
L R I
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
MECHANICALLY PROVING TERMINATION 
USING POLYNOMIAL INTERPRETATIONS 

 
 

CONTEJEAN E / MARCHE C / URBAIN X TOMAS A P 
 

Unité Mixte de Recherche 8623 
CNRS-Université Paris Sud – LRI 

 
01/2004 

 
Rapport de Recherche N° 1382 

CNRS – Université de Paris Sud 
Centre d’Orsay 

LABORATOIRE DE RECHERCHE EN INFORMATIQUE 
Bâtiment 490 

91405 ORSAY Cedex (France) 



Mechanically proving termination using polynomial
interpretations

�

Evelyne Contejean Claude Marché
Xavier Urbain

PCRI — LRI (CNRS UMR 8623) & INRIA Futurs
Bât. 490, Université Paris-Sud, Centre d’Orsay

91405 Orsay Cedex, France

Ana Paula Tomás
Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
R. do Campo Alegre, 823
4150-180 Porto, Portugal

January 12, 2004

Abstract

For a long time, term orderings defined by polynomial interpretations have been
considered far too restrictive to be used for computer-aided termination proof of TRSs.
But recently, the introduction of the dependency pairs approach achieved considerable
progress w.r.t. automated termination proof, in particular by requiring from the under-
lying ordering much weaker properties than the classical approach. As a consequence,
the noticeable power of a combination dependency pairs/polynomial orderings yielded
a regain of interest for these interpretations.

We describe criteria on polynomial interpretations for them to define weakly mono-
tonic orderings. From these criteria, we obtain new techniques both for mechanically
checking termination using a given polynomial interpretation, and for finding such in-
terpretations with full automation. With regards to automated search, we propose an
original method for solving Diophantine constraints.

We implemented these techniques into the CiME rewrite tool, and we provide ex-
periments that show how useful polynomial orderings actually are in practice.

1 Introduction

For decades, the use of the standard Manna-Ness criterion (that is each rule decreases w.r.t.
a well-founded ordering) dominated amongst the different known methods aimed at proving
termination of term rewriting systems. The orderings required by this criterion must have
strong properties like strict monotonicity; they are usually distinguished in two classes: syn-
tactical orderings and semantical orderings. Syntactical orderings rely on a precedence on
symbols which is extended to terms while semantical ones make use of an interpretation of

�
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terms. Amongst the latter, term orderings defined by polynomial interpretations have been
defined in 1979 in a landmark paper of Lankford [28]. The combination of polynomials
with the Manna-Ness criterion puts strong restrictions on the class of relations the obtained
ordering can contain [9], and for a long time they have been considered much too weak to
be used in the practice of proving termination of TRSs.

But recently, considerable progress was achieved on automated termination proof, in
particular by use of the dependency pairs method and its termination criteria [1], its ap-
plications to incremental/hierarchical termination proofs [2, 41], and to termination under
specific strategies such as innermost termination [1, 2] or context-sensitive rewriting [22].

These new techniques demand much weaker properties on the underlying ordering used
in termination proofs. In particular, monotonicity of the strict part of the ordering is not
required. As a consequence, some orderings previously seen as less powerful than others
w.r.t. termination proof with the Manna-Ness criterion observed a regain of interest. This is
the case for polynomial orderings.

It has been noticed that the situation is partly similar with Knuth-Bendix order-
ings [21, 24], but not with Recursive Path orderings. In fact, the latter are always strictly
monotonic and that is why transformations have been proposed such as argument filtering
or more generally recursive program scheme. Such transformations are in general resources
consuming during the proof discovery process. However, adding argument filtering to poly-
nomial orderings is pointless since any ordering defined by an argument filtering and a set of
polynomial interpretations can be also defined directly by some other set of interpretations.

This new interest for polynomial interpretations-based orderings conducted us to design
a new implementation of these inside the CiME rewrite tool [12]. We combined existing
techniques with new improvements, and we describe hereafter the theoretical basis of this
implementation, which is able to find polynomial orderings for termination proofs with full
and efficient automation.

A key issue in finding polynomial orderings is to solve some non-linear constraints
over natural numbers. In order to improve efficiency, these constraints are linearised thanks
to the introduction of abstraction variables, and the problem of minimizing the number
of such variables arises. Quite surprisingly, this problem is a generalisation of the well-
known problem of computation of addition chains [5, 6, 7, 8, 13, 17, 18, 34, 35, 36, 38,
39, 42], which arises naturally when one wants to compute a polynomial expression while
minimising the number of multiplications.

This paper is organised as follows. In Section 2, we firstly discuss about the currently
known termination criteria which are suitable for automation, and about which properties
of term orderings are needed for such criteria. In Section 3, we recall how orderings by
polynomial interpretations are defined, and we show that, given a TRS

�
and a polyno-

mial interpretation, every verification needed to check termination of
�

reduces to check
positiveness of polynomial expressions. Then, we recall known techniques for checking
positiveness of such expressions, and give new results about � -translation of polynomial
interpretations. In Section 4, we consider the problem of finding suitable polynomial in-
terpretations with full automation, and present our new method for solving Diophantine
constraints arising in such a search. Finally, in Section 5 we comment a few results from a
selection of experiments conducted with the CiME system.
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2 Termination criteria

We assume the reader familiar with basic notions of term rewriting and termination, espe-
cially with the dependency pairs approach; we refer to surveys [3, 16] for details and to Arts
& Giesl [1, 2] regarding dependency pairs.

As it is now suitable for dependency pairs approach where both strict and large com-
parisons of terms occur, we need both strict and large term orderings. We use a slightly
modified variant of ordering pair or reduction pair [27]. For simplicity, since no confusion
is possible, we still call such pairs term orderings.

Formally, a term ordering is a pair ��������� of relations over the set 	
�������� of terms
over signature � and variables � , such that: 1) � is a quasi-ordering, i.e. reflexive and
transitive; 2) � is a strict ordering, i.e. irreflexive and transitive, included in ����� . Our
conditions fulfil the requirements of the very general definition of Kusakari et al. [27]. In
particular, 1) and 2) imply conditions ��������� and ��������� they require.

A term ordering is said to be well-founded if there is no infinite strictly decreasing
sequence ����� ��!"�#�$�$� ; stable if both � and � are stable under substitutions, that is for
any terms ��� and ��! and for any substitution % , if �$�&� ��! then ����%'�(�)!*% , and if �����(��!
then � � %+�,� ! % .

For a given symbol - of the signature, of arity .0/ 1 , we say that a relation 2
is monotonic with reference to the 3 -th argument of - , 15463748. , if for any terms
�9��:;��<=���$>$>$>?��<A@CBD����<A@FEG���$>$>$>���<AH , � 2 : implies

-I�C<=���$>$>$>���<A@CBD��������<A@FEG���$>$>$>?��<AHJ� 2 -I�C<=�$�$>$>$>?��<A@CBD�$��:;��<A@FEG�?�$>$>$>���<AHJ�

A term ordering ���K����� is weakly monotonic if � is monotonic with respect to all argu-
ments of all function symbols; it is strictly monotonic if � is also monotonic with respect to
all arguments of all function symbols. A term ordering ���K����� is called a weak (resp. strict)
reduction ordering if it is well-founded, stable and weakly (resp. strictly) monotonic.

To prove termination of a given TRS
�

, several possible criteria exist. The simplest one
is the standard Manna-Ness criterion: if there exists a strict reduction ordering ��������� such
that L
�NM for each rule L�O MQP �

, then
�

is terminating. There are a few variants of
dependency pairs criteria, the simplest one being: if there exists a weak reduction ordering
�������R� such that

S for each rule LTOUMVP �
, LW�,M ;

S for each dependency pair XC:;��<JY of
�

, :Z�[< ;
then

�
is terminating. Hence, unlike the standard criterion, the underlying ordering is not

required to be strictly monotonic. In fact, a common requirement of dependency pairs
criteria consists in relying on the use of a weak reduction ordering, even for criteria based
on estimated dependency graphs [1, 33].

Regarding innermost termination, there are improvements of dependency pairs crite-
ria [1] where the underlying ordering is not anymore asked to be weakly monotonic with
reference to all arguments of all symbols in the signature, but to some of them only. Thus,
defining such orderings makes an issue.

