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Mechanical strain can switch the sign of quantum
capacitance from positive to negative

Yuranan Hanlumyuang,†a Xiaobao Li†b and Pradeep Sharma*bc

Quantum capacitance is a fundamental quantity that can directly

reveal many-body interactions among electrons and is expected to

play a critical role in nanoelectronics. One of the many tantalizing

recent physical revelations about quantum capacitance is that it

can possess a negative value, hence allowing for the possibility of

enhancing the overall capacitance in some particular material

systems beyond the scaling predicted by classical electrostatics.

Using detailed quantum mechanical simulations, we found an

intriguing result that mechanical strains can tune both signs and

values of quantum capacitance. We used a small coaxially gated

carbon nanotube as a paradigmatical capacitor system and showed

that, for the range of mechanical strain considered, quantum capaci-

tance can be adjusted from very large positive to very large negative

values (in the order of plus/minus hundreds of attofarads), compared

to the corresponding classical geometric value (0.31035 aF). This

finding opens novel avenues in designing quantum capacitance for

applications in nanosensors, energy storage, and nanoelectronics.

The behavior of nanoscale capacitors is remarkably rich and
exhibits features unanticipated by conventional electrostatic
theory.1–4 Intensive research has been recently ensued bymaterials
development, elucidation of the fundamental science and applica-
tions related to nanocapacitors. Conventional wisdom, with its
origins in textbook electrostatics, suggests that high capacitance
can be achieved by reducing the characteristic size of the dielectric
materials with high dielectric permittivity. For example, in the case
of a thin film configuration, the classical electrostatic capacitance
per unit area is taken to be Cgeo = e/d where e is the dielectric
permittivity and d is the thickness of the dielectric sandwiched
between the electrodes. Accordingly, materials development has
tended to focus on the selection and engineering of high dielectric

permittivity materials at the nanoscale level along with the
concomitant challenges of their fabrication and testing. As the
size of circuits reach nanoscale dimensions, the quantum
nature of electronic devices can be utilized for the further
miniaturization of electrical circuits. The capacitance of capa-
citors with thin dielectrics is also altered by quantum effects.
In such devices, the capacitance consists of the well-known
geometric value and another quantum contribution, called
quantum capacitance.

Despite having been identified for nearly three decades,5

quantum capacitance (CQ) has gained much interest only in
recent years.6–9 Quantum capacitance arises from the finiteness
of the density of states and the many-body interactions among
electrons. It relates to the change in electron density with the
chemical potential of the metallic gate. For a two-dimensional
system, this relation is written as4

1

CQ

¼
dm=dn

Ae2
; (1)

where contributions to dm/dn stem from density of states and
exchange/correlation energy functional of the gates. A is the
area of the two-dimensional system. Since the appearance of CQ

requires only a finite dm/dn, it is ubiquitous. Considering
different energetic contributions to the electron chemical
potential m, the quantum capacitance can then be separated
into two components as4

1

CQ

¼
1

CDOS

þ
1

CXC

: (2)

The capacitance CDOS arises from the limiting density of states,
given by CDOS = Ae2r(EF) or CDOS = Le2r(EF) in two- and one-
dimensional systems, respectively. The symbol r(EF) represents
the density of states (DOS) at the fermi level EF. e is the electron
charge. The many-body effects are lumped together as 1/CXC, in
which both the exchange and correlation energy functionals are
included. As discussed in ref. 4, the capacitance CXC is negative.

Luryi has also reported that quantum capacitance depends
on the electrical screening behaviors of the metallic gates.5
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He studied a two-dimensional electron gas used as a grounded
middle plate in a three-plate capacitor, and found that the two-
dimensional gas, with small density of states (DOS), cannot
completely screen the electric fields emanating from the top
metallic gate. Clearly the laws of electrostatics, where complete
electric-field screening is assumed, are not applicable in this
system. In a simple metal–insulator–metal setup, the net capa-
citance (CG) due to this screening effect, beyond the geometric
value (Cgeo), is written as

1

CG

¼
1

Cgeo

þ
2

CQ

; (3)

where the magnitude of CQ is usually much larger than that of
Cgeo, and it drops out as a contribution to CG. The above
expression shows that a system with low DOS tends to exhibit
interesting effects since CQ becomes comparable to the geometric
capacitance.

