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Abstract  35 

 36 

Understanding the pathology of COVID-19 is a global research priority. Early evidence 37 

suggests that the respiratory microbiome may be playing a role in disease progression, 38 

yet current studies report contradictory results. Here, we examine potential 39 

confounders in COVID-19 respiratory microbiome studies by analyzing the upper (n=58) 40 

and lower (n=35) respiratory tract microbiome in well-phenotyped COVID-19 patients 41 

and controls combining microbiome sequencing, viral load determination, and 42 

immunoprofiling. We found that time in the intensive care unit and the type of oxygen 43 

support, both of which are associated to additional treatments such as antibiotic usage, 44 

explained the most variation within the upper respiratory tract microbiome, while SARS-45 

CoV-2 viral load had a reduced impact. Specifically, mechanical ventilation was linked to 46 

altered community structure, lower species- and higher strain-level diversity, and 47 

significant shifts in oral taxa previously associated with COVID-19. Single-cell 48 

transcriptomic analysis of the lower respiratory tract of mechanically ventilated COVID-49 

19 patients identified specific oral bacteria, different to those observed in controls. 50 

These oral taxa were found physically associated with proinflammatory immune cells, 51 

which showed higher levels of inflammatory markers. Overall, our findings suggest 52 

confounders are driving contradictory results in current COVID-19 microbiome studies 53 

and careful attention needs to be paid to ICU stay and type of oxygen support, as 54 

bacteria favored in these conditions may contribute to the inflammatory phenotypes 55 

observed in severe COVID-19 patients. 56 

 57 

Introduction 58 

 59 

COVID-19, a novel coronavirus disease classified as a pandemic by the World Health 60 

Organization, has caused over 150 million reported cases and 3 million deaths 61 

worldwide to date. Infection by its causative agent, the novel coronavirus SARS-CoV-2, 62 

results in a wide range of clinical manifestations: it is estimated that around 80% of 63 

infected individuals are asymptomatic or present only mild respiratory and/or 64 

gastrointestinal symptoms, while the remaining 20% develop acute respiratory distress 65 

syndrome requiring hospitalization and oxygen support and, of those, 25% of cases 66 
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necessitate critical care. Despite a concerted global research effort, many questions 67 

remain about the full spectrum of the disease severity. Independent studies from 68 

different countries, however, agree that age and sex are the major risk factors for 69 

disease severity and patient death1–3, as well as type 2 diabetes and obesity4,5. Other 70 

potential risk factors for critical condition and death are viral load of the patient upon 71 

hospital admission6–8 and the specific immune response to infection, with manifestation 72 

of an abnormal immune response in critical patients characterized by dysregulated 73 

levels of pro-inflammatory cytokines and chemokines, which some studies have 74 

associated with organ failure9,10.  75 

 76 

Despite its close interplay with the immune system and its known associations with host 77 

health, little is known about the role of the respiratory microbiota in modulating COVID-78 

19 disease severity, or its potential as a prognostic marker11. Previous studies exploring 79 

other pulmonary disorders have shown that lung microbiota members may exacerbate 80 

symptoms and contribute to their severity12, potentially through direct crosstalk with 81 

the immune system and/or due to bacteremia and secondary infections13. First studies 82 

of the respiratory microbiome in COVID-19 have revealed elevated levels of 83 

opportunistic pathogenic bacteria14–16. However, reports on bacterial diversity are 84 

contradictory. While some studies report a low microbial diversity in COVID-19 85 

patients14,17 that rebounds following recovery15, others show an increased diversity in 86 

the COVID-19 associated microbiota16. These conflicting results could be due to 87 

differences in sampling location (upper or lower respiratory tract), severity of the 88 

patients, disease stage, treatment or other confounders. While these early findings 89 

already suggest that the lung microbiome could be exacerbating or mitigating COVID-19 90 

progression, exact mechanisms are yet to be elucidated.  Therefore, an urgent need 91 

exists for studies identifying and tackling confounders in order to discern true signals 92 

from noise. 93 

 94 

To identify potential associations between COVID-19 severity and evolution and the 95 

upper and lower respiratory tract microbiota, we used nasopharyngeal swabs and 96 

bronchoalveolar lavage (BAL) samples, respectively. For the upper respiratory tract, we 97 

longitudinally profiled the nasopharyngeal microbiome of 58 COVID-19 patients during 98 
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intensive care unit (ICU) treatment and after discharge to a classical hospital ward 99 

following clinical improvement, in conjunction with viral load determination and 100 

nCounter immune profiling. For the lower respiratory tract, we profiled microbial reads 101 

in cross-sectional single-cell RNA-seq data18 from of bronchoalveolar lavage (BAL) 102 

samples of 22 COVID-19 patients and 13 pneumonitis controls with negative COVID-19 103 

qRT-PCR, obtained from the same hospital. The integration of these data enabled us to 104 

(1) identify potential confounders of COVID-19 microbiome associations, (2) explore 105 

how microbial diversity evolves throughout hospitalization, (3) study microbe-host cell 106 

interaction and (4) substantiate a link between the respiratory microbiome and SARS-107 

CoV-2 viral load as well as COVID-19 disease severity. Altogether, our results suggest the 108 

existence of associations between the microbiota and specific immune cells in the 109 

context of COVID-19 disease. These interactions may be driven by mechanical 110 

ventilation and its associated clinical practices, and therefore could potentially influence 111 

COVID-19 disease progression and resolution.  112 

 113 

Results 114 

 115 

The upper respiratory microbiota of COVID-19 patients  116 

 117 

We longitudinally profiled the upper respiratory microbiota of 58 patients diagnosed 118 

with COVID-19 based on a positive qRT-PCR test or a negative test with high clinical 119 

suspicion based on symptomatology and a chest CT-scan showing typical round glass 120 

opacities. All these patients were admitted and treated at UZ Leuven hospital. Patient 121 

demographics for this cohort are shown in Table 1. 122 

 123 

In total, 112 nasopharyngeal swabs from these patients were processed (Figure 1a): the 124 

V4 region of the 16S rRNA gene amplified on extracted DNA using 515F and 806R 125 

primers, and sequenced on an Illumina MiSeq platform (see Methods). From the same 126 

swabs, RNA was extracted to determine SARS-CoV-2 viral loads and to estimate immune 127 

cell populations of the host and expression of immune-related genes using nCounter 128 

(Methods). Of the 112 samples processed and sequenced, 101 yielded over 10,000 129 

amplicon reads that could be assigned to bacteria at the genus level (Figure 1b; 130 
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Methods). The microbiome of the entire cohort was dominated by the gram-positive 131 

genera Staphylococcus and Corynebacterium, typical from the nasal cavity and 132 

nasopharynx19.  133 

 134 

Bacterial alpha diversity is associated with ICU stay length, SARS-CoV-2 viral load and 135 

calprotectin levels 136 

 137 

First, we determined genus-level alpha-diversity for the 101 samples with more than 138 

10,000 genus-level assigned reads, using the Shannon Diversity index (SDI; see Methods; 139 

Supplementary Table 1). We observed that the SDI was significantly different across 140 

sampling moments (Kruskal-Wallis test, p-value = 0.009; Supplementary Figure 1a), with 141 

significant differences between swabs procured upon patient ICU admission and later 142 

timepoints, suggesting an effect of disease progression and/or treatment (for instance 143 

due to antibiotics administered throughout ICU stay). We explored these differences 144 

further, and observed that SDI correlated negatively with the number of days spent in 145 

ICU at the moment of sampling, with longer ICU stays leading to a lower diversity (r=-146 

0.53, p-value=1.9·10-8).  147 

 148 

To evaluate the association of other clinical or disease-related variables with upper 149 

respiratory tract microbiome diversity, we used a generalized linear mixed model 150 

framework: we performed an exhaustive screening of all possible models containing up 151 

to 8 different explanatory variables, using an automated model selection algorithm (see 152 

Methods). The variables used to regress the SDI comprise the patient ID, modeled as a 153 

random effect; disease-related variables, such as the time in ICU, SARS-CoV-2 viral load 154 

or the use of mechanical ventilation; and other variables known to affect the 155 

microbiome, such as the administration of antibiotics (specifically 156 

meropenem/piperacillin-tazobactam and ceftriaxone) or the levels of inflammatory 157 

markers (calprotectin, C-reactive protein). The antibiotics meropenem and 158 

piperacillin/tazobactam were grouped as a single variable in all subsequent analyses as 159 

they were administered under the same clinical guidelines. The best performing model 160 