Finally, another usual concern in the practice of termination is rewriting modulo an
equational theory \ , like commutativity (C) or associativity and commutativity (AC). In
such a case, the underlying ordering must be compatible with the aforementioned theory,
that is ]?^_�,�)^ whenever ]`�,� , ]RaKb�]�^ and �Ia�b��c^ , and similarly for � .
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3 Term orderings defined by polynomial interpretations

We will now focus on term orderings defined by polynomial interpretations. In Section 3.1,
we define orderings based on arbitrary interpretations and we show which conditions they
must satisfy to guarantee, on the generated ordering, the properties listed in the previous
section. In Section 3.2, we focus on polynomial interpretations, and we show that all these
conditions can be reduced to positiveness of some polynomials. Then, in Section 3.3, we
summarise the known methods for checking positiveness. Those are still complex and in
Section 3.4 we propose a new technique of translation of interpretations, which eventually
allows to reduce checkings of conditions required on polynomials to very simple tests on
positiveness of their coefficients.

3.1 Orderings defined by interpretations

Let � be an arbitrary non-empty domain equipped with some ordering /�� , and let ��� be
/�� ��4�� .

Definition 3.1 Let � be a function which maps each ground term � P�	
��� � to an element
of � . The term ordering ����� ����� � generated by � is defined by

��� ������! iff � �C���9� /��	� �C��!?�
��� ������! iff � �C���9�
���	� �C��!?�

Lemma 3.2 If ��� is well-founded then ����� ����� � is a well-founded term ordering on
ground terms.

Proof. If �����J�����=� was not well-founded, there would be an infinite decreasing sequence
��� ������! ����������V�$�$� that is, by definition, � �C�*� �����	�G�C��!?�
���	� �C���?�����7�$�$� Hence, ���
would not be well-founded. �

Now, we want to generalise this construction to non-ground terms. A natural way would
be to define ��� ��� ��! when ����%5���Z�)!*% for any ground substitution % . However, such a
definition is not well suited for automation, and we proceed in a different way which leads
to an almost equivalent definition.

The idea is the following: we should not interpret a non-ground term into an element of
� , but actually into an abstraction mapping any interpretation (or valuation) of its variables
in � into an element in � . In other words, interpretation � �C��� of a non-ground term � is a
function from � O�� to � . This set �C�8O�� ��O�� of functions is naturally equipped
with the ordering defined by

- /���� ��� iff for all � P� O�� , -I��� � /���� ���=�
-�� ��� � � iff for all � P� O�� , -I��� �
� � � ���=�

We should point out that � ��� � is not / ��� � � 4 ��� � , and in some sense, that is why term
orderings as ordering pairs are needed.

Now, automation of such an ordering only relies on the automation of this ordering on
functions. We shall see in Section 3.3 how to automate that ordering in the special case of
� being a set of integers.
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Definition 3.3 Let � be a function which maps each term � P�	
�������� to a function from
� O�� to � . The ordering generated by � is defined by

���������)! iff � �C���9� /���� � �G�C��!��
���������)! iff � �C���9� ����� � �G�C��!��

Example. Let � be the set
�

of natural numbers and let / � be the standard ordering / on�
. Let us consider signature � a���� � -�� where � is a constant and - is of arity 2.

An interpretation � can map a term like -I� -I��� �
	_���
� � into, say, ������������ . That means
precisely that given any nonnegative integer values � ��	_� and � ��� � for 	 and � :

� � -I� -I��� �
	D���
�J���*��� � a������ �� ��� � ��� �����

Moreover, if we interpret -I��	G� � � into 	��"! , then we have -I� -I��� �
	_���
� � � ��-I��	;� �J�
since � H �"��#$�%�Z/ .&�'! for all .I�
#8P �

(because � H / .&� 1 ). On the other hand,
-I� -I��� �
	_���
� �)(���`-I��	G� � � because when � ��	D� a � ��� � a+* both terms are interpreted as ! .

Lemma 3.4 If ��� is well-founded then �����J����� � is well-founded on non-ground terms.

Proof. Proof is similar to that of previous lemma, but additionally we have to show that
����� � is well-founded itself. If it was not, there would be an infinite decreasing sequence
- � ����� � -A! ����� �5- � ����� � >$>$> , but then for an arbitrary interpretation � of variables, we
would have an infinite decreasing sequence - �?��� � ��� -A! ���=� ��� - � ���=�����7>$>$> of elements
of � , leading to a contradiction. �

Definition 3.5 We define an homomorphic interpretation � by giving, for each - of arity . ,
a function , , -.- - � from � H to � , and then by induction on terms : for any �"P � O�� ,

� � -I�C� �$�$>$>$> ���cHJ���*���=� a , , -.- - � � � �C� �*�*��� ���$>$>$>?� � �C�)HJ�*��� ���
� ��	D�*���=� a � ��	_�

For the sake of readability we shall write , , -.- - if the relevant interpretation is clear from the
context.

Lemma 3.6 Let � be any homomorphic interpretation. For any substitution % and any
valuation � , let us denote � � %_� �=� the valuation mapping any variable 	 to � ��	 %;�*��� � . Then
for any term � , � �C��%;�*���=� a �G�C��� � � %_� �=� .

Proof. By structural induction on � . If � a'-I�C� � �$>$>$>?��� H � then

� �C��%;�*���=� a �G� -I�C� � %_�$>$>$>���� H %;���*��� �
a , , -.- - � � � �C� � %;�*��� ���$>$>$> � � �C�)H=%;�*��� ���
a , , -.- - � � � �C� � � � � %_� �=���$>$>$>A� � �C� H � � � %_� �=��� by induction

a �G� -I�C�����$>$>$>����)H ��� � � %_� �=�

and if � is a variable 	 , � ��	D� �G� %_� � � a �G� %_� � �*��	_� a � ��	 %;�*���=� �

Lemma 3.7 If � is an homomorphic interpretation, then ��/ �J� ���=� is stable.
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Proof. Let �9� and ��! be two terms such that �*� ������! , that is by definition �G�C�*�9� ����� � �G�C��!?� ,
i.e.

for all � P� O�� , � �C� � �*���=� � � � �C� ! �*���=� (1)

Let % be any substitution. Then for all � P � O�� ,

� �C� � %;�*��� � a � �C� ��� � � %_� �=�
��� � �C�)!�� � � %_� �=� by (1)

a � �C�)!*%;�*��� �

hence ����%�������!*% . the same proof holds for ��� . �

Lemma 3.8 For any symbol - of arity . , and 1 4 3 4 . , if for all� ���$>$>$>?� � @CBD��� � @ EG���$>$>$>?� � H in � , , , -.- -c� � ���$>$>$>�� � @�BD���
	G� � @FEG�?�$>$>$>�� � HJ� is weakly (resp. strictly)
increasing in 	 then /�� (resp. ��� ) is monotonic with respect to 3 -th argument of - .

Proof. Straightforward. �
Example. (Continued) Let us consider , , -.- -c��	;�
� �`a 	 � �51 and , , ��- -�a * . The generated
ordering is weakly but not strictly monotonic, since , , -.- - is not strictly increasing in 	 when
��a+* . For instance -I��� � �J� ��� � (since � � -I��� � �J��� a(1���*`a � ��� � ), but -I� -I��� � � ��� �J�)(���
-I��� � � � (since � � -I� -I��� � � ��� �J��� a 1���* � 1�a 1�a � � -I��� � �J��� ).

3.2 Interpretations over integers

So as to automate the search for interpretations, it is necessary to focus on a particular
interpretation domain. The most convenient one is the set of integers. Since it is not well-
ordered, we have in fact to consider a set of integers greater than or equal to a given mini-
mum value � .

Definition 3.9 For a given � P�� , let ��� a � 	 P���� 	 / � � . It is clear that the usual
ordering � is well-founded over each ��� . Interpretations into �	� are called arithmetic,
they may be called � -interpretations in order to precise the value of � .

An arithmetic homomorphic interpretation is called a polynomial interpretation if for
all -ZP� , , , -.- - is a polynomial function.

To check whether a given polynomial interpretation is suitable for proving termination
of a given TRS using any of the criteria mentioned in Section 2, we must be able to check
that:

1. each polynomial effectively maps � H� into �
� ;
2. any of those polynomials is weakly and/or strictly increasing in some/all of its argu-

ments.

Moreover, so as to perform comparisons we must be able to check that:

3. for any two terms �9� and ��! , � � �����)! and/or ��� �����)! .
Finally, for the case of rewriting modulo a theory \ , we have to be able to check that

4. � and � are compatible with \ .
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Item (1) can be dealt with as follows: given a polynomial � with . variables, � effec-
tively maps � H� into � � if and only if polynomial ��� � is nonnegative on � H� .

