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Abstract

Background: The extracellular matrix (ECM) provides a supportive microenvironment
for cells, which is suitable as a tissue engineering scaffold. Mechanical stimulus plays
a significant role in the fate of osteoblast, suggesting that it regulates ECM
formation. Therefore, we investigated the influence of mechanical stimulus on ECM
formation and bioactivity.

Methods: Mouse osteoblastic MC3T3-E1 cells were cultured in cell culture dishes
and stimulated with mechanical tensile strain. After removing the cells, the ECMs
coated on dishes were prepared. The ECM protein and calcium were assayed and
MC3T3-E1 cells were re-seeded on the ECM-coated dishes to assess osteoinductive
potential of the ECM.

Results: The cyclic tensile strain increased collagen, bone morphogenetic protein 2
(BMP-2), BMP-4, and calcium levels in the ECM. Compared with the ECM produced
by unstrained osteoblasts, those of mechanically stimulated osteoblasts promoted
alkaline phosphatase activity, elevated BMP-2 and osteopontin levels and mRNA
levels of runt-related transcriptional factor 2 (Runx2) and osteocalcin (OCN), and
increased secreted calcium of the re-seeded MC3T3-E1 cells.

Conclusion: Mechanical strain promoted ECM production of osteoblasts in vitro,
increased BMP-2/4 levels, and improved osteoinductive potential of the ECM. This
study provided a novel method to enhance bioactivity of bone ECM in vitro via
mechanical strain to osteoblasts.
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Introduction
The extracellular matrix (ECM) is a non-cellular component of tissues and contains

various protein fibers interwoven in a hydrated gel composed of a network of glycosa-

minoglycan chains that are secreted by resident cells to provide a mechanical support

for cell growth, adhesion, proliferation, differentiation, morphology, and gene expres-

sion [1-3]. The ECM is a potent regulator of cell function and differentiation, and pro-

vides a supportive microenvironment for mammalian cells in vitro; therefore, it is a

very suitable scaffold material for tissue engineering [4,5]. The ECM produced by

osteoblasts is the major component of mature bone and mechanical strain plays an
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important role in growth and development of osteoblasts and bone tissue [6,7]; hence,

the investigation of mechanical stimuli affecting ECM formation, especially produced

in vitro, presents a particularly promising line of research.

Osteoblasts are important mechanical receptors that can transform mechanical stim-

uli into biochemical signals for bone matrix formation and promote mineralization [8].

Mechanical strain promotes matrix mineralization of osteoblasts [8,9] and increases the

expression of ECM-related proteins of osteoblasts, including osteonectin, osteopontin

(OPN), osteocalcin (OCN), bone morphogenetic protein 2 (BMP-2), and type I collagen

[10]. In addition, mechanical strain of osteoblasts promotes matrix-bound vascular

endothelial growth factor (mVEGF) synthesis, which has angiogenic properties in vivo

[11,12]. In these studies, most of ECM-related proteins were intracellular. Actually, the

influence of mechanical stimuli on ECM formation in vitro is not fully understood and

its in vitro effects on levels of collagen and BMPs in the ECM remain unexplored.

In recent years, a considerable effort has been put into in vitro research to investigate

the bioactivity of osteoblastic ECM formation. In general, osteoblasts are cultured on

cell culture plates or dishes and removed using chemical or physical methods and the

ECM attached to the dishes is prepared. The bone-specific ECM produced by osteo-

genic cells (MC3T3-E1) promoted the differentiation of embryonic stem cells [13]. Our

study demonstrated that the ECM of primary osteoblasts in vitro can promote differen-

tiation of preosteoblasts [14]. So these studies are likely to contribute to ECM-modified

biomaterial scaffold for bone cell/tissue engineering. However, the influence of mechan-

ical strain on bioactivity of osteoblast ECM remains unexplored.

