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The skeleton of many natural and artificial soft materials can be abstracted as networks
of fibers/polymers interacting in a nonlinear fashion. Here, we present a numerical model
for networks of nonlinear, elastic polymer chains with rate-dependent crosslinkers simi-
lar to what is found in gels. The model combines the worm-like chain (WLC) at the poly-
mer level with the transition state theory for crosslinker bond dynamics. We study the
damage evolution and the force—displacement response of these networks under uniaxial
stretching for different loading rates, network topology, and crosslinking density. Our
results suggest a complex nonmonotonic response as the loading rate or the crosslinking
density increases. We discuss this in terms of the microscopic deformation mechanisms
and suggest a novel framework for increasing toughness and ductility of polymer net-
works using a bio-inspired sacrificial bonds and hidden length (SBHL) mechanism. This
work highlights the role of local network characteristics on macroscopic mechanical
observables and opens new pathways for designing tough polymer networks.
[DOI: 10.1115/1.4038883]
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1 Introduction

Polymer networks are the basic building blocks of many natural
and man-made materials. From cellular cytoskeletons to whole
organ tissues, and from rubbers to gels, the load-bearing structures
in these materials may be represented as a complex network of
polymer chains that are interconnected by cross-linker molecules.
Recent studies of soft materials have shown that their mechanical
response is rate dependent [1] and the damage may be recoverable
[2]. For instance, the crosslinking via ionic bonding leads to for-
mation of sacrificial sites which, when broken, may release addi-
tional length of the polymer chains and result in improved
toughness and ductility. In the absence of external force or at very
low loading rates, new ionic bonds may form leading to time-
dependent strength recovery [3]. The sacrificial bonds are gener-
ally weaker than the base network’s crosslinker bonds. This sacri-
ficial-bonds-and-hidden-length (SBHL) mechanism has been
identified in a variety of biological materials including noncollag-
enous interfaces in bones [4–6], mussel threads [4], and mother of
pearls [5,6]. Similar mechanisms were recently introduced for
designing tough hydrogels by incorporating recoverable sacrificial
bonds into the network [7,8]. Bond damage and formation in these
systems depends on the deformation level and loading rates [9].
Furthermore, the mechanical response and fracture properties of
the soft polymeric materials highly depend on their topological
structures, including local connectivity, bond types, and crosslink-
ing density. However, because the current experimental techni-
ques do not allow for direct visualization of the topology and
deformations of the single C–C chain in the polymer networks,
the structure-property relation of these materials remains elusive,
and the design of the polymeric materials for specific properties is
mostly based on trial and error.

Historically, modeling soft materials, like rubber, has been
approached using continuum theories. Although these models
have been useful in addressing several mechanistic aspects of
soft material elasticity in the presence and absence of infused
fluids, most classical continuum models from linear elasticity,
hyperelasticity [10–15], viscoelasticity [16] to poroelasticity
[17–20] lack information about network topology and thus fall
short of the capability to guide the network design and may
lead to false prediction for fracture susceptibility [1,21]. Under-
standing the structure-function relations in these networks and
in particular the limits on their ductility and rate-dependent
responses continues to be one of the long-standing challenges
in the field.

To address this challenge of connecting structure to function in
polymer networks, several research groups have investigated the
mechanics of discrete polymer networks. Some of this prior work
has focused on explicit representation of polymer chains using all-
atoms molecular dynamics approaches [22,23]. However, these
simulations are computationally intensive and are limited to only
very short time and length scales. To overcome this limitation,
many coarsening approaches were taken. The finite extensible
nonlinear elastic (FENE) model [24–26] was proposed as a
coarse-graining approach by modeling the polymer chain as a col-
lection of spherical beads (representing monomers) interacting
through elastic springs governed by Lennard Jones or other appro-
priate nonlinear potentials [27]. The FENE is simple and compu-
tationally more efficient than the all-atoms representation.
However, bending stiffness of polymer chains is not explicitly
included and the effect of studying network-function relations
remains computationally infeasible. In the current paper, we take
one further step in the coarse-graining efforts and use an effective
force-extension law on the scale of the individual chain without
explicitly modeling the monomer dynamics as in the FENE
approach. Our choice of the worm-like chain model also enables
us to account for the chain flexibility and bending stiffness.

The eight-chain model of Arruda and Boyce [10] was a signifi-
cant step forward in encapsulating small-scale network information
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at a continuum nonlinear elasticity model for polymeric materials.
However, the model excludes rate dependence and requires further
modification to enable studying damage evolution as it does not
contain information about how the network changes structure with
loss and formation of polymer chains. One classical model that
attempts to incorporate network information into the constitutive
equations is due to Lodge [28]. In this work, a loss probability is
incorporated to study stress-dependent damage to the network. The
work also studies the relation of concentration densities and co-
ordination numbers to the constitutive equations. However, that
study was limited to rate-independent mechanics of networks com-
posed of units with similar topology. Moreover, affine deformation
of junction points is assumed which may not be the case as pointed
out later.