Item (2) can be dealt with as follows: given a polynomial � with . variables, � is
weakly increasing in its 3 -th argument if and only if polynomial

� �C� ���$>$>$> ���VH �6a � �C� �?�$>$>$>����V@CBD�����V@ � 1A���V@FEG�?�$>$>$>����VH �
��� �C� � �$>$>$>?��� @CBD� ��� @ ��� @ EG� �$>$>$> ��� H �

is nonnegative on � H� . Similarly, � is strictly increasing in its 3 -th argument if and only if
polynomial

� �C� ���$>$>$>?���VHJ�6a � �C� ���$>$>$>����V@CBD�����V@ �'1A���V@ EG� �$>$>$>����VHJ�
��� �C� ���$>$>$> ���V@�BD�����V@����V@FEG���$>$>$>?���VHJ�W�[1

is nonnegative on � H� .
Item (3) can be taken care of as follows: given ��� and ��! , � �C���9� and � �C��!?� can be com-

puted as polynomials � � and � ! over their variables, and then �*� ���`��! if and only if poly-
nomial � � ���G! is nonnegative on � H� , and ���������)! if and only if polynomial � � ��� ! �,1
is nonnegative on � H� .

Regarding Item (4), it is sufficient to check that for each equation ����: of theory \ ,
we have �K�5: and :[�5� , that is � �C��� � � �C:_� a * . For the case of AC, Ben Cherifa and
Lescanne [4] showed a simplified sufficient condition: a polynomial interpretation , , -.- -c��	;�
� �
generates an ordering compatible with associativity and commutativity of - if and only if it
has the form ��	.� ���A��	 � � � �	� where � ! a
� � ��� .
Example. Here is one of the examples given by Lankford [28]. It is a rewrite system for an
endomorphism on a monoid.

��	 �&�J� �� O 	 � ��� ��� �
-I��	_� � -I��� �8O -I��	 �&�J�

-I��	_� �Q� -I���J� �� �8O -I��	 �&�J� ��

To prove termination of this system using the standard Manna-Ness criterion, Lankford
proposes the following interpretation, with �Za(1 :

, , -.- -c��	_� a ��	 and
, , � - -c��	;�
� �6a 	.� � 	

Let us check all needed conditions:

1. Firstly, to check that , , -.- - effectively maps � � into �"� we check that , , -.- -c��	_� � 1 a
��	 � 1 is nonnegative when 	 /�1 . Similarly, for , , � - - , we check that , , � - -c��	G�
�J� �Z1�a
	 � � 	"�,1 is nonnegative when 	G�
� /�1 .

2. Secondly, to check that , , -.- - strictly increases in its argument, we check that

, , -.- -c��	 � 1?�W�', , -.- -c��	D�W�,1 a �J��	 � 1?�W� ��	 �[1
a 1
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is nonnegative when 	�/�1 . To check that , , � - - strictly increases in its first argument,
we check that

, , � - -c��	 � 1A�
� �W�', , � - -c��	G�
�J� �[1
a ����	 � 1?� � �'��	 � 1?���W� ��	.� � 	_� �[1
a 	.� � � � 	 � 1 � 	.�
� 	 �[1
a �

is nonnegative when 	G�
� / 1 . Finally, to check that , , � - - strictly increases in its
second argument, we check that

, , � - -c��	G�
� �'1?�W�', , � - -c��	G�
�J�W� 1 a ��	 ��� � 1?� � 	_� � ��	.� � 	_�W�[1
a 	 � � 	 � 	 � 	.�
� 	 �[1
a 	 � 1

is nonnegative when 	;�
�/�1 .
3. And thirdly, we have to check that for each rule, the left-hand side is strictly greater

than the right-hand side. For the first rule we have

, , ��	 �&� � � ��- - a ��	 � � 	D� � �'��	 � � 	D�
, , 	 � ��� � � � - - a 	 ��� � � � � � 	

hence

, , ��	 ���J� � � - - �', , 	 �Q��� �� � - - �[1
a , ��	.� � 	D� � �'��	.� � 	_� - �', 	W�����)� � � � 	 - �[1
a 	.��� � 	 � � 	.� � 	 � 	.��� � 	 �&� 	"�,1
a 	 �K�[1

is nonnegative when 	;�
� � � /�1 . For the second rule we have

, , -I��	_� � -I��� � - - a � ��	D�*� ���J��� ��	
, , -I��	 �&� � - - a �J��	.� � 	_�

hence

, , -I��	D� � -I��� � - - �', , -I��	 �&� � - - �[1 a , ! 	 � ����	 - �', �J��	 � � 	D� - �[1
a ��	 �&�[1

is nonnegative when 	;�
�/�1 . For the third rule we have

, , -I��	D� � � -I��� � � � � - - a ��	 � ��� � ����� ������	
, , -I��	 �&� � � ��- - a �J��	 � � 	D� � ���J��	 � � 	D�

hence

, , -I��	_� � � -I��� � � � � - -_��, , -I��	 �&� � � ��- - �[1
a , ��	 � ��� �)�����J������	 - �', �J��	.� � 	_� � ���J��	 � � 	_� - �[1
a ! 	 � � � ! 	.� ����	"� ��	.��� � ��	 �`� ��	 �V� ��	"�[1
a ��	 � � ����	.�
� ��	 �`� 1

which, after proper factorisation ��	 � ��� �1?����� ��	 � �1?� , is easily proven nonnegative
when 	G�
� � � /�1 .
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We see that proving termination of TRS using a given polynomial � -interpretation can
be done automatically, as soon as one can check whether a given polynomial with . vari-
ables is nonnegative over � H� .

However, as illustrated by this last check where a smart factorisation was required to
somehow dominate the negative coefficients, checking whether a polynomial is nonnegative
or not is far from being a simple task. We shall address this problem in the next section.

3.3 Testing positiveness of polynomial functions

We focus now on the positiveness problem of polynomial functions that is: given a polyno-
mial � P � , � � �$>$>$>?��� H - , prove that � ��	 � �$>$>$>?�
	 H �
/ * for any value 	 @ / � . We shall
remark firstly that this problem is undecidable in general since Hilbert’s Tenth Problem can
be reduced to it [32].

Testing positiveness, in the context of automated termination proof, has been studied
by several authors [4, 20, 40]. All their methods propose to approximate the problem by
checking positiveness for any real values greater than � of their arguments, a problem that
becomes decidable (Tarski 1930) but still algorithmically very complex. These authors pro-
posed partial methods (i.e. correct and terminating but incomplete) supposed to be sufficient
for an application to termination of TRSs.

Recently, Hong & Jakuš [25] made a comparison between all these methods while
proposing new ones. Very briefly: they showed that all previous methods were at most
equivalent to a condition using � -absolute positiveness.

Definition 3.10 A polynomial � is said to be � -absolutely positive if and only if polynomial

� �C� ���$>$>$>?���VHJ� a � �C� ��� �I�$>$>$> ���VH)� �G�

has nonnegative coefficients only.

Note that this is not exactly the definition of Hong & Jakuš: they regard strict positiveness,
which can be obtained by considering polynomial

� �71 instead of
�

in our definition. A
straightforward sufficient condition for positiveness (adapted from Hong & Jakuš [25]) is
the following:

Lemma 3.11 If � is � -absolutely positive, then it is nonnegative for all values in � � of its
variables.

Proof. If � has . variables, let
� ���$>$>$> � � H be arbitrary integers greater or equal to � , then

� � � ���$>$>$> � � H � a � � � � � �I�$>$>$>?� � H � �G�

is nonnegative since it is an expression without any negative operations. �
This seems to be a nice and simple check to perform. However, computing the “trans-

lated” polynomial
�

above can be quite costly in general, as shown in the example below.
More precisely, Hong & Jakuš showed that the algorithmic complexity of computing trans-
lation is the same as for a method by Giesl [20] which computes successives derivatives.
Example. Let us consider the last rule in Lankford’s example, Section 3.2. We have to
check whether

� ��	;�
� � � � a���	.��� ����	 �V� ��	 �`�,1K/�*
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for each 	;�
� � � /�1 . We compute

� ��	 � 1A�
� � 1A� �)� 1?�
a �J��	 � 1?�*��� � 1?�*� � � 1?�����J��	 � 1?�*��� � 1?� � �J��	 � 1?�*� � � 1?�W� 1
a ��	 � � ����	.� ����� � ����	 � ����	 ����� � � � ���

����	.� ����	 ����� ����� ��	 �`� ��	 � � � � ���,1
a ��	 � � � ! 	.� ����� � ����	 � ! � � 1

which has nonnegative coefficients only. Nevertheless, since this method is at least as
powerful as the former ones while being quite simple, it will be our choice. But in fact, we
are going to improve it a bit in our context, as we shall see in next subsection.

3.4 Computing � -translation in advance

We will start from the easy remark that if we have ��a * , the previous positiveness test
based on absolute positiveness becomes completely trivial. Hence taking � a�* as often as
possible seems to be a good choice.

A natural question is: “Is it always possible to choose � a * ?” The answer is “Yes”
indeed, and the proof is surprisingly easy.

