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Folded structures are often idealized as a series of rigid faces connected by creases acting as revolute hinges.

However, real folded structures can deform between creases. An example of particular interest is a disk decorated

by multiple radial creases. Such disks are bistable, snapping between a “natural” and “inverted” shape. We

investigate the mechanical behavior of these creased disks and propose a new analytical approach to describe

their mechanics. Detailed experiments are performed which show that, when indented at the center, a localized

dimple forms, precluding the conical shape assumed in previous studies. As the indentation depth increases this

dimple expands radially until reaching the disk edge when it snaps to the inverted shape, which has a conical

form. We develop an analytical model which approximates each face as a series of rigid facets connected by

hinges that can both rotate and stretch. Energy expressions are derived relating hinge rotation and stretching

to compatible shell deformations of the facets and equilibrium enforced by minimizing the total strain energy.

By increasing the number of facets, the mechanics of the continuum shell is approached asymptotically. The

analysis shows that membrane stretching of the faces is required when a conical form of deformation is enforced.

However, in the limit of zero thickness, the forming and propagation of a localized dimple is inextensional. This

new approach relates the kinematic analysis of rigid origami to the mechanics of thin shells, offering an efficient

method to predict the behavior of folded structures.

DOI: 10.1103/PhysRevE.101.043001

I. INTRODUCTION

Crease patterns observed in nature, or formed by phenom-

ena such as crumpling, have inspired origami designs with ap-

plications ranging from deployable aerospace structures [1,2]

to mechanical metamaterials [3,4]. Analysis usually assumes

rigid faces connected by creases acting as revolute hinges,

with deformation being purely kinematic. The addition of

torsional stiffness to the hinges provides global mechanical

behavior but does not influence the underlying kinematics.

Such “rigid origami” imposes strict constraints on the crease

layout [5] and accessible geometric configurations.

Structures made from folded thin sheets can deform be-

tween the creases, introducing additional soft modes of de-

formation [6]. This can be accounted for using finite element

analysis [7,8], or sometimes analytically by assuming inex-

tensibility. However, reduced order models offer a more com-

putationally efficient method. Examples include additional

diagonal bending lines within the rigid faces [9] or hinges

along diagonal bars in bar-and-hinge models [6,10–12]. These

methods allow some flexibility of faces within the context of

rigid origami, but they do not capture the full continuum shell

deformations, in particular, membrane stretching.

The extent to which deformation of a folded sheet is

governed by crease opening or face bending is determined

by an origami length scale, L∗ ≡ D/k, where D is the shell

flexural rigidity of the face and k is the crease torsional

stiffness [13]. When the characteristic size of a face l ≫ L∗,

*martin.walker@some.ox.ac.uk

behavior is dominated by face bending. In this case, the

creases provide boundary constraints for the continuum shell

deformation of the faces between them. This offers the pos-

sibility of interesting new mechanical behavior at the cost

of considerably increased analytical complexity. An example

of particular interest is the bistable behavior of a thin disk

decorated by multiple radial creases, as shown in Fig. 1.

This behavior is observed by folding a piece of paper, then

while supporting the paper at the edges of the crease, pressing

downward at a point along the crease line. After some initial

elastic resistance, a snap-through occurs leaving the crease

with a sharp localized vertex. Except for this vertex the creases

are otherwise straight.

Lechenault and Adda-Bedia [14] investigate the shape of

these creased disks by assuming each face between creases

deforms as a conical surface, with generators extending radi-

ally from a central vertex, forming a foldable cone or “f-cone.”

Assuming inextensibility, they identify the metastable states

corresponding to configurations of minimum bending energy.

Andrade-Silva et al. [15] build on this analysis by incorpo-

rating geometric nonlinearity but retaining the inextensibility

assumption. They also include the influence of the crease

opening stiffness and find that when it is very stiff face stretch-

ing becomes important to the mechanical behavior. Walker

and Seffen [16] consider the similar deformation of a creased

strip bent perpendicular to the crease axis. They approximate

each face of the strip as a set of rigid facets connected by rota-

tional hinges emanating from a central vertex. Using a Gauss

mapping approach they establish the kinematic relationship

between facets. An energy cost is assigned by relating hinge

rotations to compatible shell deformation of the adjacent facet.
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FIG. 1. Disks with 2, 3, and 4 radial creases in the natural (top) and inverted (bottom) configuration.

By increasing the number of facets, the continuum solution

of [14] is approached asymptotically. All of these approaches

assume inextensible deformation with straight generators, or

hinges, originating from a single central vertex. This precludes

any bending along their length, including along the crease

line. Additionally, due to the constraint provided by the pres-

ence of stiff creases, a complete mechanical description must

include membrane stretching, which is not possible using

current approaches.

In this study we propose a new analysis technique for

creased shells that includes both bending and membrane

stretching deformations. In particular, we consider the me-

chanics of a thin disk decorated by multiple radial creases.

We perform careful experiments using thin folded steel disks

indented at the center and show that deformation does not

conform to the conical assumption made in previous studies.

Instead, a localized dimple forms around the indentation

point, in a manner similar to the indentation of curved thin

shells [17]. Under increasing deformation this dimple expands

radially. When it reaches the edge, the disk snaps to the

inverted shape.

To capture this behavior we divide each face between

creases into a series of rigid facets, which extend from the

central vertex to the outer edge of the disk, and are connected

by deformable hinges. By allowing these hinges to both rotate

and stretch, we obtain the complete mechanical behavior

corresponding to the conical deformation assumed in previous

studies. However, this eliminates the possibility of crease

bending and the forming of a localized dimple. Therefore, we

modify this model to allow for bending of the creases, and

facets, to capture the localized deformation. When combined

these two models show good agreement with experiments.

We proceed as follows: first, we discuss experiments con-

ducted using folded steel disks. This is followed by the

derivation of a rigid-faceted model that assumes the creases

remain straight and facets remain flat. This model is then

modified to allow for bending of the creases and facets. The

models are then compared to experiments and we conclude.

II. EXPERIMENTS

Tests were performed using 100 mm diameter disks cut

from 0.10-mm-thick stainless steel sheet (AISI 301). To avoid

the influence of a stress singularity at the vertex, all disks had

a central hole with a diameter of 3 mm. Radial creases were

formed by pressing the disks against a stiff rubber sheet using

a die press. For simplicity, experiments were limited to disks

with two or three equally spaced radial creases. Each disk was

3D scanned to obtain the initial fold angle across the crease,

β [see Fig. 2(a)]. In the case of a diametrical crease, a best-fit

plane was found for the face on each side of the crease and

the angle between their normals used as the fold angle. In

the case of three radial creases, the scanned shape was cut

by a plane perpendicular to each crease line at its midpoint.

A best fit curve was obtained for each side of the cross-

section and the angle at each intersection measured. The av-

erage of these angles is used as the crease angle for the

disk.

During testing the disks were supported along the crease

line by cone-pointed bolts located 40 mm from the center.

