Mechanical Vibration: Analysis, Uncertainties, and Control H. Benaroya \& M. Nagurka, 2010 ERRATA

p.x: Web site for Matlab primer is incorrect. It should be:
http://www.crcpress.com/product/isbn/9781420080568
p.15: Figure 1.7c. The words "Suspension system" belong with the upper spring/damper. In their place, they should be replaced with the words "Tire stiffness \& damping".
p.64: In Figure 2.6, l should be replaced by L.
p.99: After "Therefore, the period of oscillation is" should be $T=2\left(t_{1}+t_{2}\right)=2(0.175+0.0658)=2(0.241)=0.482 \mathrm{~s}$
p.101: In Equation 2.31 there is a missing subscript. It should be $x_{p}(t)$ in the numerator on the left.
p.147: In the equation for natural frequency (the second equation), it should be K (not k).
p155: In Figure 2.65 the direction of the force should be reversed.
p.186: Fig 3.16: The spiral continues to the origin for $\zeta=0.1$
p.186: In the equation for the signum function it should be if $\dot{x}(x d o t, \operatorname{not} x)$ is $<,=$, and >0.
p.202: In the equation above Section 3.5.2, the right-hand side is missing the factor $k a$. (The right-hand side should be $\frac{k a A}{l} \sin \omega t$.)
p.203: The definition of the frequency response function in Equation 3.32 is not correct. It should be $H(i \omega)=\frac{X(i \omega)}{A / k}$.
p.204: In Equation 3.33 it should be A / k not A. In Equation 3.34 the numerator should be 1 not $1 / k$. (This makes Equation 3.34 exactly β.)
p.226: The equations for $x_{s}(t)$ should be

$$
\begin{aligned}
x_{s}(t) & =\frac{a_{0}}{2}+\sum_{p=1}^{\infty} x_{p}(t) \\
& =\frac{a_{0}}{2}+\sum_{p=1}^{\infty} A_{p}\left[a_{p} \cos \left(p \omega_{T} t-\theta_{p}\right)+b_{p} \sin \left(p \omega_{T} t-\theta_{p}\right)\right]
\end{aligned}
$$

p.232: In Problem 5 the first word should be "A" not "An".
p.237: In each part of Problem 15 " $F(t)$ " should be " $F(t) / m$ ".
p.238: In Problem 20 the numerator should be " 1 " not " $1 / k$ ".
p.240: The last sentence in Problem 26 should end: "with $\pm 1 \%$ accuracy error."
p.261: The second word of the first paragraph should be "name" not "named".
p.271: In Example 4.4 the problem statement is accidentally repeated in the Solution with a new equation number and footnote.
p.294: In the line after Equation 4.34, the equation " $\tau=1 /(\zeta \omega)$ " should be replaced with " τ $=1 /(\delta f)$ where δ is the log decrement and f is the frequency in Hertz."
p.296: In the second paragraph, the phrase "we can substitute the expression for $x(t)$ " should be replaced by "we can substitute the second derivative of $x(t)$ ".
p.459: The second equation should not have dots before the unit vectors.
p.479: In Example 7.6, there are missing commas in the first two equations. It should be $q_{1}=l-r, q_{2}=r$ and then below it $\dot{q}_{1}=-\dot{r}, \dot{q}_{2}=\dot{r}$
p.481: In the last sentence the phrase "power two and higher" should be "power three and higher".
p.493: In Problem 2 the equation of motion shown is not correct. It should be:

$$
m\left(a^{2}+4 l^{2} \cos ^{2} \theta\right) \ddot{\theta}-2 m l^{2} \dot{\theta}^{2} \sin 2 \theta+m g(5 a+4 b) \cos \theta+\frac{1}{2} k a^{2} \sin 2 \theta=0
$$

p.494: In Problem 3 the equation of motion shown is not correct. It should be:

