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[1] Recent observations of nanometer-scale particles in the cores of exhumed fault zones
raise questions about how such small particles are formed and how they survive,
especially if significant shear heating is produced during an earthquake. Commercial
crushing and grinding operations encounter a grind limit near 1 mm below which particles
deform plastically rather than fracturing. A fragmentation model and low-temperature
plasticity mechanics indicate that it is not possible to produce under compressive loading
and short timescale significantly smaller particles at any strain rate. However, shock
loading and subcritical crack growth can produce nanometer-scale fragments in
compression. Under tensile loading the fragment size is determined by a competition
between the nucleation of cracks and stress relaxation in their neighborhoods. Therefore
higher tensile strain rates produce smaller fragments. The ultimate limit is determined
by the availability of elastic strain energy, which does not place a significant constraint on
the minimum grain size. Grain growth kinetics suggests that survivability of grains is very
temperature sensitive. A 10 nm quartz fragment will double its size in 0.1 s at 1000�C,
in 20 s at 800�C, in 14 h at 600�C, and in 10 years at 400�C. The observation of
grains smaller than 10 nm places meaningful constraints on the dynamic fields and
permeability of the fault zone during a large earthquake. Microstructural analysis of the
grains and rock damage may be used to infer whether fragmentation occurred under
macroscopic tension or compression.
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1. Introduction

[2] Earthquakes are commonly modeled as frictional
instabilities on planar fault surfaces. However, real faults,
some of which have been exhumed from seismogenic
depths, show a more complex structure. Most displacement
on large-scale faults appears to occur within a narrow
(centimeters thick) ‘‘core’’ of extremely fine grained ultra-
cataclasite containing one or more prominent slip surfaces
that have accommodated most of the slip [e.g., Sibson,
2003; Chester and Chester, 1998]. The core is bordered by
wider zones of fault gouge and breccia, typically meters
thick, with particle sizes ranging frommicrons to centimeters
and often having a power law size distribution [Sammis et al.,
1987]. The gouge and breccia zones are bordered, in turn, by
fractured but cohesive wall rock in which the fracture density
(damage) decreases to the regional background level over
distances of several hundreds of meters [e.g., Chester et al.,
1993; Wilson et al., 2003]. This basic structure seems to
characterize many fault structures, although there are varia-
tions in the widths of the constitutive layers and in the degree
of symmetry about the core [Ben-Zion and Sammis, 2003;
Biegel and Sammis, 2004].

[3] There are two sets of questions that frame the funda-
mental motivations for detailed studies of fault zone struc-
ture. First, how does the structure form, and, more
significantly, what information does it contain about the
fields that were operative during prior earthquakes on the
fault? For example, asymmetry in the damage structure of
several strike-slip faults has been interpreted as indicating a
preferred propagation direction of earthquake ruptures [e.g.,
Ben-Zion and Shi, 2005; Dor et al., 2006a, 2006b]. The
apparent absence of shear strain in the gouge and breccia
have been interpreted as evidence that these zones are
formed dynamically in the tensile field near the tip of a
propagating earthquake rupture [Brune, 2001] and may be
used to place constraints on the velocity of rupture propa-
gation [Reches and Dewers, 2005].
[4] The second general motivation for studying fault zone

structure is to understand how it affects the propagation of
subsequent earthquake ruptures. For example, how much
energy is expended as friction and fracture in the gouge and
breccia compared to that dissipated as sliding friction on the
fault plane [Chester and Chester, 2006]? Also, can we
identify features of a fault zone that correspond to the
heterogeneity (‘‘asperities’’ and ‘‘barriers’’) inferred by
seismologists to nucleate and arrest earthquakes, and are
earthquakes on a given fault section likely to have a
preferred propagation direction?
[5] In this paper, we focus on the first set of questions,