Extensive studies in the physics community have been con-
ducted on two-dimensional (2D) and three-dimensional (3D) poly-
mer networks with a primary focus on understanding the role of
nonaffine deformation [29] as well as limits on rigidity percolation
[30] due to reduction of polymer concentration. These models
have been mostly limited to networks with fixed topology and
have not considered the consequences of topological evolution
due to damage accumulation as a function of stretch or the influ-
ence of loading rate [31]. Other network models from the
chemical–physics community have investigated effective mechan-
ical properties of randomly crosslinked polymer networks
[32–35]. An important result is that the mean field theories fail to
explain the variance in the force displacement characteristics of
filamentous polymer networks, especially for networks with low
concentration [36,37], suggesting a need for explicit incorporation
of small-scale networks structure for consistent upscaling. Fur-
thermore, in the works that have considered damage accumula-
tion, the models have largely neglected rate effects and, in most
cases, have modeled damage based on a maximum force (stress)
criterion for the bonds in the network [38].

Here, we introduce a nonlinear network model with a physics-
based rate-dependent damage criterion. The main contribution of
this paper is twofold. First, it introduces a physics-based model
for the rate-dependent behaviors of polymeric materials in the
presence and absence of sacrificial bonds using the transition state
theory coupled with bulk viscous dissipation. This framework
allows us to investigate how different features of the network
topology influence the rate-dependent force-displacement
response. Second, it presents a theoretical framework for the
design of a SBHL system in the polymeric network that enables
significant improvement in toughness and ductility. This frame-
work provides bounds on the tunability of the different network
parameters in order to maximize the intended property improve-
ments from the SBHL system.

The paper is organized as follows: In Sec. 2, we review the
worm-like chain (WLC) model and introduce the rate-dependent
damage model for bond breakage based on the transition state
theory. In Sec. 3, we describe the model setup and the governing
equations for the quasi-dynamic simulations. In Sec. 4, we sum-
marize our results for the effect of loading rate, chain length disor-
der, crosslinker density, and internal network architecture (e.g.,
sacrificial bonds and hidden length) on the system stiffness, peak
force, and ductility. In Sec. 5, we discuss the implications of our
results for design of tougher networks and for understanding the
mechanics of crosslinked polymer chains with and without sacrifi-
cial components.

2 Theory

We model each polymer strand across two crosslinking nodes
using the WLC [39–41] model which idealizes each individual
chain as an isotropic rod that is continuously flexible. It is particu-
larly suited for semiflexible polymers. A widely used analytical
approximation for the WLC force-elongation relation is given by
Marko and Siggia [42]

F ¼ kBT

b

x

L
þ 1

4 1� x
L

� �2
� 1

4

 !

(1)

where kB is the Boltzmann constant, T is the temperature, b is the
persistence length, x is the distance between the two ends of the
polymer chain, and L is the available contour length. In the limit
where the chain is very long compared to this persistence length,
it recovers the freely jointed chain behavior, and in the limit
where the chain is short compared to its persistence length, it
describes rod-like chain behavior. The main distinguishing feature
of the WLC model is that the motion of successive segments of
the polymer chain is correlated resulting in a finite bending stiff-
ness. This makes the WLC model suitable for modeling a variety
of biological materials including DNA, RNA, and several pro-
teins. Given the similarities between hydrogels and many biologi-
cal tissues, we adopt the WLC in this study. However, we
emphasize that the framework presented here is flexible enough to
implement other chain-level force-displacement relations includ-
ing those which may be directly computed based on molecular
dynamics simulations.

To model the network of interconnected polymers, we picture a
graph G that occupies a bounded domain X 2 E

2 (2D Euclidean
space). The graph is uniquely determined by a set of nodes, V
(vertices that represent crosslinking connections) and a set of
edges, E (the polymer chains). Each of these edges is an unor-
dered two-tuple (i, j) that uniquely represents a polymer connected
across two crosslinker nodes, i and j (i, j � V). We define the
coordination number, Z of a node to be the number of connections
of that node to other nodes in the graph, G, i.e., Z ¼
P

j2Vni1ðði; jÞ 2 EÞ (where 1 is the indicator function).

2.1 Damage. In this model, we consider damage events as the
breakage of the bond between the polymer and the crosslinking
molecule, which are rate-dependent processes that are influenced
by the force at this junction due to the stretch of the polymer
chain.

To model the kinetics of the bond breakage reaction, we adopt
the transition-state approach [43,44]. The bond is assumed to have
a double-well potential with two stable states corresponding to the
two energy minima in this potential: an intact state and a dissoci-
ated state. The transition reaction between the two states is facili-
tated by activation over an energy barrier (corresponding to the
transitional intermediate local maximum in the energy potential).
We define the rates of the forward reaction, kf (bond formation)
and backward reaction, kb (bond breakage) that depend on the
force applied by the polymer chain on the crosslinker—polymer
junction as shown in Fig. 1. Locally, the reaction kinetics are
assumed to follow Arrhenius rate equations

kb=f / exp
�Ea

kBT
(2)

