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ABSTRACT. The geodesic flow on a homogeneous space with an invariant metric can
be naturally considered within the framework of Smale's mechanical systems with
symmetry. In this way we have at our disposal the whole method of Smale for studying
such systems. We prove that certain sets 2', 2, Im, o and Re which play an important role
in the global behavior of those systems, have a particularly simple structure in our case,
and we also find some geometrical implications about the geodesies. The results obtained
are especially powerful for the case of Lie groups, as in the rigid body problem.

1. Introduction. Since Smale developed his theory of mechanical systems with
symmetry to study the plane «-body problem from a global viewpoint [12], [13],
a few applications have been considered to other mechanical systems admitting
some symmetry. We study here from the global analysis viewpoint geodesies on
homogeneous spaces with a Riemannian metric invariant under the group action,
as one more application of Smale's theory.

Roughly speaking, the paper is carried out as follows. The sets 2', 2, Im, o and
Re associated with any mechanical system with symmetry furnish an important
part of its global structure (§2). We show that those sets have particularly simple
structure for our problem under consideration, and then we find some geometri-
cal implications about the corresponding geodesies.

The rigid body problem is the most classical example where our general results
apply, and Iacob [6] has already studied some aspects of it by using Smale's
theory (see end of §3).

§2 is devoted to notation and a quick review of Smale's theory. In §3 we study
properties of structure and invariance under the group action for the five above-
mentioned sets. By exploiting the transitivity we find that in some precise sense
they can be generated from much simpler sets. In particular, that simpler set Re"
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478 E. A. LACOMBA

corresponding to the relative equilibria Re can be constructed in purely algebraic
terms.

In §4 we study conditions for the sets 2', Im, o to be algebraic or semialge-
braic. The main result shows that if manifolds and maps are algebraic, then those
sets are semialgebraic. These results might be generalized for less restrictive
conditions on the manifolds and maps by the transitivity of the group action.

§5 considers geometrical properties for geodesies on our transitive mechanical
systems. The main result states that any self-intersecting geodesic must be closed
(generalizing a result by Kostant), while the second one assures, for M compact,
the existence of some unit speed geodesic, all of whose velocity vectors are
contained in the relative equilibria Re.

2. Preliminaries. Our main references for basic results and notation will be
Smale [12], [13] and Robbin [11]. All maps and manifolds will be assumed to be
C°° differentiable.

If M is a manifold, tm : TM -* M will denote its tangent bundle. For a map
between manifolds /: M -» N, Df: TM -* 7W will denote the derivative of /.
Also, o(f), 2'(/) and Im(/) = f(M) will denote the sets of critical points,
critical values, and image set off, respectively.

The bifurcation set off, 2(/), is the set of points y G Im(/) over which/fails
to be locally trivial, i.e., y G 2(/) for y G Im(/) if there exist an open set U
containing y and a map g:f~x(U) -»/"'(y) such that h = (f,g):f~x(U) -» U
x/"'(y) is a diffeomorphism. Clearly, 2'(/) C 2(/) C Im(/).

We remark here that our definition of bifurcation set is slightly different from
Smale's. He takes y G N whenever we considered y G Im(/) in the above
definition. The difference is not essential, and we win some generality in the
statement of our results.

If G is a Lie group, we denote its Lie algebra by the corresponding script letter
<s?. Denote by exp: <B -* G the exponential map, and for g G G, Lg: G -» G,
Rg: G -» G will be the left and right translations by g. Let ad: G -* GL(0) be
the adjoint representation of G on çf, inducing a representation ad*: G
-* GL(g*) on the vector space dual of the Lie algebra by

(2.1) ad(g),0 = 9 o ad(g"')   for g G G, 9 G <3*.

If G acts on the manifold M by the left, we have in a natural way an induced
left action of G on TM, which is denoted by g^Xa, for g G G, Xa G TM.
Corresponding to the same action, we will consider for each Y G <¡f the induced
Killing vector field Y+ on M.

A mechanical system with symmetry is a quadruple (M, K, V, G) where M is a
manifold (configuration space, the tangent bundle TM being the phase space). M
possesses a Riemann metric < , }K and K is the square of the norm of this metric
(kinetic energy). V is a map on M (potential energy). Finally, G is a Lie group
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MECHANICAL SYSTEMS WITH SYMMETRY 479

acting on M and leaving K and V invariant. The total energy of the system
E: TM -* R is defined by

(2.2) E = K + V » rM

determining in a standard way a vector field XE on TM (the Lagrange vector
field), which is a second order equation on M describing the dynamics of the
system (Abraham [1, pp. 119-122]).

