൈ2 array. An average element size of 0.2 mm is 

used to mesh the models according to the mesh convergence tests. The numbers of elements in the 

eight models range from 49984 to 54528. The same virtual tests as described in the previous 

section, i.e. compression in the z-direction up to 50% compressive strain, shear in the y-z and x-z 

planes up to 50% shear strain and bending in the x- and y-direction up to a resultant curvature of 

0.02 mm-1 were performed.  

 

3.2 Results 

For the virtual compression test, Fig. 17 illustrates the effective compressive stress versus strain 

curves of models M21 to M28 and M11 and the corresponding absorbed energy versus strain 

curves are shown in Fig. 18. The compressive stiffness ܧ௖ and ultimate strength ߪ௖௖௥ of the nine 

models are listed in the second and third columns of Table 6, respectively. It is noted that ܧ௖ 
increases with the increase in ߛ while ߪ௖௖௥ increases with the absolute value of ߛ. Models with 

positive ߛ  show better energy absorption performances in compression than models with 

negative ߛ. All models with curved fold lines exhibit improved compressive performances than 

M11. 

 

The effective shear stress-strain curves and the corresponding absorbed shear energy-strain curves 

of models M21 to M28 and M11 in the y-z plane are shown in Figs. 19(a) and 20(a), respectively. 

The shear stiffness ܧ௦ଵ and ultimate strength ߪ௦ଵ௖௥ in the y-z plane of the nine models are listed in 

the fourth and fifth columns of Table 6, respectively. It is noted that ܧ௦ଵ of the nine models are 



basically the same, all within 0.8% deviation to that of M11. ߪ௦ଵ௖௥ increases with the increase in 

the absolute value of ߛ. Models with positive ߛ in general have better shear energy absorption 

performances in the y-z plane than models with negative ߛ. Again, all models with curved fold 

lines absorb more shear energy in the y-z plane than M11 does.  

 

The x-z plane counterparts of Figs. 19(a) and 20(a) are drawn in Figs. 19(b) and 20(b), 

respectively, and the shear stiffness ܧ௦ଶ and ultimate strength ߪ௦ଶ௖௥ in the x-z plane of the nine 

models are listed in the last two columns of Table 6. In this case, however, the shear stiffness ܧ௦ଶ 

decreases with the increase in the absolute value of ߛ. While M11 has the highest stress-strain 

curve before the ultimate shear strength ߪ௦ଶ௖௥  is reached, models M21-M23 and M26-M28 

outperforms M11 afterwards. In general, models with negative ߛ  exhibit better shear 

performance in the x-z plane than models with positive ߛ.  

 

For the virtual bending tests, the bending moment per ݈௫ versus curvature curves in the x- and 

y-directions of models M21 to M28 and M11 are plotted in Figs 21(a) and (b), respectively. Their 

bending stiffness ܫܧ௫  or ܫܧ௬  and maximum bending moment ܯ௫௖௥  or ܯ௬௖௥  in the x- and 

y-directions are listed in Table 7. It is noted that for the x-directional bending case, both ܫܧ௫ and ܯ௫௖௥ increase as ߛ increases while in the y-directional case, the maximum bending moment ܯ௬௖௥ 

increases with the increase in ߛ and the bending stiffness ܫܧ௬ of the nine models are literally the 

same. 

 

4 MULTIPLE-LAYERED FOLDED CORES 

 

4.1 Model description 

In this section, two folded core models with multiple layers of materials M31 and M32 are 

considered. Model M31 consists of two identical layers where the fold lines on the bottom side of 

the upper layer and those on the top side of the lower layer are aligned and merged, as show in Fig. 

22(a). Each layer contains eight unit cells in a 2ൈ4 array, each of which is scaled from the unit cell 

model of M21 by a scaling factor of 50%. The wall thicknesses of the upper and bottom layers are 

the same. Model M32 is a three-layered configuration with an additional flat sheet as the middle 



layer added between the upper and lower layers of model M31, as shown in Fig. 22(b), where the 

wall thicknesses of the upper, middle and lower layers are the same. The geometric properties of 

models M31 and M32 are summarized in Table 8. Both models are meshed with S4R elements 

with an average size of 0.2 mm, resulting in 53760 elements for model M31 and 64939 for model 

M32.  