Here, Ea is the activation energy for the backward or forward
reactions. Following Bell’s theory [45], the activation energy con-
sists of two parts: a reference value that represents the intrinsic
energy barrier to thermally activated processes in the absence of
external forces and an additional force-dependent term that lowers
the energy barrier even at constant temperature, i.e., Ea¼E0 –
FDx. Here, Dx represents the distance to a transition state (see
Fig. 2). The characteristics of bond dynamics, such as the activa-
tion energy or the transition distances, may be computed using
quantum mechanics or estimated experimentally. They are mainly
functions of the bond composition. The E0 term, being a constant,
may be incorporated directly in the proportionality constant and
finally, we have

kb ¼ ab exp
FDxb

kBT

� �

and kf ¼ af exp
�FDxf

kBT

� �

(3)
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Here, Dxb and Dxf are the distances to the transition states and ab

and af are, respectively, the backward and forward rates when no
force is applied. For a detailed explanation of these transition dis-
tances, cf. [44]. Both of these parameters are assumed to be con-
stant in this study. We assign a binary variable, N � {0, 1} for
each edge present in the graph, G. N¼ 0 would represent the
crosslinker connection is broken and N¼ 1 indicates that this
bond is intact. To facilitate the computation, we introduce a con-
tinuous variable representation of N, n evolving as in Ref. [43]

dn

dt
¼ kf 1� Nð Þ � kbN (4)

Thus, by defining d ¼
Ð

Dt

0
ðdn=dtÞdt, a bond is considered broken

if d � –1 and formed if d � 1.

2.2 Hidden Lengths. A toughening phenomenon observed in
many biological materials [4,46,47] and synthetic hydrogels [48]
is the effect of hidden length in the polymer chain. These are
essentially self-linked loops within the polymer chain, which
reduce the available length to be stretched and stiffen the chain
(see Eq. (1), where the chain stiffness increases at a given end-end
distance x, if the chain length L is smaller). However, if the self-
links are weaker than the end crosslinker bonds, they would break
before the end crosslinker bonds. The breaking of these sacrificial
bonds opens additional lengths of the polymer chain, and thus
enhances the toughness and/or stretchability of the material
[43,49]. We will discuss more on this in Sec. 4.

Following Sec. 2.1, we define m to be the number of sacrificial
bonds in each chain and formulate the rate-dependent damage
model as

dm�

dt
¼ �ksbm (5)

where m* is the continuous representation of the number of sacri-
ficial bonds and ksb is the rate of bond breaking. Although, in this
work, we do not include healing (or self-recovery) of the sacrifi-
cial bonds, it can be easily incorporated using an additional for-
ward term in the rate equation as discussed earlier. ksb is defined
as the rate of sacrificial bond breakage per unit time, which is
related to the force on the polymer chain as

ksb ¼ asb exp
FDxsb

kBT

� �

(6)

3 Setup

All of the simulations reported in this work are in 2D Euclidean
space with a rectangular sample chosen in two major topologies.
We label the topologies using the coordination number of individ-
ual crosslinker molecules. Specifically, we test a network that has
an average coordination number of Z � 4 (i.e., predominantly
quadrilateral mesh) (Fig. 3(b)), and Z � 7 (i.e., predominantly tri-
angular mesh) (Fig. 3(a)). We introduce disorder in terms of a dis-
tribution of the available chain lengths L and the placement of the
crosslinker nodes in the network. Other sources of disorder in the
network are explained as they appear. We chose our bond parame-
ters as Dxf¼ 0.25 nm, Dxb¼ 0.1 nm, ab¼ 0.1 s�1, and af¼ 0.3 s�1

as per [43]. We simulate a persistence length of 0.3 nm at a tem-
perature T¼ 300 K. The initial sample size is 500� 100 nm.

In this work, we assume a 2D network that is fixed on the bot-
tom and attached to a moving plate on the top. Periodic boundary
conditions are applied on the lateral sides. The top plate moves at
a constant speed in the y-direction as shown in Fig. 4.

Fig. 1 Schematic of the polymer chains with dynamic bonds (including sacrificial bonds and
crosslinkers)

Fig. 2 Schematic of the transition state theory. Application of force decreases the required
energy for forward reaction and increases the same for the backward reaction, favoring bond
breaking.
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In each time-step, we solve for quasi-dynamic equilibrium at
each crosslinker point neglecting the inertial effects. Since, the
thermal fluctuations time scales are typically much smaller than
the ones we consider here, we do not consider those fluctuations
here although they may be directly incorporated into the equation
of motion using a random noise term in the spirit of Langevin for-
mulation [50]. For every crosslinker node i, we write

Fi þ C _Xi ¼ 0 (7)

where C is the damping coefficient, Fi ¼
P

@iFij, with @i being
the neighbors of node i in G and Xi denoting the position vector of
the node i. At every time-step, we use predictor-corrector schemes
until we reach L2-convergence in the positions Xi 8 i 2 V.