Since the diametrically creased disk is supported at only two

points it is inherently unstable. Therefore, at each end of the

crease, stabilizing pins were attached which fit into a slot in

the test fixture to stabilise the disk during testing, as shown

in Fig. 2(b). The disks were loaded using an indenter with

a 4-mm-diameter point. From this point a 2-mm-diameter

smooth rod is attached and passed through the central hole in

the disk. This improves the stability of the test by preventing

the disk from sliding off the supports. The three-crease disks

were supported along the creases by three cone-pointed bolts,

located 40 mm from the center. Stabilizing pins were not

needed at the end of the creases since this geometry is stable.

The three-crease disks were loaded with the same indenter and

stabilizing pin as the diametrically creased disks. Tests were

conducted using an Instron universal testing machine (model

5582) with a 100N Class 1 (±1.0%) load cell. Each disk was

tested three times under displacement control at a rate of 5

mm/min.
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FIG. 2. A schematic drawing of a diametrically creased disk (a) with a fold angle of β, disk radius R and hole radius r. A creased disk is

shown mounted in the test fixture in (b). Stabilizing pins are located at the outer edges of the crease and fit into a slot in the test fixture. An

additional stabilizing pin extends from the tip of the indenter and passes through the central hole. The disk is balanced on two cone pointed

bolts positioned beneath the crease.

The indentation force-displacement results are shown in

Fig. 3. Initially a localized dimple forms surrounding the

indenter, as shown in Fig. 4. Under increasing indentation, the

dimple region grows in size with the ridge moving outward

toward the disk edge. Cross-sections showing the outward

movement of the ridge are shown in Fig. 5. The rate of dimple

growth appears to increase as the ridge nears the disk edge.

When the ridge reaches the outer edge, the disk snaps to the

inverted shape. The snap-through separates the disk from the

indenter, and zero reaction force is measured. Eventually the

indenter reaches the disk in its inverted state and the reaction

force increases approximately linearly.

The peak reaction force increases as the crease angle,

β, is increased and the displacement at snap-through also

increases. A similar process is observed with the three radial

crease disks, as shown in Fig. 3(b). However, the snap-through

is approached more smoothly and the sharp drop in load

observed for the diametrically creased disks is not present. We

proceed to derive an analytical model to capture the observed

behavior.

III. ANALYSIS

A. Straight crease

We first assume that hinges emanating from the central ver-

tex remain straight. While this precludes the localized dimple

observed in experiments, it corresponds to the assumptions

of previous studies on the inversion of f-cones [14,15]. We

therefore find the consequences of this assumption on the

predicted mechanical behavior. For conciseness the analysis is

restricted to symmetric behavior, such that all creases deform

simultaneously and identically. However, the analysis can be

adapted for general deformations.

Consider an initially planar thin disk with thickness t ,

radius R, and a small hole of radius r located at the center, as

shown in Fig. 6. N equally spaced radial creases are imposed

dividing the disk into N identical faces. Therefore, only one

face, of angle 2π/N , is considered for this analysis. This

face is divided by 2n equally spaced radial hinges, forming

2n + 1 wedge-shaped facets, each subtending an angle of α =
2π/N (2n + 1). Mirror symmetry is assumed across the face

bisector and only one half is analyzed, shown shaded in Fig. 6.

The facets are all joined at the central vertex but are otherwise
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FIG. 3. Experimental results for disks with (a) two and (b) three radial creases. The solid line is the mean of three tests and the shaded

region shows one standard deviation from the mean. Dotted lines indicate separation of the indenter from the disk.
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FIG. 4. Initially a localized dimple forms at the indentation point.

Under increasing indentation the dimple grows and the ridge moves

toward the outer edge. Once the ridge reaches the outer edge, the disk

snaps to the inverted shape.

unconstrained. We number the facets clockwise, with facet i

located between hinges i − 1 and i. The centerline of facet

n + 1 is aligned with the line of symmetry. A Cartesian

coordinate system is located at the center of the undeformed

disk with the y axis aligned radially along a crease and the z

axis pointing out of the page. Initially, the facets on each side

of a crease are rotated about the crease line by an angle of β/2

from the x-y plane. This leaves an angle β across each crease

line, with the apex oriented in the positive z direction (i.e.,

mountain folds), as shown in Fig. 7. We assume the radius, R,

is sufficiently large such that the crease angle, β, is effectively

fixed, forming a boundary condition on the deformation of the

adjoining faces [13].

The facets must separate and move from the planar state

to accommodate the imposed crease angle. We allow the

hinges to both rotate and stretch and impose these hinge

deformations as boundary conditions on the subsequent facet,

then derive the energy cost of the corresponding continuum

shell deformations. The equilibrium shape is thus obtained

by minimizing the total strain energy with respect to the

hinge rotations and stretch angle. The analysis proceeds by

incrementally moving the center of the disk down/upward,

causing the creases to form an angle � relative to the x-y

plane, as shown in Fig. 7. At each deformation increment,

the equilibrium shape and strain energy are obtained. We first

consider the kinematics of this deformation before deriving

the energy cost.

0
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6.1

Indentation (mm)

FIG. 5. Radial cross-sections from 3D scans of a diametrically

creased disk taken during testing. The cross-sections are taken from

the center of the disk perpendicular to the crease. The peak of the

ridge is indicated by the filled circles. Under increasing indentation

the ridge moves outward toward the disk edge.
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FIG. 6. Plan view schematic of a disk with radius R and a small

hole of radius r located at the center. The three radial creases are

shown dashed. Each face between two creases is subdivided into

2n + 1 facets which each subtend an angle α. Mirror symmetry is

assumed across the face bisector and only one half of a face, shown

shaded, is analyzed.

1. Kinematics

The kinematics are described by writing the position of

facet i + 1 relative to facet i, forming a kinematic chain. We

label the unit normal vector of facet i: ηi; and unit vectors

along the facet edges: pi,1 and pi,2, as shown in Fig. 7. The

normal and edge vectors of the first facet, adjacent to the

crease, are set by the crease angle, β, the facet angle, α, and

the imposed deformation angle, �:

η1 =

⎡

⎣

sin
β

2

− cos
β

2
sin �

cos
β

2
cos �

⎤

⎦ p1,1 =

⎡

⎣

0

cos �

sin �

⎤

⎦

p1,2 =

⎡

⎣

sin α cos
β

2

sin α sin
β

2
sin � + cos α cos �

cos α sin � − sin α sin
β

2
cos �

⎤

⎦. (1)

Facet i + 1 is initially aligned in the same plane as facet i,

then rotated by an angle θi about the vector pi,2. Facet i + 1

is then rotated about its normal vector (ηi+1) by an angle φ,

as shown in Fig. 7. The stretch angle, φ, is assumed to be

constant for all facets, which implies constant circumferential

strain. Making use of Rodrigues’ rotation formula, the orien-

tation of facet i + 1 is expressed relative to facet i as

ηi+1 = ηi cos θi + (pi,2 × ηi ) sin θi

+ pi,2(pi,2 · ηi )(1 − cos θi ),

pi+1,1 = p1,2 cos φ + (ηi+1 × p1,2) sin φ

+ ηi+1(ηi+1 · p1,2)(1 − cos φ),

pi+1,2 = pi+1,1 cos α − (ηi+1 × pi+1,1) sin α

+ ηi+1(ηi+1 · pi+1,1)(1 − cos α). (2)
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FIG. 7. Deformed shape of a disk with N = 3 creases and n = 1 hinge lines per half-face. A fixed angle, β, is imposed across each crease

line. The facets separate by an angle φ and the rotation angle between facet i and i + 1 is θi. The center of the disk is moved down/upward

with all creases forming an angle � to the x-y plane. A side view is shown in (a) and (b) shows a view of along the normal of facet 2.