Proposition 3.12 Let �����J����� � be a term ordering defined by polynomial interpretations
with a given � . Then this ordering can also be defined by some polynomial interpretations
with �Za+* .

Proof. Assuming given a polynomial � -interpretation � , let us define interpretation ��� by

, , -.- - ��� ��	T�$�$>$>$> �
	 H � a , , -.- - � ��	T��� �I�$>$>$>��
	 H � �G� � �

where � � is the newly defined * -interpretation on terms. By an easy structural induction,
we have for any ground term �

���A�C��� a � �C���W� �

hence we have immediately, for any ground terms ��� and ��! , ���"�����&�)! iff ��� ��� ��! , and
the same for ����� . On non-ground terms, we have to take care of valuations of variables:
indeed, there is a one-to-one correspondance 	 between valuations in ��� and valuations in
�
� , defined by 	
���=�*��	D� a � ��	D��� � , and we have for any non-ground term � , by structural
induction:

� � �C���*���=� a � �C���*��	
��� ���I� �

Hence we have, for any non-ground terms �$� and ��! , ��� ����� �)! iff ��� ��� �)! , and the same
for ����� . So both interpretations define the same ordering. �

The consequence is double. Firstly, it shows that if we want to search for a polynomial
interpretation automatically, fixing � a * is enough. This fact will be used in the next
section. Secondly and regarding implementation, in order to avoid the computation cost of
� -translation of some polynomial � each time we want to check its positiveness, it is much
efficient to compute the � -translation of interpretations once and for all.
Example. Again with Lankford’s example, we can compute the translations of interpreta-
tions of - and � . We define the new interpretations as

, , -.- - � � ��	D�6a , , -.- - � ��	 � 1?�W� 1�a��J��	 � 1?�I�,1�a���	 � 1
, , � - - ��� ��	;�
� �6a , , � - - � ��	 � 1A�
� � 1?�I�[1

a ��	 � 1?�*��� � 1?���'��	 � 1?�W�[1Ra"	 � ����	 � � � 1
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All further computations will be done with these new interpretations, and checking
positiveness will be done simply by examining positiveness of coefficients only.

Finally, we end this section by giving a simplified criterion for weak or strict mono-
tonicity of the generated ordering, when �Za+* .

Lemma 3.13 A polynomial * -interpretation � ��	W���$>$>$>?�
	 H � with nonnegative coefficients
is always weakly increasing in each of its arguments. It is strictly increasing in its 3 -th
argument if and only if the coefficient of 	T@ is positive.

Proof. Straightforward. �
Example. With Lankford’s example, the new interpretations given for ��a * generate a
strictly monotonic ordering, since coefficient of 	 in , , -.- - ��� is � and coefficients of 	 and �
in , , � - - ��� are � and 1 respectively.

4 Automated search for polynomial interpretations

This section is devoted to methods for searching suitable polynomial interpretations for
proving termination of a given TRS. As shown in the previous section, we may look for * -
interpretations only, without any loss of generality. And for such interpretations, reducing
positiveness of a polynomial to positiveness of each of its coefficients is a correct (yet
incomplete) method which is at least as powerful as other methods known in the literature.

The first step, done in Section 4.1, is to fix a bound on the degree of polynomials we
search for. On that respect, we follow Steinbach classification [40]. Such a bound being
fixed, we show that searching for interpretations reduces to solving Diophantine constraints.
However, this problem is still undecidable [32].

Thus, in Section 4.2, we discuss on partial methods for solving such constraints. As in
the first step, we need to fix a bound on the values of variables we search for: to make the
problem decidable, we are reduced to solving constraints over a finite domain. We show
in Section 4.3 how known methods for such constraints can be instantiated into solving
Diophantine constraints. Then, in Section 4.4, we address practical problems arising in
implementation, that is the too high algorithmic complexity.

4.1 Parametric polynomial interpretations

To find a suitable interpretation automatically, we choose for each symbol of the signature
a parametric polynomial, that is a polynomial where coefficients are variables the values of
which have to be found. In order to have a finite number of such variables, we need to fix a
bound on degree of the polynomials we search for.

Steinbach classified restricted forms of multivariate polynomials [40]. The linear class
contains polynomials of degree 1 at most, that is

� ��	;���$>$>$>?�
	 H � a+� �
	T��� �$�$��� � H 	 H �	�

The simple class contains polynomials of at most degree 1 in each variable:

� ��	T���$>$>$>��
	 HJ�Ia
�

@������ � � ���
� @
	������� � @� 	 @
	� �$�$� 	 @��H
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The simple-mixed class contains polynomials whose monomials consist of either a single
variable with degree 2, or of several variables of at most degree 1:

� ��	T���$>$>$> �
	 HJ� a
�

@ � � � � � ���
� @
	 ������� � @�� 	 @
	� �$�$� 	 @ �H �

�

� � @ � H
��@�	 !@

This terminology is used ‘as is’ in our implementation, to select a given class. We added
the quadratic class for polynomials of degree 2, an extension to the simple-mixed class:

� ��	 � �$>$>$>?�
	 H � a
�

@ � � � � � � � ! �
� @ 	 ������� � @ � 	 @
	� �$�$� 	 @ �H

This classification is slightly overridden when commutative or associative-commutative
symbols are involved (those are the only equational theories supported in our implementa-
tion). For AC symbols, we always choose a parametric interpretation of the form ��	.� �
�A��	 � � � ��� where � ! a
� �&��� . For a commutative but not associative symbol - , we should
use a polynomial , , -.- - such that , , -.- -c��	;�
� � a , , -.- -c��� �
	_� , hence the special form of linear poly-
nomials , , -.- -c��	G�
�J�Ra �_��	 ���J��� � , simple polynomials , , -.- -c��	G�
�J�Ra � 	 � � �A��	 �'�J��� � ,
and simple-mixed or quadratic polynomials , , -.- -c��	;�
� � a+�_��	 ! � � ! � � � 	 �)��� ��	 � �J� � � .

Once a class of polynomials is chosen, we have a finite number of variables. Now
we have to translate, into constraints on these variables, each of the conditions that ensure
suitability of the defined ordering ��������� . We detail this process below. In the following,
� / * means each coefficient of � is nonnegative, and � a * means each coefficient is
null.

Firstly, we shall point out that the requirement for � monotonic, � and � stable, and
� well-founded is satisfied as soon as all coefficients are nonnegative. The reduction of the
remaining conditions to constraints is as follows:

S � monotonic w.r.t. 3 th arg. of - , reduces to

� @W/�1

if � @ is the coefficient of 	_@ in , , -.- - .
S � and � compatible with an equational theory \ reduces to

, , � - - �', , : - -_a+*

for each equation � � : of \ .

S For the special case of commutativity: � and � C-compatible w.r.t. - reduces to
nothing if a symmetric parametric interpretation is chosen as above.

S For the AC case, � and � AC-compatible w.r.t. - , reduces to

� ! a � � ���

if the parametric interpretation of - is , , -.- -c��	;�
� � a���	.� �	�A��	 � �J� ��� .
S � � �,��! reduces to

, , � � - - �', , � ! - -G/�*
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S � � �,��! reduces to
, , � �
- - �', , ��! - - �,1K/'*

Hence, at this step, proving termination of a given TRS has been reduced to the problem
of solving a set of Diophantine constraints on the coefficients introduced in the parametric
interpretations.
Example. Back to Lankford’s example, if we want to automatically find suitable polyno-
mial interpretations, we may try parametric simple interpretations

, , -.- -c��	D�8a � 	 ���
, , � - -c��	;�
� � a � 	 � � � 	 ��� � �[-

Thus, proving termination of the system reduces to solving the following constraints (the
first three coming from strict monotonicity conditions):

� �'* � ��* � ��*
� � � 	.� � � 	 ����� �,-T� � � � � � 	 � � � 	 ��� � �,-T� ��� � � -

� � 	 � � ���)� � � ��� � �,-T� � � 	 ��� � � ��� � � � ��� � �,-T� � -
� ����	 ���$�*����� ���$��� � ����	 ���$� ��� ����� ���$� �,-

� � � � 	.� � � 	 ����� � -T� ���
� ����	 ���$�*� � ����� ���$� � � � ��� � �	�$����� � �[-T� � � ��� 	 ���$�
�
� � � ��� � � �*� �)� � ��� � ���$� ��� �)�,-T� �,-

� � ��� � � 	 � � � 	 ����� �,-T� ���$� � �� ���_� � 	 � � � 	 ��� � �,-T� � �*� ��� � �[-

The last three, after normalisation, become:

� � � � ��� � 	 �)�'� � ! ���$- � � � 	 ����� ��� ! �,- ��� � �'� � - ���?- �,1?� / *
� � � ! � � �J� 	 � �'� � � �$� 	 �'� � � �$� � ��� � � ! �Q- � �,- ��� � � � � � � �,1?� / *