We record the force on the top plate as the network is stretched.
Since all the chains of the network follow the WLC force-
displacement relation, the most stable equilibrium point without
any constraints would be if all nodes lump into a point. Since we
start with a finite sample size and do not incorporate the excluded
volume effects, we have a certain initial force that is required to
maintain the initial size. This initial force in the gel system would
be the osmotic pressure supported by the solvent. It is also the rea-
son that we do not impose volumetric constraint in the model—as
the network of the gel is stretched, the solvent will flow in to fill
the extra space. When the top plate is moved, a minimum energy
optimization is run over all nodes. Due to the finite bond strength
of crosslinker molecules and Dirichlet boundary conditions, we
restrict the equilibrium space, and therefore, perform a con-
strained optimization. Upon stretching the network, appropriate
damage characteristics are updated (i.e., Eq. (4) for crosslinker
bond damage and Eq. (5) for sacrificial bond damage). Whenever
a crosslinker bond is broken, that particular polymer chain is

removed from the network, i.e., if (i, j) represents a polymer
chain, a breaking event removes the edge (i, j) from the graph. If
all the edges at a node k are removed, node k is also removed
from the optimization routine. The simulation continues until
there is no continuous path from the top plate to the bottom plate
that bears the load of the moving plate. The sacrificial bonds are
also updated in a similar fashion. Furthermore, if the damage inte-
gral for the sacrificial bonds crosses �1, a sacrificial bond is bro-
ken, a hidden length is added to the parent chain, and the damage
integral is reset. This procedure continues until no sacrificial bond
remains or the end bond breaks, whichever is first.

With this model, we discuss the effect of the following parame-
ters in the simulation:

� Pulling velocity: The top plate is moved at different veloc-
ities to investigate the rate effects on the network peak force
and ductility.

� Chain lengths: All chain lengths L are drawn from a distribu-
tion (uniform/Gaussian) with a prespecified mean and a mea-
sure of width. This width of the distribution is a measure of
the disorder in the system.

� Sacrificial bonds: In order to observe the effects of hidden
lengths in the network, we simulate networks with and with-
out sacrificial bonds. We choose to introduce a uniform ran-
dom number of hidden lengths, m, drawn from a uniform
discrete distribution. The hidden length in each of m seg-
ments is drawn from a uniform continuous random
distribution.

� Network topology: We consider networks with both quadri-
lateral and triangular meshes.

4 Results and Discussion

In all the results in this section, the force is plotted against the
stretch k which is defined as k ¼ ðh� hi=hiÞ, with hi being the ini-
tial height and h the current height (in the y-direction) of the sam-
ple. All force-stretch plots have inherent stochasticity in the
results due to variability in the chain length distribution in each
realization (see Fig. 5). One should note that such uncertainty is
more visible around the peak and softening part of the curves (as
many chains break in this portion). Moreover, this effect is more
pronounced for smaller networks (networks with a few polymer
chains, Fig. 5) than for larger networks (>5000 chains or graph
edges). For this reason, large networks are simulated in this work.

4.1 Effect of Pulling Velocities. Pulling velocities have a
significant effect on the maximum stretch and the peak force
endured by the sample. To see this, we rewrite Eq. (4) by

Fig. 3 Representative graphs of network topologies with different co-ordination numbers: (a) Z � 4 topology and
(b) Z � 7 topology

Fig. 4 Sample setup for a Z � 7 network

031008-4 / Vol. 85, MARCH 2018 Transactions of the ASME
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changing the integration variable from time to position as we pull
with constant velocity within each experiment

ðsf

si

ðkf ðFðsÞÞð1� NÞ � kbðFðsÞÞNÞds ¼ �v (8)

where F is the force magnitude for given chain length L, s is the
distance between the two crosslinkers (i.e., ends of a polymer
chain), and v is the pulling velocity. The above equation has been
written for breaking the crosslinker bond. Therefore, for the same
amount of displacement, a higher velocity implies a higher thresh-
old for breaking the bond, i.e., there is a higher stretch allowed.
This, consequently, leads to a higher peak force in the worm-like
chain paradigm.

Figure 6 shows that the peak force and the maximum stretch
ratio vary almost linearly with respect to the log of the pulling
velocity. To understand these effects further, we do an order of
magnitude analysis as follows. Without inertia, a first-order linear
one-dimensional system can be described by C _x þ kx ¼ 0. The
relaxation time for such a system is given by H(C/k), where k is
the stiffness of the system and C is the damping coefficient as
described in Eq. (7). In our analysis, we have a nonlinear system,
and hence, this result is not directly applicable, but one may write
a linearized version of the system around a given stretch value, k0.
This linearization will hold around a small neighborhood of k0,
and in this neighborhood, the stiffness may be assumed to be con-
stant. For the simulation results shown in Fig. 6, C¼ 10�3 Nsm�1,
while the stiffness during loading goes up to 102 N	m�1 which
gives a relaxation time scale of H(10�5) s. At the peak load and
during the softening phase, the stiffness decreases drastically and
often is very close to H(10 deg) N	m�1 (especially during peak).
This leads to a relaxation time scale of H(C) s. Therefore, it is
safe to assume that the order of relaxation time scale of the system
H(s) � H(C)¼ 10�3 s. However, all the time scales (1= _k) associ-
ated with the loading rates considered here are much longer than
these relaxation timescales and hence, the bulk viscosity, modeled
through C, contributes negligibly to the observed rate effects in
this case. This suggests that the rate dependence of the peak force

and ductility shown in Fig. 6 originates from the bond dynamics
that are governed by Arrhenius-like processes. This explains the
logarithmic dependence.