Eqn (3) appears to suggest that the existence of CQ tends to
diminish the overall capacitance CG. However, due to the
negative exchange-correlation contribution, quantum capaci-
tance can very well enhance the overall capacitance. Recently, a
few materials systems have been identified in experiments as
plausible realization of these enhancement effects. Examples
include C–CuO2–Cu coaxial nanowires and LaAlO3–SrTiO3

film systems where about 100% and 40% enhancement of
capacitance has been reported, respectively.7,8

A number of quantitative effects including the finite thickness
of the capacitors and metal-insulator interface reconstruction
among many others can influence quantum capacitance.4 We
report here a surprising aspect of the quantum capacitance
pertaining to mechanical deformation. This notion may be moti-
vated by considering a two- or one-dimensional electron gas in the
low-electronic density limit. A dimensionless distance rs may be
defined as rs = (pn2a*

2)�1/2 or rs = (2n1a*)
�1 in two and one

dimensions, respectively. The subscripts under carrier densities
(n2 and n1) denote the dimensionality of the problem. a* is the
effective Bohr radius a* = e�h2/m*e2. e and m* are the dielectric
constant and the effective mass, respectively.10,11 In both cases,
this distance characterizes the inter particle distances which
directly depend on the amount of applied strain. Using this
argument, we rationalize that mechanical strain should alter the
electronic densities, and the exchange contribution to quantum
capacitance. Many electron–mechanical coupling phenomena
such as piezoelectricity12–14 and flexoelectricity,15,16 have been
well studied for nanoscale materials. Also, strain effects on
electronic density of states have been reported.17 Existing studies
have already established the fundamental science underlying
quantum capacitance.4,18–21 The potential role of mechanical
effects remains largely unexplored, despite the study of sign-
changing behavior of the quantum capacitance in the super-
conducting qubit-nanomechanical resonator systems.22

In this paper, we explore the possibility of tuning quantum
capacitance (hence the overall capacitance CG) via mechanical
strain. We find that, for a model system based on a carbon
nanotube, in conjunction with appropriate doping levels,
mechanical strain can indeed substantially change the values

of quantum capacitance and more intriguingly, switch its sign
from positive to negative (and vice versa).

We used a small zigzag (10,0) carbon nanotube as a para-
digmatical capacitive system. The nanotube was gated by a hollow
metallic strip, and separated from the strip by an ideal SiO2

insulator. In general, the low-dimensional nanotube has a small
DOS value, and consequently cannot accumulate enough charge
to completely screen the external field emanating from the
metallic plates. The system is then ideal for studying quantum
effects, beyond which the total screening is assumed. Indeed, it
has already been reported that such a system with a coaxially
gated nanotube possesses measurable quantum capacitance.23

In this work, quantum capacitance was obtained using the
nonequilibrium Green’s function density functional tight-
binding (DFTB) approach—the details related to the specific
computational code may be found in ref. 24–26. It should be
noted that though there is a bias applied through the cylindrical
metallic gate, by treating the gate contact as a boundary condi-
tion for the electrostatic problem, the whole system always
maintains equilibrium conditions. This approach is then appro-
priate for all equilibrium properties, such as capacitance,
because the ‘nonequilibrium’ parts of the computational
packages are not utilized. Our calculation details closely followed
those given in ref. 23. The carbon–carbon interactions are those
provided in the Slater–Koster parameter set in ref. 23 and PBC-0-1
ref. 27. The tight-binding Hamiltonian was evaluated self-
consistently with the local charge fluctuation induced by the
exchange of charges among atoms. The exchange and correla-
tion (XC) functional was modeled using the local density
approximation. In standard self-consistent DFTB, the second-
order self-consistent charge extension relates to the Hubbard
parameters as detailed in ref. 23, 28 and 29.

The nonequilibrium Green’s function density functional
DFTB package used24–26 was modified to allow for the coaxially
gated (10,0) nanotube configuration. The underlying principles
of the setup will become clear in a moment. Emphasizing first
on the model configuration as shown in Fig. 1(a), the nanotube
considered contained 2160 atoms and was about 22.6 nm in
length. It was coaxially gated by a hollow metallic cylindrical
strip located at a distance about 11.1 Å away. All features were
placed inside a Poisson box where the electronic charge and
potential were solved self-consistently. The separating insulator
was SiO2 with a relative permittivity of e = 3.9. The field lines
through SiO2 gave rise to the regular geometric capacitance
(Cgeo) as expected. Two metallic planes acted as grounded
reference contacts which served as a source/drain of electrons
in response to applied fields of the cylindrical gate. Dirichlet
boundary conditions with zero potential were enforced on the
metallic planes to simulate grounded contacts at the source
and the drain. The same boundary conditions were also used to
apply a constant voltage at the cylindrical metallic gate. The
applied bias at the hollow metallic strip (dV = 1 mV) induced a
net accumulation (or depletion) of charges on the surface of the
nanotube. These charges were drawn from the source/drain
outside of the Poisson box within the nonequilibrium Green’s
function treatment.

