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Contributed by Zdeněk P. Bažant, April 4, 2006

In mechanical design as well as protection from various natural
hazards, one must ensure an extremely low failure probability such
as 10�6. How to achieve that goal is adequately understood only
for the limiting cases of brittle or ductile structures. Here we
present a theory to do that for the transitional class of quasibrittle
structures, having brittle constituents and characterized by non-
negligible size of material inhomogeneities. We show that the
probability distribution of strength of the representative volume
element of material is governed by the Maxwell–Boltzmann dis-
tribution of atomic energies and the stress dependence of activa-
tion energy barriers; that it is statistically modeled by a hierarchy
of series and parallel couplings; and that it consists of a broad
Gaussian core having a grafted far-left power-law tail with zero
threshold and amplitude depending on temperature and load
duration. With increasing structure size, the Gaussian core shrinks
and Weibull tail expands according to the weakest-link model for
a finite chain of representative volume elements. The model
captures experimentally observed deviations of the strength dis-
tribution from Weibull distribution and of the mean strength
scaling law from a power law. These deviations can be exploited
for verification and calibration. The proposed theory will increase
the safety of concrete structures, composite parts of aircraft or
ships, microelectronic components, microelectromechanical sys-
tems, prosthetic devices, etc. It also will improve protection against
hazards such as landslides, avalanches, ice breaks, and rock or soil
failures.

cohesive fracture � extreme value statistics � activation energy �
Maxwell–Boltzmann � scaling

Engineering structures must be designed for extremely low
failure probability (1, 2), such as Pf � 10�6 to 10�7. If the

typical probability density function (pdf) of the applied load is
taken into account, the pdf of structural strength need not be
known for all Pf � 10�6 to 10�7, but it must still be known for
all Pf greater than �10�5 to 10�6. Very low Pf also is required
in microelectronics, microelectromechanical systems (MEMS),
biomedical devices, and in protection from various natural
hazards. For such low Pf, direct determination of the tail of the
pdf of failure load F from experimental histograms is virtually
impossible. Therefore, one must rely on a theory to be verified
indirectly. Its formulation has been a fundamental problem of
failure mechanics, in which only two limiting failure types are
now adequately understood (3): (i) perfectly ductile (plastic)
failures, where F is essentially a weighted sum of the strength
contributions from all the representative volume elements
(RVEs) of the material lying on the failure surface, and (because
of the central limit theorem of probability) the pdf of F is
necessarily Gaussian, or normal (except in far-left tails); and (ii)
perfectly brittle failures, which are decided by the failure of one
RVE and thus follow the weakest-link model, leading to Weibull
pdf. In these limit cases, encompassing classical, monotonically
loaded, or fatigued metallic structures, the confidence in the
estimation of load of extremely low Pf is high because the pdf is

theoretically well justified and is independent of structure size
and geometry.

Here we show how to solve the problem, including its scaling
aspect, for the broad and increasingly important class of quasi-
brittle structures, the failure behavior of which lies between these
two extremes (for the details, mathematical derivations, and
computations, see ref. 4). Although the material constituents of
such structures are brittle, a heterogeneous microstructure
causes the RVE not to be negligible compared with the char-
acteristic size D (or cross-section dimension) of the structure.
This category includes most structures or bodies consisting of
concrete, rock, stiff soils, sea ice, consolidated snow and wood,
as well as modern ‘‘high-tech’’ materials such as toughened
ceramics, fiber composites, and rigid foams, or biological mate-
rials such as bone, cartilage, tooth enamel, dentin, or sea shells.
Because every brittle structure becomes quasibrittle when scaled
down to D� �1,000l0, where l0 is RVE size, the problem will be
important for materials on the nanometer and micrometer scales
(e.g., nanocomposites, MEMS, and thin films).

Attention will be restricted to structures of positive geometry:
a typical and dangerous case in which the removal of one RVE
at constant load causes instability and dynamic failure (5). When
D�l03 �, the geometry is positive if the partial derivative of the
stress intensity factor with respect to the crack length is positive,
and approximately this criterion is used for any D.