(AICc=121.79; p-value=4.06·10-8) included the patient modeled as a random effect and 161 

confirmed a negative association between the time spent in ICU and diversity. 162 
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Additionally, this model showed a negative effect of SARS-CoV-2 viral load and a positive 163 

association of calprotectin levels with the SDI (Figure 1c,d; Supplementary Figure 1b-d). 164 

 165 

We leveraged all the models generated in the screening to calculate weighted 166 

importance scores for all the fixed effects tested (Methods; Supplementary Figure 1e). 167 

These scores showed that the three variables incorporated in the best model (time in 168 

ICU, SARS-CoV-2 viral load and calprotectin) held the highest relative importance, 169 

followed by CRP levels and mechanical ventilation. Treatment with antibiotics 170 

ceftriaxone an meropenem or piperacillin-tazobactam had the lowest importance 171 

scores, and no significant differences in SDI were found between samples obtained 172 

before and after the administration of meropenem/piperacillin-tazobactam 173 

(Supplementary Figure 1f). 174 

Altogether, our data suggest that respiratory microbiome diversity is linked to the length 175 

of ICU stay, SARS-CoV-2 viral load and calprotectin levels. While no significant effects 176 

were found for the most widely used antibiotics in this cohort, we cannot rule out that 177 

antibiotic administration or other clinical practices are causing the decrease of SDI over 178 

time.  179 

 180 

 181 

Respiratory microbiome composition variation is linked to respiratory support and 182 

associated clinical practices  183 

 184 

We next explored potential associations between the upper respiratory genus-level 185 

microbiota composition and the extensive metadata collected in the study. In total, 72 186 

covariates related to patient anthropometrics, medication and clinical variables 187 

measured in the hospital, as well as SARS-CoV-2 viral load, host cytokine expression and 188 

estimated immune cell populations measured in the swabs were tested (Supplementary 189 

Table 2). Individually, 20 of these covariates showed a significant correlation to 190 

microbiota composition in a univariate analysis (dbRDA, p-value<0.05; FDR<0.05; Figure 191 

2a). These significant covariates were related to disease and measures of its severity, 192 

such as the clinical evaluation of the patient, the total length of the ICU stay, the number 193 

of days in ICU at the time of sampling, or the type of oxygen support needed by the 194 
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patient. Despite showing an association to the overall diversity, SARS-CoV-2 viral load 195 

detected in the swabs was not significantly associated to microbiome composition 196 

variation (Supplementary Table 2). Neither ongoing antibiotic usage (i.e., administration 197 

of any type of antibiotic) nor number of ongoing antibiotics administered were 198 

significant, but the administration of specific antibiotics meropenem/piperacillin-199 

tazobactam (previous or ongoing treatment) and ceftriaxone (ongoing administration 200 

only) showed significant associations with microbiome composition (Supplementary 201 

Table 2, Figure 2a). 202 

 203 

Of the 20 significant covariates, only 2 accounted for 48.7% non-redundant variation in 204 

this dataset in a multivariate analysis (dbRDA; p-value=0.001), with the rest holding 205 

redundant information. These were the patient ID, included due to the longitudinal 206 

sampling of patients, and confirming that intra-individual variation over time is smaller 207 

than patient inter-individual variation20, and the type of oxygen support received at the 208 

time of sampling (Figure 2a,b). Notably, the type of oxygen support discriminated 209 

samples based on ventilation type, with non-invasive ventilation samples (groups 1, 2 210 

and 3) separating from samples from intubated patients (groups 4 to 7; PERMANOVA 211 

test, R2=0.0642, p-value=0.001). Because of this separation, we also evaluated whether 212 

previous mechanical ventilation (regardless of the specific group) had a significant 213 

impact on the microbiome composition, showing even a larger effect size than when 214 

considering only the ongoing mechanical ventilation (PERMANOVA test, R2=0.0965, p-215 

value=0.001), suggesting that this invasive procedure may have an effect that is 216 

prolonged in time.  217 

 218 

Mechanical ventilation is inherently associated to additional clinical practices, such as 219 

administration of broad-spectrum antibiotics and decontamination procedures 220 

(including chlorhexidine washes) to prevent/treat ventilator-associated pneumonia. 221 

Hence, we explored whether antibiotic usage could explain the significant relationship 222 

between microbiome composition and oxygen support type. We found that from the 223 

specific antibiotics associated to microbiome composition, ceftriaxone was 224 

predominantly administered in patients on non-invasive oxygen support (Chi-square, p-225 

value=0.001), whilst meropenem or piperacillin-tazobactam were preferentially given to 226 
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patents on mechanical ventilation (Chi-square test, p-value=0.002; Supplementary 227 

Figure 2a). This association is not casual and responds to current treatment guidelines 228 

at UZ Leuven: ceftriaxone is administered to patients upon admission and for 3-7 days 229 

to prevent potential bacterial co-infections. In our cohort, 80% of the patients received 230 

ceftriaxone at the beginning of their stay (Supplementary Figure 2b). Patients with 231 

longer ICU stays and requiring higher levels of oxygen support will be considered to have 232 

hospital-acquired/ventilator-associated pneumonia (HAP/VAP) and receive meropenem 233 

or piperacillin/tazobactam (Supplementary Figure 2b). Therefore, the observed 234 

correlation between oxygen support types and these antibiotics can be explained by 235 

disease severity and length of ICU stay. 236 

 237 

We therefore explored whether we could observe an effect of oxygen support type 238 

alone, deconfounding for the patient ID and the two significant antibiotic covariates 239 

using partial dbRDA to extract the effect size of oxygen support alone. The 240 

deconfounded model exhibited a significant association to overall microbiome 241 

composition (partial dbRDA; R2=0.058, p-value=0.042) suggesting that although 242 

antibiotic administration may explain part of the variation in microbiome composition 243 

observed, there may an independent effect of the oxygen support type. Nevertheless, 244 

the effect of other practices concomitant to mechanical ventilation, such as oral 245 

decontamination with chlorhexidine washes, could not be disentangled as these 246 

treatments were always performed together.  247 

 248 

To determine if oxygen support or associated practices also impacted the microbiome 249 

at finer taxonomic resolution, we revisited alpha-diversity at species- and strain-level. 250 

We defined species as 97% identity 16S OTUs and strains per species as the clustered 251 

16S sequences within each OTU. Our analyses revealed both species- and strain-level 252 

diversity change with ventilation, even with non-invasive ventilation (e.g. BIPAP, CPAP). 253 

Across all samples we observed high species- and low strain-level diversity pre-254 

ventilation, which reversed following any form of ventilation (Figure 2c; Wilcoxon test; 255 

p-values<0.05, with the exception of type 7), with the exception of ventilation with 256 

inhaled nitric oxide. Further, species- and strain-level diversity showed a strong inverse 257 

correlation (Figure 2d; Pearson’s correlation, R2 = -0.92, p-value = 0.0035). 258 
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 259 

Given the observed effect of mechanical ventilation on the overall microbiome 260 

composition, we evaluated which specific taxa were differentially abundant between 261 

samples from intubated and non-intubated patients. In total, 28 genera were more 262 

abundant in samples from mechanically ventilated patients, while 1 genus was more 263 

abundant in non-invasively ventilated patients (p-value<0.05; FDR<0.05; Figure 2e, 264 

Supplementary Figure 3a; Supplementary Table 3). When controlling for the effect of 265 

the antibiotics ceftriaxone and meropenem/piperacillin, 20 genera were significantly 266 

different between both groups of samples (Supplementary Figure 3b, Supplementary 267 

Table 3). Some of these taxa are common oral microbiome commensals or opportunistic 268 

pathogens that had been repeatedly reported as more abundant in COVID-19 patients 269 

than in controls, such as Prevotella, Fusobacterium, Porphyromonas or Lactobacillus14–270 

16. Here, we reported higher abundance of these genera in mechanically ventilated 271 

COVID-19 patients as compared to non-mechanically ventilated COVID-19 patients. This 272 

points at mechanical ventilation (and associated practices such as oral decontamination)  273 

as a potential confounder of previous COVID-19 studies. Additionally, we found other 274 

taxa not previously reported in previous COVID-19 microbiome studies, such as 275 