Communication PCCP



22964 | Phys. Chem. Chem. Phys., 2014, 16, 22962--22967 This journal is© the Owner Societies 2014

As argued by Latessa et al.,23,30 the above approach allows
one to extract information about the effects of exchange-
correlation on quantum capacitance. We briefly summarize
their findings here. Since it is well accepted that the exchange
contribution to the total energy of a solid depends strongly
on the number of charge carriers (also discussed in ref. 4),
continuous n-doping of the nanotube tunes the number of
charge carriers in the system, and consequently the exchange-
correlation contributions. Here, doping is simulated by adjusting
the number of fractional electrons in the valence orbital of each
carbon atom. In this way, the number of electrons filling in the
conduction subband can be tuned continuously. It will be clear in
a moment how this continuous electron filling approach enables
us to obtain useful information related to the effects of exchange-
correlation on quantum capacitance.

The discussed model of an all-around gated nanotube can
be simplified into an equivalent circuital model shown in
Fig. 1(b). This circuit was obtained based on the seminal article
by Luryi.5 The capacitance Cins,1 accounts for the field lines
emanating from the cylindrical metallic gate to the nanotube
surface, i.e. it represents the geometrical capacitance given by
classical electrostatics. The capacitance Cins,2 quantifies the
accumulated charge at the metallic plates inner to the nano-
tube. The capacitance Cins,2 arises from the penetrating field
lines through the cylindrical surface of the nanotube to the
artificial metallic planes near the ends of the tube. Cins,2 arises
mainly because the nanotube having low density of states
cannot accumulate enough electrons to screen all electric fields
from the cylindrical metallic gate. These fields cause some
charge accumulation on the metallic planes near and inner to

the tips of the nanotube. In this sense, Cins,2 is physical and arises
due to our particular calculation setups. However, it should be
noted that Cins,2 is not quantum capacitance, since it does not
account for charge accumulation/depletion at the surface of the
low-dimensional nanotube. Lastly, the capacitance (Cext) in parallel
to the main circuit accounts for possible charge accumulation at
the metallic planes outer to the nanotube.

In addition to Cins,1, Cins,2, and Cext, a bias at the cylindrical
metallic gate may cause some charge accumulation/depletion on
the nanotube surface due to the aforementioned electrical
screening properties. This phenomenon leads to the extraneous
quantum capacitance. CQ may have either a (a) negative, (b) zero,
or (c) positive value depending on the density of charge carriers
in the system. These different regimes correspond to (a) over-
screening, (b) complete screening, or (c) partial screening of the
nanotube in response to the bias at the cylindrical gate.18,23,30 In
case (a), the nanotube overcompensates the gate field and
accumulates more electrons than needed, leading to negative

potential in the interior of the tube. In case (b), the accumulated
charge on the nanotube surface completely screens the gate
field, i.e. zero electrical potential is present at the center of the
nanotube interior. Lastly, in case (c) the charge accumulation on
the nanotube surface is limited by the density of states,5 and
consequently the nanotube only partially screens the positive
gate field. A small positive potential is then present in the
interior of the nanotube. The numerical values of CQ(n) as a
function of carrier density can be straightforwardly obtained
after establishing relations between electrostatic potential profiles
and doping levels n. Fig. 2 shows three regimes of potential
profiles along the y-direction (shown in Fig. 1) where the carrier
densities are (a) n = 0.1033, (b) 0.1005, and (c) 0.0478 Å�1,
respectively, and the applied gate voltage is dVG = 1 mV.

Fig. 1 (a) In a geometric setup for a nonequilibrium Green’s function
based on DFTB calculations, a zigzag (10,0) nanotube is located inside the
Poisson box. The source and drain of electrons are marked by the letters
S and D, respectively. (b) The circuital model of the cylindrically gated
carbon nanotube.