In Fig. 7, we probe the time-scales that are comparable to the
inherent time scale of the system, i.e., where C/k is comparable
(in order of magnitude sense) to 1= _k. Hence, we plot all quantities
of interest with respect to the ratio of timescales leaving out the
stiffness term. We note a logarithmic dependence in the peak
force on loading rate initially which changes to an almost linear
relationship and then falls back. During the low C _k regime, we
have the chain force dominating the equilibrium and the response
is sensitive to bond dynamics as previously explained. In the high
C _k, the viscous force dominates, and hence, the relationship
becomes approximately linear. Within this regime, the system is
increasingly sensitive to loading rate and initial conditions. In par-
ticular, the damage and deformation becomes highly localized in
the top portions of the network and there is not enough time for
the force to redistribute and percolate downward. This explains
why at very high C _k, a very small part of the network takes the
entire load and breaks prematurely at a lower load (Fig. 8).

To examine the robustness of these results, we present an esti-
mate for the expected systematic randomness if we conduct these
runs for a large number of network realizations. We have done
this at lower loading rates and the error bars are shown in Fig. 7,
suggesting that the standard deviation is small in this limit due to
the engagement of the full network in load resistance. In order to
correctly place the error bars at higher loading rates, we account
for the reduced engagement and deformation localization by
increasing the standard deviation of the results using central limit
theorem arguments. Physically, this means the lower the number
of chains/edges of graph engaged (stretched out) in the pulling
experiment, the larger the variation in different realizations of the
same network. As an approximate estimate, if 10% of the edges of
the network are engaged, the standard deviation in the simulation
is expected to be approximately 1=

ffiffiffiffiffiffiffi

0:1
p

¼ 3:16 times the standard
deviation in results when the entire graph is engaged (assuming
that the variance is normalized by the mean of the distribution).
With this estimate, we may conclude that the drop in the peak
force and dissipated energy at the highest loading rate is a robust
observation and it happens when the loading rate becomes compa-
rable to the intrinsic viscous time scale in the network due to a
transition in the damage mode from distributed to localized.

4.2 Effect of Crosslinker Concentration. We simulate the
effect of increasing crosslinker concentration while keeping
the polymer concentration constant. This is done by increasing the

Fig. 5 The force stretch plot of a representative network.
Uncertainty (depicted by inter-quartile range) is shown around
a median force value. In the top-right inset, the max. error
depicts the mean normalized spread between the maximum
and minimum force values of ten realizations of an experiment
on a given graph (network). The decrease in maximum mean
normalized error is shown as the number of edges in the net-
work increases. Note that similar plots were seen for all network
topologies.

Fig. 6 Effect of pulling velocities for rate-dependent damage.
The two insets show the variations in peak force and ductility at
different stretch rates indicated in the legend of the main plot.
We see that the peak force and ductility follow almost a linear
relationship with the logarithm of strain rates.
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number of nodes and edges in the graph while keeping the total
weight of the network (sum of lengths of all chains) constant. As
seen in Fig. 9, the peak force increases up to a maximum value
with increasing crosslinker concentration. Further increase in the
crosslinker concentration leads to a decrease in the peak force.
This may be explained as follows. As the crosslinker concentra-
tion increases, the average chain length decreases (to keep the
total weight constant). Therefore, the system becomes stiffer and
attains higher forces for a given stretch of the network. As the
crosslinker concentration further increases beyond a certain
threshold, the network becomes critically stressed due to the prev-
alence of short chains, (low L). These short chains are prone to
damage accumulation at a faster rate because of higher forces at
the scale of individual chains (due to high x/L). This leads to pre-
mature failure at lower global force level. In other words, the
forces start off high at the chain level triggering a cascading fail-
ure mechanism in the network that lowers the peak force with
respect to the initial force.

4.3 Effect of Disorder in Available Chain Lengths. We
simulate disorder in the network by generating available chain
lengths of the polymers from a stochastic distribution. We con-
sider both Gaussian and uniform distributions. A higher disorder
refers to a larger width (or standard deviation) of the distribution.
As seen in Fig. 10(a), the force displacement response weakly
depends on the degree of randomized disorder for the range of
parameters considered here. The uniform distribution leads to a
slightly more pronounced effect than what is observed for the
Gaussian distribution case. There is a slight increase in stiffness
and slight decrease in peak force. This is due to the nonlinear
power law nature of the force curve of a single worm-like chain
(i.e., the force rapidly increases for stretch values close to the con-
tour length). The increase in force due to shorter lengths domi-
nates over the decrease in force in larger length chains. This
causes an overall increase in the stiffness of the network. How-
ever, this also means that damage accumulates faster, and hence,
the peak force attained by the network is reduced. The network

Fig. 7 Effect of different regimes (due to inherent timescales) of pulling experiments.
Peak force and energy absorbed are plotted with an estimated error based on central limit
theorem arguments.

Fig. 8 Localization of damage at high C _k is evident from the figures (a) C _k5 531023 and (b)
C _k5 5. The time scale is not linear as indicated by the broken lines on the x-axis. Simula-
tions were run at constant _k, and hence, the y-axis may be used as a substitute for time.
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with higher disorder level also exhibits a larger softening distance.
This suggests that disorder may help the network survive longer
under damage. We discuss this further in Sec. 5.