The momentum of the system is a map J: TM -» <£?* defined by

(2.3) /fX) • y = <Xa, Y*(a)yK   for Ai G Ç A/, a G M, Y G #
Since E and 7 are first integrals of XE, that is, they are constant along integral

curves of XE [12, §4] then the energy-momentum map, defined as

(2.4) I = (E,J):TM-> Rxg*
will also be a first integral.

The function satisfies the following equivariance property:

(2.5) I(g,Xa) = (E(X.Ud(g)*J(X.))
for g G G, Xa G TM.

Given any (c,p) G Z? X £?*, the set Ie<p = I~x(c,p) is invariant under the flow
of XE, since I is a first integral. In fact, for "almost all" values (c,p) E R X <s?*,
the sets Icp are invariant manifolds (possibly empty) for XE [12, p. 318].

Because of the above, the topological structure of I permits to understand the
global topological picture of a mechanical system with symmetry, as described
by Smale [12]. The determination of the sets of bifurcation 2(Z) and critical
values 2'(Z) furnishes a very important part of this topological structure, since the
first one contains all the points of Im(Z) in whose neighborhood the topology of
the invariant "submanifolds" is likely to change, while the second one contains
all the points where the Icp might not really be submanifolds of TM.

Recall that 2'(Z) C 2(1) C Im(Z). They are all equal if 2 dim M < dim G
+ 1, and 2'(Z) = 2(Z) holds for M compact. Because of that, a study of the
properties of 2(Z), 2'(Z) must also include a study of the set Im(Z).

From now on the symbols o, 2', 2 and Im without any further notice will mean
the corresponding sets for I: TM -» R X 0*.

The relative equilibria Re for our mechanical system is the set of points
Xa E TM such that if y(t) is the integral curve of XE through Xa, then we have
y(/) = (exp tY\Xa, for some Y E ¿f.

This is the relative equilibria set in the sense of Robbin, while Smale's is the
projection rM(Re).

The set Re contains exactly the orbits of XE which can be simply characterized
by the action of one-parameter subgroups of G. In addition, it is of interest
towards the determination of 2'(Z) because of the following result (Robbin [11,
Theorem 7.1]).
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(2.6) Let A be the set of a G M such that the isotropy subgroup Ga
= {gGG\g-a~ a} has dimension greater than zero. Then

(a) in general Re C a;
(b) Re = o, for A = 0.
If G is a Lie group and H C G a closed subgroup, then G/H is a homogeneous

space with the standard manifold structure. Let II: G -* G/H denote the
canonical projection, with its derivative at the identity DTI: <3 ̂ * TB(G/H),
where o = eH.

A transitive mechanical system (with symmetry) is a mechanical system with
symmetry, where M = G/H is a homogeneous space of the symmetry group G
with the usual transitive action G X G/H -» G/H, and with potential V = 0. We
will denote it by the triple S = (G/H,K,G) and will say that the associated
Riemann metric is G-invariant, or simply invariant. The total energy here is
E = K. In this work we will only consider transitive mechanical systems.

Geometrically speaking, in mechanical systems where the potential function is
identically zero the vector field XE will describe exactly the geodesic flow in phase
space. Hence, the study of transitive mechanical systems will be just the study of
geodesies on homogeneous spaces with invariant metrics now using Smale's
methods, and we will be especially concerned with structural and related
geometric properties of the sets 2', 2, Im, o and Re, as already mentioned.

The integral curves y(t) of the Lagrange vector field XE on TM will be called
derivatives of geodesies, while their projections will be geodesies on M = G/H.

For transitive mechanical systems the condition A = 0 in the result (2.6)(b)
should be replaced by the equivalent one, dim H = 0.

The following handy property from linear algebra is useful for actual compu-
tation of J in examples and for checking the algebraic properties in Corollaries
4.3 and 4.4.

(2.7) Given a fixed basis {Yx,..., Y„} of <3, there is an isomorphism <3* -* R"
defined by sending a G <£?* into (a(Yx),... ,a(Y„)) G R". This induces a repre-
sentation of the momentum as a map J: TM -* R", by

J(Xa) = (J(Xa)-Yx,...,J(Xa)-Yn).