 

4.2 Results 

The compressive stress-strain curves of models M11, M21, M31 and M32 are shown by black 

dotted, black dash-dotted, blue solid and blue dashed lines in Fig. 23, respectively. Incidentally, 

the same line types are assigned to models M11, M21, M31 and M32 in all subsequent figures. 

The shear stress-strain curves in the y-z and x-z planes are shown in Figs. 24(a) and (b), 

respectively. The bending moment per ݈௫ or ݈௬ versus curvature curves in x- and y-directions are 

plotted in Figs. 25(a) and (b), respectively.  

 

It is noted that the multiple-layered models M31 and M32 have the lower stress-strain curves than 

model M21 in compression and shear but they still outperforms model M11 in compression and 

shear in the y-z plane soon after initial buckling. In terms of bending, the maximum bending 

moments of models M31 and M32 are much higher than those of model M21 in both the x- and 

y-directional bending cases. Model M31 consistently outperforms model M32 in all five loading 

cases.  

 

5 COMPARISON WITH HONEYCOMB CORE 

In this section, the mechanical performances of the folded cores are compared to a honeycomb 

core with the same density i.e. 0.05ߩ௠ and the same height i.e. 10 mm. Figure 26(a) shows the 

unit cell geometries of the honeycomb model whose hexagon cell size is 2.5 mm, leading to a wall 

thickness of 0.0812 mm. The virtually tested honeycomb core model MHC consists of four unit 

cells in a 2ൈ2 array, as shown in Fig. 26(b) and is meshed with the S4R elements with an average 

size of 0.08 mm according to the mesh convergence study. The total number of elements in the 

model equals 93600. 

 



The compressive stress-strain curve of the honeycomb model MHC is shown by the red solid line 

in Fig. 23. The shear stress-strain curves in the y-z and x-z planes are drawn as the red solid lines 

in Figs. 24(a) and (b), respectively. The bending moment per ݈௫ or ݈௬ versus curvature curves in 

the x- and y-directions are illustrated by the red solid lines in Figs. 25(a) and (b), respectively. 

 

When compared to folded core models M21 and M31, the honeycomb model outperforms the 

folded core models in the compression and bending in the x-direction cases while the folded core 

models have comparable or even better performances than the honeycomb core for the rest cases.  

 

6 DISCUSSIONS AND CONCLUSIONS 

Three types of folded cores namely 1) standard Miura, 2) with curved fold lines and 3) multiple 

layered with the same density and height are virtually tested under five loading cases, i.e. 

out-of-plane compression, shear in the y-z and x-z planes, bending in the x- and y-directions. The 

Vertex Method for designing three-dimensional origami structures is adopted to parameterize the 

geometric models of the folded cores. 

 

For the standard Miura folded cores, the following conclusions can be reached: a) the sparser 

models (corresponding to smaller ߙ and ߚ) with smaller amplitude of the flatwise zigzag fold 

lines (corresponding to smaller ݄௫ ) exhibit better post-buckling and energy absorption 

performances in compression and shear where ߙ plays the decisive role in the energy absorption 

capacity in the x-z plane shear case and the energy absorption capacity in the y-z plane shear case 

is mainly determined by ߚ; b) the denser models with larger amplitude of the flatwise zigzag fold 

lines have higher compressive stiffness; c) the shear stiffness in the y-z plane increases with the 

increases in ߙ  and ݄௫  but the decrease in ߚ  whereas the shear stiffness in the x-z plane 

increases with the increase in ߚ and ݄௫ but the decrease in ߙ; d) the denser the model is in the  

y-direction (corresponding to larger ߚ ), the higher the y-directional bending stiffness and 

maximum bending moment are; e) the denser the model is in the x-direction (corresponding to 

larger ߙ), the higher the x-directional bending stiffness and maximum bending moment are.  