Fig. 2 Electrostatic potentials along the y-direction of a mechanically
neutral (10,0) nanotube. The tube is outlined in the central shaded area.
Three screening regimes, depending on carrier densities, are illustrated.
(a) For n = 0.1033 Å�1, the nanotube overcompensate the gate field and
accumulates more electrons than needed, leading to negative potential in
the interior of the tube, i.e. the nanotube overscreen the applied electric
fields. (b) For n = 0.1005 Å�1, the accumulated charge on the nanotube
completely screens the gate field. Zero screened potential is present at the
center of the nanotube interior. (c) At the carrier density n = 0.0478 Å�1, the
charge accumulation on the nanotube is limited by the density of states,5

and consequently the nanotube only partially screens the positive gate field.
A small positive potential is then present in the interior of the nanotube.
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The proceeding paragraphs and the accompanying figures
make it clear that the rather specific geometric setup of the
nanotube, insulator, metallic gate and metallic planes allows
for direct calculations of CQ. Taking advantage of the three
screening regimes and the circuit model shown in Fig. 1(b), the
quantum capacitance CQ(n1) was obtained by computing the
number of induced charge as a function of the carrier densities.
By numerically evaluating the charge induced on the metallic
planes shown in Fig. 1(a), we found that both Cins,2 and Cext for
all current long CNTs studied are negligible. The gate capaci-
tance in the circuit model shown in Fig. 1(b) hence reduces to
1/CG = 1/CQ + 1/Cins,1. In the case of complete screening, we
have 1/CG = 1/Cins,1 = dVG/dQ(n1,crit), whereas for partial screening
or overscreening 1/CG = 1/Cins,1 + 1/CQ(n1) = dVG/dQ(n1). Since the
gate voltage is externally controlled, dVG in both cases can be
equated to yield the quantum capacitance as

CQ n1ð Þ ¼ Cins;1

dQ n1;crit
� �

dQ n1ð Þ
� 1

� ��1

; (4)

where n1,crit is the critical value of the carrier densities when
complete screening is observed. The task of computing quantum
capacitance then reduces to determining n1,crit, and the induced
charge at each doping level. Here, an additional numerical
optimizing routine has been implemented in coordination with
the nonequilibrium Green’s function DFTB package24–26 in
order to obtain the induced charges. This numerical routine
appropriately sets Fermi levels, necessary for integrating the
energy subbands for charge densities. A necessary condition to
determine the Fermi levels is the charge neutrality. The charge
tolerance in the Fermi energy optimizing routine is set to
dQ = 10�7 a.u. After obtaining appropriate Fermi energies, the
nonequilibrium Green’s function routine is then utilized to draw
electrons from the source and the drain onto the cylindrical
surface of the nanotube.25,26 Using this approach, we were able
to verify our numerical quantum capacitance and potential
profiles (Fig. 2) against the results in ref. 23.

After benchmarking our calculated quantum capacitance
at zero strain, obtaining the effects of uniaxial strain on the
quantum capacitance is straightforward. Small uniaxial stretch
and compression can be applied to the nanotube using the
relation z7!ð1þ eÞz. Quantum capacitances at three strain
levels are shown in Fig. 3. The carrier density is measured in
the unit, electron charge per compressed/stretched area. As
well-evident from the figure, for an appropriate doping level, CQ

can change both its sign and magnitude depending on the level
of applied mechanical strain. For example at the carrier density
of about 0.10 Å�1, CQ changes from a very high positive value at
the e = �0.3% to about CQ E �5 aF at e = 1.5%. For the (10,0)
nanotube considered, this change in CQ accounts for about a
10% change in the overall capacitance CG in the classical
complete screening case. Computed from expressions leading
eqn (4), the classical capacitance is Cins,1 = 0.31035 aF. The
dashed lines are the corresponding capacitance values calcu-
lated from CDOS = e2r(EF)L, i.e. the limiting DOS contribution to
the quantum capacitance.

The change in sign at the carrier density n = 0.10 Å�1 can be
interpreted as follows. Recall that the quantum capacitance
consists of two contributions, the DOS and the exchange-
correlation terms, as 1/CQ = 1/CXC + 1/CDOS. The sign switching
occurs when the negative term 1/CXC compensates the positive
term 1/CDOS.

4 Evidently from Fig. 3, CDOS does not deviate
much across the range of strain considered (e = �0.3% to
1.5%). The band diagrams shown in Fig. 4 at different strain
levels further support this point. Therefore, it is reasonable to
conclude that CQ undergoes a sign change mainly because of
the variation in the exchange-correlation contribution. As the
level of strains goes from small compression to tensile, the
electronic density decreases due to an increase in the cylindrical
tube area. At a sufficiently low electron density, the exchange-
correlation contribution CXC dominates CDOS, producing a negative
quantum capacitance.