3. Structure and invariance properties of the sets 2', 2, Im, o and Re. Consider
a transitive mechanical system S — (M, K, G ). In this and the following section,
let A(-) denote either Im(-), 20 or 2'(") and T denote either o(I) or Re.

Observe that the group G acts on R x (¡f* by ad(g) • (c,p) = (c,ad(g)*p), for
g G G and (c,p) G R x g*.

With this notation, equation (2.5) can be written as

(3.1) ad(g) ° / = / ° g*   for any g G G.

We say that /: TM -* R x g* is equivariant under the actions of G on TM
and on R X g*.
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MECHANICAL SYSTEMS WITH SYMMETRY 481

Theorem 3.1. The sets A(Z) are invariant under the action of G on RX <3* as
defined above.

Proof. The result for A = Im is clear from equation (3.1). Let A = 2' now.
Taking derivatives from both sides of (3.1) with the help of the chain rule, and
recalling that the isomorphisms ad(g) and g* induce isomorphisms at the
derivatives level, we see that Xa E o(I) if and only if g+Xa G o(I) for any
g G G. Again by (3.1), this shows that (c,p) G 2'(Z) implies ad(g) • (c,p)
G 2'(Z). So, 2' is G-invariant.

In the case A = 2, we will show that Im(Z) - 2(Z) is G-invariant
Let (c,p) E Im -2, that is, there exist an open set U C R X 0* containing (c,

p), and a differentiable map «: I~X(U) -» I~x(c,p) such that (I,h): I~X(U)
-> l/x/"1 (c,p) is a diffeomorphism.

By using the equivariance equation (3.1), we see that the new map (I,g¿x ° h
o g» ) for g G G is a diffeomorphism, since it can be written as the composition
of three diffeomorphisms:

(I,gix ° A ° g*) = (ad (gV-'.g,-') o (/,„) o g,.

This shows that ad(g~') • (c,p) G Im -2, as required.   Q.E.D.
Recall now that o = eH is the reference point in the homogeneous space

M = G/H. The superscript o in o"(I), Re0 will denote the intersection of the
corresponding sets without superscript with the tangent space T, M.

Also, Im0(Z) will denote the image of T0 M under I, and 2¿(Z), 20(Z) will mean
the intersection of Im0(Z) with the corresponding sets without subscript. The
symbols o°, 1'0, 20 and Im0 without any further notice will be understood to refer
to the map I.

Moreover, A<,(-) and T" will have the obvious meaning, according to the
convention at the beginning of this section.

As a consequence of Theorem 3.1 and the transitivity of the group action for
S, we get the following result.

Corollary 3.2. In S, we have

A(Z) = {(c,ad(g),p) G R X <3* | (c,p) E t^(I),g G G},

r = {g.X0\gEG,X0ET°}.

Proof. There is only one point to prove and it is that Re is invariant under the
action of G on TM.

Given Xa G Re, g G G, we are required to prove g„ Xa G Re. Since Xa G Re,
the integral curve to XE through Xa is given by y(t) = (exp tY\Xa (Y E<S).

Hence g«,y(0 = (g exp tYg-x)+(g+Xa), which shows g,Xa G Re, since g,
takes integral curves into integral curves, and g exp tYg~x is the one-parameter
subgroup associated to ad(g)Y.   Q.E.D.
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Let Tx M be the unit tangent bundle of M in the metric < , >#, and denote by
/* the restriction of the momentum function J to TXM. We can consider the
corresponding sets 2(7*), 2'(/*) and Im(7*). As before, we define sets Im0(/*)
as the image of the Â'-unit sphere S£ of T0M under the map J, o°(J*) as the set
of critical points of J* lying in S£, and 20(y*), ~S.'0(J*) the intersection with
Im0(J*) of the corresponding sets without subscript.

The importance of this function J* lies in that it permits the reduction of some
questions about the structure of 2'(/), 2(7) or Im(/) to the corresponding
questions about 2'(/*), 2(/*) or Im(7*) respectively, as shown by the following
result and Theorem 4.1.

Theorem 33. For a transitive mechanical system:
(a) The set o" is a cone in T0M, generated by o"(J*).
(b) The set Re" is also a cone in T0 M.
(c)(i),pGA(J*)**-pGA(J*);

(ii) A(7) = {(X2,Xp) G Rxg*\p G A(J*),X G R} U 0.

The last part simply says that the sets A(7*) are symmetric with respect to the
origin in <3*, and the A(7) are generated by considering the parabolas with axis
RxO C Rxg*, vertex at the origin and passing through the corresponding
1 x A(7*).