Mycoplasma or Megasphaera (Figure 2e, Supplementary Figure 2), but previously 276 

associated to risk of ventilator-associated pneumonia21.  277 

 278 

By extracting the amplicon sequence variants (ASVs) corresponding to these 279 

differentially abundant genera (see Methods), some of these taxa could be narrowed 280 

down to the species level, confirming their origin as typically oral bacteria: for instance, 281 

Prevotella species included P. oris, P. salivae, P. denticola, P. buccalis and P. oralis. 282 

Within the Mycoplasma genus, ASVs were assigned to Mycoplasma salivarium among 283 

other species, an oral bacterium which has been previously associated to the incidence 284 

of ventilator-associated pneumonia21. When controlling for ventilation type, no taxa 285 

were found associated to SARS-CoV-2 viral loads (Supplementary Table 3). These results 286 

show that further research with larger cohorts and controlling for the relevant 287 

confounders highlighted here, such as ventilation type, antibiotic usage or length of stay 288 

in ICU, will be needed to study the specific effect of the viral infection. 289 

 290 
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Single-cell RNA-seq of bronchoalveolar fluid identifies oral commensals and 291 

opportunist pathogens in the lower respiratory tract 292 

 293 

Next, we explored what the functional consequences of (disease and/or treatment-294 

driven) lung microbiome disturbances could be. To do so, we screened host single-cell 295 

RNA-seq data generated on BAL samples of 35 patients18 using a computational pipeline 296 

to identify microbial reads (see Methods). All patients in this cross-sectional cohort 297 

showed clinical symptoms of pneumonia, 22 of them being diagnosed with COVID-19. 298 

The other 13 patients with non-COVID-19 pneumonia were hereafter referred to as 299 

controls (Table 1). Out of the 35 patients, 21 were admitted to ICU (20 COVID-19 patients 300 

and 1 control) and 14 were hospitalized in ward at the moment of sampling (2 COVID-301 

19 patients and 12 controls; Table 1 and Supplementary Figure 4). Microbial read 302 

screening of these samples revealed an average of 7,295.3 microbial reads per sample 303 

(ranging from 0 to 74,226 reads, with only a single sample yielding zero microbial reads; 304 

Supplementary Figure 4).  305 

 306 

Among the top taxa encountered in these patients, we found similarities with the data 307 

obtained in nasopharyngeal swabs. The top 15 species detected include Mycoplasma 308 

salivarium as the dominating taxon in 5 COVID-19 patients in ICU, as well as different 309 

Prevotella members. Non-COVID-19 pneumonia patients in ward (i.e. non-mechanically 310 

ventilated) harbored different microbes: 2 patients had a microbiome dominated by 311 

Porphyromonas gingivalis, while a single patient had a microbiome dominated by the 312 

fungus Pneumocystis jirovecii, a known pathogen causing Pneumocystis pneumonia 313 

(PCP)22.  314 

 315 

Supplementary table 4 shows associations between organism abundances and specific 316 

patient metadata: disease, hospital stay and ventilation type. Multiple links with COVID-317 

19 diagnosis were identified (Wilcoxon test, (noncorrected) p-value<0.05; see Methods) 318 

but due to the low sample number, none was significant after multiple-test correction. 319 

Additionally, as hospital stay (ICU or ward), type of oxygen support (invasive or non-320 

invasive ventilation) and disease (COVID-19 or controls) were highly correlated (Chi-321 

squared test, p-value < 0.0001 for all three pairwise correlations), the effect of these 322 
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three variables could not be disentangled. Therefore, although this data may validate 323 

our findings from the upper respiratory tract microbiome, due to the small cohort size 324 

and the existence of multiple confounders, these association results should be 325 

confirmed in larger studies.  326 

 327 

Bacteria in the lower respiratory tract associate to host cells from the innate immune 328 

system in COVID-19 patients 329 

 330 

Next, we took advantage of the single-cell barcoding and questioned whether the 331 

microbial reads that we identified were found in association with host cells (for instance 332 

infecting or internalized), or contrarily, had unique barcodes suggesting a free-living 333 

state. In total, 29,886 unique barcodes were identified that matched a total of 46,151 334 

microbial UMIs. The distribution of UMIs per barcode was asymmetrical, ranging from 1 335 

to 201 and with 88% of the barcodes having a single UMI. Additionally, 26,572 barcodes 336 

(89%) were associated to a single microbial species, the rest being associated to 2 337 

species (8.8%) or more (2.2%).  338 

 339 

Out of the total 29,886 microbial barcodes, only 2,108 were also assigned to host cells, 340 

suggesting that the bulk of bacteria found in BAL samples exist as free-living organisms 341 

or in bacterial biofilms. Although microscopic evaluation would be needed to validate 342 

this hypothesis, bacterial biofilms have been previously documented in bronchoalveolar 343 

lavages23, and the enrichment for host cells in these samples via centrifugation18 may 344 

have also indirectly enriched these specimens for biofilm and/or host-associated 345 

microbes. However, for the fraction of bacteria associated to host cells, the distribution 346 

across disease types was not random. We found that while 2.3% of the non-COVID-19 347 

patient cells were associated to bacterial cells, almost the double (4%) could be 348 

observed in COVID-19 patients (Figure 3a; Chi-squared test; p-value < 2.2·10-16). 349 

However, because COVID-19 diagnosis is highly correlated with mechanical ventilation 350 

in this cohort, this effect could be due to higher intubation rates in COVID-19 patients 351 

and possibly, a higher incidence of VAP. Within COVID-19 patients, we also evaluated 352 

the overlap between bacteria-associated host cells and cells with detected SARS-CoV-2 353 

reads18 (Supplementary Table 5). Out of 1,033 host cells associated with bacteria in 354 
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COVID-19 patients and 343 cells with detected SARS-CoV-2 reads, only one cell was 355 

positive for both viral and bacterial reads. A binomial test for independence of virus and 356 

bacteria detection in the same host cell, showed that the observed co-occurrence in one 357 

cell only was highly unlikely (p-value=5.7·10-4), therefore suggesting mutual exclusion of 358 

microbiome members and viruses in the same host immune cells. However, it must be 359 

noted that lack of detection does not necessarily imply lack of association of 360 

bacteria/virus to host cells, especially with experimental methods such as single-cell 361 

RNA-seq, designed for profiling host cells and not optimized for detection of these 362 

entities. Therefore, further studies with larger sample sizes are required to validate the 363 

co-exclusion hypothesis. 364 

 365 

We also explored whether host-associated bacterial reads would preferentially be linked 366 

with specific cell types, taking into account the varying frequencies of cell types in 367 

COVID-19 patients and controls (see Methods). Such a preferential association would 368 

suggest that these observations are biologically relevant and not an artifact of the single-369 

cell sample and library preparation. Among control patients, cell types were similarly 370 

distributed in both groups (i.e. with and without bacteria), with only a preferential 371 

association of microbial cells with neutrophils (p-value = 3.61·10-12; Figure 3b; 372 

Supplementary Figure 4). However, in COVID-19 patients, three cell types were 373 

significantly associated with bacteria: neutrophils (p-value < 2.2·10-16), monocytes ((p-374 

value = 4.82·10-5) and monocyte-derived macrophages (p-value < 2.2·10-16; Figure 3b; 375 

Supplementary Figure 5). We also found that different bacteria associate with distinct 376 

host cells. For instance, in COVID-19 patients, bacteria from the Mycoplasma genus 377 

preferentially associated to monocyte-derived macrophages (p-value = 2.28·10-7), while 378 

Rothia (p-value = 8.21·10-4), Enterobacter (p-value = 2.59·10-5), or Klebsiella (p-value = 379 

3.12·10-9) are enriched in monocytes (Figure 3c).  380 

 381 

Last, we investigated whether the associations of bacteria to host cells are linked to host 382 

cell expression. To do so, we assessed whether expression based cell subtype 383 

classification18 for neutrophils, monocytes and macrophages showed non-random 384 

associations with bacteria across all samples in this cohort. Among the neutrophils, a 385 

subtype of inflammatory neutrophils characterized by expression of the calgranulin 386 
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S100A12 was enriched in bacteria-associated cells (p-value 7.18·10-6; Figure 3d,e). This 387 

subset of cells was also found to be enriched in SARS-CoV-2 nucleocapsid gene reads18, 388 

suggesting that the same cell type responsible for defense against the virus would be 389 

responding to potentially invasive bacteria in the lung. This subgroup is characterized by 390 

the expression of the calprotectin subunits S100A8 and S100A9. It is known that 391 