The quantum capacitance of a one-dimensional nanowire is
related to the second derivative of the exchange energy with respect
to the inter-particle distance rs as 1/CX p n1rs

2d2EX/drs
2.10

Fig. 3 The effect of strain on quantum capacitance. The carrier density
on the horizontal axis is in the unit, electron per physical (strained) area.
A solid line with triangle, square and circle indicates the quantum capa-
citance at 1.5%, 0.3% and �0.3% strain, respectively. The dashed line
indicates the CDOS at 1.5%, 0.3% and �0.3% strain, respectively.

Fig. 4 Dependence of CNT band diagrams on mechanical strain.
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Therefore, it is reasonable to postulate that our observed sign
switching is also caused due to this change in the energy
curvature. Though we have not rigorously proved this strain-
exchange/correlation relation, our numerical results support
this postulate. To establish rigorously underlying principles to
the sign-changing behavior of n1rs

2d2EXC/drs
2 under different

mechanical loads remains an interesting new research avenue.
The link between the mechanical strain and the curvature of

the exchange energy can also be established considering a
simple analysis. Approximating the (10,0) nanotube of radius
Ro as a solid dielectric cylinder, its dielectric constant is given
by eJ = 1 + 4aJ/Ro

2
E 38, where Ro = 3.914 Å and aJ = 142 Å

2 is the
longitudinal polarizability per unit length.31 Taking the effec-
tive mass of the electron asm* = sme, the effective Bohr radius is
a* = (eJ/s)aB E 243 Å, where aB = �h

2/mee
2. For the range of carrier

density from n1 = 0.16 Å�1 to n1 = 0.04 Å�1 in this study,
the corresponding inter-particle distances are rs = 0.01{ 1 and
rs = 0.05 { 1, respectively. Using the local-field correction
within a sum-rule approach, Calmels and Gold have shown
that in the regime rs{ 1 the exchange energy per particle of a
quasi-1D nanowire has an asymptotic form:32

EX n1ð Þ � �
a�

Ro

2:4082þ
18

5p
crs ln

crs

2
�
1

2

� �� �

; (5)

where c = 4gva*/pRo and gv is the valley degeneracy. Conse-
quently, the energy curvature at rs = ros is

d2EX

drs2

�

�

�

�

rs¼ros

� �
18ca�

5pRo

1

ros
; for ros � 1: (6)

Making an approximation that the mechanical strain alters
the inter-particle distance as ros 7!ros ð1þ eÞ, for small strain
d2EX/dr

o
s
2
B � (18ca*/5pRor

o
s)(1 � e + . . .). That is, in the limit

rs{ 1 (as in our present study), the exchange energy curvature d2EX/
drs

2depends linearlyon themechanical strain. Similarly, thevariation
of the correlation energy curvature with the strain is anticipated.

In summary, we have explored the notion of switching the
sign of quantum capacitance via mechanical strain, using a
coaxially gated carbon nanotube as a model material system.
From full electronic structure calculations within density func-
tional tight-binding theory, it is clear that the interplay between
doping and exchange-correlation energy functional plays a
crucial role in determining both the sign and magnitude of
quantum capacitance. Fig. 3 clearly demonstrates that the
quantum capacitance can be mechanically controlled from very
large positive to very large negative values. It is then natural to
ask if this nanotube property can be utilized in the nanosensing
technology. A possible experiment to detect such a large
negative/positive quantum capacitance is to modify the inge-
nious apparatus, as reported in ref. 33. A pair of graphene could
be used as two quantum wells separated by some small
distance. Both graphene sheets could be deposited on a piezo-
electric material to simulate strains, while small gates can be
intentionally attached to add/remove electrons to the system.
Strong signals due to the ratio between differential change in
gate electric field and the penetrating fields ought to be observed.

As discussed in ref. 33, the ratio correlates directly to quantum
capacitance. Lastly, it should be emphasized that the concept of
quantum capacitance is not limited only to carbon nanotubes.
Exploring the mechanical effects in other material systems, such
as BN monolayers and LaAlO3/SrTiO3 films, could very well open
new avenues in improving lower-power devices and in energy
storage for nanoelectronics. Moreover, the switching of sign
promises a novel ‘‘quantum sensing’’ mechanism.
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