4.4 Effect of Coordination Number. Here, we test the two
different topologies. We keep the total weight of the network con-
stant while also maintaining almost the same number of edges in
the network. We draw chain lengths from the same random distri-
bution for both cases. As seen in Fig. 11, a network with higher
coordination number has higher toughness, peak force and also
survives a larger softening (post-peak) distance. This may be
explained as follows. As the network topology changes from
quadrilateral to triangular, the average chain length decreases (for
the same total weight) leading to increased stiffness and higher
peak force. Furthermore, due to the increased number of edges per
node in the triangular topology, the force redistribution due to the
loss of a polymer chain is more efficient. The force increase on
adjacent polymer chains during this redistribution is smaller than
in the case of quadrilateral and this leads to delayed damage accu-
mulation. On the other hand, a polymer chain detachment in the
quadrilateral network leads to a larger force drop and higher force
increase in the surrounding polymers. This triggers faster cascad-
ing failure and a more brittle behavior. Similar results were
obtained in Ref. [51] for nanocomposite gels that increase the
coordination number of the network.

4.5 Effect of Sacrificial Bonds. We consider two scenarios
for introducing the sacrificial bonds and hidden length idea into
the design of our network. In the first scenario, the total length of
the polymers in the network including the hidden lengths is kept
equal to the total lengths of the polymers in the network without
sacrificial bonds. Figure 12 shows that sacrificial bonds, in this
case, increase the peak force and toughness of the network but
have negligible effect on the stretchability. In this particular simu-
lation, sacrificial bond parameters were Dxsf¼ 0.105 nm, while the
end bond Dxb¼ 0.015 nm. This simulates a sacrificial bond that is
much weaker than the end crosslinkers. Also, the hidden lengths
were kept very small, i.e., a continuous uniform distribution over
5%–10% of the initial available length of the polymer. Therefore,
Fig. 12 suggests that even though the two networks have the same
(simulated) weight, small-scale changes in the network design,
e.g., through introducing small internal loops in the polymer to act
as hidden lengths, may allow for extra stiffness, strength, and
toughness in the polymeric systems.

Another possible route is the introduction of additional hidden
lengths [7,48] in the network that grant extra stretchability and
toughness to the polymeric system. We simulate this by modify-
ing the previous weight constraint. We keep the initial available
length of the two networks the same. Hence, any breaking sacrifi-
cial bonds add extra length to the polymer chain as in the experi-
ments of [48]. In order to maximize gains in both toughness and
stretchability, we investigate the parametric dependence of these
gains, within the scope of our model.

We start by analyzing the dependence of stretchability and
toughness on the parameters of a single worm-like chain. Assume
j¼ x/L, where x is the node–node distance and L is the available
contour length. Instantaneous damage, d(j), may be written as (f is
the force in the chain)

Fig. 9 Effect of the crosslinker concentration on the observed
peak force of the network. Increasing concentration is simu-
lated by increasing the number of nodes in the graph. Each
side of an error bar indicates the typical maximum one-sided
spread in the peak force from our simulations. The crosslinker
concentration is measured as the ratio of the number of nodes
in the graph to the area of the sample.

Fig. 10 Comparison of force responses when the available chain length is drawn from a random dis-
tribution: (a) uniform distribution ½(12k ) � l; (11k ) � l
 and (b) Gaussian distribution with standard
deviation r5k * l, k� (0, 1). In all simulations, the weight of the network is kept constant.

Fig. 11 Effect of coordination number
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d jð Þ ¼ ae exp
f jð ÞDxe
kBT

� �

dd

dj
¼ Dxe

kBT
d jð Þ df jð Þ

dj

(9)

From the worm-like chain model

df jð Þ
dj

¼ kBT

b
1þ 1

2 1� jð Þ3

 !

) dd

dj
¼ Dxe

b
d jð Þ 1þ 1

2 1� jð Þ3

 ! (10)

Similarly for sacrificial bonds, we may write

dds

dj
¼ Dxf

b
ds jð Þ 1þ 1

2 1� jð Þ3

 !

(11)

with ds(j) being the instantaneous damage in sacrificial bonds.
The total damage up to a certain time, t, can then be written as (as
d begins with 0)

D tð Þ ¼
ðt

0

dd

dj tð Þ
dj tð Þ
dt

dt

If we ensure that the damage accumulates much faster in the sacri-
ficial bonds as compared to the end bonds 8j � (0, 1), we can
ensure that all sacrificial bonds break before the end bonds break,
i.e., we use the entire hidden length before breaking end bonds.
More formally, if minit is the initial number of sacrificial bonds,
one may write the following condition:

dds=dj

dd=dj
> minit8j (12)

This gives

f jð Þ > kBT

Dxf � Dxe
ln

Dxeaeminit

Dxf af

� �

8j (13)

Arguably, this is a very strong condition and thus may rather be
regarded as a sufficiency condition. However, it insures that the

last surviving sacrificial bond will experience damage at a higher
rate than the end bond.

If we choose the strengths and transition state properties such
that the right-hand side of the inequality is negative, we satisfy it
for all j. Therefore, Eq. (13) ensures that we use all the sacrificial
bond hidden length before the ends break.