S100A8/A9 heterodimer secretion is increased in infection-induced inflammation and 392 

has some antibacterial effects mediated by secretion of pro-inflammatory cytokines, 393 

release of reactive oxygen species and recruitment of other inflammatory cells, as well 394 

as chelation of Zn2+ necessary for bacterial enzymatic activity24. These mechanisms are 395 

mediated by binding of the S100A8/A9 dimer to TLR4 receptors to trigger the release of 396 

pro-inflammatory cytokines such as IL-6 and TNF-a, and thus may contribute to sustain 397 

or exacerbate inflammation25. Therefore, the association with bacteria could, at least in 398 

part, explain the inflammatory phenotype of this neutrophil subset. To further examine 399 

this hypothesis, we explored differential gene expression between bacteria-associated 400 

and non-associated S100A12hi neutrophils (Supplementary Table 6). Because 401 

association of these cells with SARS-CoV-2 and with bacteria was mutually exclusive, we 402 

also compared these changes with the ones triggered by the virus in neutrophils26. 403 

Within this subset, neutrophils with co-occurring bacteria showed significantly higher 404 

expression (Bonferroni-corrected p-value < 0.05) of pro-inflammatory genes, including 405 

the cytokine IL1B and some of its target genes (PTSG2), the transcription factors FOS 406 

and JUN, and several genes involved in degranulation (S100A9, FOLR3, HSPA1A, 407 

HSP90AA1, FCGR3B), (Supplementary Table 6). Among these, FOLR3, a gene encoding 408 

for a folate receptor, is found in neutrophil secretory granules and has antibacterial 409 

functions, by binding folates and thus depriving bacteria of these essential 410 

metabolites27. This response differed to that of virus-engulfing neutrophils in that IFN 411 

response genes are not distinctively upregulated by bacteria. 412 

 413 

Regarding myeloid cells, both inflammatory IL1Bhi monocytes (p-value = 2·10-16) as well 414 

as a mixed group of CCL2-expressing macrophages (p-value = 5.38·10-10) are enriched in 415 

bacteria-associated cells (Figure 3f). These inflammatory monocytes are believed to 416 

have an important role in the aberrant immune response occurring in severe COVID-19 417 

patients. In this case, further gene expression patterns were detected, specific for 418 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2020.12.23.20248425doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.23.20248425
http://creativecommons.org/licenses/by-nc-nd/4.0/


bacteria-associated cells: for CCL2hi macrophages, cells with co-occurring bacteria 419 

expressed higher levels of MHC genes of type I and II, suggesting a more active role of 420 

these cells in antigen presentation (Bonferroni-corrected p-value < 0.05; Figure 3f; 421 

Supplementary Table 6). A similar increase was also observed in monocytes, yet not 422 

significant (Supplementary Table 6), possibly due to the lower monocyte abundances in 423 

this dataset. Additionally, bacteria-associated macrophages express significantly higher 424 

levels of the calprotectin subunits S100A8/A9, similarly to neutrophils, as well as pro-425 

inflammatory chemokines (such as CCL4, CXCL10 and CXCL1). 426 

  427 

Altogether, our results suggest that the bacteria detected in these cell subsets via 428 

scRNA-seq analyses may be contributing to the inflammatory response observed in the 429 

host.  430 

  431 

Discussion 432 

 433 

Since the beginning of the COVID-19 pandemic, a massive global effort by the scientific 434 

community was undertaken to understand physiopathology of SARS-CoV-2 infection 435 

and risk factors affecting disease outcome. In this study, we explored the respiratory 436 

microbiota as a potential risk factor for disease severity, and we evaluated the upper 437 

and lower respiratory tract microbiota in COVID-19 patients throughout hospitalization. 438 

We linked this data to viral load measurements and immunoprofiling results from 439 

nCounter and single-cell RNA sequencing data. To assess robustness of previously 440 

reported signals, we investigated the effect of potential confounders based on a broad 441 

panel of patient metadata variables. 442 

 443 

We found that in the upper respiratory tract, SARS-CoV-2 viral load has a mild negative 444 

association with bacterial biodiversity. A larger effect of severity indicators such as 445 

calprotectin levels or length of ICU stay was observed, with diversity decreasing 446 

throughout the length of the ICU period, a pattern reminiscent of that seen in other 447 

pulmonary conditions28,29. The effect of ICU length-of-stay may be mediated by 448 

treatment options such as the administration of broad-spectrum antibiotics and/or 449 

patient intubation and mechanical ventilation. Antibiotic usage might also explain why 450 
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calprotectin levels correlate with alpha diversity: such antibiotics would decrease overall 451 

microbial diversity, including (some of) the taxa that could be linked to inflammation. 452 

The observed effects of these clinical practices on microbiome alpha diversity could 453 

potentially explain why previous studies on the microbiota of COVID-19 patients show 454 

conflicting results regarding diversity: some studies reported lower diversity in sputum 455 

or throat swab samples of COVID-19 patients14,15,17 while others focusing on the lower 456 

respiratory microbiome using bronchoalveolar fluid samples, showed higher bacterial 457 

diversity in COVID-19 patients than in controls16. To further complicate matters, it 458 

cannot be excluded that sampling site or processing could also be potential confounders 459 

in these studies and/or reflect the different pathologies in the different areas of the 460 

respiratory tract. 461 

 462 

We further found that between-patient microbiome variation (as measured by genus-463 

level microbial beta-diversity) was also influenced by different severity indicators such 464 

as the clinical status of the patient, or more importantly the type of oxygen support 465 

received, with mechanically ventilated patients harboring a different microbiota than 466 

non-intubated patients. This effect could not be fully explained by neither general 467 

antibiotic administration, nor the usage of specific antibiotics such as ceftriaxone, 468 

meropenem or piperacillin-tazobactam, suggesting an independent effect of mechanical 469 

ventilation. Such an independent effect has previously been suggested in small 470 

cohorts28,30,31, but it needs to be validated in larger studies. However, other associated 471 

practices such as decontamination procedures could still be responsible for the 472 

observed associations. The impact of oxygen support was also reflected at the species- 473 

and strain-levels, with intubation causing a significant decrease and increase, 474 

respectively, in diversity. We hypothesize that the introduction of forced oxygen may 475 

drive the fast extinction of certain microbial species enabling the diversification of 476 

existing or newly colonizing species into new strains. Combined, these results suggest 477 

that non-invasive ventilation (e.g. BIPAP, CPAP) can have microbial effects indicating 478 

that any form of ventilation may be a tipping point for microbial community differences.  479 

 480 

Importantly, several of the taxa reported to change between intubated and non-481 

intubated patients were reported to be linked to diagnosis in previous COVID-19 482 
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microbiome studies14–16. In our study, no taxa were specifically linked to SARS-CoV-2 483 

viral load after controlling for mechanical ventilation. This result suggests the possibility 484 

that mechanical ventilation and its associated clinical practices are confounding 485 

previous results. Indeed, one study comparing COVID-19 patients with patients 486 

diagnosed of community-acquired pneumonia found no differences in respiratory 487 

microbiome composition between both groups of patients, but both groups did differ 488 

from healthy controls32. Together, these results indicate that patient intubation or even 489 

non-invasive ventilation, as well as their associated medical practices, are to be 490 

considered as important confounders when studying the upper respiratory microbiome, 491 

and we strongly suggest future COVID-19 microbiome studies should foresee and 492 

include strategies to account for this covariate. As an example, a recent study found a 493 

single ASV corresponding to the genus Rothia that was specific for SARS-CoV-2 patients 494 

after controlling for ICU-related confounders by comparing with a previous study of the 495 

microbiome in ICU patients33. Additionally, these findings on potential drivers of 496 

microbiome variation are not exclusive to COVID-19 disease: the effect of intubation on 497 

the respiratory microbiome and its influence on the incidence of ventilator-associated 498 

pneumonia have been previously studied28,30,31.  499 

 500 

To better understand the potential functional consequences of these procedures and 501 

linked microbial shifts, we also profiled the microbiome of the lower respiratory tract 502 