According to the classical statistical theory of brittle failure
(6), a structure of positive geometry fails as soon as the random
material strength is reached at one point of the structure.
Quasibrittle structures of positive geometry, in which the RVE
size is not negligible, fail when the strength of one RVE as a
whole is exhausted. In other words, a weakest-link statistical
model with finite number, N, of links in a chain must be used.
The RVE is defined here as the smallest element whose failure
will cause the whole structure to fail [the homogenization theory
is inapplicable because it captures only low-order statistical
moments and misses the far-out cumulative probability density
distribution function (cdf) tail of RVE, which totally controls the
strength of large structures]. Typically, the RVE size, l0, is
approximately double or triple the maximum inhomogeneity size
(or grain size).

Tail Distribution of Strength on Nanoscale
The existing micromechanical justification of the Weibull theory
of statistical strength in terms of the distribution of material
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f laws (7, 8) involves hypotheses hardly better justified than the
macroscopic theory itself. Here we propose to base the theory on
the severance of interatomic bonds. According to the Maxwell–
Boltzmann distribution of thermal energies of atoms (9–12), the
frequency of severance of bonds is exp[�(Q � ��)�kT], and the
frequency of bond restorations is exp[�(Q � ��)�kT], where T
is absolute temperature, Q is activation energy, � is a constant
coefficient (13), and k is the Boltzmann constant (Fig. 1).

Hence, the net frequency, fb, of permanent bond breaks is
exp[�(Q � ��)�kT] � exp[�(Q � ��)�kT] � 2 exp(�Q�
kT) sinh(���kT). A contiguous nanocrack on the atomic scale
may be considered to form when the accumulated number of
broken bonds reaches a certain threshold (in the sense of
percolation theory). The load duration, �, needed for that to
happen is proportional to 1�fb. Therefore, the cdf of creating a
contiguous nanocrack must have the form F(�) �
min[C0� exp(�Q�kT) sinh(���kT), 1] (for � � 0), where C0 is
the empirical constant. Hence

F(�) � Cb�, Cb � C0

�

kT
�e�Q / kT for �3 0. [1]

So, the cdf of strength of a nanoconnection has a power-law tail
with exponent 1 and threshold 0. This point is essential.

Strength Distribution of One RVE
The size of RVE of a quasibrittle material such as concrete, with
the maximum mineral grain size of �2 cm, is separated from the
atomic lattice by a scale spanning 8 orders of magnitude. The
failure of RVE may involve damage such as microcracking at all
these scales. Their bridging must, from the probabilistic view-
point, be represented as some combination of series and parallel
couplings of elements of random strength. The tail of cdf is
particularly important.

The weakest-link, or series coupling, model (Fig. 2b) is the
simpler case. If all of the elements (links of a chain) have a cdf
with power-law tail Pf � (��s1)p of exponent p (and scale
parameter s1), reaching (with a fixed error such as 1%) up to
failure probability Pt1

� (t1�s1)p, then the chain of n links has a
power-law tail of the same exponent p, reaching up to failure
probability Ptn

that ensues from the condition of joint probability
of survival of all links

Ptn
� 1 � �1 �

t1
p

s 1
p�n

f
n 3 �

1 � e�n(t1 � s1)p f
t1 3 0

nt 1
p

s1
p � nPt1

.

[2]

The failure probability up to which Pf is a power law increases
in proportion to the number, n, of elements, as long as Pft

is
sufficiently small, whereas afterward the cdf converges to the
Weibull cdf (see Eq. 2). If, e.g., the tail of the cdf of one RVE
is a power law for Pf � 0.0005 with a 1% error (the cdf for Pf �

0.0005 being arbitrary), then a chain of 100 RVEs has a
power-law tail for Pf � 0.05 with a 1% error, and a chain of
10,000 RVEs has a Weibull cdf (except for Pf � 0.993).

In the case of parallel coupling (or the ‘‘fiber bundle’’ model)
(Fig. 2c), one must distinguish brittle and plastic elements
(usually called ‘‘fibers’’). Brittle elements are those for which the
stress drops to 0 as soon as the peak stress (or strength) of the
element is reached, and plastic ones are those for which the stress
remains constant at continuing deformation. The real behavior
surely consists of gradual postpeak softening, which is hard to
handle analytically but may be expected to be bounded by the
brittle and plastic behaviors.