For this theorem we will need the following lemma, which is obtained in the
same spirit as Proposition 6.1 in [12].

Lemma 3.4. Let Xa G TM such that K(Xa) = c ¥= 0. Then Xa is a critical point
for I if and only if Xa is a critical point for J: K~x(c) -* <=?*.

Proof of the theorem, (a) We first prove that if Xa G o(I ) and X real different
from zero, then XXa G o(I).

Notice that any real X ^ 0 induces a difleomorphism of TM by scalar
multiplication on fibers and denoted by the same letter

(3.2) X: TM -► TM,      X(Xa) = X ■ Xa,

with derivative A, : T(TM) -* T(TM).
Now, DI(Xa) = (DK(Xtt),DJ(X„)) and we can easily check that

DI(XXa) = X(XDK(Xtt),DJ(Xa)) » Kx    for X + 0.

This shows from linear algebra that if DI(Xa) is not onto, then DI(XXa) is not
onto either, as required.

Finally, for a given Xa G TM, Xa G o(I) if and only if Xa G o(J*). This
follows from the lemma for c = 1.

(b) We prove that if Xa G Re and X real different from zero, then XXa G Re.
From the definition we see that X„ G Re means that y(/) = (exp tY\Xa for
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some Y E <B is the integral curve of XE through X„. Then Xy(t) = (exp tY)*XXa
shows that XXa E Re, as required,

(c) The result for A = Im is clear since

(3.3) I(XXa) = (X2,XJ*(Xa))   for X. G TXM and X real.

The case A = 2' follows from part (a) and formula (3.3) again, since the set of
critical values of any map is the image of its set of critical points.

The case A = 2 requires a longer reasoning. To get both parts (i) and (ii), it
will be enough to show thatp0 G 2(7*) if and only if (X2,Xp„) G 2(Z) for any
A=¿ 0.

Assume first p0 G 2(7*), and X ¥= 0 given. This means that there exist an open
neighborhood U C 0* of p0 and a map h: J*~X(U) -* J*~x(p0) such that
(J*,h): J*~X(U) -+ U X J*-X(p0) is a diffeomorphism.

Let a, ß be reals such that 0 < a < 1 < ß, then the set

(3.4) Ux = {(X2t2,Xtp) ERX<B*\pEU,tE(a,ß)}

is an open neighborhood of (X2,Xp0), so that

t-l(Ux) = {XtXa | Xa G J*~X(U) C TxM,t E (a,ß)}

is also open. In fact, they are simply related to the corresponding sets for 7* by
the diffeomorphisms u^: (a,ß)x U-* Ux defined by xp(t,p) = (X2t2,Xtp), and
tp: (a,ß) X J*~X(U) -► I~X(UX) defined by <b(t,Xa) = XtXa.

We claim that h0: I~X(UX) -* I-x(X2,Xp0), defined by h0(XtXa) = «(A;) for
/ G (a,ß) and A, G J*~X(U), satisfies that (I,h0): I~X(UX) -» Ux X rx(X2,Xp0)
is a diffeomorphism, which shows (X2,Xp0) E 2(Z). This can be seen by checking
that the last map can be split as follows:

(/,*,) = (* x id») » (id„,ß x (7*,«)) o <,-'

where idft and id0/3 are the identity maps in7*_1(p0) and (a, ß) respectively, and
the right-hand side is a composition of diffeomorphisms.

For the converse, assume (X2,Xp0) G 2(Z), where X # 0, which means that
there exist an open neighborhood Ux C Rx<g* of (X2,Xp0) and a map A:
I~X(UX) -* rx(X2,Xp0) such that (I,h): I~X(UX) -» i/x x rx(X2,Xp0) is a diffeo-
morphism. We may say without loss of generality that Z/^ is of the form (3.4)
above, where U C 0* open and contains p0.

We will first reduce the proof to the case X = 1. Let Ux be the set defined by
equation (3.4) for X = 1. Then 0: Ux -* Ux, defined by 0(c,p) = (X2c,Xp), and
X: I~X(UX) -* I~X(UX), defined by the restriction of the map in (3.2), are
diffeomorphisms.

The new map (I,X~X ° « o X): I~X(UX) ->i/,x Z_,(l,p0) is a diffeomorphism
since it can be split as the composition of three diffeomorphisms:
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(l,X~l » « o X) = (X"1 X 9) ° (/,«) o X.