In the present study, we stimulated mouse osteoblastic MC3T3-E1 cells cultured

in dishes with mechanical tensile strain, prepared the ECM-coated dishes, then

assayed the ECM proteins and calcium and re-seeded MC3T3-E1 cells on ECM-

coated dishes to assess the osteoinductive potential of the ECM. Also, we investigated

the influence of mechanical strain on ECM formation and bioactivity in vitro, which

provided a novel method to enhance ECM bioactivity via application of mechanical

strain to osteoblasts.
Materials and methods
Preparation of osteoblast-derived ECM-coated cell culture dishes

MC3T3-E1 cells, a mouse monoclonal pre-osteoblastic cell line that has been shown to

differentiate into osteoblasts and osteocytes [15,16], were maintained on mechanical

loading dishes that were reformed from cell culture dishes (Nalge Nunc International,

Roskilde, Denmark) in alpha minimal essential medium (α-MEM; Invitrogen, Carlsbad,

CA, USA) supplemented with 10% fetal calf serum and 1% penicillin-streptomycin.

At confluence, the MC3T3-E1 cells were cultured in α-MEM medium containing 10

mM β-glycerophosphate and 250 μM ascorbic acid 2-phosphate, and subjected to

mechanical tensile strain of 2500 microstrain (με) at 0.5 Hz for 1 h/day at indicated

times. The mechanical strain was generated by a specially designed four-point bending

device, as previously described [17-19]. The device was driven by a stepping motor

(controlled by a single chip microcomputer) and has been shown to produce

homogenous cell culture substrate that is composed predominantly of uniaxial cells

with the same deformations [20,21].
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The cells were removed according to an established method with some modifications

[22]. Briefly, after washing with PBS, the cells were removed by incubation for 3 min

with PBS containing 0.5% Triton X-100 and 10 mM NH4OH at room temperature then

washed three times with PBS. The ECMs attached to the dishes were treated with

100 units/ml DNase (Sigma-Aldrich, St. Louis, MO, USA) for 1 h and the resulting

ECMs were rinsed with PBS, observed by inverted microscopy ( Figure 1), then allowed

to dry and stored at 4°C for further use. Unstrained cultures (control) were maintained

under identical culture conditions without mechanical loading.
Assay of ECM formation

A. Measure hydroxyproline content. The ECMs coating the dishes was hydrolyzed and

the hydroxyproline content was detected with the Chloramine-T Hydroxyproline Assay

Kit (Nanjing Jiancheng Biotechnology Co., Ltd., Nanjing, China) according to the man-

ufacturer’s protocol.

B. Calcium deposition measurement. After the ECM-coated dishes were treated over-

night with 0.1 M HCl, the ECM-deposited calcium content of the dishes was measured

with the Calcium Assay Kit (Nanjing Jiancheng Biotechnology Co., Inc.) using the me-

thyl thymol blue complexon method according to the manufacturer’s instructions.

C. Western blot analysis of BMP-2 and BMP-4 in ECMs. The ECMs were scraped off

the dishes with a cell scraper and lysed by brief sonication on ice in Protein Extraction

Reagent (Novagen; Merck KGaA, Darmstadt, Germany). The protein concentration of

the lysates was measured according to bicinchoninic acid assay method. Briefly, equal

amounts of protein were separated by sodium dodecyl sulfate polyacrylamide gel elec-

trophoresis and electrotransferred onto polyvinylidene difluoride membranes (Milli-

pore, Bedford, MA, USA). After blocking with 5% skim milk, the membranes were

incubated overnight with the primary antibody at 4°C. After incubation with horserad-

ish peroxidase-conjugated secondary antibody, the immunoreactive bands on the mem-

branes were visualized using an enhanced chemiluminescence detection kit (Santa Cruz

Biotechnology, Santa Cruz, CA, USA). The optical densities of the protein bands were

determined with Gel Doc 2000 (Bio-Rad, Hercules, CA, USA). The expression of

glyceraldehyde3-phosphatedehydrogenase (GAPDH) of MC3T3-E1 cells was used as a
Figure 1 Preparation of osteoblast ECM which was coated on dishes. Osteoblasts were observed via
inverted microscopy (A). After treatment with PBS containing 0.5% Triton X-100 and 0.10 M NH4OH, the
cells were removed and the ECM attached to dishes was prepared (B).
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loading control substitute for total ECM proteins and data were normalized against

those of corresponding GAPDH.
Osteoblastic differentiation of re-seeded MC3T3-E1 cells on ECM-coated dishes

Cells were divided into three groups:

1) The cells that were seeded on dishes without ECM were indicated as the “no

ECM” group.