However, this is not a sufficient condition to gain a lot of
stretchability. We note that to gain a lot of stretchability in a net-
work, addition of extra length should significantly slow down the
accumulation of end bond damage in the network, i.e., we should
tailor hidden lengths such that we reduce the chain forces leading
to a decreased absolute damage accumulation rate. Formally, if
we assume the same dj(t)/dt, we may say that adding a hidden
length which changes j to rj, r< 1 such that the damage accumula-
tion rate given by Eq. (10), say g becomes g/M, M> 18j> j0
where j0 is the initial stretch in the network. In our simulations, j0
� 0.1

Dxe

b
d jð Þ 1þ 1

2 1� jð Þ3

 !

Dxe

b
d rjð Þ 1þ 1

2 1� rjð Þ3

 ! > M (14)

exp
Dxe

b
j�rjþ1

4

1

1�jð Þ2
� 1

1�rjð Þ2

 ! ! !

1þ 1

2 1�jð Þ3

 !

1þ 1

2 1�rjð Þ3

 ! >M

(15)

If we relate the ratio, r toM, we may choose a good set of parame-
ters to get the extra stretchability. Examining Eq. (15) closely
reveals the minimum is 1 for the left-hand side when j¼ 0. To
understand the structure of this inequality, we plot the surfaces
parametrized by the tuple (r, j) for different Dxe values.

From Fig. 13, it may be inferred that as we decrease r (i.e.,
increase the hidden length), we achieve higher M. Also, this value
keeps getting better as stretch in the network increases. From Fig.
10, we further conclude that in order to get the best stretchability
increase between the sacrificial network and the bare network, we
require a large transition state distance. This result is unexpected
because a larger transition state distance increases the damage
accumulation rate in the chain, and hence, end-bonds would break
faster. However, to compensate for this, we may choose end-
bonds that require a higher activation energy, Ea, to break. This
implies a lower rate of breaking at zero force, ae. Note that ae val-
ues remain the same in both the networks we are testing here.
Therefore, a bare network has equally strong end bonds. Also,
note that the increase in stretchability does not depend on sacrifi-
cial bond parameters (see Eq. (15)). As long as Eq. (13) is met,
we can provide a rough estimate of the increase in stretch by plot-
ting the left-hand side of the inequality 15. Moreover, one can see
from Fig. 13 that at higher stretch values, M increases, and hence,
we need not have all hidden lengths to be equal. If we allow for
gradation in the sacrificial bond parameters and choose the weak-
est sacrificial bond to have the highest hidden length (r¼ 0.7) and
the other (stronger) sacrificial bonds to have lower hidden length,
we can still achieve a significant increase in properties. This is
because the other stronger bonds will be opened at a higher j. We
leave this strength-gradation study for future work.

We test the above theoretical analysis by simulating a network
with ae¼ 0.001 s�1 (i.e., increase Ea by about 6.9 kBT) against ear-
lier simulations. We also change Dxe to 0.5 nm so as to test
whether we get a significant increase as estimated from the afore-
mentioned discussion. Note that the network without sacrificial
bonds in Fig. 14 has the same end-bond parameters. We choose an
additional length of 40% of the mean length of the network, i.e.,

Fig. 12 Sacrificial bonds decrease the initial available length
of the chains. Hence, they have a stiffer initial response. Energy
is absorbed in breaking the sacrificial bonds which leads to
increasing toughness.
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r¼ 0.71. Indeed, as shown in Fig. 14, we obtain an increase of �
300% in toughness compared to the reference network with no
hidden length. This matches well with our surface plots in Fig. 13
(top-left). Moreover, we observe from Fig. 14 that the initial stiff-
ness of the network with sacrificial bonds is the same as the bare
network but it starts softening once the sacrificial bonds start

breaking and the hidden length is released. It is interesting to
observe that the subsequent breakage of sacrificial bonds and
unfolding of the hidden loops lead to saw-tooth-like features in
the force-displacement curve that collectively have a similar sig-
nature to a yielding plateau. A similar yielding response has been
reported for polymer materials as a result of crystallization. Thus,
tailoring network topology, using SBHL system, may have similar
effects as phase transition.

5 Discussion

Soft materials like hydrogels have received considerable inter-
est in recent years. To overcome the intrinsic brittleness of gels
and their limited ductility, several strategies for tailoring the net-
work architecture were recently introduced. These gels provide
increased fracture resistance. Here, we quantitatively explore the
effect of topology on response. More importantly, an alternative
mechanism for enhancing ductility and toughness in polymer net-
works through introduction of hidden lengths via multiple weak
sacrificial bonds in the same single network was studied. These
bonds break first and upon breakage release additional chain
lengths which were previously shielded from direct loading. This
SBHL mechanism is biologically inspired and was previously
explored by one of the authors in the context of noncollagenous
protein interfaces in bone [43,49].