The deformation of each face is symmetrical about its

bisector. As a result, facet n + 1 is split by a symmetry

plane and can only move vertically during deformation, thus

providing a kinematic boundary condition. The unit normal

vector of the symmetry plane, which does not change during

deformation of the disk, is

ηS =
[

− cos (π/N ) sin (π/N ) 0
]T

. (3)

To enforce the symmetry condition, the normal of the

symmetry plane, ηS , must align with the normal vector of

the bisecting plane of facet n + 1. The unit vector along the

bisector of facet n + 1 is

bn+1 = pn+1,1 cos
α

2
−
(

ηn+1 × pn+1,1

)

sin
α

2

+ ηn+1

(

ηn+1 · pn+1,1

)

(

1 − cos
α

2

)

. (4)

Since the normal of the bisecting plane of facet n + 1 is:

ηn+1 × bn+1, the symmetry boundary condition is obtained by

the vector triple product:

ηS ×
(

ηn+1 × bn+1

)

= 0. (5)

The equilibrium shape of the creased disk is obtained by

minimizing the total strain energy with respect to the hinge

deformations, θi and φ, subject to the constraint provided by

Eq. (5).

2. Energy

To compute the deformation energy as a result of the

hinge rotations, θi, and stretch, φ, we use the energy cost

of compatible deformations of initially flat facets. The hinge

rotation between facet i and i + 1, θi, is split between the

edges of the subsequent facet (i + 1) resulting in a rotation

of θi/2 being applied along each edge in the opposite sense,

as shown in Fig. 8(a). As a result of these edge rotations the

facet forms a conical deformed shape. The strain energy of

this deformation for each facet is summed to compute the total

bending energy.

The separation angle between facets, φ, is assumed to be

the same between all facets. To compute the energy cost of

this separation we impose the stretching angle on a flat facet

which initially subtends and angle α. This causes an increase

of the facet subtended angle to α + φ, as shown in Fig. 8(b).

The strain energy of this change in subtended angle is summed

for all facets to compute the total stretching energy. Bending

and stretching deformations are considered separately and

we neglect their interaction since this higher order effect is

negligible when the number of facets is large.

a. Bending. We consider a facet with subtended angle, α,

inner radius, r, and outer radius, R. Edge rotations of θi/2 are

imposed along each edge, as shown in Fig. 8(a). The facet is

assumed to form a segment of a developable cone. Following

ρ

α

ϑ

R

r

θi/2

θi/2

(a)

ρ

α

ϕ

ϑ

(b)

FIG. 8. The hinge rotations, θi, and stretch angle between facets,

φ, are imposed as boundary conditions of an initially flat facet. The

hinge rotations are divided equally between the two edges of each

facet such that rotations of θi/2 are applied on each edge of facet

i + 1 in the opposite sense, as shown in (a) using the right-hand-rule.

The in-plane stretching angle, φ, increases the subtended angle of

each facet to α + φ, as shown in (b). To derive the energy cost of

these deformations, a cylindrical facet coordinate system is used with

ρ as the radial coordinate and ϑ as the azimuthal coordinate.
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Refs. [14,18], a cylindrical coordinate system is assumed and

the deformed shape is written as: ρ = ρρ̂ + ρ
(ϑ )ẑ, where ρ

is the radial coordinate, ϑ is the azimuthal coordinate, and ẑ

is the facet normal direction (ηi+1). The facet bending energy

density is therefore

uB =
D

2
ln

(

R

r

)∫ α

0

[


′′(ϑ ) + 
(ϑ )
]2

dϑ, (6)

where D = Et3/12(1 − ν2) is the shell flexural rigidity, E is

Young’s modulus, and ν is Poisson’s ratio. We seek the func-

tion �(ϑ ) which minimizes Eq (6). Taking the first variation,

the following Euler-Lagrange equation is obtained:


(4)(ϑ ) + 2
′′(ϑ ) + 
(ϑ ) = 0, (7)

which has the solution


 = C1 cos(ϑ ) + C2ϑ cos(ϑ ) + C3 sin(ϑ ) + C4ϑ sin(ϑ ),

(8)

subject to the boundary conditions at the facet edges:


′(0) = −
′(α) =
θi

2
, 
(0) = 
(α) = 0. (9)

Solving for the unknown constants:

C1 = 0, C2 =
θi sin α

2(α + sin α)
,

C3 =
αθi

2(α + sin α)
, C4 = −

θi(1 + cos α)

2(α + sin α)
.

By completing the integration in Eq. (6) and summing for

all facets, the total bending energy is

UB = D
(1 + cos α)

2(α + sin α)
ln

(

R

r

) n
∑

i=0

θ2
i . (10)

As in the case of conical dislocations such as the d-cone

[19,20], the bending energy diverges logarithmically as the

hole radius is reduced to zero. In reality, localized stretching,

yielding, or damage will occur in this region [18].

b. Stretching. The imposed stretching deformation, φ,

causes strain in both the azimuthal, ϑ̂ , and radial, ρ̂, directions

[21]:

ǫϑϑ =
φ

α
+

uρ

ρ
, ǫρρ =

∂uρ

∂ρ
, (11)

where uρ is the displacement in the radial direction. Since we

have assumed φ is constant, ǫϑϑ and ǫρρ are functions of the

radial coordinate, ρ, only and are the same for all facets. The

stretching energy of each facet is

us =
Etα

2
(

1 − ν2
)

∫ R

r

[

ǫ2
ϑϑ + ǫ2

ρρ + 2νǫϑϑǫρρ

]

ρ dρ. (12)

Taking the first variation we obtain the Euler-Lagrange equa-

tion for the radial displacement, uρ , which minimizes Eq. (12):

u′′
ρ −

(1 + ν)

ρ2
uρ =

φ

α ρ
. (13)

By solving this differential equation, we obtain the radial

displacement,

uρ = C5 ρ
1
2
+λ + C6 ρ

1
2
−λ −

φ

α(1 + ν)
ρ, (14)

where 4λ2 = 4ν + 5. This is subject to the condition of zero

radial stress at the inner and outer edges, respectively:

σρρ (r) =
Et

1 − ν2
[ǫrr (r) + ν ǫϑϑ (r)] = 0, (15)

σρρ (R) =
Et

1 − ν2
[ǫrr (R) + ν ǫϑϑ (R)] = 0. (16)

Solving for the unknown constants,

C5 =
2(1 − ν)r

1
2
−λ
[

(

R
r

)λ+ 1
2 − 1

]

(2λ + 2ν + 1)
[

(

R
r

)2λ − 1
]

φ

α
,

C6 =
2(1 − ν)

√
rRλ

[
√

R
r

−
(

R
r

)λ
]

(2λ − 2ν − 1)
[

(

R
r

)2λ − 1
]

φ

α
. (17)

The circumferential and radial strains are obtained directly

from Eqs. (11):

ǫϑϑ =
ν

ν + 1

φ

α
+

1

ρλ+ 1
2

(

C5ρ
2λ + C6

)

, (18)

ǫρρ =
−1

ν + 1

φ

α
+

1

2ρλ+ 1
2

[

C5(2λ + 1)ρ2λ + (1 − 2λ)C6

]

.