using single-cell data obtained from a cross-sectional cohort of patients derived from 503 

the same hospital. Our results show that single-cell RNA-seq, despite not being 504 

optimized for microbial detection and profiling, can identify bacteria alone or in 505 

association with specific human cells. Unfortunately, the low numbers of microbial reads 506 

obtained in this small cohort, together with the fact that ICU stay, COVID-19 diagnosis 507 

and intubation are highly correlated in this set of patients, only allow for a first 508 

exploratory analysis of the results, requiring validation in further datasets. In this cohort, 509 

we identified different oral commensals and opportunistic pathogens previously linked 510 

to COVID-19 patients in both groups of samples, thus pointing again at a potential 511 

ventilation-linked origin. More interestingly, we identified a subset of bacteria 512 

associated with host cells, more specifically with neutrophils, monocytes and 513 

macrophages. This enrichment shows that these bacteria are likely not random 514 
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contaminants, from which an even distribution across cell types (i.e. considering cell 515 

type abundances) would be expected. The identity of these host cells suggests that 516 

bacteria could have been phagocyted by these innate immune system cells, rather than 517 

be attached to the host cell surface. To the best of our knowledge, this is the first study 518 

linking interacting host cells and lung microbiome via high-throughput single-cell RNA-519 

seq.  520 

 521 

We find that host cells associated with bacteria, most of which are of oral origin, exhibit 522 

pro-inflammatory phenotypes as well as higher levels of MHC for antigen presentation. 523 

In this single-cell cohort it was observed that critical COVID-19 patients are characterized 524 

by an impaired monocyte to macrophage differentiation, resulting in an excess of pro-525 

inflammatory monocytes, as well as by prolonged neutrophil inflammation26. Given that 526 

only these cell types are enriched in bacteria, we hypothesize that the respiratory (or 527 

ventilation-linked) microbiome may be playing a role in exacerbating COVID-19 528 

progression in the lower respiratory tract. We verified that this response could likely be 529 

driven by bacteria and not SARS-CoV-2, which is also detected mostly in these cell types, 530 

as there is almost no overlap in detection of both virus and bacteria in the same cells. 531 

However, it must be noted that lack of detection does not completely rule out presence 532 

of virus and bacteria within these cells. Therefore, further research is required in order 533 

to confirm a causative role of the microbiota in this immune impairment characteristic 534 

of critical disease, and to reveal the specific mechanisms involved. 535 

 536 

The presence of oral taxa in the lung microbiota is not unique of disease conditions. It is 537 

known that microaspiration, or the aspiration of aerosol droplets originated in the oral 538 

cavity, occurs in healthy individuals and can serve as a route for lung colonization of oral 539 

commensals34. Such an increase of oral bacteria in the lower respiratory tract could be 540 

facilitated when critically ill patients –including but not limited to COVID-19– get 541 

intubated. Indeed, oral bacteria have been linked to ventilator-associated 542 

pneumonia35,36. It is yet to be elucidated whether COVID-19 physiopathology favors lung 543 

colonization by oral bacteria or if, in contrast, a lung microbiome previously colonized 544 

by oral microbes could also contribute to the disease. What is known is that an increase 545 
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of oral bacteria in the lower respiratory tract can result in an increased inflammatory 546 

phenotype, even in healthy subjects37  547 

 548 

Conclusion 549 

 550 

Overall, this study provides a systematic analysis of potential confounders in COVID-19 551 

microbiome studies. We identified that ICU hospitalization and type of oxygen support, 552 

which may be at least partially explained by clinical practices such as antibiotic usage, 553 

had large impacts on the upper respiratory tract microbiome and have the potential to 554 

confound clinical microbiome studies. Among the different types of oxygen support we 555 

reported the largest shifts in microbial community structure between intubated and 556 

non-intubated patients. We found that oral taxa were strongly enriched in the upper 557 

respiratory tract of mechanically ventilated COVID-19 patients, and specific taxa were 558 

also found in the lower respiratory tract of COVID-19 patients. Further, in the lower 559 

respiratory tract, microbes were strongly associated with specific pro-inflammatory 560 

immune cells. This information contributes to a collective body of literature on the 561 

pathology of COVID-19 and suggests that careful attention be paid to ICU stay and type 562 

of oxygen support and associated clinical practices such as antibiotic usage or oral 563 

decontamination procedures when evaluating the role of the lung microbiome on 564 

COVID-19 disease progression. 565 

  566 
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Methods  567 

 568 

Study design and patient cohorts 569 

 570 

All experimental protocols and data analyses were approved by the Ethics Commission 571 

from the UZ Leuven Hospital, under the COntAGIouS observational clinical trial (study 572 

number S63381). The study design is compliant with all relevant ethical regulations, 573 

including the Declaration of Helsinki and in the GDPR. All participants gave their 574 

informed consent to participate in the study.  575 

 576 

A total of 58 patients from the COntAGIouS observational trial were included as our 577 

upper respiratory tract cohort. All patients were admitted to the UZ Leuven hospital 578 

with a diagnostic of COVID-19. The disease was diagnosed based on a) a positive qRT-579 

PCR test, performed on admission or previously on other hospitals, when patients were 580 

transferred from other medical facilities; or b) a chest CT-scan showing alveolar damage 581 

and clinical symptoms of the disease. All patients included in the study were admitted 582 

to ICU for a variable amount of time. Nasopharyngeal swabs were taken from these 583 

patients at different timepoints throughout ICU stay and after ICU discharge, during 584 

recovery in ward. A total of 112 swabs were processed for upper respiratory microbiome 585 

characterization (Figure 1a).  586 

 587 

To extend our findings from the upper respiratory tract, we also profiled the lower 588 

respiratory tract microbiota in a different cohort18 of 35 patients belonging to the same 589 

observational trial and also recruited at UZ Leuven hospital. This cross-sectional cohort 590 

is composed by 22 COVID-19 patients and 13 pneumonitis controls with negative qRT-591 

PCR for SARS-CoV-2, with varying disease severity. Previous data from single-cell RNA-592 

sequencing had been collected for this cohort18. We reanalyzed this single-cell dataset 593 

to profile the lower respiratory tract microbiota in these patients. 594 

 595 

 596 

RNA/DNA extraction and sequencing 597 

 598 
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Nucleic acid extraction from the swab samples was performed with AllPrep 599 

DNA/RNA/miRNA Universal kit (QIAGEN, catnr. 80224). Briefly, swabs from the 600 

potentially infectious samples were inactivated by adding 600µL RLT-plus lysis buffer. To 601 

increase bacterial cell lysis efficiency, glass beads and DX reagent (Pathogen Lysis Tubes, 602 

QIAGEN, catnr. 19091) were added to the lysis buffer, and samples were disrupted in a 603 

FastPrep-24TM instrument with the following program: 1-minute beating at 6.5m/sec, 1-604 

minute incubation at 4°C, 1-minute beating at 6.5m/sec, 1-minute incubation at 4°C. 605 

After lysis, the remaining extraction steps followed the recommended protocol from the 606 

manufacturer. DNA was eluted in 50µL EB buffer. Amplification of the V4 region of the 607 

16S gene was done with primers 515F and 806R, using single multiplex identifiers and 608 

adaptors as previously described38. RNA was eluted in 30µL of nuclease-free water and 609 

used for SARS-CoV-2 viral load determination in the swabs as well as to measure 610 

inflammatory markers and cytokines and to estimate host cell populations via marker 611 

gene expression using nCounter. In brief, raw nCounter data were processed using 612 

nSolver 4.0 software (Nanostring), sequentially correcting three factors for each 613 

individual sample: technical variation between samples (using spiked positive control 614 

RNA), background correction (using spiked negative control RNA) and RNA content 615 

variation (using 15 housekeeping genes). We have previously validated nCounter digital 616 

transcriptomics for simultaneous quantification of host immune and viral transcripts39, 617 

including respiratory viruses in nasopharyngeal aspirates, even with low RNA yield40–42.   618 

 619 

DNA sequencing was performed on an Illumina MiSeq instrument, generating paired-620 

end reads of 250 base pairs. 621 

 622 

For quality control, reads were demultiplexed with LotuS v1.56543 and processed 623 

following the DADA2 microbiome pipeline using the R packages DADA244 and 624 

phyloseq45. Briefly, reads were filtered and trimmed using the parameters truncQ=11, 625 

truncLen=c(130,200), and trimLeft=c(30, 30) and then denoised. After removing 626 

chimeras, amplicon sequence variants (ASVs) table was constructed and taxonomy was 627 

assigned using the Ribosomal Database Project (RDP) classifier implemented in DADA2 628 