Interestingly, the SBHL system is not limited to bone. Rather, it
is widespread in many tough nanocomposite biomaterials such as
abalone shell [46], polyprotein dimers [52], and spider capture
silk [53]. Recently, Zhu et al. [48] experimentally explored a simi-
lar mechanism, inspired by unfolding of protein molecules in
mussel threads, to 3D-printed hydrogels with enhanced ductility

Fig. 13 Clockwise from top-left: left-hand side surfaces for Eq. (15) at Dxf5 0.5, 0.05, 0.005nm

Fig. 14 Sacrificial bonds causing an increase in stretch and
toughness over a bare network. m is the number of sacrificial
bonds per chain of the network. The numbers in the plot indi-
cate energy absorbed (area under the curve) in femto-joules
(10215).
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and toughness. This paper presents a computational paradigm for
predicting the rate-dependent response of such artificial networks
with sacrificial bonds and suggests a theoretical framework for
guiding their design.

The rate-dependent model proposed in this paper has two pri-
mary ingredients. The first ingredient originates from the bond
breakage and formation at crosslinking sites. This is described
using the transition state theory in which each bond is assumed to
possess a double well potential with an energy barrier between
intact and broken states that depend on the applied force. The sec-
ond ingredient is a linear viscous force that is hypothesized to
simulate the drag force on a polymer network deforming within a
fluid domain without explicitly modeling fluid flow. This model is
satisfactory for hydrated soft materials with low polymer concen-
tration at low and intermediate loading rates. The model may be
extended in the future to account for additional rate-dependent
processes that may emerge as the polymer concentration increases
such as entanglement effects as well as nonlinear viscous drag
forces at extremely high loading rates. A primary result of this
paper is that for the range of loading rates and model parameters
considered here, the rate-dependent response of the polymer net-
work is not monotonic. At low loading rates, the peak force
increases linearly with the logarithm of loading rate. In this limit,
bond dynamics dominate the response. As the loading rate
increases, the rate dependence of the peak force becomes almost
linear suggesting the dominance of the viscous force. At even
higher rates, the peak force drops. This nonmonotonic dependence
correlates with a change in the deformation mode from being dis-
tributed at low and intermediate rates to localized at the highest
rates. This nonmonotonic rate dependence represents a testable
prediction for future experiments.

Few models exist in the literature for the rate-dependent
response of polymer networks with reversible bonding. Krishnan
et al. [21] and Hui and Long [54] proposed a 3D finite deforma-
tion model for self-healing gels by keeping track of the time evo-
lution of bond breakage and formation. Zhang et al. [55]
established a macroscopic model for gel fracture using a cohesive
zone law coupled with bulk viscoelasticity idealized using Mullins
effect. Our model is distinct from prior work in several aspects.
First, our model explicitly accounts for the network topology, an
ingredient that has been missing in these previous studies. Second,
we use the transition state theory approach to model the bond
dynamics which provides a direct link to bond-specific chemical
characteristics. Third, none of these models have considered the
hidden length mechanism.

Another primary result of this paper is establishing a systematic
framework for designing tough polymer networks with sacrificial
bonds and hidden length so as to use the entire hidden length effi-
ciently. There are two requirements for this. First, the sacrificial
bonds must be weaker than the end bonds so that all the hidden
loops unfold before the end bonds break. Second, the released hid-
den length must be large enough to cause a sufficient force drop
on the polymer level that enables it to continue to be stretched
before final detachment. We demonstrated one application exam-
ple in which the toughness of the polymer network is significantly
increased (3 times) through the adjustment of the end bonds
parameters and the addition of an extra (� 40% of initial length)
hidden length per sacrificial bond. The outlined procedure com-
plements existing practice in designing tough hydrogels and poly-
mer networks [56] and provides an alternative pathway for
enhancing ductility and energy dissipation in polymer networks
that does not leverage the double network architecture.

In this paper, we have modeled polymer networks with chain
length drawn from both uniform and Gaussian distributions. For
the range of length variability explored here, we have found that
chain length disorder has a weak effect on the force displacement
response. Increased disorder may lead to a slight decrease in the
peak force and a slight increase in network ductility as well as a
more gradual softening phase. One possible explanation for the
lack of strong effect of disorder on network dynamics is the

random nature of disorder. It is possible that the effect of disorder
to be amplified through introducing an engineered spatial varia-
tion in chain lengths rather than through random disorder. For
example, one may envision the use of a higher disorder network
in crack-susceptible regions and a lower disorder network for
other regions. Other possibilities may include introducing pat-
terned blocks of chains with different lengths to localize damage,
controlled gradation in chain length or bond strength, as well as
strategically placing longer length chains into shorter length net-
works. These are topics of current investigation in our group.

The results presented in this paper suggest that for networks
with simple topology (e.g., clustered networks considered here),
the elastic properties are less sensitive to structural randomness in
the network and thus may be homogenized using standard proce-
dures [10]. However, the peak force as well as the softening phase
exhibits larger variance. We are currently exploring various
uncertainty quantification models that are capable of encapsulat-
ing this randomness at higher scales.

A future extension of this study will involve investigating the
rate-dependent response of 3D networks with several complexities
such as multinetwork gels nanoparticle reinforcement, entangle-
ment, and network incompressibility when applicable. These
models will ultimately be incorporated in multiscale simulations
to explore fracture susceptibility and fatigue resistance due to
bond breakage and formation.
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