(19)

The stretching energy is obtained from Eq. (12), which has

a lengthy closed form expression. If ν = 5/16 ≈ 0.31, then

λ = 5/4 and Eq. (12) simplifies to

US ≈
40Et

4851
(

r5 + R5 − 2(rR)5/2
)

n φ2

α

×
[

9(R7 − r7) − 420
(√

r9R5 +
√

r5R9

)

+ 658
(

r17/4R11/4 − r11/4R17/4
)

+ 438
(

r21/4R7/4 − r7/4R21/4
)

+ 539
(

r2R5 − r5R2
)]

.

(20)

The total strain energy of the entire disk is thus the sum of

the bending and stretching energy of every facet:

UT = 2N ( US + UB). (21)

The equilibrium shape of the creased disk is obtained by

minimizing Eq. (21) with respect to the rotations, θi, and

stretch, φ, subject to the kinematic constraint given by Eq. (5).

3. Mechanical behaviour

To obtain the mechanical behavior of a creased disk we be-

gin with all creases lying in the x-y plane (� = 0). The hinge

rotations, θi, and circumferential stretch angle, φ, correspond-

ing to this configuration are obtained by minimizing the total

strain energy, Eq. (21), subject to the symmetry constraint

[Eq. (5)], using a constrained numerical minimisation scheme

in MATLAB [22]. The crease rotation angle, �, is then

incremented by a small angle, d�. Using the hinge rotations
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(a) Ψ=-0.12β (b) Ψ=-0.08β (c) Ψ=-0.04β (d) Ψ=0

 

Ψ=0.10β (f) Ψ=0.20β (g) Ψ=0.30β (h) Ψ=0.40β(e)

FIG. 9. Deformation sequence for a disk with three radial creases, β = 40◦, R = 30, r = 1, t = 0.05, and n = 10. The deformed shapes

shown in (b)–(g) require separation of the facets, corresponding to membrane stretching of the faces. This separation is sufficiently small to

not be visible. Comparing the stable states, (a) and (h), to Fig. 1 shows good qualitative agreement.

and stretch angle obtained from the previous step as an initial

guess, the values for the rotation � + d� are obtained using

the same minimisation scheme. This process is continued to

compute the complete strain energy-crease rotation behavior.

Figure 9 shows the resulting deformation sequence for a disk

with three radial creases (N = 3) and end rotations ranging

between the two stable states at � = −0.12β and � = 0.40β.

Comparing these to Fig. 1 shows good qualitative agreement.

The relationship between strain energy and end rotation

for disks with N = 2 to N = 5 radial creases, for increasing

numbers (n) of hinge lines, are shown in Fig. 10. The diamet-

rical crease disks (N = 2) are a special case since they have

no strain energy at � = 0. In each case there are two energy

minimums, corresponding to the stable states, separated by an

energy peak. Predictions for the energy and end rotation at

these stable states were obtained by Lechenault and Adda-

Bedia [14] by finding minimums of bending energy while

enforcing inextensibility. Their results are shown dashed in

Fig. 10. As the number of hinges is increased, the present

model rapidly approaches the stable state predictions made

in Ref. [14]. The lowest stable state converges more quickly

than the upper stable state with increasing n. Even for small

numbers of hinges, the model converges quickly outside of

the two stable states, since primarily bending deformations

are involved and Eq. (6) provides a good approximation of

the bending energy, even for moderate rotation angles.

The contributions of the bending and stretching energies

to the total strain energy are shown in Fig. 11. Stretching

has a large effect around � = 0 but diminishes quickly as

the crease rotation is increased. The bending energy has

two energy minimums and therefore drives the bistability of

creased disks, while stretching increases the energy barrier

between stable states. At the energy minimums the stretching

energy is zero, since all the facets fit together without any

gaps, as shown in Ref. [16].

To obtain the force required to move between equilibrium

states, we note the total potential energy, �, is

� = UT − Fδ, (22)

where UT is the total strain energy [Eq. (21)], F is an applied

force acting along the global z axis at the central vertex, and

δ = R sin � is the vertical displacement of the vertex. Since

at equilibrium d�/dδ = 0, we obtain an expression for the

applied force:

F =
dUT

dδ
. (23)

Using the strain energy-crease rotation behavior obtained

previously, the force-displacement relationship is obtained

using Eq. (23) and shown in Fig. 12 for disks with N =
2 and N = 3 radial creases. For the case of a diametrical

crease (N = 2), shown in Fig. 12(a), no force is required to

maintain the initial state (δ = 0). An increase in displacement

requires an increase of the applied force. The force reaches a

peak before quickly dropping to a maximum negative value,

which is much smaller in magnitude than the peak positive

force. The first crossing with F = 0 corresponds to the total

energy peak in Fig. 10(a). Increasing the displacement further

requires a slowly decreasing force magnitude until a second

zero crossing is reached, which corresponds to the second

stable state, or energy minimum in Fig. 10(a).

For N > 2 the initial state (δ = 0) requires a downward

force to maintain. Starting from the lowest energy stable state,

increasing the displacement requires an increase in the down-

ward force. Like the N = 2 disk, a peak is reached before

quickly dropping to the maximum negative value. Continued

displacement requires a gradually decreasing load magnitude

until the second zero crossing is reached, corresponding to

the second stable state. Further displacement requires a slowly

increasing downward force.

This model assumes that the radial creases, and hinge lines,

remain straight. However, as described in Sec. II, experiments

show that a localized dimple forms around the indenter and

grows in size as indentation continues. We now modify this

rigid-faceted approach to incorporate this observed behavior.

B. Bending crease

If bending is allowed along the crease line, then an alter-

native deformation mode characterized by a localized dimple

around the indentation point occurs, as described in Sec. II.

Following the rigid-faceted approach, we discretize each face
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FIG. 10. Effect of the number of hinges on the strain energy-crease rotation behavior of creased disks with β = 20◦, R = 30, r = 1, and

t = 0.05. As the number of hinges is increased the energy minimums rapidly approach the stable state predictions from Ref. [14], shown

dashed.

between creases into a series of rigid facets and postulate a

kinematic mechanism which captures the dimple deformation.

The postulated facet layout is shown in Fig. 13. There are two

key differences in comparison to the straight-crease model

(Fig. 6). First, there is a circumferential hinge located at a

radius of �, measured along the crease from the center of

- 0.1 0.0 0.1 0.2 0.3

0.0

0.5

1.0

1.5

2.0

Ψ(rad)

U

D

Stretching

Bending

Total

(a)

- 0.1 0.0 0.1 0.2 0.3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ψ(rad)

U

Stretching

Total

Bending

D

(b)

FIG. 11. Contributions of bending and stretching energy to the total strain energy of disks with N = 2 (a) and N = 3 (b) radial creases

and n = 100, β = 20◦, R = 30, r = 1, and t = 0.05. Stretching has a large effect around � = 0 but diminishes quickly outside this region.