For brittle fibers, the cdf of the strength � of a bundle ensues
from the recursive equation of Daniels (14), giving the cdf Gn(�)
for a bundle of n fibers in terms of Gn�1(�) for a bundle of n �
1 fibers. As shown by Daniels, Gn(�) converges, for n3 �, to the
error function (Gaussian cdf) regardless of the cdf of individual
brittle fibers. The same is obviously true for plastic fibers, as
indicated by the central limit theorem (15).

Fig. 1. Interatomic potential profile and change of activation energy barrier
caused by applied stress �.

Fig. 2. Models for extreme-value statistics of strength. (a) Potential break
surfaces within a connection layer between hard inclusions, representing a
RVE. (b) Chain model. (c) Fiber bundle model. (d) Example of statistical model
of RVE with subchains and subbundles. (e) Hierarchy of subchains and sub-
bundles. ( f) A weakest-link model made up of elements, each representing
one RVE.
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If the tail of one-fiber cdf is �� p, then the tail of Gn(�) � � np

for both brittle and plastic fibers (and likely also for the
intermediate case of softening fibers). Therefore, the tail expo-
nents in a bundle are additive. For brittle fibers, this finding can
be proven by induction from set theory (16) or by series
expansion of Gn(�) in terms of powers of � (ref. 4; see also refs.
17–19). For plastic fibers, this property follows by induction from
additivity of tail exponents p and q in a bundle of two fibers with
tails � p and � q [which ensues, e.g., by Laplace transform, from
the convolution integral for pdf of a sum (4)].

Length of Power-Law Tail
The reach of the power-law tail of cdf of a bundle shrinks rapidly
with increasing n. Introducing power series expansions of pdf
into Daniel’s recursive equation for the brittle case, or into the
convolution integral for the plastic case, one can show (4) that
the reach of the power-law tail in terms of failure probability
decreases with the number n of fibers rapidly as Ptn

	 (Pt1
�n)n �

(Pt1
�3n)n if brittle, or (Pt1

�n)n if plastic.
Thus, it is found that if the cdf of strength of a RVE of a

material having Weibull modulus m � 24 were represented as a
bundle of fibers with power tails reaching up to Pf � 0.003, then
for 2, 3, 6, and 24 parallel fibers (whose tails must have exponents
12, 8, 4, and 1) the power-law tail of the bundle terminates at
5.5 
 10�5, 1.3 
 10�7, 3.8 
 10�13, and 3.6 
 10�45 for brittle
fibers or at 3.0 
 10�3, 7.2 
 10�5, 3.0 
 10�9, and 7.2 
 10�44

for plastic fibers, respectively (4). Therefore, we must conclude
that if the RVE were modeled by more than two or three
elements, the power-law tail would be so short that structures
behaving as a chain of RVEs could never exhibit a Weibull cdf.
The fact that they do implies that a model for extreme value
statistics of one RVE of quasibrittle material cannot include
more than two or three elements coupled in parallel. It also
transpires that, for plastic (or ductile) materials, the RVE model
must involve parallel couplings with �4 elements, to push the
power-law tail so far left that Weibull pdf could not develop for
any realistic structure size.

Note also that if a significant part or the whole of strength
distribution of one alleged RVE of quasibrittle material were
Weibull, this alleged RVE could not really be a RVE because it
would have to behave as a chain in which failure must localize
into one link having very short power-law tail. This link would
be the true RVE, smaller than the alleged RVE. For the same
reason, the topmost coupling must be a parallel coupling, or else
the actual RVE would be smaller than alleged.

Physical Meaning of Weibull Modulus
In the idealized statistical model of Fig. 2e, as well as irregular
hierarchical models of Fig. 2d, the tail exponent of RVE, i.e., the
Weibull modulus m, represents the number of connections that
must be severed to separate the model into two halves. These
highest-scale connections may be imagined to correspond to the
number dominant cracks that are required to break a RVE (Fig.
2a). This number, in turn, depends on the packing of inhomo-
geneities (or grains) in the RVE. Therefore, the packing appears
to be what physically determines the value of Weibull modulus.

Structure as a Chain of RVEs
Consequently, the model, idealized in Fig. 2e, must be hierar-
chical, consisting of parallel and series couplings. It consists of
a bundle of two long subchains, each of which consists of two
subbundles of two long sub-subchains of sub-subbundles, etc.,
until the nanoscale connections whose cdf has the tail �1 is
reached. The first parallel coupling raises the tail exponent of 1
to 3, the next to 6, the next to 12, and the last to 24, while each
such coupling drastically shortens the power-law tail. The short-
ening is offset, at each level of hierarchy, by a long enough chain,
lengthening the power-law tail.