and, more specifically, we ask what can be learned about
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earthquake mechanics from the particle-size distributions?
Since most cataclastic fault rocks are observed to have a
band-limited power law (fractal) particle-size distribution,
the characteristic parameters used to describe the distribu-
tion are the power (related to the fractal dimension) and the
range of sizes over which the power law gives a good
description (the upper and lower fractal limits). Chester et
al. [2005] observed that particles in the ultracataclasite layer
of the Punchbowl fault have a fractal distribution that
extends from 40 mm down to 50 nm, with fragments below
this lower fractal limit extending down to 4 nm. Sammis and
King [2007] discuss the mechanisms that lead to fractal
fragment distributions and how the fractal dimension is
expected to evolve with increasing strain. Here we focus on
the smallest observed fragment, which is often significantly
smaller than the lower fractal limit. The smallest fragment
size is interesting because the production of very small
particles can place constraints on the mode (compression
versus tension) and amplitude of the local stress field, as
well as on the loading rate. The survival of very small
particles may also place constraints on the amplitude and
duration of the temperature pulse associated with the fault-
ing. Sleep [1994] investigated the particle distribution that
results from a steady state balance between fragmentation
and the disappearance of small grains by Ostwald ripening
in a hydrothermal environment. Here we focus on the
mechanics of fragmentation that can produce nanometer-
scale fragments and grain growth kinetics that allow them
to survive.
[6] One intriguing observation is that many pulverized

fault zone rocks appear to have been shattered in situ with
little or no shear strain. While Biegel et al. [1989] have
shown that it is possible to produce such fabric by slow
quasi-static deformation, Brune et al. [1993] and Reches
and Dewers [2005] proposed that this fabric was produced
dynamically in the stress field at the rupture tip of an
earthquake. Dynamic generation of fabric without shear
structure may be aided by local tension and opening
associated with a wrinkle-like slip pulse on a bimaterial
interface [Ben-Zion and Andrews, 1998; Ben-Zion, 2001].
Analytical results for a dynamic slip pulse show [Rice et
al., 2005] that crack tip stresses are sufficient to produce
dynamic fracture extending meters from the fault plane at
the centroid depth of several large earthquakes. Uniaxial
tension can be produced in a compressive field near the
rupture tip even in the absence of an opening mode of
rupture.
[7] In sections 2–8 we explore a range of fragmentation

mechanisms that might operate under both compressive and
tensile stresses in a fault zone and ask what limits the
smallest fragment size in each. Our analysis of compressive
loading is motivated by the observation of a ‘‘grind limit’’
below which the particle size cannot be reduced in com-
mercial crushing and grinding processes [Prasher, 1987].
Particles smaller than the grind limit are observed to deform
plastically, changing their shape rather than fragmenting
into smaller particles. By comparing the flow law (strain
rate versus stress) for low-temperature dislocation plasticity
with the stress level required to activate a flaw comparable
to the size of the particle, we derive a relation for the
minimum strain rate required to fracture a particle of a
specified size at a specified temperature. We then extend the

analysis to include compressive fragmentation under shock
loading conditions and possible grain-size reduction by
subcritical crack growth. For the case of tensile loading
the low-temperature plasticity does not limit the grain
size. Rather, grain size appears to be limited by the initial
flaw distribution, the loading rate, and the elastic strain
energy.

2. Grind Limit in Compressive Fragmentation

[8] It has been known since the eighteenth century that
smaller particles are stronger [Timoshenko, 1953], but the
reason remained unclear until the role of flaws as stress
concentrators was recognized [Griffith, 1920]. The stress
required to activate a flaw increases as the inverse square
root of its length, and since the length of a flaw is limited by
the size of a particle, strength increases as the inverse square
root of particle size. This observed scaling is known as the
Hall-Petch law [see Scholz, 2002]. However, the increase in
strength is ultimately limited by plastic yielding. There are
many observations that particles with diameters on the order
of 1 mm or less do not fracture under a slow compressive
load but deform plastically. In the crushing and grinding
industry this smallest particle is known as the ‘‘grind limit.’’
No additional amount of crushing and grinding can produce
smaller particles.
[9] Kendall [1978] explored this transition from brittle to

ductile deformation using the idealized two-dimensional
particle in Figure 1. The force required to extend the mode
I fracture in this geometry is