Bistability is governed by the bending energy, which has two minimums.
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FIG. 12. Effect of the number of hinges on the force-displacement behavior of a creased disk with N = 2 (a) and N = 3 (b) radial creases

and β = 20◦, R = 30, r = 1, and t = 0.05. The vertical dotted lines indicate the stable states corresponding to F = 0.

the disk. Second, there are additional facets which emanate

from the intersection of this hinge with the crease line (facets

C and D). We assume that the facets directly adjacent to the

crease (A–F) have subtend angles of α0, while all other facets

have subtended angles of α = (π − 2α0)/(2n − 1). Like the

straight-crease model, we consider the kinematics before de-

riving the strain energy of deformation for this model.

C. Kinematic analysis

Deformation of this facet arrangement does not require

stretching between facets. Therefore, we use a Gauss mapping

approach to obtain the relationship between hinge rotations

at each vertex. This technique maps the rotations of hinges

intersecting at a single vertex onto a unit, or Gauss, sphere.

As a result, the length of curves on the map are equal to the

hinge rotations. If the signed enclosed area of the spherical

polygon formed by these hinge rotations is equal to zero, then

the vertex is developable—or more directly for our case, all

facets intersecting at the vertex fit together without gaps [23].

This provides the condition for compatibility of the vertices.

R

r

nS n
 h

in
g
es

y

α

α0

A

B
C

D

E
F

G Hα0

α
I J

Δ

FIG. 13. Crease-bending model facet layout. A circumferential

hinge is located at a distance � from the central vertex. This layout

deforms by rotation of the hinge lines only.

We assume the crease angle in the outer region (between

facets C and D) remains fixed at β. The kinematics then

requires the crease angle in the inner region (between facets

A and F ) to change to accommodate any deformation. For

the kinematic analysis we consider the vertices surrounded

by facets ABCDEF , EFGH , and HGIJ . Since, as shown

by Seffen [24], all further vertices around the ridge will

result in the identical hinge rotation relationships as HGIJ .

In particular, rotation HJ = −GI and GH = IJ . This is a

discrete result of developable curved folding [25].

Gauss maps for the vertices ABCDEF , EFGH , and HGIJ

are shown in Fig. 14. Note that these are projections of spher-

ical maps onto a tangent 2D surface; however, all calculations

have been done for the spherical geometry. To ensure compat-

ibility at the vertices, spherical areas S1 + S3 = S2, S4 = S5,

and S6 = S7. Full details of the kinematic calculations are

included in Appendix A and summarized in Table I.

We impose a central displacement, δ, which adds a con-

straint on the hinge rotations such that δ = � sin(∢AaC). This

constraint is used to solve for the hinge rotation DE (see full

FIG. 14. Planar projection of the bending crease model Gauss

maps. For compatibility of each vertex the signed enclosed area of

each spherical polygon must equal zero. Therefore, S1 + S3 = S2,

S4 = S5, and S6 = S7. Since the Gauss map is on a sphere, the

nominally parallel lines AF and CD intersect at two poles. We label

one of these poles point a. We label the intersection of lines EF and

AB as point b.
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TABLE I. Bending crease model kinematic relationships.

Variable Expression

α0, δ, � Parameters

α
π−2α0

2n−1

∢DdE = ∢CcB = ∢AcD = ∢FdC sin−1 [cos (
α0

2
)
√

{1 − [1 − cos(DE )] cos(α0)}2 + sin2(DE )]

Cc = Dd cot−1
[

1

sin (DE )
− cos(α0) tan

(

DE

2

)]

cd β − 2Cc

∢AaC tan−1
[

2 sin
α0
2 tan(∢AcD) sin cd

2 −
√

2 cos α0−2 sin2 (∢AcD) cos(cd )+cos(2∢AcD)+1

2 sin
α0
2 +tan(∢AcD) sin cd

2

√
2 cos α0−2 sin2 (∢AcD) cos(cd )+cos(2∢AcD)+1

]

Ac = Fd cos−1
[

cos(∢AaC)−sin (
α0
2 ) cos(∢AcD)

cos (
α0
2 ) sin(∢AcD)

]

Bc = Ed sin−1
(

2 sin
(

α0

2

){[

1

sin(DE)
− cos(α0) tan

(

DE

2

)]2 + 1
}− 1

2
)

AB = EF Bc + Ac

∢cbd cos−1[sin2 (∢AcD) cos (cd ) − cos2 (∢AcD)]

bd = bc sin−1
[

sin(∢AcD) sin(cd )√
1−[cos2 (∢AcD)−sin2 (∢AcD) cos(cd )]2

]

AF cos−1[cos2 (bc − Ac) + sin2 (bc − Ac) cos (∢cbd )]

HG 2 sin−1
[

cos (α0/2) sin (EF/2)

cos (α/2)

]

FG = EH 2 tan−1

[

sin
(

α+α0
4

)

tan ( EF+HG
4 )

cos
(

α−α0
4

)

]

GI ... 2 tan−1
[

sin
(

α

2

)

tan
(

HG

2

)]

IJ ... HG

HJ ... GI

calculation in Appendix A):

DE = tan−1

⎛

⎝

c1c2 + c3

√

c2
1 + c2

2 − c2
3

c2
1 − c2

3

⎞

⎠, (24)

where

c1 = δ cos
(α0

2

)

cos

(

β

2

)

,

c2 = cos
α0

2

(

δ cos α0 sin
β

2
+ sin α0

√

�2 − δ2

)

,

c3 = sin
α0

2

(

� − δ sin α0 sin
β

2
+ cos α0

√

�2 − δ2

)

.

Unlike the previous model, all hinge rotations are a func-

tion of only three parameters: α0, δ, and �. We solve for the

deformed shape by fixing the values of α0 and δ then solving

for � using the symmetry boundary condition. To obtain the

mechanical behavior we also require the corresponding strain

energy of deformation.

1. Energy

The facet bending energy for a wedge-shaped facet is

given by Eq. (10). However, facet E is rectangular. It is

straightforward to show that its bending energy is

(UB)E =
2(R − �)

� α0

DE2. (25)

The deformation of facet F is due to the change in the angle

of the inner crease (β − AF ). The facets within the ridge have

an outer radius equal to the ridge radius, �, and an inner radius

equal to the hole radius, r. The bending energy of facet F due

to the opening of the inner crease is obtained using Eq. (10):

(UB)F = D
(1 + cos α0)

2(α0 + sin α0)
ln

(

�

r

)(

β − AF

2

)2

. (26)

Facet G is deformed by the hinge rotation FG, while all

remaining facets within the ridge are deformed by a hinge

rotation GI:

(UB)i = D
(1 + cos α)

2(α + sin α)

[

ln

(

�

r

)

(

FG2+ (n − 1)GI2
)

]

. (27)

Outside the ridge the facet E is deformed by the hinge rotation

EH and the remaining outer facets are deformed by the hinge

rotation HJ:

(UB)o = D
(1 + cos α)

2(α + sin α)

[

ln

(

R

�

)

(

EH2+ (n − 1)HJ2
)

]

. (28)

The total facet bending energy in one half face is the sum of

these energies:

(UB) f = (UB)E + (UB)F + (UB)i + (UB)o. (29)

The final energy component is the energy cost of the ridge.