 

Folded cores with both positively (i.e. positive ߛ) and negatively (i.e. negative ߛ) curved fold 



lines show better mechanical performances than the corresponding standard Miura folded core in 

compression and shear in the y-z plane whereas the folded cores with positively curved fold lines 

outperform those with negatively curved fold lines. In the x-z plane shear loading case, although 

the shear stiffnesses of the folded cores with curved fold lines are lower than those of the standard 

Miura folded cores, the stresses and absorbed energies of the folded cores with curved fold lines 

with larger absolute value of ߛ  exceed those of the standard Miura folded cores in the 

post-buckling range. In both bending cases, only the folded cores with positively curved fold lines 

show better performances than the standard Miura folded cores. 

 

The mechanical performances of the two-layered and three-layered folded cores are poorer than 

those of the single-layered model with curved folded lines in compressive and shear whereas the 

multiple-layered models show apparent improvement in the bending cases.  

 

When compared with the honeycomb core with the same density and height, the folded cores 

show comparable or even better mechanical properties in shear and bending cases but relatively 

lower performance in compression.  

 

The virtual tests reported in this paper provide an insight into the mechanical properties of various 

Miura-based folded cores. However, it should be noted that there are several limitations. First, the 

number of unit cells contained in the simulated folded core models is small, i.e. 4 or 8 due to 

computational time consideration. In reality, a folded core usually contains a large number of unit 

cells. Second, no imperfections are introduced into the numerical models while in reality there are 

always imperfections introduced from the manufacturing process. Third, the material model 

considered is a highly simplified one. Fourth, the bonds between the core and the faces and 

between different layers of the multiple-layered models are considered to be perfect while in 

reality failure of the bond may occur. Nevertheless, the virtual test results can still serve as a 

useful guideline for researchers and/or engineers to select the suitable folded core design for a 

certain application. In our ongoing work, virtual tests of various Miura-based folded cores subject 

to dynamic loads including low and high impacts are considered. The results will be reported in 

the subsequent paper.  
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CAPTIONS OF FIGURES 

 

Fig. 1 The input points in the x-z and y-z planes used to generate the unit cell models 

UM11-UM18. 

Fig. 2 Unit cell models UM11-UM18. 

Fig. 3 Definition of the base area ܵ௨ and the core height ܪ௖ of a unit cell. 

Fig. 4 Folded core models M11-M18 each consisting of four unit cells in a 2ൈ2 array. 

Fig. 5 (a) Virtual compression test; (b) virtual shear test in the y-z plane; (c) virtual shear 

test in the x-z plane. 

Fig. 6 Virtual bending test (a) in the x-direction and (b) in the y-direction. 

Fig. 7 The effective compressive stress versus strain curves of models M11-M18 in the 

virtual compression test. 

Fig. 8 The deformed shapes of model M11 in the virtual compression test at: (a) 2% 

strain; (b) 20% strain; (c) 50% strain. 

Fig. 9 The absorbed compressive energy per area versus strain curves of models M11- 

M18 in the virtual compression test. 

Fig. 10 The effective shear stress versus strain curves of models M11-M18 in the virtual 

shear tests (a) in the y-z plane and (b) in the x-z plane. 

Fig. 11 The deformed shapes of model M11 in the virtual shear test in the y-z plane at: (a) 

2% strain; (b) 20% strain; (c) 50% strain. 

Fig. 12 The absorbed shear energy per area versus strain curves of models M11-M18 in the 

virtual shear tests (a) in the y-z plane and (b) in the x-z plane. 

Fig. 13 (a) The bending moment normalized by ݈௫ versus curvature curves of models 

M11-M18 in the virtual bending test in the x-direction; (b) the bending moment 

normalized by ݈௬ versus curvature curves of models M11 to M18 in the virtual 

bending test in the y-direction. 

Fig. 14 The deformed shapes of model M11 in the virtual bending tests (a) in the 

x-direction and (b) in the y-direction. 

Fig. 15 The x-z plane inputs used to generate the unit cell models UM21-UM28. 



Fig. 16 Folded core models M21-M28 each consisting of four unit cells in a 2ൈ2 array. 