This shows that (l,p0) G 2(/).
Finally, (1 x U) x 7,p< is a submanifold of t/, x 7,^ and the restriction of

(7.A-1 » « o X) to 7-'(l X (7) = J*~X(U) defines a diffeomorphism (7*,X"' o «
oA):y*-'(^)-*t/x/u = (/x;*-|(Ä).    This    shows    that   p0 G 2(7*).
Q.E.D.

Corollary 3.5. 7« a«y transitive mechanical system we have A0(I) = {(X2,Xp)
G R x <g* | p G A„(/*),A G /?} U 0.

We can describe a method to generate A from the much simpler corresponding
set A0(J*) in two steps consisting of first applying Corollary 3.5 and then
Corollary 3.2.

The following proposition shows that under suitable conditions like compact-
ness of M the projection of the set Im(7) on an appropriate 2-dimensional
subspace of R X <Sj* is the closed convex region bounded by a parabola (maybe
degenerate).

Proposition 3.6. Consider S = (M = G/77, K,G) where M is compact connected
with dimension greater than 1.

Let Jl C g be a one dimensional Lie subalgebra, proj: g* -» £* being the dual
of the corresponding inclusion. Then the energy preserving projection idÄ X proj:
R x g* -* R X J* takes Im(7) into a set of the form {(c,p) G R X R \ Xc > pV
> 0}, where X > 0 constant.

Proof. We remark that because of the assumptions on M, the unit tangent
bundle TXM = 7C"'(1) is also compact connected. By continuity, Im(/*) is a
compact connected subset of g*.

Now, let L C G be the one parameter subgroup corresponding to Jl. Consider
the inclusion i: £-*<£, its dual proj = i* and the energy preserving projection
idÄ X proj: R X <3* -* R X £*.

Let us denote by J, I = (K,J) the maps associated with our mechanical
system 5 = (Ai, K, G), and by T,J — (K,J) the maps associated with the general
mechanical system with symmetry (M, K, 0, L) obtained by just restricting the
original action of G on M to an action of L on M.

It is easy to check that ids X proj(Im(7)) = Im(7). This reduces the proof to
show that Im(7) has the required shape.

Finally, looking at the derived mechanical system, it is clear that since H* is
one dimensional, Im(/*) is a compact connected subset of the reals, and by
symmetry it must be a closed interval of the form Im(7*) = [—A, A], where
X > 0. From Theorem 3.3, we get the conclusion.   Q.E.D.

Our next goal is to get an explicit description of Re" as a cone in T0 M
(Theorem 3.3(b)), giving direct information in some cases about o°(I) (see (2.6)),
and indirectly about 20(7).
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In this section we denote by V an affine connection on the homogeneous space
M = G/H, as is a standard notation. We will say that V is an invariant affine
connection on M if it is invariant under the action of any diffeomorphism g G G,
that is

(3.5) gÁ\Y) = \xg*Y
for given vector fields A" and Y on M.

Given an invariant Riemann metric < , \ on a homogeneous space M, the
corresponding Riemannian connection V is also invariant. We define a bilinear
mapa: 0x0 -^ T0M by

(3.6) a(X, Y) = (V Y*)B   for X,Y E0.

The following theorem shows how the relative equilibria in T0 M can be defined
by a symmetric bilinear map U. In addition it shows how to compute U in a
purely algebraic way in terms of the induced inner product < , >„ at T0 M, the Lie
bracket in 0, and the linear map DTI: 0 -» T0M.

Theorem 3.7. If M = G/H is a homogeneous space with an invariant Riemann
metric, then

(3.7) Re" = DYl{X E 0 \ U(X,X) = 0}

where U: 0X0 —> T0M is a symmetric bilinear map determined by the condition
that for any X, Y, Z G 0,

(3.8) 2(U(X, Y),DU(Z)}B = <Dn(A"),Z)n[y,Z]>0 + (Dïl[X,Z],DIl(Y)y0.

Proof. We will carry out this proof in two main steps.
Step 1. Since < , }K is a Riemann metric on M, the corresponding invariant

connection V is determined by (Helgason [4, p. 48], or Hermann [5, p. 273])

2<v"2a\ y> = z<a\ y> - <A",[y,z]>
(3.9)

- y<A\z> + <[y,A-],z> + A-<y,z> - <y,[A-,z]>

for any vector fields A, Y, Z on M (we omit the subscript K at the metric by
simplicity).