Inextensibility of this deformation mode requires vanishing

disk thickness. For finite thickness there is a balancing of

stretching and bending energies in the region of the ridge.

Previous studies have shown that this deformation energy

scales with (L/t )1/3, where L is the length of the ridge and t

is the thickness [26–28]. Further investigation of the forming

and propagation of a localized ridge is beyond the scope of
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 δ = 0 mm  δ = 0.5 mm  δ = 1.0 mm  δ = 1.5 mm(a) (b) (c) (d)

FIG. 15. Bending crease mode deformation sequence for a diametrically creased disk (N = 2) with β = 24◦, R = 30, r = 0.5, t = 0.1,

α0 = 17◦, and n = 10. As the indentation is increased the ridge expands radially towards the edge of the disk.

this work. Instead we propose the ridge energy as [28]

(UB)r = Cr

(

�

t

)1/3
[π

2
− γ

]7/3

, (30)

where γ is the bending angle across the ridge. The constant

of proportionality, Cr , is left as a fitting parameter. This does

not consider the boundary effect when the ridge is near the

central hole or the outer edge of the disk. We do not explicitly

address this here but note it will have an effect on the predicted

behavior.

The total strain energy is the sum of the facet bending

energy and the energy of the ridge:

U = 2N
[

(UB) f + (UB)r

]

. (31)

2. Mechanical behavior

The bending crease model has three geometric parameters,

α0, δ, and �, plus the constant of proportionality Cr . We

assume values for α0 and Cr , which remain constant for a

particular disk, and solve for the ridge radius, �. To obtain

the mechanical behavior we begin with all creases lying in

the x-y plane (δ = 0). A vertex displacement, δ, is imposed

and the ridge radius, �, obtained numerically by enforcing

the symmetry boundary condition [Eq. (5)] using MATLAB

[22]. The corresponding strain energy is computed using

Eq. (31). The indentation depth is then incremented by a

small amount, dδ. Using the ridge radius obtained from the

previous step as an initial guess, the radius corresponding to

an indentation of δ + dδ is obtained using the same numerical

scheme. This process is continued to compute the complete

strain energy-indentation behavior. Figure 15 shows the re-

sulting deformation sequence for a disk with a diametrical

crease (N = 2). Under increasing indentation, the ridge radius

increases linearly (see Fig. 16) until it reaches the outer edge,

when the disk snaps to the inverted state.

Using the strain energy-indentation results, the indentation

force is calculated using Eq. (23). The change of energy

and indentation force, as a function of indentation depth, are

shown in Fig. 17. Under increasing indentation, the energy

increases monotonically until the ridge reaches the outer edge

of the disk. Figure 17(a) shows how the response varies with

changes in the proportionality constant Cr . As it increases,

both the energy cost and the indentation force increase. Con-

versely, as shown in Fig. 17(b), as α0 is increased both the

indentation force and energy decrease. Additionally, as α0

increases, the indentation when the ridge reaches the disk edge

also increases. Since there is no stretching energy, increasing

the number of hinges has a negligible effect on the results.

IV. COMPARISON OF ANALYSIS AND EXPERIMENTS

To compare the predictions from the models proposed in

this study to experiments, we must adjust the prediction to

match the loading and support conditions of the tests. In

particular, the span of the supports and the size of the indenter.

This requires a transformation from the model displacement

coordinate, δ, to the measured displacement coordinate δ∗. It

can be shown (see Appendix B) for the diametrically (N = 2)

creased disk that

δ∗
1 =

δ(L − di )

2R
, δ∗

2 = δ

(

1 −
di

2�

)

,

where δ∗
1 and δ∗

2 are the predicted test displacements of the

straight crease and bending crease models, respectively, L =
80 mm is the support span, di = 4 mm is the diameter of the

indenter, R = 50 mm is the radius of the disk, and � is the

dimple radius, measured along the crease.

For disks with three radial creases, the measured dis-

placement is relative to the lower stable state. The contact

point also changes from the hole edge to the indenter edge

when the disk passes through the horizontal plane (δ = 0).

Since the angle between the creases and the horizontal plane

in the lowest energy stable state is 0.12β [14], the transformed

displacement for the N = 3 case is (see Appendix B):

δ∗
3 =

L

2
tan(0.12β ) − r sin(0.12β )

+
δ

2R

{

(L − 2r) if δ < 0,

(L − di ) if δ > 0.
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0.0

0.2
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FIG. 16. Relationship between the indentation, δ, and the dimple

radius measured along the crease, �. This relationship is driven

entirely by the kinematics of the system and the symmetry boundary

condition [Eq. (5)].
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FIG. 17. Effect of parameters (a) Cr and (b) α0 on predicted behavior for a disk with N = 2, R = 30, β = 20◦, r = 1, and n = 100.

Predictions when the ridge is located within two hole radii of the center have been shown dashed since boundary effects around the hole have

not been considered.

These transformed displacements must also be used in

Eq. (23) to obtain the indentation force.

Predictions from the two models are plotted with the

experimental results and shown in Fig. 18. The ridge energy

constant of proportionality, Cr , and hinge angle, α0, were used

as fitting parameters for the bending crease model. To match

the predictions of when the dimple reaches the disk edge with

the experimentally observed snap-through, α0 was found to be

approximately 9π/(50N ). The constant of proportionality, Cr

was found to increase with the crease angle β.

The straight crease model predicts a much higher peak

load than measured experimentally. This is due to the forming

and propagation of the dimple, which is captured by the

crease bending model. Since the forming and propagation of

the dimple is bending dominated, it has a lower energy cost

in comparison to the initially stretching dominated straight-

crease deformation mode. Once the dimple has formed, the

deformation cannot snap to the straight-crease form until the

dimple reaches the disk edge. Therefore, the deformation

ultimately ends up on a higher load path before suddenly snap-

ping to the straight-crease form when the dimple reaches the

disk edge. After snap-through the response closely matches

the straight crease model.

V. CONCLUSION

In this study we considered the mechanics of a thin disk

decorated by multiple radial creases both experimentally and

analytically. We showed that the disks deform by forming a

dimple under the point of indentation. Under further indenta-

tion this dimple grows in size until it reaches the disk edge,

when the disk snaps to the inverted shape. Previous studies

of this f-cone assumed straight creases, and generator lines,

emanating from a central vertex which cannot capture this

observed behavior.

Two models were derived to capture the observed deforma-

tion. We discretized the region between creases into a series

of rigid facets connected by hinges that can both rotate and

stretch. After deriving the kinematics for an arbitrary number

of facets, the strain energy of deformation was calculated by

imposing the hinge deformations as boundary conditions on

continuum shell deformations of the facets. The complete

mechanical behavior was obtained by minimizing the total

strain energy subject to the hinge deformations.