Fig. 17 The effective compressive stress versus strain curves of models M21-M28 and M11 

in the virtual compression test. 

Fig. 18 The absorbed compressive energy per area versus strain curves of models 

M21-M28 and M11 in the virtual compression test. 

Fig. 19 The effective shear stress versus strain curves of models M21-M28 and M11 in the 

virtual shear tests (a) in the y-z plane and (b) in the x-z plane. 

Fig. 20 The absorbed shear energy per area versus strain curves of models M21-M28 and 

M11 in the virtual shear tests (a) in the y-z plane and (b) in the x-z plane. 

Fig. 21 (a) The bending moment normalized by ݈௫ versus curvature curves of models 

M21-M28 and M11 in the virtual bending test in the x-direction; (b) the bending 

moment normalized by ݈௬ versus curvature curves of models M21-M28 and M11 

in the virtual bending test in the y-direction. 

Fig. 22 Folded core models M31 and M32 that consist of two- and three-layers, 

respectively.  

Fig. 23 The effective compressive stress versus strain curves of models M31, M32, M21, 

M11 and HMC in the virtual compression test. 

Fig. 24 The effective shear stress versus strain curves of models M31, M32, M21, M11 and 

HMC in the virtual shear tests (a) in the y-z plane and (b) in the x-z plane. 

Fig. 25 (a) The bending moment normalized by ݈௫ versus curvature curves of models 

M31, M32, M21, M11 and HMC in the virtual bending test in the x-direction; (b) 

the bending moment normalized by ݈௬ versus curvature curves of models M31, 

M32, M21, M11 and HMC in the virtual bending test in the y-direction. 

Fig. 26 (a) The honeycomb core unit cell geometries; (b) honeycomb core model MHC 

consisting of four unit cells in a 2ൈ2 array. 

 

  



CAPTIONS OF TABLES 

 

Table 1 The geometric properties of models M11-M18. 

Table 2 The parameters of the material model. 

Table 3 The compressive stiffness ܧ௖  and shear stiffnesses ܧ௦ଵ  and ܧ௦ଶ  of models 

M11-M18. 

Table 4 The bending stiffness ܫܧ௫ , maximum bending moment ܯ௫௖௥  and buckling 

curvature ݇௫௖௥ in the x-direction and the bending stiffness ܫܧ௬, maximum bending 

moment ܯ௬௖௥ and buckling curvature ݇௬௖௥ in the y-direction of models M11-M18. 

Table 5 The geometric properties of models M21-M28 where ߙ ൌ π/4, ݄௫ ൌ 5	mm	, ߚ ൌπ/4	 and ݄௬ ൌ 10	mm 

Table 6 The compressive stiffness ܧ௖  and strength ߪ௖௖௥ , shear stiffnesses ܧ௦ଵ  and ܧ௦ଶ 

and strengths ߪ௦ଵ௖௥ and ߪ௦ଶ௖௥ of models M21-M28. 

Table 7 The bending stiffness ܫܧ௫ , maximum bending moment ܯ௫௖௥  and buckling 

curvature ݇௫௖௥ in the x-direction and the bending stiffness ܫܧ௬, maximum bending 

moment ܯ௬௖௥ and buckling curvature ݇௬௖௥ in the y-direction of models M21-M28. 

Table 8 The geometric properties of models M31-M32 where ߙ ൌ π/4, ݄௫ ൌ 2.5	mm ߚ , ൌ π/4	 and ݄௬ ൌ 5 mm 
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Table 1 

 

Model 
 ߙ

[rad] 
݄௫ 

[mm] 
 ߚ

[rad] 
݄௬ 

[mm] 
 ௖ܪ

[mm] 
ܵ௨ 

[mm2] 
 ௠ݐ

[mm] 
M11 π/4 5 π/4 10 10 200 0.25 
M12 π/4 10 π/4 10 10 400 0.25 
M13 π/3 5 π/4 10 10 115.47 0.1768 
M14 π/3 10 π/4 10 10 230.94 0.1768 
M15 π/4 5 π/3 10 10 115.47 0.1768 
M16 π/4 10 π/3 10 10 230.94 0.1768 
M17 π/3 5 π/3 10 10 66.67 0.125 
M18 π/3 10 π/3 10 10 133.33 0.125 