F ¼ b

1� w=dð Þ
2EGcd

3

� �1=2

; ð1Þ

where E is Young’s modulus, Gc is the fracture energy, and
w, b, and d are the sample dimensions shown in Figure 1.
Note that the tensile driving force on the fracture
approaches 0 as w approaches d, and the force required to
drive the fracture increases without bound.
[10] When the particle is compressed, stress concentration

at the point causes plastic flow until

F ¼ Ybw; ð2Þ

where Y is the compressive yield stress. Substituting
equation (2) into equation (1) gives

1

Yd

F

b

� �2

� F

b

� �
þ 2EGcd

3

� �1=2

¼ 0: ð3Þ

[11] When d is large, the first term can be ignored, and the
normal stress s1 required to fracture the particle is, as
expected, proportional to the inverse square root of the
particle size d

s1 ¼
F

bd
¼ 2EGc

3

� �1=2

d�1=2 ¼ 2=3ð Þ1=2KIcd
�1=2; ð4Þ

where we have introduced the critical stress intensity factor
for mode I rupture, KIc

2 = EGc. As d becomes smaller, the
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first term in equation (3) cannot be ignored. Solving the
quadratic equation (3) for (F/b) as a function of d gives

F

b

� �
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 2=3ð Þ1=2KIc

Y
ffiffiffi
d

p

s0
@

1
AYd

2
: ð5Þ

[12] In terms of stress s1 = F
bd
, equation (5) can be written

as

s1

m
¼ Y

2m
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 2=3ð Þ1=2KIc

Y
ffiffiffi
d

p

s0
@

1
A; ð6Þ

where the stresses have been scaled by the shear modulus m.
[13] Equation (6) implies a critical particle size dcrit below

which s1 rises rapidly and fracture becomes impossible,

4
KIc

Y

� �
2

3dcrit

� �1=2

¼ 1 ð7Þ

or

dcrit ¼
32

3

KIc

Y

� �2

: ð8Þ

[14] Kendall [1978] used crushing experiments on plastic
samples in the shape depicted in Figure 1b to show that
equation (6) gives a good description of the brittle-ductile
transition. While the form of equation (1) is quite general,
the numerical factor

ffiffiffiffiffiffiffiffi
2=3

p
depends on the geometry in

Figure 1. We therefore replace
ffiffiffiffiffiffiffiffi
2=3

p
with a constant C that

will be adjusted to fit crushing data on aluminum oxide
spheres. Equations (6) and (8) thus become

s1

m
¼ Y

2m
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4CKIc

Y
ffiffiffi
d

p

s !
ð9Þ

dcrit ¼ 16
CKIc

Y

� �2

: ð10Þ

[15] By fitting equations (9) and (10) to crushing data on
aluminum oxide spheres we find that C is close to

ffiffiffiffiffiffiffiffi
2=3

p
and therefore not especially sensitive to grain shape. The
important point is that the grind limit dcrit in equation (10) is
very sensitive to the compressive yield stress Y, which itself
is a function of temperature and loading rate. In section 3
we use this dependence to place a lower bound on the strain
rate required under compressive loading to fracture a
particle of a specified size at a specified temperature.

3. Low-Temperature Plasticity in Rock

[16] At low temperatures or high strain rates, crystalline
solids deform by dislocation glide on a system of slip
planes. Ashby and Verrall [1978] identified two thermally
activated mechanisms that control the rate of such glide:
lattice resistance–controlled glide and obstacle-controlled
glide. Lattice resistance refers to the energy required to
break interatomic bonds. An approximate flow law that fits
data in this regime is given by Ashby and Verrall [1978] as