(RDP trainset 16/release 11.5). The abundance table was then corrected for copy 629 

number, rarefied to even sequencing depth, and decontaminated. For decontamination, 630 
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we used the prevalence-based contaminant identification method in the R package 631 

decontam46. 632 

 633 

16S statistical analysis 634 

 635 

All the 16S data analyses were performed using R v3.6.0 and the packages vegan 636 

(v2.5.7)47, phyloseq (v1.34.0)45, CoDaSeq (v0.99.6)48, DESeq2 (v1.30.1)49, Biostrings 637 

(v2.58.0)50, rstatix (v0.7.0)51, glmulti (v1.0.8)52, sjPlot (v2.8.7)53, and DECIPHER 638 

(v2.18.1)54.  639 

 640 

To analyze the 16S amplicon data, technical replicates were pooled and counts from 641 

technical replicates were added. For all the analyses using genus-level agglomerated 642 

data, only samples containing more than 10,000 reads assigned at the genus level were 643 

used (101 samples in total). Alpha-diversity was analyzed using Shannon’s Diversity 644 

Index. Comparison of the alpha diversity values across different groups was performed 645 

using Kruskal-Wallis tests for comparisons across multiple groups. When applicable, 646 

pairwise comparisons were performed using Dunn post-hoc tests. To establish the 647 

potential associations of alpha diversity with different metadata variables, we selected 648 

8 variables related to COVID-19 disease and/or known to affect microbiome 649 

composition and diversity: patient ID, days spent in ICU, SARS-CoV-2 viral load, antibiotic 650 

usage for ceftriaxone and meropenem/piperacillin-tazobactam, previous mechanical 651 

ventilation, calprotectin gene expression and CRP levels. Meropenem and piperacillin-652 

tazobactam were merged as a single antibiotic as their administration is indicated under 653 

the same clinical guidelines. 654 

 655 

We used the R package glmulti to perform an exhaustive evaluation of the 256 models 656 

including all possible combinations of the selected variables. All models generated were 657 

generalized linear models or generalized linear mixed models (when including the 658 

patient ID as a random effect), using a Gaussian family with a logarithmic link. Model 659 

ranking and selection was performed based on the lowest small-sample-corrected 660 

Akaike Information Criterion (AICc), and model significance was assessed comparing 661 

with a null model (including the intercept only) using ANOVA test. Final variable 662 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2020.12.23.20248425doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.23.20248425
http://creativecommons.org/licenses/by-nc-nd/4.0/


importance was calculated as a weighted average of the models in which each of the 663 

variables appeared, with weights corresponding to the model ranks, defined by their 664 

AICc values. This was also implemented as part of the glmulti package. The final model 665 

plots were generated with the sjPlot package. Intra-patient differences in alpha diversity 666 

between timepoints before and after administration of antibiotics or mechanical 667 

ventilation were determined with Wilcoxon signed-rank tests.  668 

 669 

Beta diversity analyses were performed using distance-based redundancy analyses 670 

(dbRDA), using Aitchison distances. Prior to CLR data transformation, we filtered the 671 

data using the CoDaSeq.filter function, to keep samples with more than 10,000 reads 672 

and taxa with a relative abundance above 0.1% in any sample, as well as a prevalence of 673 

at least 10% in the cohort. To replace zeros, we first calculated the minimum (non-zero) 674 

relative abundance of each taxon across all samples. Then, for samples with zero counts 675 

for a given taxon, the minimum relative abundance of the specific taxon was multiplied 676 

by the total counts of such samples and this value was used to impute the zeros. dbRDA 677 

analyses were performed using the capscale function from vegan, first in univariate 678 

analyses with 72 metadata variables (Supplementary Table 2). Model p-values were 679 

corrected using Benjamini-Hochberg’s (BH) multiple-testing correction, to select 20 680 

variables with BH-adjusted p-values < 0.05. These 20 variables were included in a 681 

multivariate model, and non-redundant contribution to variation was calculated using 682 

forward stepwise variable selection via the ordiR2step function from vegan. To 683 

deconfound the effect of antibiotics and patient ID for oxygen support type, partial 684 

dbRDA was used, including both antibiotics and patient ID as blocking variables. 685 

Metadata variables containing dates, as well as non-informative metadata were 686 

excluded. Non-informative metadata variables were defined as those containing a single 687 

non-NA value or, for categorical variables, those being unevenly distributed (with >90% 688 

of the samples belonging to the same category, for instance an antibiotic administered 689 

only in two different samples). Additionally, from pairs of highly collinear variables 690 

(correlation higher than 0.9), only one variable was kept.  691 

 692 
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Differential taxa abundance analyses were performed using DESeq2’s likelihood ratio 693 

tests and controlling for potential confounders when indicated, including them in the 694 

null model.  695 

 696 

To explore species-level and strain-level diversity, 16S sequences were first clustered 697 

into 97% nucleotide diversity operational taxonomic units (OTUs) using the R packages 698 

Biostrings and DECIPHER. These OTUs were used to represents the species-level. The 699 

number of unique 16S sequences clustered within each OTU were used to represent the 700 

number of detectable strains per species.  To calculate strain-level diversity per sample, 701 

the number of strains of 5 detected OTU species were randomly selected and averaged. 702 

This was repeated 1,000x and the average of the all 1,000 subsamplings was used as the 703 

final strain-level diversity value for each sample, as previously described55. To account 704 

for uneven sampling assessing diversity differences based on different parameters, we 705 

randomly selected and averaged the species- and strain-level diversity of 5 samples per 706 

parameter. This was repeated 100x and the subsamplings were used to assess the 707 

significant differences between species- and strain-level diversity across the 708 

parameters. The average was of all 100 subsamplings was used to as the input for a 709 

Pearson’s correlation between species- and strain-level diversity. 710 

 711 

All statistical tests were two-sided unless otherwise specified, and when multiple tests 712 

were applied to the different features (e.g. the differential taxa abundances across two 713 

conditions) p-values were corrected for multiple testing using Benjamini-Hochberg’s 714 

method.  715 

 716 

Identification of microbial reads in BAL scRNA-seq data 717 

BAL scRNA-seq raw fastq data, as well as cell type and subtype assignations for all 718 

individual cells, were obtained from a previous publication from within the COntAGIouS 719 

consortium. Experimental procedures on BAL samples as well as detailed host single-cell 720 

gene expression analyses are detailed in the original publication18. 721 

 722 

5’ single-cell RNA-seq data obtained from the 10X Genomics Chromium platform was 723 

processed with an in-house pipeline to identify microbial reads. This pipeline comprises 724 
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a series of steps designed to detect bacterial reads with high sensitivity, while discarding 725 

potential false positives. For microbial identification, only the read 2 fastq file from the 726 

raw sequencing files, containing the information on the cDNA fragment, was used. 727 

Trimmomatic56 (v0.38) was used to trim low quality bases and adapters, and discard 728 

short reads. Additionally, Prinseq++57 (v1.2) was used to discard reads with low-729 

complexity stretches such as poly-A sequences. Following these two quality control 730 

steps, reads from human and potential sequencing artifacts (phage phiX174) were 731 

mapped with STAR58 (v2.7.1) and discarded. The remaining unmapped reads were 732 

mapped against reference microbial genomes using a 2-step approach: first, we scanned 733 

these remaining reads using mash screen59 (v2.0) against a custom database of 11685 734 

microbial reference genomes including bacteria, archaea, fungi and viruses. Genomes 735 

likely to be present in the analyzed sample (selected using a threshold of at least two 736 

shared hashes from mash screen) were selected and reads were pseudoaligned to this 737 

subset of reference genomes using kallisto60 (v0.44.0). Kallisto provides two outputs: an 738 