� � ! � ! ��� ! � � 	.��� �'� � � � ! � � � �J� 	 � �'��� � �&� � � � ��� ! � �J� 	 �
�V� - � � � � ! � � � � � �)� � �J� 	 �'��� ! ��- � �)����� � ����� �	� ! � ! ��� �$� �

��� � ! � �J� ���)� � � � � � � � ��� -	� � - � �)�,- � � ��� � � � � � � ! �,1?� / *

Hence, by the simple criterion of absolute positiveness, proving termination reduces to solv-
ing:

� � 1 / *� � 1 / *
� � 1 / *

� � ���
� / *� ! ���$-"� � / *
� ��� ! �,- � / *� - ���?- � 1 / *
� � ! ��� � / *

� � � / *

� � ! � - � �,- ��� � � � � � � �[1 / *
� ! � ! � � ! � / *� � � ! � � � � / *

� � �
� � � � �	� ! � � / *
� ! � � / *

- � � � � ! � � � � � � � � � / *
�
! � - � �)����� � � ��� ��� ! � ! ��� � / *� � � � / *
-	� ��- � � �,- � � ��� � � � � � � ! �[1 / *
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solve � ��� constraint ��� � integer �Ia
let ��a�� 	G>min � * �
	G>max ��� ��	ZP Var � � � � in
branch ��� � � �

branch ��� � store � �	� constraint �Ia
let ��a propagate ��� � � � in
if for each 	 in �W�
	;>min a"	G>max then

if isSolution ��� � � � then output "solution found : " ]
else throw NoSolution

else
let 	 a chooseVar ��� � in
try
let � � a �
� with 	;>max ��� > 	;>min � in branch ��� � � � �
catch NoSolution O
let �D!�a �
� with 	;>min ��� > 	;>min �'1�� in branch ���;!A� � �

Figure 1: Main algorithm for solving Diophantine constraints

4.2 Solving Diophantine constraints: general idea

The general idea is, firstly, to turn this problem into a decidable one by putting an arbitrary
bound on the solutions we look for: we restrain the search for values of variables satisfy-
ing the constraints to a given interval , * ��� - where � is some nonnegative integer bound.
The problem becomes then an instance of the so-called finite domain constraint satisfaction
problems, which have been extensively studied in the literature, especially in the context of
constraint logic programming [11, 26]. The usual way of solving such constraints is a gen-
eralisation of the well-known Davis-Putnam procedure for deciding satisfiability of proposi-
tional formulae, which are formulae where variables lie in the finite domain ���)MA: � � - � L ] ��� .
The general shape of the solving algorithm is made of two parts, working on a data structure
called store which tells which values are possible for each variable. The first part is the con-
straint propagation procedure which, given a store and a constraint, performs some logical
deductions to produce a smaller store. The second part is a non-deterministic branching
which explores all possible values of variables, with various heuristics.

When specialised to solving constraints in an integer domain , * ��� - , it is handy to have a
store which memorises only the minimum and the maximum values of variables, leading to
the main algorithm given Figure 1. In that algorithm, propagate is the constraint propagation
procedure: it is supposed to perform arbitrary correct deductions from a given store and
given constraints: propagate � ] � � � returns a store ] ^ , included in ] (that is for each variable
	 , ] ^ > 	G> #3 .[/�] > 	;> #3 . and ] ^ > 	;> #�� 	Q4�] > 	;> #�� 	 ) such that any solution of

�
inside ] is

also inside ] ^ . Note that it may also throw NoSolution if it deduces that no solution exists.
Procedure chooseVar � ] � chooses a variable on which a reasoning by cases will be done. It
should return any variable 	 such that 	;> #3 .� 	;> #�� 	 . Finally, isSolution is a procedure
which, given a store where each variable is associated to a single value, tells whether this
store is a solution or not. Notice that the algorithm given Figure 1 uses a particular branching
strategy: once a variable 	 is chosen, two cases are considered, the first one occurs when 	
is equal to its minimum possible value, the second one occurs when it is greater than that.
Any other branching strategy is possible, such as domain bisection, but the one chosen here
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gives better results in practice.
It is straightforward to see that this algorithm will end in finite time whatever the im-

plementations of propagate and chooseVar might be. But of course, the efficiency highly
depends on clever implementations of these two subroutines: for example, if propagate does
not deduce anything and simply returns the store given as argument, then the algorithm will
explore exhaustively the set , * ��� - H ( . number of variables) of possible solutions. We will
not discuss further on possible implementation of chooseVar. In CiME, chooseVar im-
plements the following heuristic: a variable with the smallest min is chosen, amongst all
variables with the minimal min, a variable with the largest value of � max � min � is chosen,
and again amongst all possible remaining variables, the variable which occurs most often in
the constraints is chosen.

Example. Let’s consider the set of Diophantine constraints

��	 � � 4�1 � ��	.�Va(1��
and assume we want to solve it for 	G�
� in interval , * ��1�* *�- . We first build the initial store

	 * 1�* *
� * 1�* *

We may then propagate the constraints: from ��	 ���4�1 � , we deduce � 4�1 �K� ��	�451 � .
From ��	 � � 4(1 � again, we deduce 	+4�� � !9B��!�� 4�� � !!	� a�
 (we denote ��� � the greatest
integer less than or equal to � ). Hence the store becomes

	 * 

� * 1 �

Furthermore, from 	G> ��a 1�� , 	 /� ������ /�� ���� !�� a � (we denote ��� � the smallest greater

than or equal to � ), and � /�� ��� � /��
���� � a�� hence

	 � 

� � 1 �

Considering again ��	 �%�Q4N1 � , we get 	74�� � !9B �!�� a ! and � 4 1 �&��� � �a�� , and
again from 	;> ��a(1�� , we have �"/�� ��� � /��

���� � a"! hence we get

	 � !
� ! �

and we cannot deduce more on intervals for 	 and � , so this last store is the result of
propagation of the constraints on the initial store. We have then to reason by cases. We
choose one of the variables, say 	 , and branch into two cases: whether 	 is equal to its
minimum value in the store or not. If we fix 	 a�� we get the store

	 � �
� ! �

and propagation of � ��� � 4��"4�� ��� � leads to an inconsistent store

	 � �
� � �
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Hence exception NoSolution may be thrown. Backtracking to the last branching point, we
know that 	 (a�� and get the store

	 � !
� ! �

which, after propagation, becomes
	 � !
� ! �

Choosing then the value 	a � and propagating the constraints leads to the solution 	a � ,
��a � .

4.3 Translating Diophantine constraints into finite domain constraints

The next goal is to make constraint propagation efficient. The main idea, coming from
constraint logic programming and implicitly used in the previous example, is to transform
the constraints into so-called finite domain constraints of the form 	ZP , � � � � ! - where � � and
�?! are expressions. Constraint propagation will then be done by computing minimal value
of �A� and maximal value of � ! and comparing them with minimal and maximal values of 	 .
Example. The constraints � ��	 ���4 1 �=�
	.�"a 1�� � will be transformed into finite domain
constraints:

	 P , * �?��1 � � �J� � � -
� P , * ��1 �K� � �&	 -

	 P , 1�� � � ��1�� � ��-
� P , 1�� � 	;��1�� � 	 -

This approach is quite well-known indeed for linear Diophantine constraints [11] which
is a major case in applications of constraints logic programming. However, the case of
non-linear Diophantine constraints seems not to to have been studied. So we designed a
specialised variant of finite domain constraints to fit our needs, which we describe now. A
problem arising when putting Diophantine constraints into a form 	�P , �J��� ��! - is that we
need to use divisions (as in the example above) and/or . -th roots. Thus, we have to keep
in mind the semantics of such expressions and neither divide by zero nor take the root of a
negative number.

Definition 4.1 A finite domain Diophantine constraint is a formula of the form 	�P , �J��� �?! -
where � � and �?! are finite domain Diophantine expressions, of the form

�� � - ��-T� � -

where . denotes a positive integer, and - denotes positive polynomial expressions as defined
by the grammar

- � � a . � 	 � - �,- �A- �Z-

where . denotes a nonnegative integer constant and 	 a variable.