The first model assumed the creases, and hinges, remain

straight. We allow the facets to separate to capture membrane

stretching. As the number of facets is increased, the results

approach the predictions for the stable states made in previous

studies. We therefore capture the entire mechanical behavior

corresponding to the straight-crease assumption. However,

when compared to experiments, this straight-crease model

predicts much higher peak loads and earlier snap-through

than observed experimentally. This is due to the forming

and propagation of a localized dimple around the indentation

point.

A second model was derived to allow for this dimple.

Starting from the straight-crease model, we add a circum-

ferential hinge at an arbitrary distance from the center. We

derived the underlying kinematic mechanism using a Gauss

mapping approach. In the limit of vanishing thickness the

deformation is inextensible and thus only requires rotation

of the hinges. The mechanical behavior predicted by the

bending-crease model closely matches experiments up until

snap-through while the straight-crease model captures the

post-snap-through behavior. A combination of the two rigid-

faceted models capture the complete mechanical behavior of

creased disks.

The analysis approach derived in this study can be ap-

plied to other large-deformation shell mechanics problems by

adopting an appropriate kinematic mechanism. It thereby con-

nects the kinematic analysis of rigid origami to the continuum

mechanics of thin shells, offering an effective new method for

understanding the behavior of folded structures.
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(e) N = 3,  = 26°, Cr  = 0.32, 0  = 11° (f) N = 3,  = 39°, Cr  = 0.60, 0  = 11°

FIG. 18. Comparison of experiments and model predictions for disks with N = 2 (a–c) and N = 3 (d–f) creases. Each disk has R = 50 mm,

r = 1.5 mm, t = 0.1 mm and is made from shim steel with E = 185 MPa and ν = 0.3. Initial indentation behavior is captured by the bending

crease model while the post snap-through behavior matches the straight-crease prediction well.

APPENDIX A: CREASE BENDING MODEL KINEMATIC

ANALYSIS

Since this model deforms through rotations of the hinges

only, facet separation is not permitted. Therefore, all facets

intersecting at each vertex must fit together without gaps.

This compatibility condition is enforced by ensuring the solid

angle, and thereby the Gaussian curvature, at each vertex is

zero using a Gauss mapping approach.

We translate the normal vector of each facet meeting at

a particular vertex to the center of a unit sphere and mark

the intersection of this vector with the surface. Moving from
one facet to the next involves rotating the normal about the
connecting hinge line, tracing out an arc of a great circle on
the surface of the unit sphere. Since the sphere has a unit
radius, the length of the arcs is equal to the relative rotation
of the normal vectors across hinge lines [23,29]. Each arc has
a direction given by the sense of rotation about the hinges.
The arcs form spherical polygons and the enclosed regions
are given a sign according to the circulation direction of the
boundary. For example, polygons with a clockwise circula-
tion direction can be considered positive and anti-clockwise
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FIG. 19. Bending crease model Gauss map. The planar projec-

tion of this Gauss map is shown in Fig. 14.

negative. The signed enclosed area measures the solid angle at
the vertex which must equal zero for compatibility. With this
constraint, we derive the kinematic relationship between the
facet rotations. The following derivation references Figs. 14
and 19.

We require the relationship between hinge rotations, or

the side lengths of the spherical polygons, which ensure

compatibility at each vertex. We take DE as a deformation

parameter defined by the imposed center displacement and

consider the compatibility of vertex ABCDEF first.

a. Vertex ABCDEF

We assume that the outer region crease (between facets

C and D) does not open. Therefore the length CD = β. For

compatibility the areas (see Fig. 14) S1 + S3 = S2. We first

find the areas S1 = S3. Computing the length Dd = Cc using

the cotangent four-part formula:

cos(DE ) cos α0 = cot(Dd ) sin(DE ) − sin α0 cot

(

π − α0

2

)

−→ Dd = Cc = cot−1

[

1

sin (DE )
− cos(α0) tan

(

DE

2

)]

.

(A1)

Then using the spherical law of Sines:

sin (∢DdE )

= sin (∢CcB) =
sin DE cos

(

α0

2

)

sin Dd

= cos
(α0

2

)

√

[1 − (1 − cos(DE )) cos(α0)]2 + sin2(DE ).

(A2)

The enclosed area, which is equal to the spherical excess,

is

S1 = S3 = ∢DdE −
π − α0

2
. (A3)

For compatibility S1 + S3 = S2. Therefore, the enclosed

area S2 must be

S2 = 2
π + α0

2
+ 2∢FdC − 2π = 2S1

−→ ∢FdC = ∢DdE . (A4)

Due to symmetry: ∢AcD = ∢FdC = ∢DdE .

We define a point a where the great circles containing

AF and CD intersect, as shown in Fig. 19. Considering the

spherical triangle Aac, and noting that the length of ac is

(π + cd )/2, we use the spherical Cosine law to find ∢AaC:

sin
(α0

2

)

= sin(∢AaC) sin(∢AcD) sin

(

cd

2

)

+ cos(∢AaC) cos(∢AcD). (A5)

Solving for ∢AaC,

tan (∢AaC) =
2 sin α0

2
tan(∢AcD) sin cd

2
−
√

2 cos α0 − 2 sin2(∢AcD) cos(cd ) + cos(2∢AcD) + 1

2 sin α0

2
+ tan(∢AcD) sin cd

2

√

2 cos α0 − 2 sin2(∢AcD) cos(cd ) + cos(2∢AcD) + 1
. (A6)

This enables us to solve for Ac = Fd using the spherical cosine law again:

cos (∢AaC) = sin

(

π + α0

2

)

sin (∢AcD) cos Ac − cos

(

π + α0

2

)

cos (∢AcD)

−→ cos Ac = cos Fd =
cos(∢AaC) − sin

(

α0

2

)

cos(∢AcD)

cos
(

α0

2

)

sin(∢AcD)
. (A7)

Moving to triangle DdE , the length Bc = Ed is found using the spherical Sine law:

sin Ed

sin α0

=
sin DE

sin (∢DdE )

−→ sin (Ed ) = sin (Bc) = sin−1

⎛

⎜

⎜

⎝

2 sin
(

α0

2

)

√

[

1
sin(DE)

− cos(α0) tan
(

DE
2

)

]2

+ 1

⎞

⎟

⎟

⎠

. (A8)
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FIG. 20. Deformed cross-sections for the (a) straight crease and (b) bending crease deformation modes.

By combining Eqs. (A7) and (A8), we calculate

AB = EF = Bc + Ac. (A9)

We locate a point b at the intersection of the great circles

containing the arcs AB and EF , as shown in Fig. 19. Then,

considering triangle cbd we find the length bc by first using

the spherical cosine law,

cos (∢cbd ) = sin2 (∢AcD) cos (cd ) − cos2 (∢AcD), (A10)

then the spherical sine law,

sin (bc)

sin (∢AcD)
=

sin (cd )

sin (∢cbd )

−→ sin (bc)=
sin(∢AcD) sin(cd )

√

1 −
[

cos2(∢AcD) − sin2(∢AcD) cos(cd )
]2

.