“abundances” table containing the number of reads aligned to each gene from the pre-739 

selected set of reference genomes and a pseudo-alignment file (in *.bam format) 740 

containing the mapping information for each of the reads processed by kallisto. From 741 

the abundances table, we derived a taxonomy table, assigning each gene to its 742 

corresponding species, as well as a functional table, mapping each gene to KEGG 743 

functional annotation using KEGG Orthology numbers (KOs). To remove potential 744 

artifacts, two additional filters were applied to the taxonomic table: first, if less than 10 745 

different functions (i.e. 10 different KOs) were expressed from a given species, such 746 

species was discarded. This filter ensures identification of active bacteria, minimizing 747 

the capture of contaminants appearing during the sample preparation or sequencing. 748 

Second, if one function accounted for more than 95% of the mapped reads of a given 749 

species, it was also discarded. This filter was aimed at removing potential artifacts 750 

caused by errors in the reference genome assemblies from our database.  751 

 752 

Bacterial reads were assigned their specific barcodes and UMIs as follows: read IDs from 753 

the mapped microbial reads were retrieved from the kallisto pseudoalignment (*.bam) 754 

output using SAMtools (v1.9)61. These unique read IDs were used to retrieve the specific 755 

barcodes and UMIs using the raw read 1 fastq files, thus assigning each barcode and 756 
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UMI univocally to a microbial species and function. Barcodes assigned to bacterial 757 

species that had been removed in the last two filtering steps of the single-cell analysis 758 

pipeline (see above) were discarded, to avoid including potential contaminants in the 759 

host-bacteria association analyses.  760 

 761 

Differences in lower respiratory tract microbial taxa between COVID-19 patients and 762 

controls, ICU and ward patients, and invasive and non-invasive ventilation types were 763 

calculated using Wilcoxon rank-sum tests on centered-log-ratio (CLR)-transformed data. 764 

This more lenient approach than the one used for 16S data was chosen due to the low 765 

number of samples available and the reduced number of bacterial reads identified per 766 

sample. Prior to CLR data transformation, we filtered the data using the CoDaSeq.filter 767 

function, to keep samples with more than 1,000 reads and taxa with a relative 768 

abundance above 0.1%. Zeros were imputed using the same approach as for the 16S 769 

amplicon data.  770 

 771 

Direct associations between bacteria and host cells 772 

 773 

Host single-cell transcriptomics data was obtained from the Seurat62 object after 774 

preprocessing and integrating the samples of the single-cell cohort, as described 775 

previously18. From the Seurat object, the metadata was extracted, including the 776 

information on patient group (COVID-19 or control) and severity of the disease 777 

(moderate or critical) as well as cell type and subtype annotation corresponding to each 778 

barcode. Enrichment of bacteria detected in patient groups or cell types was calculated 779 

using chi-squared tests, with effect sizes determined via the standardized residuals. 780 

Significance was assessed via post-hoc tests using the R package chisq.posthoc.test63.  781 

 782 

To evaluate the overlap between bacterial and viral reads detection in host cells of 783 

COVID-19 patients, we considered the total number of cells analyzed in these patients: 784 

33,243. Of these, 31,868 cells do not have associated bacterial or viral reads; 1,032 have 785 

only bacterial reads; 342 have only viral reads; and 1 has both viral and bacterial reads 786 

detected (Supplementary Table 5).  The marginal probability for bacterial detection is 787 

thus P(bacterial detection) = 1,033/33,243 = 0.031; while the marginal probability for 788 
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viral detection in this dataset is P(viral detection) = 343/33,243 = 0.010. Assuming 789 

independence of both events, the joint probability of finding a host cell associated to 790 

both bacterial and viral reads would be P(bacterial and viral detection) = 0.031*0.010 = 791 

3.2·10-4. With this joint probability and a total of 33,243 cells profiled, an average of 792 

10.65 host cells should have both bacterial and viral reads detected. A Chi-squared test 793 

suggests non-independence of the data (p-value = 4.1·10-3). Additionally, we performed 794 

an exact binomial test, considering number of successes = 1 (joint bacterial and viral 795 

detection), probability of success = 3.2-10-4, (the joint probability assuming 796 

independence of both events), and number of trials = 33,243 (the total number of cells 797 

studied). This two-sided test evaluates the null hypothesis that the joint probability of 798 

both events is the one calculated assuming independence. The result of this test (p-value 799 

= 5.7·10-4) suggests rejecting the null hypothesis. Therefore, these analyses altogether 800 

suggest that both events are not independent and that there is mutual exclusion of 801 

microbiome members and viruses in the same host immune cells. 802 

 803 

For cell types showing an enrichment in associated bacteria, a new Seurat object was 804 

created by subsetting the specific cell type. Chi-squared tests were also used to 805 

determine enrichment of bacteria-associated cell subtypes. Previous annotations of cell 806 

subtypes18 were used to generate new clusters manually and identify marker genes for 807 

these subtypes, using the function findAllMarkers from Seurat. This function was also 808 

used to find differentially expressed genes between bacteria-associated and not-809 

bacteria-associated host cells of each subtype. When using this function, reported 810 

adjusted p-values are calculated using Bonferroni correction by default.  811 

 812 

Figure legends 813 

 814 

Figure 1. Sample overview and alpha diversity. a) Longitudinal sampling of patients. 815 

Each line represents one patient. Yellow lines span the days spent in ward, while blue 816 

lines span the days spent in ICU. Red points mark hospital discharge dates. Crosses 817 

indicate the timepoints where swab samples were obtained for microbiome analyses. 818 

b) Top 15 most abundant genera in this cohort. Samples with > 10,000 reads assigned 819 

to microbial taxa at the genus level were stratified according to the sampling moment: 820 
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upon admission, throughout the ICU stay or at ICU discharge/during treatment in ward. 821 

c) Effect of the length of ICU stay and SARS-CoV-2 viral load on upper respiratory tract 822 

microbiome diversity. The plot shows the model-predicted Shannon index as a function 823 

of the days in ICU, for different levels of SARS-CoV-2 viral load (selected within the range 824 

of observed data). Confidence intervals for the predictions are shown in Supplementary 825 

Figure 1b. d) Association of the length of ICU stay and calprotectin gene expression 826 

levels with upper respiratory tract microbiome diversity. The plot shows the model-827 

predicted Shannon index as a function of the days in ICU, for different levels of 828 

calprotectin (subunit S100A8) gene expression, selected within the range of observed 829 

data. Confidence intervals for the predictions are shown in Supplementary Figure 1c.  830 

 831 

Figure 2. Upper respiratory microbiome covariates in COVID-19. a) Significant (BH-832 

corrected p-value < 0.05) covariates explaining microbiota variation in the upper 833 

respiratory tract in this cohort. Individual covariates are listed on the y-axis, their color 834 

corresponds to the metadata category they belong to: technical data, disease-related, 835 

microbiological tests, comorbidities or host cell populations or gene expression, the 836 

latter measured with nCounter (see Methods). Darker colors refer to the individual 837 

variance explained by each of these covariates assuming independency, while lighter 838 

colors represent the cumulative and non-redundant variance explained by incorporating 839 

each variable to a model using a stepwise dbRDA analysis (using Aitchison distances). 840 

The black horizontal line separates those variables that are significant in the non-841 

redundant analysis on top (Patient ID and oxygen support type) from the rest. b) RDA 842 

ordination plot showing the first 2 constrained axes. Ordination is constrained by the 843 

two significant variables “Patient ID” and “Oxygen support”. Samples are depicted as 844 

points, whose color indicates the oxygen support type of the patient and whose shape 845 

indicates stay at ward or ICU (at the moment of sampling). Axes indicate the variance 846 

explained by the first two constrained components of the RDA analysis. c) Species- (left) 847 

and strain-level diversity (right) of the samples, stratified by oxygen support type. d) 848 

Pearson correlation between average species- and strain- level diversity for each of the 849 

oxygen support categories. e) Significant differences in taxa abundances among oxygen 850 

support types. Differentially abundant taxa between invasive (red) and non-invasive 851 