 
   



Table 2 

 

Material ߩ௠ [kg/m3] ܧ [GPa] ߪ௬ [GPa] ߪ௨௧௦ [GPa] ߥ 

5052-O Al 2690 69.6 65.5 193 0.33 
 

   



Table 3 
 

Model ܧ௖ [MPa] ܧ௦ଵ [MPa] ܧ௦ଶ [MPa] 
M11 1202 874 337 
M12 1562 879 470 
M13 1252 884 166 
M14 1806 911 253 
M15 2268 735 466 
M16 2519 784 554 
M17 2308 762 229 
M18 2667 864 285 

 
  



Table 4 
 

Model 
 ௫ܫܧ

[kN∙mm2/mm] 
 ௫௖௥ܯ

[N∙mm/mm] 
݇௫௖௥ 

[mm-1] 
 ௬ܫܧ

[kN∙mm2/mm] 
 ௬௖௥ܯ

[N∙mm/mm] 
݇௬௖௥ 

[mm-1] 
M11 3575 894 0.0023 3757 1378 0.0063 
M12 3628 1263 0.0053 3664 1236 0.0053 
M13 3583 914 0.0025 3816 1691 0.0074 
M14 3636 1518 0.0071 3740 1399 0.0063 
M15 3588 1599 0.0078 3676 1767 0.0096 
M16 3655 1508 0.0067 3608 1358 0.0063 
M17 3583 1690 0.0085 3750 1907 0.0096 
M18 3636 1544 0.0074 3664 1475 0.0067 

 
 

  



Table 5 

 

Model ߛ [rad] ܪ௖ [mm] ܵ௨ [mm2] ݐ௠ [mm] 
M21 π/4 10 200 0.2251 
M22 arctan	ሺ3/4ሻ 10 200 0.2331 
M23 arctan	ሺ1/2ሻ 10 200 0.2411 
M24 arctan	ሺ1/4ሻ 10 200 0.2475 
M25 െarctan	ሺ1/4ሻ 10 200 0.2475 
M26 െarctan	ሺ1/2ሻ 10 200 0.2411 
M27 െarctan	ሺ3/4ሻ 10 200 0.2331 
M28 െπ/4 10 200 0.2251 

 
   



Table 6 

 

Model ܧ௖ [MPa] ߪ௖௖௥ [MPa] ܧ௦ଵ [MPa] ߪ௦ଵ௖௥ [MPa] ܧ௦ଶ [MPa] ߪ௦ଶ௖௥ [MPa] 
M21 1214 3.517 881 4.314 241 1.973 
M22 1201 3.288 880 3.916 259 2.034 
M23 1185 2.831 878 2.939 284 2.001 
M24 1169 2.220 876 2.297 314 1.842 
M11 1153 1.916 874 2.186 336 1.974 
M25 1115 2.070 873 2.549 323 1.961 
M26 1079 2.405 873 2.944 301 2.081 
M27 1053 2.798 874 3.359 282 2.086 
M28 1034 3.157 876 3.917 267 2.086 

  



Table 7 

 

Model 
 ௫ܫܧ

[kN∙mm2/mm] 
 ௫௖௥ܯ

[N∙mm/mm] 
 ௬ܫܧ

[kN∙mm2/mm] 
 ௬௖௥ܯ

[N∙mm/mm] 
M21 3597 913 3762 1427 
M22 3596 905 3761 1416 
M23 3595 900 3759 1404 
M24 3594 898 3760 1391 
M11 3586 894 3763 1380 
M25 3585 881 3763 1368 
M26 3581 868 3762 1354 
M27 3579 854 3762 1343 
M28 3579 851 3763 1339 

 
  



Table 8 
 

Model Number of layers ܪ௖ [mm] ܵ௨ [mm2] ݐ௠ [mm] 
M31 2 10 50 0.11254 
M32 3 10 50 0.09186 

 

 