For readability, we simply write � for � � * ,
	�
� and �

� 1 .
We define what is a solution of a set of such finite domain constraints, taking care of not

dividing by zero and not evaluating the root of a negative number:
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Definition 4.2 For a valuation % � � O �
, we define a function mapping positive polyno-

mial expressions to integers by

��< �=L��C.I��%;� a .
�$< � L���	G��%;� a % ��	D�

��< �=L����A� ���?!A��%;�6a ��< �=L����A����%;� ����< �=L�����! ��%;�
��< �=L���� � � � ! ��%;�6a ��< �=L���� � ��%;� � ��< �=L���� ! ��%;�

We say that % is a solution of a set
�

of finite domain Diophantine constraints when it is
a solution of each constraint in

�
. It is a solution of a constraint 	 P', � ��� �?! - if it satisfies

	 / � � and 	�4 � ! . Valuation % satisfies 	Z/ �� � - � � - ! � � - � when % ��	D� H � �$< �=L�� - � ��%;� �
��< �=L�� -A!A��%;��/ �$< � L�� - ����%;� , and it satisfies 	Z4 �� � - � � -A!�� � - � when % ��	D� H � ��< �=L�� - �A��%;� �
��< �=L�� -A!A��%;��4 �$< � L�� - ����%;� .

We are now ready to define our translation from Diophantine constraints into finite
domain constraints.

Definition 4.3 The finite domain translation of a Diophantine constraint �0/ * is a set
of . constraints, . being the number of occurrences of each variable in � , computed as
follows: for each occurrence of a variable 	 in � , one may write without loss of generality
� a � 	�� � � �

, where
�

is a power product where 	 does not occur and � �'* (if � �'* ,
consider constraints � � 4 * or � � a$* respectively, and consider other cases below),
and generate

	ZP
����
� � H��	� � ��
��� � � � � �����

where � is the bound of solutions to search for, and
� a ��
��� � � H��	� where

��
���
and

� H��	�
have only positive coefficients.

Similarly, the translation of � 	 � � � � 4�* is

	ZP
�
* �

��
� � H��	� � ��
��� � � � � �

and the translation of ��	 � � � � a+* is

	ZP
� ��
� � H��	� � ��
��� � � � � �

��
� � H���� � ��
��� � � � � �

The reason why we group together monomials with the same sign will be made clear
later. The next proposition shows that our translation is sound. There is a small point here:
we require the Diophantine constraints we start from to contain no “trivial” constraints, i.e.
no constraint of the form �K/'* (or 4 or a ) where � is a constant. These are either trivially
true and may be removed, or false and the whole set of constraints is unsatisfiable.

Proposition 4.4 If
�

is a set of Diophantine constraints containing no trivial constraint,
then its set of solutions in , * ��� - is exactly the same as the set of solutions in , * ��� - of its
translation � into finite domain constraints.

Proof. If % satisfies
�

, since any constraint
�

of � comes from a translation of some
constraint � in

�
, and from Definition 4.2, the truth of % � ��� implies the truth of % � � � .

17



propagate � ] � store � � � constraint � � store a
let � �9�)3 < ��a � and �.� ] ]?3 < �Ra�� in
while � �9�)3 < � (a�� do

let � a choose �����9�c3 < � � in
�����)3 < � � ���9�c3 < �R� � � � ; �.� ] ]?3 < � � � � ����� �=] ]�3 < �
assuming � has the form 	ZP , � � � � ! - :
let #+� a try max � ] > 	G>min �
#3 .�� � L���� ��� ]A���

catch ArithError O0] > 	G>min in
let # ! a try min � ] > 	G>max �
#���	�� �=L����?!A� ]A���

catch ArithError O0] > 	G>
	��� in
if #+����# ! then throw NoSolution else
if #+���7] > 	G>min or # ! �[] > 	;>max then
(* new deduction made *)
� ] � � ] with 	;>min � #+�$�
	;>max � # !�� � � �
let
� a dependOn ���.� ] ]?3 < � �
	_� in

�����)3 < � � � �9�)3 < ��� � ; �.� ] ]�3 < � ��� �=] ]�3 < ��� �
end while
return ]

Figure 2: The propagation algorithm

Conversely, if % is a solution of � , then for any constraint � of
�

, � generated at least one
constraint

�
in � (because � is not trivial), and again, the truth of % � � � implies the truth of

% � ��� by Definition 4.2. �
We can go back now to the algorithm for solving finite domain constraints. We want

to design an implementation of the propagation procedure that is specific to the form of
constraint we have. The proposed algorithm is given Figure 2, where the auxiliary procedure
choose � � � returns an arbitrary element of

�
, and dependOn � � �
	_� returns the subset of

�
where 	 occurs. The while loop always terminates because at each iteration either the store
size � ��	;>max � 	;>min � decreases, or it remains unchanged and the size of the ���9�c3 < � set
of constraints decreases. Functions minVal and maxVal are defined by

#3 .�� �=L��C.I� ] � a #���	�� �=L��C.I� ] � a .
#3 .�� � L���	G� ] � a ] > 	G> #3 .
#�� 	�� � L���	G� ] � a ] > 	G> #���	

#3 .�� �=L���� � ��� ! � ] � a #3 .�� �=L���� � � ]A��� #3 .�� �=L���� ! � ] �
#���	�� �=L����A�����?!A� ] � a #���	�� �=L����A��� ]A��� #�� 	�� � L�����!A� ]A�
#3 .�� �=L����A� � �?!A� ] � a #3 .�� �=L����A��� ]A� �&#3 .�� �=L����?!A� ] �
#���	�� �=L����A� � �?!A� ] � a #���	�� �=L����A��� ]A� �&#�� 	�� � L�����!A� ]A�
#3 .�� �=L����A� ���?!A� ] � a #3 .�� �=L����A��� ]A�W� #�� 	�� � L����?!A� ] �
#���	�� �=L����A� ���?!A� ] � a #���	�� �=L����A��� ]A�W� #3 .�� � L����?!A� ] �

#3 .�� �=L����A� �
�?!A� ] � a � #3 .�� �=L����A�?� ]A� � #�� 	�� � L�����!A� ]A��� �

#���	�� �=L���� � �
� ! � ] � a � #���	�� �=L���� � � ]A� � #3 .�� � L���� ! � ]A��� �

#3 .�� � L�� ��
� � ] � a � �� #3 .�� � L���� � ] ���
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#�� 	�� � L�� ��
� � ] � a � �� #�� 	�� � L���� � ]A���

where any division by zero or root of a negative number throws exception ArithError.

Proposition 4.5 The propagation algorithm is correct, that is whenever % is a solution of�
included in some store ] , then it is also included in store propagate � ] � � � .

Proof. It suffices to show that this property is an invariant of the while loop. Assume % is a
solution of

�
included in a store ] , that is for all 	 , ] > 	G>min 4[% ��	_��4 ] > 	G>max. Then by an

easy structural induction, for any finite domain positive polynomial expression - we have

#3 .�� �=L�� - � ]A� 4 ��< �=L�� - ��%;� 4�#�� 	�� � L�� - � ]A� (2)

This is true indeed because only nonnegative expressions are involved in - , hence the min-
imum value of a product is the product of the minimum values of its arguments, and the
same for the maximum.

Assume a new deduction is made by propagation of some constraint 	[P%, � ��� �?! - . As-
sume the new deduction is made on � � , that is #3 .�� �=L���� ��� ]A� is defined and greater than
] > 	;>min. Assume � � a �� � - � � -A!�� � - � , then

#3 .�� � L���� � � ]A� a�� � � #3 .�� �=L�� - �*� ]A�W� #�� 	�� �=L�� -A! � ]A�
#���	�� �=L�� - �A� ] � ��� (3)

where no undefined operations exists in this formula, that is #���	�� �=L�� - � � ]A� is positive and
the fraction is nonnegative. Since % is a solution, we have

% ��	_� H � ��< �=L�� - �A��%;� ���$< � L�� -A!A��%;� / ��< �=L�� - ����%;�

hence by (2)

% ��	D� H �&#�� 	�� �=L�� - � � ]A��� #�� 	�� � L�� -A! � ]A� /�#3 .�� � L�� - �$� ]A�

So, since #���	�� �=L�� - �A� ]A� is positive

% ��	_� H /���#3 .�� �=L�� - �$� ]A� #���	�� �=L�� -A! � ] ��� � #�� 	�� �=L�� - � � ]A�

that is
% ��	_� H /�����#3 .�� � L�� - �$� ]A�W� #�� 	�� � L�� -A! � ] ��� � #�� 	�� �=L�� - �A� ] � �

because % ��	_� H is an integer. Since the right-hand side is nonnegative, and root functions are
increasing

% ��	_��/ �� ����#3 .�� � L�� - �$� ] � #�� 	�� �=L�� -A! � ]A��� � #�� 	�� � L�� - � � ]A� �
and by (3), and again because % ��	D� is an integer, we get % ��	_��/�#3 .�� � L����=��� ] � .