2) The cells that were re-seeded on dishes coated with ECM produced by unstrained

MC3T3-E1 cells were indicated as the “unstrain” group.

3) The cells that were re-seeded on dishes coated with ECM produced by

mechanically strained MC3T3-E1 cells were indicated as the“strain” group.

A. Alkaline phosphatase (ALP) activity assay and calcium measurement. After trypsini-

zation and centrifugation, the cells were lysed by brief sonication on ice in a lysis buffer

(10 mM HEPES, 250 mM sucrose, 5 mM Tris–HCl, and 0.1% TritonX-100 at pH 7.5).

The ALP activity of the cell lysates was assayed with an ALP activity assay kit (Nanjing

Jiancheng Biotechnology Co. Ltd. Nanjing China) at 25°C using the p-nitrophenyl phos-

phate method according to manufacturer’s protocol. ALP activity of each sample was nor-

malized to the protein concentration. After the cells on the ECM-coated dishes were

removed, calcium deposition on the dishes was measured using a calcium assay kit, the

calcium deposition content of the ECM on which no cells were re-seeded was subtracted,

and the remnant calcium content was secreted by the cells.

B. Western blot analysis of intracellular BMP-2 and OPN. Cell lysates were harvested

with radio immunoprecipitation lysis buffer (pH 7.4, 50 mM Tris, 150 mM NaCl, 1%

NP-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, and protease inhibitors

in the buffer: 2 mM sodium pyrophosphate, 25 mM β-glycerophosphate, 1 mM ethyle-

nediaminetetraacetic acid, 1 mM Na3VO4, 0.5 μg/ml leupeptin, and 1 mM phenyl-

methylsulfonyl fluoride). The protein content of the cell lysates was quantified and

then western blotting was performed according to the method mentioned above.

C. Real time polymerase chain reaction (PCR) analysis. Total RNA (1 μg) was extracted

with Trizol reagent (Invitrogen) for cDNA synthesis using the Rever TraPlus Kit (Toyobo

Co., Ltd., Osaka, Japan). Real-time PCR was performed to detect mRNA levels of runt-

related transcriptional factor 2 (Runx2), OCN, and GAPDH (internal control reference) using

SYBR Green I PCR Mix (Invitrogen) on an Real-Time PCR System (7900; Applied Biosys-

tems, Foster City, CA, USA) according to the manufacturer’s instructions. Primer sequences

are listed in Table 1. The amplification reaction included a denaturation step at 94°C for 3

min followed by 40 cycles of 94°C for 15 s, and annealing and extension at each annealing

temperature for 30 s. Using the relative quantitative method (2-ΔΔCt), the expression levels of

the PCR products of interest were calculated relative to those in the control group.
Statistical analysis

The data are presented as means ± standard deviation and analyzed using SPSS v10.0

software (SPSS, Inc., Chicago, IL, USA) using one-way analysis of variance. A P-value <

0.05 was considered statistically significant.



Table 1 Primers used for real-time PCR analysis

Gene Primer sequence (5’-3’) length (bps)

Runx2 F:AGTAGCCAGGTTCAACGAT 90

R:GGAGGATTTGTGAAGACTGTT

OCN F:AGTCTGACAAAGCCTTCA 134

R:AAGCAGGGTTAAGCTCACA

GAPDH F: ACCCATCACCATCTTCCAGGAG 159

R: GAAGGGGCGGAGATGATGAC
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Results
Mechanical strain elevates hydroxyproline and calcium content and increases BMP-2 and

BMP-4 protein levels in osteoblast ECM

After subjecting MC3T3-E1 cells to a mechanical tensile strain of 2500 με at 0.5 Hz for

1 h/day, the ECM hydroxyproline and calcium content, which was produced by the

strained cells and attached to dishes, were both increased compared with those of ECM

produced by non-stimulated cells (control group). Along with the duration of culturing,

the hydroxyproline and calcium content were both significantly increased for 9 days

(Figure 2A). Resulting hydroxyproline measurements were finally converted to collagen

contents following a 1:10 (hydroxyproline:collagen) ratio [23]. Therefore, the change of

hydroxyproline equated to the change of collagen content.