Based on the stress effect on the activation energy of bonds
governed by Maxwell–Boltzmann distribution, the idealized
model in Fig. 2e can produce, for one RVE, a cdf with two
essential characteristics: (i) a power-law tail whose exponent m
is �10–50, typical of Weibull moduli observed for various brittle
materials, and (ii) a power-law tail reaching to Pf � 0.0001 to
0.01, which is a chain of 100–10,000 RVEs. For such sizes or
larger, laboratory specimens of heterogeneous brittle materials
follow the Weibull cdf (6, 20–28), whereas the behavior of the
smallest possible test specimens of such materials can be de-
scribed as Gaussian (29–33) (except for the far-left tail of
histograms of strength tests that is normally undetectable).

When the stress field is nonuniform, the weakest-link model
for structural failure must be based not on the actual number N
of RVEs in the structure but on the equivalent number of RVEs,
Neq. If the cdf tail of one RVE of size l0 is P1 � (�N�s0)m, then,
according to the classical Weibull theory, Pf � 1 � exp[�(�N�
S0)m], where S0 � s0(l0�D)nd/m��1/m and � � �V[�� (�)]mdV(�) is a
geometry parameter independent of D; nd is the number of
dimensions in which the failure is scaled; V is structure volume;
� � x�D is the dimensionless coordinate vector; x is the coor-
dinate vector of material points; �N � F�bD or F�D2 is the
nominal stress or load parameter of the dimension of stress
(where b is structure thickness); m is the Weibull modulus; s0 is
the scaling parameter of power-law tail (measured on a specimen
of one RVE’s size); �� � �(x)��N; and � is the positive part of the
maximum principal stress at x, which depends on structure
geometry but not on D if geometrically similar structures are
considered. According to Eq. 1

s0 � s0r(T�0 � T0�)e(T�1�T0
�1)Q�k, [3]

where T0, �0, and s0r are the values of T, �, and s0 in chosen
reference conditions.

For a structure with large enough Neq, the foregoing expres-
sion for Pf must coincide with Pf � 1 � exp[�Neq(�N�s0)m]. This
condition furnishes

Neq � (s0 � S0)m � (D� l0)nd�. [4]

The geometry factor � is assumed to apply not only for large Neq
but approximately also for small Neq, for which the deviation
from Weibull cdf is significant.

Applying the joint probability theorem to a chain yields

P f(�N) � 1 � 1 � P1(�N)]Neq

any Neq

f 1 � eNeq(�N�s0)m, [5]
Neq3�

where P
1
(�N) is the cdf of strength of one RVE. The corre-

sponding pdf is p1(�N) � dP1(�N)�d�N. According to Eq. 3, the
scale parameter s0 captures the dependence of cdf on temper-
ature and loading rate or duration.

Grafted Probability Distribution for One RVE
Although the transition of p1(�N) from Weibull pdf to Gaussian
pdf ought to gradual, for the sake of simplicity we may consider
that a Weibull pdf 	W(�N) is grafted from the left onto a
Gaussian pdf 	G(�N)

p1(�N) � r f	W(�N), for �N � �N,gr; [6]

� r f	G(�N), for �N � �N,gr, [7]

where 	W(�N) � (m�s1)(�N�s1)m�1exp[�(�N�s1)m]; 	G(�N) �
exp[�(�N � 
G)2�2�G

2 ]�(�G�2�); here 
G and �G are the mean
and standard deviation of the Gaussian part, and m and s1 are
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the shape and scale parameters of the Weibull part. The far-left
power tail of P1 may be related to s1

for �N3 0: P1 � (�N�s0)m, s0 � r f
1 � ms1. [8]

The continuity condition of pdf at the grafting point requires
	W(�N) � 	G(�N), i.e., equality of Eqs. 6 and 7, for �N � �Ngr

.
The scaling factor rf must ensure that ���

� 	(�N)d�N � 1. This
normalizing condition, the continuity condition, Eq. 8, and the
pdf expression given by Eqs. 6 and 7 (with s0 and s1 related by
Eq. 8) amount to four conditions, from which rf, 
G, �G, and Pgr
(or �Ngr

) can be calculated if the values of m, s0 (or s1), overall
mean 
, and overall coefficient of variation  � ��
 are known.