Let X E 0 be given and yx(t) = exp tX. By invariance of V we see that
ßx(') = Y*W • o - n(exp íA") is a geodesic if and only if (\. X*)0 = a(A",A")
= 0. Since Re" consists exactly of the initial velocity vectors ß'x(0) = DI^A" ) of
geodesies as above, we conclude that Re" = DU{X E 0 \ a(X,X) = 0}.

Step 2. We finally claim that

(3.10) i/(Z,A-) = a(Z,A-) - \DU\Z,X]
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is a symmetric bilinear map. Formula 25.2 in [5, p. 354] shows that

(3.11) X+(Y+,Z+) = ([x+,Y+],z+y + <Y\[x\z+]y

for any X, Y, Z G <s?. Permuting the letters we get two additional formulas.
Substituting the three of them into (3.9) and cancelling terms, we arrive at

(3.12) 2<vz+*+,y+> = <[z\x+],y+> + <[z+,y+],*+> + <[*+,y+],z+>

for any X, Y, Z G g.
Evaluating (3.12) at o G M, and keeping in mind that [A"1", Y+] = [X, Y]+ and

X+(o) = DU(X), we get

(3.13)    2(a(Z,X),DU(Y)\ = {Dl\[Z,X],DTl(Y)\ + 2(U(Z,X),DU(Y)\,

where U(Z,X) is defined by condition (3.8).
Since (3.13) is true for any choice of X, Y, Z G g, it implies (3.10), as

required.
If dim 77 = 0, we can identify T„M = <3 and omit DU from the notation in

the theorem. In particular, a" = Re" becomes an algebraic cone in T0M.
This theorem is essentially an improvement and generalization of results in

Nomizu [10, pp. 50-53] and Arnold [3, p. 338], with their notation meaning
slightly different concepts (see [8, pp. 50-52] for a complete discussion).

Recall that a Riemannian homogeneous space is said to be reductive if the
following condition is satisfied: There exists a vector subspace ¿M, of <3 such that
<3 is the direct sum of JV[ and the Lie subalgebra <Jf of 77, and ad(H)Jl\ = *M.

A Riemannian symmetric space is a connected Riemann manifold M such that
for each x G M there is an isometry Sx of M leaving x invariant and reversing
geodesies through x, that is, if y geodesic and y(0) = x, then Sx(y(t)) — y(—t).
Any Riemannian symmetric space is reductive homogeneous, with a canonical
decomposition (see [10, p. 53]).

The following immediate corollaries of Theorem 3.7 and (2.6)(a) show fairly
general cases where our parameters under consideration become particularly
simple (they are essentially Theorems 13.1 and 13.2 in Nomizu [10]).

Corollary 3.8. If G/H is a reductive homogeneous space with fixed decomposition
of its Lie algebra <3 = «^ + <=#> &d(H)<M = <=M and invariant Riemann metric,
satisfying (X,[Y,ZU> + <[Y,XU,Z> = 0 for any X, Y, Z G ¿H, where < , >
is the inner product on ¿M induced by its isomorphism with T0M, and the subscript
in the Lie bracket means to take the ^H-component, then

Re = o = TM   and   2' = 2 = Im.
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This corollary contains the case of a Riemannian symmetric space, if we take
its canonical decomposition as a reductive space. The fact that Re = TM here
means that all the geodesies are generated by one parameter subgroups, which is
well known ([4, p. 173, Theorem 3.3], [10, p. 53, Theorem 15.1]).

Corollary 3.9. Let G be a compact connected Lie group and H a closed subgroup,
so that the Lie algebra 0 admits an nd(G)-invariant inner product < , >. Let ¿M, be
the orthogonal subspace to the subalgebra <M of H, and consider the Riemann metric
on M = G/H, determined by the restriction of the inner product to J\\ X J\\. Then
Re = o = TM and 2' = 2 = Im too, but in addition, Im is contained in the
paraboloid {(c,p) \ (p,p}* = c}. (( , ) in G defines in a standard way an isomor-
phism i: 0 -» 0*. Then < , )* is the unique inner product such that i is an
isometry.)

If H = e in addition to the hypothesis of this corollary, then we are
considering the case of a Lie group M = G with a bi-invariant metric, and
Im(Z) = Im„(Z) is actually the paraboloid described with brackets.