After exposing the cells to mechanical strain for 7 days, western blot analysis indi-

cated that the BMP-2 and BMP-4 levels in the ECM were both greater than that in the

control group (Figure 2B), suggesting that mechanical strain elevated the levels of colla-

gen, calcium, and BMP-2/4 in osteoblast ECMs.
The ECM produced by mechanically stimulated MC3T3-E1 cells enhanced ALP activity

and increased BMP-2 and OPN protein levels, calcium deposition, and mRNA levels of

Runx2 and OCN of re-seeded cells

After MC3T3-E1 cells were re-seeded on the dishes coated with the ECM, produced by

the cells which were stimulated by mechanical strain for 7 days, ALP activity and cal-

cium deposition of the MC3T3-E1 cells were both higher than the cells re-seeded on

the ECM produced by the unstrained cells (unstrain group) (Figure 3). The western

blot analysis of BMP-2 and OPN demonstrated that the cell protein levels were both

higher than in the unstrain group after the re-seeded cells were cultured for 5 and 7

days (Figure 4A-B). After the re-seeded cells were cultured for 10 days, the levels of the

2 proteins were not enhanced compared with the unstrain groups (Figure 4C).

Additionally, the mRNA level of Runx2 was elevated after 5 and 7 days of culture,

and OCN mRNA level was increased after 7 and 10 days of culture (Figure 5). Our

results indicated that the ECM, produced by the mechanically stimulated cells,

enhanced ALP activity, calcium deposition, BMP-2 and OPN protein levels, and mRNA

levels of Runx2 and OCN.
Discussion
Mechanical stimulus plays a significant role in growth and differentiation of osteoblasts.

Previous studies indicated that mechanical strain increased matrix mineralization of



Figure 2 Calcium, hydroxyproline, and BMPs levels in the ECM coated on dishes. The mechanical
strain increased the contents of calcium and hydroxyproline of the ECM at the indicated times (A), the
mechanical stimulus for 7 days enhanced the relative protein expression levels of BMP-2 and BMP-4 (B).
*P < 0.05, ** P < 0.01, between indicated groups. Quantitative results are the means ± standard error of
6 experiments.
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osteoblasts derived from mesenchymal stem cells [8,9] and enhanced expression levels

of bone ECM-related proteins/genes [10,24].

Our previous study demonstrated that mechanical tensile strain at a frequency of 0.5

Hz and intensities of 2000–3000 με for 1 h/day promoted osteoblast proliferation and

differentiation (increased bone ECM proteins/genes such as collagen I, OCN, BMPs,

etc.) [19,25,26] (some data not published), suggesting that mechanical tensile strain

promoted osteoblast ECM formation. Therefore, in this study, we selected 0.5 Hz at

2500 με mechanical strain for 1 h/day.

However, to the best of our knowledge, the effect of mechanical strain on osteoblast

ECM formation and its bioactivity or osteoinductive potential regarding ECM as a

whole and independently has not been reported.

The ECM is secreted by resident tissue cells and is predominantly composed of struc-

tural proteins (i.e., collagen, fibronectin, laminin, etc.), glycosaminoglycans, and proteo-

glycans, as well as growth factors, chemokines, and cytokines [1,27]. ECM serves as a

reservoir of growth factors and cytokines, such as BMP, fibroblast growth factor, and

mVEGF, among others, which bind to either polysaccharide or protein constituents of

the ECM [11,28,29] to regulate cell proliferation and differentiation.

In this study, we found that the ECM produced by mechanically stimulated MC3T3-

E1 cells and attached on dishes contained more collagen, calcium, and BMP-2/4 than

those produced by unstrained cells.