(blue) ventilated samples. Only the top 10 most significant taxa are shown, as 852 
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determined by their BH-adjusted p-value. Boxplots span from the first until the third 853 

quartile of the data distribution, and the horizontal line indicates the median value of 854 

the data. The whiskers extend from the quartiles until the last data point within 1.5 855 

times the interquartile range, with outliers beyond. Individual data points are also 856 

represented. Gray lines join samples pertaining to the same patient, taken at different 857 

time points. Asterisks (*) indicate taxa that remain significant after controlling for the 858 

main antibiotics (ceftriaxone and meropenem/piperacillin-tazobactam).  859 

 860 

Figure 3. Host single cells associated to the lower respiratory tract microbiota. a) 861 

relative proportion of cells from negative and positive COVID-19 patients with (red 862 

color) and without (blue) associated bacteria. The p-value of a chi-squared test using the 863 

count data is shown on top of the panel. b) Cell types enriched in bacteria-associated 864 

cells. Barplots represent the proportion of cell types without (“No”) and with (“Yes”) 865 

bacteria in COVID-19 positive and negative patients. For each patient class, we tested 866 

for enrichment of bacteria-associated cells (“Yes”) across the different cell types, using 867 

the proportions of non-bacteria associated cells (“No”) as background. Asterisks mark 868 

the cell types with significant enrichment of bacteria. c) Bacterial genera preferentially 869 

associating to specific cell types. The heatmaps show the standardized residuals of a chi-870 

squared test including all bacterial genera and the three host cell types enriched in 871 

bacteria, for controls (left) and COVID-19 positive patients (right). Taxa with no 872 

significant associations with any of the cell types are not shown. Asterisks denote 873 

significant positive or negative associations: enrichments are shown in red; depletions 874 

are depicted in blue. d) Host cell subtypes associated with bacteria. The heatmap shows 875 

the standardized residuals of a chi-squared test including the subtypes of neutrophils, 876 

monocytes and monocyte-derived macrophages with associated bacteria, considering 877 

cells without bacteria as background. Asterisks denote significant positive or negative 878 

associations: enrichments are shown in red; depletions are depicted in blue. e) Marker 879 

genes detected for the 5 different subtypes of neutrophils. The heatmap also shows 880 

within-group differences between bacteria-associated and bacteria-non-associated 881 

cells. f) Myeloid cell functional gene set showing the expression of canonical pro-882 

inflammatory, anti-inflammatory and MHC genes for the two subtypes of myeloid cells 883 

significantly associated with bacteria (CCL2hi-macrophages and IL1Bhi-monocytes). The 884 
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heatmap also shows within group differences between bacteria-associated and 885 

bacteria-non-associated cells. Statistically significant differences after multiple testing 886 

correction are marked with squares. For b)-d) asterisks denote significance as follows: *  887 

= p-value ≤ 0.05; ** = p-value ≤ 0.01; *** = p-value ≤ 0.001; **** = p-value ≤ 0.0001. 888 

 889 

 890 

Supplementary Figure Legends 891 

 892 

Supplementary Figure 1. Alpha diversity in the upper respiratory tract. a) Shannon 893 

diversity index of all samples, stratified by the sampling moment: admission, throughout 894 

ICU stay or at ICU discharge/during treatment in ward. The p-value of a Kruskal-Wallis 895 

test, as well as the those of Dunn tests corresponding to the pairwise differences among 896 

the three groups, are shown. b) Forest plot of the fixed effects estimates of the variables 897 

selected in the best model predicting Shannon diversity index. The points and values 898 

above indicate the fixed effect estimates of the variables selected, while the horizontal 899 

lines span their 95% confidence intervals. Asterisks denote significance as follows: *  = 900 

p-value ≤ 0.05; ** = p-value ≤ 0.01; *** = p-value ≤ 0.001; **** = p-value ≤ 0.0001. c) c) 901 

Effect of the length of ICU stay and SARS-CoV-2 viral load on upper respiratory tract 902 

microbiome diversity. Each plot shows the model-predicted Shannon index as a function 903 

of the days in ICU, for a different level of SARS-CoV-2 viral load (selected within the range 904 

of observed data). Shaded areas correspond to the 95% confidence intervals. d) 905 

Association of the length of ICU stay and calprotectin gene expression levels with upper 906 

respiratory tract microbiome diversity. Each plot shows the model-predicted Shannon 907 

index as a function of the days in ICU, for a different level of calprotectin (subunit 908 

S100A8) gene expression, selected within the range of observed data. Shaded areas 909 

correspond to the 95% confidence intervals. e) Model-averaged relative importance of 910 

each of the variables selected (only for fixed effects). Variable importance was 911 

calculated as a weighted average of the models in which each of the variables appeared, 912 

with weights corresponding to the model ranks, defined by their AICc values. f) Intra-913 

patient differences of alpha-diversity values, before and after administration of 914 

meropenem/piperacillin-tazobactam (left) or mechanical ventilation (right). P-values 915 

shown are derived from Wilcoxon signed-rank tests. For (a,f), boxplots span from the 916 
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first until the third quartile of the data distribution, and the horizontal line indicates the 917 

median value of the data. The whiskers extend from the quartiles until the last data 918 

point within 1.5 times the interquartile range, with outliers beyond. Individual data 919 

points are also represented. 920 

 921 

Supplementary Figure 2. Association of antibiotics and mechanical ventilation. a) 922 

Mosaic plots showing, for each category of oxygen support, the proportion of samples 923 

receiving ceftriaxone administration (current administration on day of sampling, left) or 924 

the proportion of samples having received meropenem or piperacillin-tazobactam 925 

(ongoing or previous treatment, right). P-values denote the significance of Chi-squared 926 

tests for these associations. The different oxygen support levels are: 1-oxygen flow (via 927 

nasal cannula); 2-high flow oxygen support; 3-non-invasive ventilation (CPAP, BIPAP); 4-928 

invasive ventilation; 5-prone ventilation; 6-extra corporeal membrane oxygenation 929 

(ECMO); 7-nitric oxide inhalation. Levels 4-7 correspond to mechanically ventilated 930 

patients. b) Longitudinal sampling of patients, showing specific antibiotic 931 

administration. Each line represents one patient. Yellow lines represent no-specific 932 

antibiotic administration for the spanned period; blue lines represent antibiotic was 933 

administered during that period. Shaded areas in light gray represent ICU stay, whilst 934 

areas in dark gray represent periods with the patient receiving mechanical ventilation. 935 

Crosses indicate the timepoints where swab samples were obtained for microbiome 936 

analyses. Individual yellow points at later times represent follow-up visits. 937 

 938 

Supplementary Figure 3. Differentially abundant taxa between oxygen support types. 939 

a) The 29 taxa whose abundance is significantly different between non-invasive and 940 

invasive ventilation are represented. b) The 20 taxa whose abundance is significantly 941 

different between ventilation types, after controlling for antibiotic usage, are 942 

represented. Boxplots span from the first until the third quartile of the data distribution, 943 

and the horizontal line indicates the median value of the data. The whiskers extend from 944 

the quartiles until the last data point within 1.5 times the interquartile range, with 945 

outliers beyond. Individual data points are also represented. Gray lines join samples 946 

pertaining to the same patient, taken at different time points.  947 

 948 
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Supplementary Figure 4. Absolute microbial read counts in single-cell RNA-seq data 949 

from BAL samples. The top 15 species detected in our analyses are depicted. Samples 950 

are grouped by disease type (control for non-COVID-19 pneumonia patients, or COVID-951 

19) and hospital stay (ICU or ward).  952 

 953 

Supplementary Figure 5. Associations of specific cell types with bacteria, for COVID-19 954 

and control samples. The colors represent the strength of the association as the 955 

standardized residuals of a Chi-squared test. Red colors indicate a positive association 956 

(i.e. enrichment) of bacteria for each cell type. Blue colors indicate a negative 957 

association (i.e. depletion) of bacteria for a given cell type. Asterisks denote significance 958 

as follows: *  = p-value ≤ 0.05; ** = p-value ≤ 0.01; *** = p-value ≤ 0.001; **** = p-value 959 

≤ 0.0001. 960 
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 Upper respiratory tract (swabs) Lower respiratory tract (BAL) 

Number of patients 58 35 

Type of sampling Longitudinal Cross-sectional 

COVID-19 diagnosis (%) 58 (100%) 22 (63%) 

Patients admitted to ICU (%) 58 (100%) 21 (60%) at sampling 

Age (range) 61 (37-83) 64 (45-85) 

Female sex (%) 13 (22%) 12 (34%) 

BMI (range) 29 (22-47) 26 (16-36) 

Diabetic (%) 12 (21%) 6 (17%) 

Days in ICU (range) 21.4 (2-72) Not Available (cross-sectional cohort) 

Days in hospital (range) 32.5 (6-86) Not Available (cross-sectional cohort) 

 

Table 1. Patient demographics of upper and lower respiratory tract cohorts 
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