(3.14) Example. Rigid body problem. The motion of a rigid body about a fixed
point with no external forces can be described by the geodesies of the Lie group
G = SO(3) of rotations in R* acting on itself, with a left invariant metric. This
metric is generated by an inner product at the identity whose matrix A
corresponds classically to the inertia tensor of the rigid body.

There is a natural isomorphism of the Lie algebra of SO(3) with R3, under
which the adjoint representation can be considered as the identity, that is
ad(fi) = B, for any B E SO(3). Hence the action of G on R X 0* is by
rotations on the second factor, and identity on the first factor.

By using Theorem 3.7 with the remark that Re0 = o° here, we find that this
set is the union of eigenspaces for the matrix A. Applying Corollaries 3.5 and 3.2,
we get

Im = {(c,p) E R X Z?3 | cXx < \p\2 < cAj},

2 = 2' = {(c,p) ERXR3\ c\, = \p\2,i = 1,2,3},

where Xx < X2 < A3 are the eigenvalues of A (see [8, pp. 25-29, 58-60] for the
detailed analysis). These results coincide with Iacob's [6, p. 1512].

4. Conditions for 2', Im, o, to be algebraic or semialgebraic. In the classical
examples of mechanical systems with symmetry, the sets 2', 2 and Im are
semialgebraic. However, that seems to depend strongly on the algebraicness of
maps and manifolds, and we will investigate this aspect for transitive mechanical
systems. As in §3, A denotes 2', 2 or Im.

Recall that an algebraic set V and a semialgebraic set S in R" are subsets of the
form (for some applications we can assume without loss of generality that
*=1):
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V = {X<=R"]Ql(X) = ---=Qk(X) = 0},

S = {X G R" | Px(a,X) = • • - = 72(a,*) = 0 for some a G Rm},

where the Q¡ are polynomials in « variables and the P¡ are polynomials in m + «
variables. An algebraic map is a function /: 7?" -+ 7?m where each coordinate
function is a polynomial in «-variables (Milnor [9], Abraham-Robbin [2]). It is a
rational map, if the coordinate functions are rather quotients of polynomials
(defined only where the denominators are not zero).

The following theorem shows that 2(7), 2'(7) or Im(7) is semialgebraic if and
only if the respective set for J* is, and except for a suitable modification this
correspondence holds also true when we replace semialgebraic sets by algebraic
sets (it relies on Theorem 3.3).

Theorem 4.1. For a transitive mechanical system:
(a) A(J*) is a semialgebraic set if and only if A(7) is a semialgebraic set.
(b) A(7*) is an algebraic set if and only if A(7) is the intersection of an algebraic

set with {(c,p) G R X 0* | c > 0 and c = 0 «=* p = 0}.

Proof. Recall that Theorem 3.3(c) states that A(/*) is symmetric with respect
to the origin and

(4.1) A(7) = {(X2,Xp) | X G R,p G A(J*)} U 0.

Part (a) of our theorem is clear from this equation.
However, part (b) requires a more careful proof. If A(7) is an algebraic set, then

clearly A(J*) is an algebraic set, since 1 x A(/*) is the intersection of A(7) with
the hyperplane c = 1 in R X g*.

Suppose now

(4.2) A(J*) = {pG<3*\Q(p) = 0}

is an algebraic set, where Q is polynomial. Then

(4.3) A(7) = {(X2,Xp) \XGR,PG0* B Q(p) = 0} U 0,

and the claim is that there is an algebraic set W in Rx<g* such that
A(7) = W n {(c,p) | c > 0, and c = 0 «=*p = 0}.

Since A(y*) is symmetric with respect to the origin, we may assume without loss
of generality that Q(p) in formulas (4.2) and (4.3) contains only terms of either
odd or even degree. This is because an arbitrary polynomial can be split into a
sum of two such polynomials, inducing a corresponding splitting (in terms of
intersection) in (4.2) and (4.3).

For X G R, X ¥= 0 and p G <3*, write c = X2, p = Xp. Since g(p) contains
only terms of either odd or even degree, the polynomial Xie*WQ(p) can be
written as a polynomial R(c,p) such that 7*(0,0) = 0, and Q(p) = 0 <=> R(X2,Xp)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MECHANICAL SYSTEMS WITH SYMMETRY 489

= 0 for all X ¥> 0. Therefore, A(Z) = {(c,p) E Rx0*\c> 0,R(c,p) = 0}
U 0, from which the assertion follows with W = {(c,p) \ R(c,p) = 0}.   Q.E.D.