Verification and Calibration
Although for Neq � 1 (one RVE, D � l0), the cdf slope is at the
grafting point discontinuous, for Neq � 1, Eq. 5 gives a contin-
uous slope everywhere. For finite but not too large Neq, the lower
part of cdf appears as a straight line on the Weibull probability
paper, whereas the upper, Gaussian, part appears curved (Fig.
3a). The upper part of cdf appears as a straight line on the normal
(Gaussian) probability paper, whereas the lower, Weibull, part
appears curved. These two straight lines can be identified in the
proper probability papers by linear regression of the lower and
upper parts of the histogram of structural strength data for a
certain fixed D (or Neq). These parts intersect at a point, called
the kink point, which represents the center of the transition from
Weibull to Gaussian cdf. With increasing structure size, the kink
point moves upward, from the lower extreme to the upper
extreme of the cdf (Fig. 3a). Experimental observations of the

kink point for various structure sizes and shapes provide one way
to verify and calibrate the theory.

Consider that the kink points (�Ni
, Pfi

) [1 � 1, 2, . . . , nk (Fig.
3a)] have been identified for a number of different sizes Neqi

corresponding to different sizes Di and geometry parameters �i.
Eq. 5 must be satisfied for all of them;

1 � P fi
� [1 � P1(�Ni

)]Neqi, Neqi
� (Di� l0)�i, [9]

where i � 1, 2, . . . , nk. In each case, the stress in the weakest
element, � � �Ni

corresponds to the kink point, and in all of the
other elements the stress is within the Weibull tail. Therefore,
P1(�Ni

) � r0(�Ni
�s0)m(i � 1, . . . , nk). Substituting this expression

into the foregoing equation, one gets a system of equations.
Considering only two cases (nk � 2), there are two equations.
Upon elimination of l0

ln(1 � P f1
)

ln(1 � P f2
)

�
D1�1 ln[1 � r f(�N1

� s0)m]

D2�2 ln[1 � r f(�N2
� s0)m]

, [10]

where rf (close to 1) is known. This is a nonlinear equation, from
which s0 can be solved by Newton iterations, and l0 then follows
from Eq. 9. Alternatively, one may eliminate s0, and (if nk � 2)
this yields for l0 the nonlinear equation

1 � (1 � P f1
)l0�D1�1

1 � (1 � P f2
)l0�D2�2 � � �N1

�N2

� m

, [11]

from which l0 can be solved by Newton iterations; s0 then follows
from Eq. 9. The grafting point probability for one RVE is then
obtained as Pgr � rf(�Ni

�s0)
m for any i.

Fig. 3. Effects of structure size. (a) Size effect on the cdf of structural strength for Pgr � 0.003, 0 � 0.25 in Weibull scale. (b) Optimum fits of chain-of-RVEs
model by asymptotic matching size effect formula (35) (A, Db, r � fitting constants). (c) Weibull’s (1939) tests (6) of Portland cement mortar of age 2, 7, and 28
days, and fits by the present chain-of-RVEs model, with zero threshold. (d) The same tests as originally fitted by Weibull distribution with finite threshold.
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Preferably, the number of observations of the kink point
should exceed two, and then the optimal values of l0 and Pgr
ensue by least-square nonlinear optimization of fit. Were the
coefficient of variation from such regression too large, it would
disprove the present theory.

Experimental Evidence from Histograms
Strength histograms with kink point on the Weibull scale plot
were observed by Weibull (6) in his tests of Portland cement
mortar (Fig. 3 c and d). The solid lines in Fig. 3 show that the
present theory allows excellent fit. Lacking information, one may
logically assume that Neq � 100–10,000, and then the fitting of
these data yields P1gr � 0.0001–0.01 and l0 � 0.6–1.0 cm.

However, Weibull (6) and all of the subsequent investigators up
to now who observed similar kinked histograms for coarse-grained
ceramics or very small material specimens have tried to deal with
the kink points within the realm of the classical Weibull theory (for
which the RVE size is 0). They noted that the optimum fits of these
experimental histograms by Weibull distribution improve if one
assumes a finite threshold �u (see Fig. 3d), i.e., if the tail is P1 � (� �
�u)m�s0

m. On this basis, it has been widely claimed that some
ceramics and fiber composites exhibit finite thresholds. However,
the upper part of cdf could never be fitted.