We prove similarly that % ��	_�
4 #�� 	�� �=L���� !A� ]A� , and proceed similarly when the new
deduction is made on � ! . �
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4.4 Further optimisations

The algorithm provided in the previous section is reasonably efficient, at least much more
efficient than the trivial algorithm which explores all possible valuations. However, as no-
ticed in the example of Section 4.1, the size of the constraints to solve increases quickly with
the number of rules of the TRS. Practice brings to the fore the need for more optimisations.

We first give some straightforward simplification rules, then we explore an improvement
which amounts to abstracting squares and products in order to make each constraint more
“atomic” and to share products as much as possible. Eventually we analyse the complexity
of performing these sharings.

4.4.1 Simplifications

In Proposition 4.4, we have already seen that one should handle constraints where no vari-
able occurs before performing any translation into finite domain constraints. In fact, more
simplification rules can be applied before the translation: assume we write a polynomial� �9@�#@ where the # @ are power products and the �$@ are the coefficients, we have the fol-
lowing simplification rules:

�
� @ # @ a+* � allNull � � �A�
# � �$>$>$>?�
# � � if all � @ /�*

�
��@�#@I/�* � true if all �9@I/�*

�
��@�#@;a+* � allNull � � * �
#+���$>$>$>?�
# � � if all �*@W4'*

�
��@�#@I/�* � allNull � � * �
#+���$>$>$>?�
# � � if all �*@W4'*

where allNull � � � �
#�1W>$>$> �
# � � is either false if constant coefficient � � is not * , or the set of
constraints � #�� a+* �$>$>$>?�
# � a+* � if � � a+* .

Proposition 4.6 These transformations preserve the set of solutions.

Proof. Straightforward. �

4.4.2 Abstracting squares and products of Diophantine constraints

As noticed, for finite domain constraints in general, by Codognet & Diaz [11], the efficiency
of the propagation procedure can be significantly improved by making the constraints as
small as possible, so as to get a small number of constraints given by dependOn. One way
to achieve this is to introduce an operation of abstraction: to introduce fresh variables to
denote subexpressions. For example, for solving the constraint

	
�
� 	
�
� 	 � � ��/�*

one may introduce ��a"	 ! to transform the constraint into � 	.� � � � ! � 	 � � �&/�* �
� a"	 ! � ,
then furthermore �Va�� ! and � a+	 � to get ��� �`� �`�+�I� � /'* �
�"a�	 ! � �Va�� ! ��� a+	 �.� .
On this form, one may further note that this introduction of variables makes some sharing
of common subexpressions. Such abstractions could be made on any subexpressions, but
we made the choice of performing them only for abstractions of squares and products of
variables, so as to share multiplications only (we discuss further this choice in Section 5).
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However, these abstractions introduce a small difficulty: they do not preserve the set of
solutions in a given interval , * ��� - because, for instance, if we introduce a variable �&a"	 � ,
then the value of � for a given solution may be greater than � . Hence the abstractions need
to be done relatively to the initial store. In practice these operations must be done after
computing the initial store, in procedure solve of Figure 1. The transformation rules are

�W� � � � � � �J>min a+* � � >max a ��	G>max � ! � � � , 	 ! �
� - � � �
a+	 ! �

�W� � � � � � �J>min a+* � � >max a"	G>max �&� >max � � � , 	 � �
��- � � �&a"	 �.�

where � is a fresh variable and
� , � �

� - denotes replacement of � by � in
�

. Replacement of
	 ! by � amounts to replacing any power 	 !�H by � H and 	 !�H EG� by 	 � H , and replacement of
	.� by � amounts to replacing any 	 H E � � H by 	 � � H and any 	 H � H E � by � � � H .
Proposition 4.7 These transformations preserve the set of solutions in the following sense:
given a bound � and a set of constraints

�
, given � � � obtained by any number of ab-

stractions starting from � � 	;>min a * �
	;>max a � � 	 P � � � � � , a valuation % in , * ��� -
is a solution of

�
if and only if it can be extended (giving values to fresh variables) into a

solution of � in � .

Proof. Straightforward, as soon as the maximal bounds of introduced variables are com-
puted as the maximal bounds of the variables they abstract, as in transformation rules
above. �

4.4.3 Minimisation of the number of introduced variables

For the moment we did not give any strategy for choosing which product or which square to
abstract, in which order. One would like to proceed in such a way that a minimal number of
extra variables is introduced. However, finding such a minimal way is equivalent to solving
the famous problem of addition chains already mentioned in Section 1, where the length of
a chain corresponds to the number of introduced variables.

The simplest case is when one wants to compute a power of a single variable with the
minimum number of multiplications. A well-known efficient algorithm is the dichotomic
one: 	 !�H a ��	 H � ! , 	 !�H EG� a%	�� ��	 H � ! , also called recursive scheme in [35]. Its complexity
is bounded with ������� ! �C.G� , but it is not optimal: for 	 ��� it requires 6 multiplications whereas
it is possible to proceed with only 5. The classical complexity results on addition chains for a
single integer . state that the length of the shortest chain is between ����� ! �C.G� and ������� ! �C.G� ,
but in general, the only way to compute it is by using a non-deterministic “branch and
bound” algorithm, and no closed formula on . giving the optimal number of multiplications
is known. Moreover, we are in the very general case, with several variables and several
monomials, thus the problem is even more complicated.

Since no optimal deterministic algorithm was known, we decided to use a non-optimal
algorithm of our own. It involves a heuristic way to decide which square or product to
abstract, and never bracktracks so that the computation would be done in a short time.

Our algorithm proceeds as follows: it computes the weight of each possible square and
product i.e., the number of multiplications that will be saved if the abstraction is performed:

S the weight of 	 ! is the sum of ��� � � � for each occurrence of 	
	 ;

S the weight of 	 � is the sum of min ��� �� � for each occurrence of 	 	 ��� .
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Then, the algorithm always chooses an abstraction of maximal weight. Note that in the case
of one power of one variable, this algorithm is equivalent to the dichotomic one above.

Technically, if a product and a square have the same (maximal) weight, the square
abstraction will be preferred, a property we will use in the following complexity analysis.

Our implementation involves a variant, obtained by stopping the abstraction whenever
the maximal weight is not at least 2. In other words, no abstraction of a product is performed
if it does not make some sharing. We will discuss this variant in Section 5.

4.4.4 Complexity analysis

Pippenger [36] gave the following estimation of the shortest chain:� ���;���=��.G� a�	����D���;��� � ����� ! . �
�

����� ! �	� 

����� ! ����� ! �

����� ! � � ���� 	���T���;��� ���
where . is the maximal coefficient, � the number of variables, � the number of monomials,� a ��������� ! �C. � 1?� , and � ��	_� is of the form ��� � �� . Roughly speaking, this bound depends
linearly in � and � , and logarithmically in . . Regarding our algorithm, we were not able to
establish a non-trivial complexity bound in the general case, however we give a complexity
bound for the case of one monomial, showing that our algorithm complexity is linear in �
and logarithmic in . .

Theorem 4.8 In the case of a single monomial identified with its tuple of exponents L , the
complexity

� � L � of our algorithm is bounded by
� � L � 4 ����� � 	���;� L �����

� �
��� ����� � � ��� � L � �,1

where � L � denotes the length of L , and ����� ��	D� is the logarithm of 	 in base � , rounded by
floor.

Proof. By induction on L (the sum of elements for example).
If the input of the algorithm is a monomial of the form 	 , that is L a ��1?� , there is

no abstraction to perform, hence
� ��1?� a * 4 ����� 1)� ����� 1)� 1`�51 . Otherwise, some

abstractions have to be done:

1. Let us assume that the first step is a square abstraction over a variable of exponent � :
by reordering the variables, without loss of generality, the tuple of exponents is of the
form ��� � � ! �$>$>$>?� � H � . Since a square abstraction has been chosen,� 3���3 /%�`a � � � � � / 	���� ��� � ��@ �
hence � 3���3 /%�`a � � � � �/ ��@
and in particular � is the maximum of ��� � � ! �$>$>$> � � H � .