$$
\left(m(l+r)^{2}+\frac{2}{5} m r^{2}\right) \ddot{\theta}+k a^{2} \sin \theta \cos \theta-m g(l+r) \cos \theta=0
$$

where l is the length of the rod. This length is not drawn correctly in the figure. (It should be drawn to the left edge of the sphere, not to its center.)
p.495: In Figure 7.15 the grounding symbol should not be used since it is not an inertial ground. The top line should be shown without any grounding symbol.
p.495: In Problem 11 it should be "Formulate the equations of motion" rather than "equation of motion".
p.496: In Figure 7.16 the grounding symbol should not be used since it is not an inertial ground. The top line should be shown without any grounding symbol.
p.510: In the solution to Example 8.2, $P_{2}=-k_{2} x_{1}$ in the first set of equations.
p.535: An equal sign is missing in last equation. It should be $m_{3}=\frac{W_{\text {car }}+W_{\text {cable }}}{g}=\frac{1250 \mathrm{lb}}{g}$
p.539: Near the bottom of the page there are missing units with f. It should be $f_{1}=1 \mathrm{~N}, f_{2}=0 \mathrm{~N}$
p.541: In the second line delete the word "dimensionless". (The squares of the natural frequencies have units.)
p.550: In Footnote 28 the equation should be $\theta(t)=A \cos (\omega t-\phi)$.
p.558: In the last sentence of the paragraph before Equation 8.60 it should state: "Similarly we can rewrite the last two terms in Equation 8.59 by following a similar procedure for the complex conjugate pairs. For $x_{1}(t)$, the ratios r_{11} and \ldots "
p.581: All equations should have $=$ signs, i.e., in two places replace \simeq by $=$.
p.596: In Figure 8.41 the grounding symbol should not be used since it is not an inertial ground. The earth should be shown shaded without the grounding symbol.
p.597: In Problem 12, it should refer to the system of Figure 8.12.
p.599: In Problem 18 the second equation of motion has two errors: (1) the term $\left(I_{0}+\frac{L}{2}\right) \ddot{\theta}$ should be $\left(I_{0}+\frac{m L^{2}}{4}\right) \ddot{\theta}$ and (2) the term $m g \frac{L}{2} \sin \theta$ should just be $m g \frac{L}{2} \theta$.
p.604: In Prob. 37, in the two forces, replace ω_{1} by Ω_{1} and ω_{2} by Ω_{2} in order to distinguish between forcing frequencies and natural frequencies.
p.668: In the caption for Figure 9.23 it should be $B=0.74(g / V)^{4}$.
p.669: In Problem 2 the rotation in the system is unrestrained. The figure is not clear at the boundaries.
p.705: The normalized modes $\left(\hat{U}_{j}(x)\right)$ should be used (in place of $\left.U_{j}(x)\right)$ in several places, including in Equations 10.43 and 10.44, right before the unnumbered equation $\left(m \hat{U}_{k}(x)\right.$), in the unnumbered equation (three places: $\hat{U}_{k}(x)$ to the left, $\hat{U}_{j}(x) \hat{U}_{k}(x)$ to the right), and in
the sentence right after the unnumbered equation $\left(\hat{U}_{j}(x)\right)$. No change is needed in the sentence beginning with: "We normalize Equation 10.42 for $U_{j}(x)$ via ..."

In Equation 10.46 there is no j subscript in the derivative.
p.758: In the last sentence of Problem 3, it should ask for the value of the tension, not the value of ω_{1}. Also, $m=5 \mathrm{~kg} / \mathrm{m}(\operatorname{not} \rho)$.
p.759: In Problem 6, the beam is fixed-fixed, not cantilever.
p.768: In Problem 42 the length is not provided. It should be $L=1000 \mathrm{in}$. In Problem 45, it should be Equation 10.124.
p.929: In Equation A.14, in the Taylor expansion, \sin a should be replaced by $\sin \theta_{0}$.
p.930: The reference to "Table 1.1" in the second to last paragraph should be "Table A.1".