Collagen is the main component of ECMs and extracellular-deposited calcium is indi-

cative of mineralized matrix production of osteoblasts. BMPs are members of the trans-

forming growth factor superfamily and potent osteoblastic differentiation factors that



Figure 3 ALP activity and calcium of MC3T3-E1 cells re-seeded on the different ECMs. The ECM
produced by the cells stimulated with mechanical strain (“strain” group) enhanced ALP activity and calcium
content at the indicated times. * P < 0.05, ** P < 0.01, between indicated groups. Quantitative results are
the means ± standard error of 6 experiments.
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play pivotal regulatory roles in bone formation [30,31]. They are purified from bone

matrix and can induce transformation of mesenchymal stem cells into osteoblasts and

chondrocytes, such as BMP-2 which induces ALP and OCN expression [32], and is

capable of producing bone [33-35]. The BMP-4 amino sequence shares 83% homology

with that of BMP-2 and also has the ability to promote osteogenesis [36,37]. The results

of our study confirm the possibility that mechanical strain can promote ECM forma-

tion and increase BMPs (cytokines with osteoinductive potential) in ECMs produced by

osteoblasts in vitro.

ECM deposited in vitro can induce osteoblastic differentiation of human mesen-

chymal stem cells and murine embryonic stem cells [13,38]. In our study, ECM-

coated cell culture dishes were prepared. Compared with the ECM of unstrained
Figure 4 BMP-2 and osteopontin protein levels of MC3T3-E1 cells re-seeded on different ECMs. The
ECM produced by the mechanically strained cells enhanced the relative protein expression levels of BMP-2
and OPN in cells cultured for 5 and 7 days (A/B). After 10 days of culture, the ECM had virtually no effect
on the relative protein expression levels of BMP-2 and OPN (C). *P < 0.05, ** P < 0.01, between indicated
groups. Quantitative results are the means ± standard error of 5 experiments.



Figure 5 Runx2 and OCN mRNA levels of MC3T3-E1 cells re-seeded on ECMs. The ECM produced by
the mechanically strained cells increased mRNA level of Runx2 after 5, 7, and 10 days of culture and
increased OCN mRNA level after 7 and 10 days of culture. *P < 0.05, ** P < 0.01, between the indicated
groups. Quantitative results are the means ± standard error of 7 experiments.
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osteoblastic cells, the ECM of mechanically strained cells promoted ALP activity,

increased levels of BMP-2 and OPN and mRNA levels of Runx2 and OCN, and

increased extracellular-deposited calcium concentrations in re-seeded osteoblastic

cells.

ALP is widely used as a marker of osteogenic differentiation by increasing enzymatic

activity to an osteoblastic phenotype [39,40]. BMP-2 and calcium are markers of osteo-

blastic differentiation. OPN, a secreted ECM protein found in bone matrix, is also a

maker of osteogenesis [41]. ALP and OPN are markers of early differentiation [42],

while OCN is a late marker corresponding with matrix deposition and mineralization

[43]. Runx2 is the most critical transcription factor that regulates osteoblast differenti-

ation and bone formation in vitro and in vivo [44]. During osteoblastic differentiation,

BMP-2 regulates OCN expression through Runx2-dependent ATF6 expression, which

directly regulates OCN transcription [45]. Runx2 directs osteoblastic differentiation of

pluripotent mesenchymal cells and triggers the expression of major bone matrix pro-

tein genes [46]. Therefore, these results indicate that mechanical strain improves

osteoinductive potential of the osteoblast ECM.

Additionally, in this study, after culturing the re-seeded cells for 10 days, the relative

protein levels of BMP-2 and OPN were not enhanced compared with the unstrained

groups. The re-seeded cells produced enough ECM to promote osteoblastic differenti-

ation themselves, so the results are acceptable.
Conclusions
The 2500 με mechanical strain promoted formation of the osteoblast ECM, increased

BMPs in the ECM, and enhanced osteoinductive potential of the ECM. This study pro-

vides a novel method to enhance bioactivity of ECM or ECM biomaterial via applica-

tion of mechanical strain to osteoblasts. It is likely to contribute to ECM-modified

biomaterial scaffold for tissue engineering in the future.
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