(A11)

Since Ab = Fb = bc − Ac, we obtain the angle across the

crease in the inner region, AF , using the spherical cosine law

again,

cos (AF ) = cos2 (Ab) + sin2 (Ab) cos (∢cbd ). (A12)

Next we consider the vertex EFGH .

b. Vertex EFGH

For compatibility of vertex EFGH the areas S4 = S5, from

which we conclude by inspection that FG = EH . The length

EF was obtained previously [Eq. (A9)] by considering the

vertex ABCDEF . We continue to solve for the remaining

hinge rotations HG, and FG = EH . Using the spherical sine

law,

sin ( EF
2

)

sin ( π−α
2

)
=

sin ( HG
2

)

sin ( π−α0

2
)

−→ HG = 2 sin−1

[

cos
(

α0

2

)

sin
(

EF
2

)

cos
(

α
2

)

]

. (A13)

Then, using Napier’s analogy:

tan

(

EF + HG

4

)

=
cos

(

α−α0

4

)

cos
(

2π−α−α0

4

) tan

(

FG

2

)

−→ FG = EH = 2 tan−1

[

sin
(

α+α0

4

)

tan
(

EF+HG
4

)

cos
(

α−α0

4

)

]

(A14)

Finally, we consider vertex IJGH .

c. Vertex IJGH

All further vertices have the identical geometry as vertex

IJGH since all internal angles of the Gauss map are the same.

For compatibility S6 = S7, therefore JH = GI and HG = JI ,

which is a result from Ref. [24]. The length HG was obtained

from vertex EFGH ; see Eq. (A13). We solve for GI = JH

using Napier’s analogy:

tan
HG

2
=

1

cos π−α
2

tan
GI

2

−→ GI = 2 tan−1

[

tan
HG

2
sin

α

2

]

. (A15)

The imposed central displacement, δ, provides an addi-

tional kinematic constraint which is used to obtain DE .

d. Central displacement

We use the central displacement, δ, to obtain the hinge

rotation DE , which the remaining angles depend on. The

displacement is due to inclination of the central crease line

(between facets A and F ) from the x-y plane, since the outer

crease (between facets C and D) remains in the x-y plane. The

angle that the inner crease makes with the x-y plane is equal

to the angle between the outer crease line, CD, and the inner

crease line, AF , on the Gauss map, or ∢AaC. Therefore, we
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δ3
*

L/2

r

di

-Ψ-δ

FIG. 21. Deformed cross-sections for the case of N > 2, show-

ing the natural shape.

can write

δ = � sin (∢AaC),
√

�2 − δ2 = cos (∢AaC). (A16)

Then, from Eq. (A5), noting that cd = β − 2Dd ,

δ sin(∢AcD) sin

(

β

2
− Dd

)

+
√

�2 − δ2 cos(∢AcD) = � sin
(α0

2

)

. (A17)

After substituting Eqs. (A1) and (A2) into Eq. (A17) and

solving for DE ,

DE = tan−1

⎛

⎝

c1c2 + c3

√

c2
1 + c2

2 − c2
3

c2
1 − c2

3

⎞

⎠, (A18)

where

c1 = δ cos
(α0

2

)

cos

(

β

2

)

,

c2 = cos
α0

2

(

δ cos α0 sin
β

2
+ sin α0

√

�2 − δ2

)

,

c3 = sin
α0

2

(

� − δ sin α0 sin
β

2
+ cos α0

√

�2 − δ2

)

.

This kinematic calculation leaves three geometric param-

eters which govern the deformation of the bending crease

model: δ, �, α0.

APPENDIX B: TRANSFORMATION FROM MODEL TO

EXPERIMENTAL DISPLACEMENT

Due to size of the indenter, and the presence of the hole,

the disks are not loaded at a central vertex as assumed by the

analytical models. Instead, the indenter contacts the creases

some distance from vertex. Additionally, the analytical mod-

els assume that the disk is supported where the creases reach

the edge of the disk; however, for the tests the supports are

located closer to the center of the disk. Using the geometry

of the disk and test apparatus, a conversion is made between

the displacement of the vertex obtained from the models

and the corresponding experimentally measured displacement

of the indenter.

For the straight crease, shown in Fig. 20(a), δ is the model

displacement measuring the distance from the central vertex

to where the crease reaches the disk edge. The experimental

displacement, δ∗
1 , is measured from the supports to the contact

point of the indenter and the creases. Using the geometry of

the test, the relationship between the experimental and model

displacements is

δ∗
1 = δ −

di

2

(

δ

R

)

−
δ

R

⎡

⎣R −
L

2

√

1 −
(

δ

R

)2

⎤

⎦

≈
δ(L − di )

2R
. (B1)

For the bending crease a dimple of radius �, measured

along the crease, forms and deformation primarily occurs

within this dimple; see Fig. 20(b). Similar to the straight

crease, δ is the model displacement coordinate measuring

the distance from the central vertex to the dimple edge. The

experimental displacement, δ∗
1 , is measured from the supports

to the contact point of the indenter and the creases. Using

the geometry of this configuration, the relationship between

experimental and model displacements found:

δ∗
2 = δ −

di

2

(

δ

�

)

= δ

(

1 −
di

2�

)

. (B2)

When the number of creases is greater than two, the creases

do not initially lie in the same plane as the supports. As a

result, the experimental displacement δ∗
3 is measured from the

shape in the lowest energy stable state, as shown in Fig. 21.

The model displacement, δ, is measured from the crease edge

to the central vertex. When the deformation of the disk raises

the central vertex above the supports (δ < 0), the contact

between the indenter and the disk is at the hole edge, therefore

δ∗
3 =

(

L

2
tan � − r sin �

)

−
(

L

2
tan �0 − r sin �0

)

,

where the first bracketed term is the distance from the support

to the edge of the hole in the deformed state and the second

bracketed term is the distance from the support to the hole

edge in the natural state. Noting that sin � = δ/R and �0 is

the crease inclination in the natural state,

(

δ∗
3

)

δ<0
=

⎛

⎝

L
√

1 − δ2

R2

− 2r

⎞

⎠

δ

2R
−

L

2
tan �0 + r sin �0

≈ (L − 2r)
δ

2R
−

L

2
tan �0 + r sin �0. (B3)

TABLE II. Natural state crease inclinations obtained from

Ref. [14].

N 2 3 4 5

�0 0 −0.12 β −0.17 β −0.19 β
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When the creases pass through the plane of the supports

(δ > 0) the contact point switches to the indenter edge, as

shown in Fig. 20:

(

δ∗
3

)

δ>0
≈ (L − di )

δ

2R
−

L

2
tan �0 + r sin �0. (B4)

Noting the first term in Eq. (B4) is equal to δ∗
1 , by analogy for

the bending crease model,

δ∗
4 = r sin �0 −

L

2
tan �0 +

{

(

1 − r
�

)

δ if δ < 0,
(

1 − di

2�

)

δ if δ > 0.

From Lechenault and Adda-Bedia [14] the crease inclina-

tion in the natural states are given in Table II.
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