According to the present analysis, these claims cannot be correct.
The threshold must be zero, and, if the finite RVE size is taken into
account, this finding leads to a much better fit of experimental
strength histograms (Fig. 3d). This observation is of crucial impor-
tance for assessing loads of extremely small failure probabilities
such as 10�6 to 10�7. It is equally important for correct approach
to the statistics of material strength on approach to nanoscale
(MEMS, thin films, and nanocomposites).

Mean Size Effect Curve
Knowing the pdf, p1(�N), of one RVE, we can compute the mean
�N (Fig. 3b) as �� N � �0

��NNeq[1 � P1(�N)]Neq�1p1(�N)d�N. Numer-
ical integration yields, for geometrically similar structures, the mean
size effect curve shown in Fig. 3b. Note that with decreasing size D
the curve deviates from the power-law size effect of Weibull theory
[the same also follows from deterministic energetic arguments (5,
34–36) emanating from ref. 37]. The onset of deviation is governed
by Pgr, and the steepness of deviation is proportional to the
coefficient of variation of RVE strength. If these two characteristics
of the deviation from the power-law scaling of mean �N are
identified experimentally, l0 and Pgr can be evaluated. Agreement
with the l0 and Pgr values identified from kinks on experimental
histograms verifies the theory.

When the mean size effect curve is fitted by the asymptotic
matching formula for mean type I size effect (36, 38), the match
is visually perfect (Fig. 3b). That formula, originally derived by
energy arguments of fracture mechanics (34–36), was in turn
shown to fit closely the size effect tests of mean flexural strength
of various concretes and polymer–fiber composites collected
from the literature (Fig. 3b) and also to agree closely with finite
element simulations based on the nonlocal Weibull theory (39).
These agreements support the present theory. Fitting both the
mean size effect and the experimental histograms with their kink
points provides a valuable check.

Conclusions and Implications
(i) In the case of quasibrittle structures, the safety (or under-

strength) factors used in design and the expected (mean) design
strength cannot be considered as size independent. They both
depend on the structure size (and shape) as measured by Neq; this
finding applies to concrete structures; to fiber composite parts of
aircraft, ships, spacecraft and machines; and to rigid foams,
tough ceramics, strengthening of seismically damaged structures
by bonded laminates, etc.

(ii) Assessment of risk from landslides, avalanches, rock slides,
tunnel or mining stope breakouts, or sea ice breaks should take
into account the effect of size on both the mean strength and pdf
type.

(iii) So should the failure analysis of MEMS, thin films, and
nanocomposites, as well as quasibrittle biomaterials and bio-
inspired materials, etc.

(iv) The statistical fracture parameters of these materials can
be identified by testing the strength histograms or the mean size
effect on strength (or, better, both).

(v) The far-left tail of strength of any material must be a power
law with zero threshold, although for plastic materials the tail lies
so far away that it has no effect.

(vi) The power-law nature of pdf tail and Weibull pdf of large
enough structures are an inevitable consequence of Maxwell–
Boltzmann distribution of atomic energies and the stress depen-
dence of activation energy.

(vii) The pdf of strength should be considered to depend on
temperature and load duration or rate (as well as any corrosive
agents that alter the activation energy barriers).

(viii) For predicting the failure of large quasibrittle structures,
the RVE cannot be defined by homogenization.

Related Studies
Finally, it needs to be acknowledged that some aspects of the
present model are partly related to important probabilistic
models of the lifetime distribution and of the evolution of defects
in parallel coupling systems with various idealized load-sharing
and interaction rules (e.g., refs. 40–45 and references therein).
Like the present model, the lifetime modeling, too, has been
physically justified by the stress dependence of activation energy,
through an argument traced to Eyring (46, 47), similar to that
underlying Eq. 1.

Remarks on Nanotubes, Etc.
According to the hierarchical model in Fig. 2e, the left-tail
power-law exponent m can be as small as 1–4 for nanotubes, thin
films, and various long nanometer-width components. The re-
sulting statistical size effect would be much stonger than in
standard material tests, e.g., �N � D�1�2 to D�1. Creating parallel
connections, such as cross-linking in multiple nanotubes or
nanotube bundles, would mitigate this size effect.
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