By an algebraic manifold, we will understand an algebraic set VCR" which is
the inverse image of a regular value of an algebraic map g: R" -» Rk. If V C R"
is an algebraic manifold, then TV C R" x R" is also an algebraic manifold. A
Riemann metric < , }K on V will be said to be algebraic if the associated kinetic
energy K: TV' -» R is an algebraic map.

A linear group G will be a Lie subgroup of GL(n) (« x « nonsingular real
matrices). If in addition G is an algebraic manifold, we will call it an algebraic
linear group.

Let V denote now the gradient for real valued maps of several variables.

Theorem 4.2. If S = (G/H, K,G) is a transitive mechanical system where
M = G/H is an algebraic manifold and I is a rational function everywhere defined
on TM, then o, 2' and Im are semialgebraic sets.

Proof. Assume that the algebraic manifold V = TM in R" can be represented
by QX(XX,. ..,Xn) = 0,..., Qk(Xx,... ,Xn) = 0, where dim V = « - * and Qx,
..., Qk linearly independent on V(by definition).

We will first prove that a(I) is a semialgebraic set. Let I = (Ix,...,Im), where
the Z are rational functions into R. By a generalization of Lagrange multipliers
method, a G F is a critical point of I if and only if VQx(a),..., VQk(a), V/,(a),
..., Vfm(a) are linearly independent, that is

(4.4)   X, Vß, (a) + • • • + Xk VQk(a) + At+I V/,(a) + • • • + Xk+m Vfm(a) = 0

for (X., X*+m) # (0,..., 0). Therefore, o(I ) = {a E V\ (4.4) is satisfied with
(Xi,... ,Xk+m) E Rk+m, X] + ••• + Xl+m > 0} is a semialgebraic set, since (4.4)
can be rewritten as n polynomial equations equated to zero.

Finally, 2' and Im are semialgebraic too, for being the image under the
rational map I of the semialgebraic sets o and V, respectively.   Q.E.D.

The following immediate corollaries of Theorem 4.2 show more concrete cases
where manifolds are algebraic, maps are rational, and the actions of the group
are defined as restriction of the linear action on R" or as group multiplication.

Corollary 43. Let G C GL(n) be an algebraic linear group, and H C G a closed
subgroup such that M = G/H is an algebraic manifold in R" with G acting on M
by linear action the obvious way. Assume in addition that we have any G-invariant
algebraic Riemann metric on M. Then, o, 2' and Im are semialgebraic sets.

Corollary 4.4. Let G C GL(n) be an algebraic linear group with a left invariant
Riemann metric. Then o, 2' and Im are semialgebraic sets.

5. Geometric properties of geodesies. In this section we study more concrete
geometrical properties for geodesies on homogeneous spaces with an invariant
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metric, considered as transitive mechanical systems. The first result is an
interesting generalization of Kostant's theorem [7, p. 260].

Theorem 5.1. On a homogeneous space G/H with an invariant metric, any self-
intersecting geodesic must be periodic.

Proof. Consider S = (G/H,K,G) as a transitive mechanical system; then
J: TM -+ <3* is always linear injective on fibers. Therefore, for anyp G g* the
corresponding set Jp = J~x(p) contains at most one point on each fiber of TM.
The same property holds for the set Icp = I~x(c,p) for given (c,p) G Rx<=f*,
since Icp C Jp.

Therefore, given any geodesic y(f), its derivative y'(t) must be contained in
some ICtP, and by the above property y'(t) contains at most one point in TaM, for
any a G M. So, the conclusion is clear.   Q.E.D.

From here it is plausible that geodesies in transitive mechanical systems have
a better chance of being closed than geodesies in an arbitrary Riemann manifold,
since they cannot have self-intersections without being closed.

Proposition 5.2. On a transitive mechanical system with M = G/77 compact, there
is at least one unit speed geodesic of M generated by a one parameter subgroup of G.

Proof. From Theorem 4.1 in [11], X„ G Re if and only if there exists Y G g
such that Xa = Y+(a) and a G M is a critical point for the map LY = K ° Y+:
M-> R.

Since any smooth map on a compact manifold has a critical point, this means
that there is at least one unit speed geodesic of the form y(r) = X exp tY • a (X
real, a G M), for any Y G <3 such that Y+ is not trivial.   Q.E.D.

This section might lead to further research in the direction of generic
properties of geodesies in transitive mechanical systems.
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