(a) If � is even, then � a ��� ^ with � ^ � * , ��� � �9! �$>$>$>�� ��HJ� is transformed into
��� ^ � �9!A�$>$>$>?� ��H � and the maximum of ���=^ � �9! �$>$>$>?� ��H � is � ^ :
� ��� � �9! �$>$>$>?� ��H � a(1 � � ��� ^ � �9! �$>$>$> � ��H �

4 1 � ����� � ^ � ����� � ^ � � @�� ! ����� ��@ �Q. � 1 (IH)
a 1 �'������� �
�[1?���'������� � � 1?��� � @�� ! ����� ��@ �Q. �[1
4 ����� �)� ����� � � � @�� ! ����� ��@ � . �[1
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(b) If � is odd, then �+a ��� ^ �51 with � ^ � * , ��� � �9!A�$>$>$>�� ��HJ� is transformed into
��� ^ ��1A� �9! �$>$>$>?� ��HJ� and the maximum of ���=^C��1A� �9! �$>$>$>?� ��HJ� is � ^ :

� ��� � �9!A�$>$>$>�� ��H �Ia(1 � � ��� ^C��1A� �9! �$>$>$>�� ��H �
4 1�� ����� � ^ � ����� � ^ � � @�� ! ����� ��@ �'�C. � 1?�W�[1 (IH)
a 1���������� �
�[1?���'������� �
�[1?��� � @�� ! ����� � @ �'�C. �'1?�W�,1
a �������)� ����� � � � @�� ! ����� ��@ � . �[1

2. Let us assume that the first step of the algorithm is a product abstraction over some
variables of respective exponents � and � : by reordering the variables, without loss of
generality, the tuple of exponents is of the form ��� � � � � � �$>$>$>?� �9H � where � / � .

(a) If �,a � , then ��� � � � � � �$>$>$>�� �9HJ� is transformed into � � � � �A�$>$>$> � ��HJ� . Let # a	���;��� � � � � � �$>$>$>�� � H � and #^ a 	���;� � � � � �$>$>$> � � H � :
� ��� � � � � � �$>$>$>�� �9HJ� a51 � � � � � � �A�$>$>$>?� ��H �

4 1 � ����� #^�� ����� � � � @�� � ����� �9@ ���C. �[1?�W�[1 (IH)
4 ����� # � ������� � ����� � � � @�� � ����� �9@ � . �[1

(b) If ��� � , ��� � �?� � � �$>$>$>�� �9H � is transformed into � � � � ��� � � �A�$>$>$> � �9HJ� . Let # a	���;��� � � � � � �$>$>$>�� �9H � and #^ a 	 ��D��� � � � � � � � �$>$>$>�� �9HJ� . Since a maximal
weighted product abstraction has been chosen, this means in particular that

	����_��� � �$� a
��� � � � �
hence � � /�� , hence �J���&� �$� 4�� , hence 1 � ����� ���&���$� 4 ����� � , hence:

� ��� � � � � � �$>$>$>�� �9H �Ia(1 � � ��� � � � � � � � �$>$>$>�� �9H �
4 1�� ����� #^ � ����� ���
� �$��� ����� � � � @�� � ����� �9@ � . �[1 (IH)
4 ����� # � ����� � � ����� � � � @�� � ����� �9@ � . � 1

�

5 Implementation and experiments

Our method for automatically finding polynomial interpretations suitable for termination of
a given TRS has been implemented in the CiME rewrite tool. We deal with strong termina-
tion only, but we shall point out that the constraints solving part of CiME has also been used
by other systems like MUTERM [30, 31] for context-sensitive rewriting and CARIBOO [19].

For the search for polynomial interpretations, the user may select the class of polynomial
interpretations to look for, giving both the form (linear, simple, simple-mixed, quadratic)
and the bound on coefficients. Here is a sample session for proving termination of Lank-
ford’s example:

CiME> let F = signature ". : infix binary ; f : 1";
F : signature = <signature>
CiME> let X = vars "x y z";
X : variable_set = <variable set>
CiME> let R = TRS F X " (x.y).z -> x.(y.z) ;
f(x).f(y) -> f(x.y) ; f(x).(f(y).z) -> f(x.y).z ;";

R : (F,X) TRS = { (x . y) . z -> x . (y . z),

23



TRS Dioph. FD (0) FD (1) FD (2)
cons var cons var cons var cons var

Rosu et al. [37] 170 45 3896 45 3409 854 2353 328
(time) 9.9s 4.7s 2.9s
Deplagne [14] 12 4 15 4 25 9 17 5

158 19 1665 19 976 164 968 160
1085 26 11360 26 4638 668 4422 560

92 17 304 17 389 96 317 60
186 41 935 41 1159 301 833 138

(time) 192.9s 9.8s 7.4s

Figure 3: Some experimental results

f(x) . f(y) -> f(x . y),
f(x) . (f(y) . z) -> f(x . y) . z }

CiME> polyinterpkind {("simple",2)};
CiME> termination R;
Trying to solve the following constraints:
{ (V_0 . V_1) . V_2 > V_0 . (V_1 . V_2) ;

f(V_0) . (f(V_1) . V_2) > f(V_0 . V_1) . V_2 ;
f(V_0) . f(V_1) > f(V_0 . V_1) }

Search parameters: simple polynomials, coefficient bound is 2.
Solution found for these constraints:
[.](X0,X1) = X1*X0 + X1 + 2*X0 + 1; [f](X0) = X0 + 1;
Termination proof found.

This proof was made using the standard termination criterion, the user may nevertheless
ask for various dependency pairs criteria: with or without dependency graphs, and with or
without marks (i.e. tuple symbols). It is moreover possible to use an automatic decompo-
sition of TRSs into modules for performing termination in several parts [41] following an
incremental and modular fashion. Our implementation of dependency graphs considers the
approach of Arts & Giesl [1] only, in particular because the (better) estimated graphs of
Middeldorp et al. [23, 33] are incompatible with this incremental approach, which indeed
requires to prove CE-termination.

A large collection of examples is available in the CiME distribution, which demonstrate
the practical power of the combination of polynomial interpretations and dependency pairs
criteria. This combination is also able to prove termination of a significant part of the exam-
ples of the Termination Problem Data Base (http://www.lsi.upc.es/~albert/
tpdb.html). We detail here some experiments with CiME on two examples recently
published in the literature, the termination of which was presented as a difficult task. The
first one was presented in 2003 by Rosu & Viswanathan [37]: a TRS of 33 rules for regu-
lar language membership, with a termination proof found by hand. CiME is able to find a
proof automatically, using the standard criterion, simple-mixed polynomials, with bound 2
for coefficients. The second one was proposed in 2000 by Deplagne [14]: a TRS of 53 rules
for sequent calculus modulo, without any termination proof. CiME is able to find a proof
automatically (indeed the only proof known to date), using the dependency graph criterion
combined with the modular approach, without marks, with simple polynomials and bound
3 for coefficients (see [12] on how to select this combination with CiME).

Figure 3 summarises results on these examples, in particular regarding the variable ab-
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straction strategy. Times are obtained on a Pentium III 933MHz processor. Note that Rosu’s
example is also solved in less than a second with dependency pairs criterion and modular
approach, with much fewer constraints; we give the results for the standard criterion because
they are more informative with regards to the abstraction policy. The second column of the
table gives the number of Diophantine constraints to solve and the number of variables.
With the second example there are five non-trivial dependency graph components, hence
five set of Diophantine constraints to solve, and the numbers are given for each of them.
The remaining columns gives the number of finite domain constraints generated, as well as
the number of variables, with reference to three different ways of conducting abstractions.
For Column FD(0), no square or product abstraction is made before the translation. For
Column FD(1), all squares and products are abstracted. Finally for For Column FD(2), only
squares and products occurring at least twice are abstracted.

These results lead to the following conclusions. First of all, one should notice that our
method allows to solve thousands of constraints, over hundreds of variables, in few sec-
onds. Concerning the abstraction strategy, policy FD(2) leads obviously to the best results,
the numbers of the fifth column are always better indeed than the ones of the third and
fourth. The conclusion is clearly that abstraction of squares and products is useful, but only
for those that occur several times: this shows how important in practice is the idea of sharing
behind these abstractions. In Section 4.2, we mentioned that one may also consider the pos-
sibility of abstracting additions, and not only products. We indeed made some experiments,
but they were not very successful: the number of generated variables is already quite large
with product abstraction, and adding some more seems to costly. However, this may be also
because we were not able to find a convenient strategy for those abstractions: performing
those efficiently is again a problem as difficult as addition chain problems.

6 Conclusion and future work

By combining several criteria and transformations (testing positiveness using absolute pos-
itiveness, using � -translation, solving Diophantine constraints by translation into finite do-
main constraints, sharing squares and products in a smart way) we obtained an efficient
method for proving termination using polynomial interpretations. A work which is still to
be done is a complete analysis of theoretical complexity of our abstraction algorithm, or
even finding a better one.

An interesting extension of this work would be the use of exponential interpretations,
as proposed by Lescanne [29]. However, there is a major problem: the criterion proposed
by Lescanne to ensure positiveness of exponential function is quite ad-hoc, which makes
it hard to transform into a method for automatic search for such interpretations. In other
words, an extension to Hong & Jakuš’s work [25] to exponential functions is a required
first step. One may use afterwards finite domain contraints solving techniques to solve the
underlying constraints, certainly without major difficulty.

Another interesting extension would be to ordinal interpretations [10, 15], which are
probably not as popular as they should be.
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