_g ¼ _gp
ss

m

� �2

exp �DFp

kT
1� ss

t̂p

� �3=4
" #4=38<

:
9=
;; ð11Þ

where _gp is a constant, DFp is the activation energy to break
bonds, and t̂p is the flow stress at 0 K. Note that ss is the
shear stress that produces the strain rate _g. It is related to the
compressive yield strength in section 2 as ss = Y/2. Hence
equation (11) relates compressive yield stress to strain rate.
[17] At higher temperatures lattice resistance drops, and

dislocation glide is rate limited by discrete obstacles (like
impurities or other dislocations) on the slip planes. When
obstacles control the process, the flow is better described by
[Ashby and Verrall, 1978]

_g ¼ _go exp �DFo

kT
1� ss

t̂o

� �� �
; ð12Þ

where _go is a constant, DFo is the activation energy for
cutting or passing the obstacle, and t̂o is the flow stress at 0
K when the obstacles act alone. Table 1 summarizes values
of the parameters in equations (11) and (12) for Al2O3 and
olivine given by Frost and Ashby [1982] and Ashby and
Verrall [1978].
[18] Figures 2 and 3 show the flow stress predicted by

equations (11) and (12) for Al2O3 and for olivine as a
function of the homologous temperature T/Tm for a range of
strain rates _g. The arc-shaped suite of curves at higher flow
stress was generated using equation (11) for the case
of lattice control. The narrow and nearly horizontal suite
of curves was generated using equation (12) for the case of
obstacle control. Note that the flow stress for obstacle
control is almost independent of temperature and strain rate.
As shown by Ashby and Verrall [1978], we assume that
both lattice resistance and obstacles must be overcome and
that the mechanism requiring the higher flow stress controls
yielding at a given strain rate and temperature. For the high
strain rates of interest here ( _g � 1), Figures 2 and 3 show
that flow is rate limited by lattice control up to temperatures
near the melting point in both Al2O3 and olivine. Unfortu-
nately, even for the case of lattice-limited flow the flow
stress is not very sensitive to the strain rate, especially at the

Figure 1. Prismatic particle geometry used by Kendall
[1978] to estimate the minimum particle size that can be
fractured in compression. (a) The loading configuration is
shown. (b) A three-dimensional view of the sample is shown.
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small homologous temperatures we are interested in here.
For example, a change in strain rate of 10 orders of
magnitude in olivine at 300�C corresponds to only a factor
of 2 change in flow stress (Figure 3). The change in flow
stress is even less at lower temperatures.

4. Measured Compressive Strength of
Al2O3 Microspheres

[19] Aluminum oxide microspheres provide a good test of
the above model for compressive fragmentation and allow
us to see if the constant C in equations (9) and (10) is
sensitive to grain shape. Crushing strength data are available
in the industrial literature since they are used in many
commercial applications, and some of it has been plotted
and referenced in Figure 4. The loading rate at which these
strengths were determined is not reported, but it is not
important. As we shall see, these particles are large enough
to be in the inverse square root scaling regime which,
according to equations (3) and (4), is independent of the
compressive yield stress Y. Yoshida et al. [2005] have
extended this data set to submicron particle sizes by using
a modified hardness testing apparatus to measure the
strength of Al2O3 particles with diameters near 0.7 mm.

For these experiments the reported loading rate corresponds
to a strain rate of _g � 10�4 s�1. In Figure 5, which is an
expanded portion of Figure 2, this strain rate at 300 K yields
a flow stress of ss/m = 0.031, which corresponds to a
compressive yield stress of Y/m = 2ss/m = 0.062. In
Figure 4, experimental crushing strength data for Al2O3

spheres have been fit to equation (9) using Y/m = 0.062 and
a geometrical constant C = 0.7. Because the particles
measured by Yoshida et al. [2005] are so small, we chose
to use the value of KIc = 2.35 MPa m1/2 measured for single
crystals. The value of KIc for polycrystalline aluminum
oxide is larger with measurements covering the range from
3 to 5 MPa m1/2 [Ashby and Jones, 2005]. Since KIc only
appears as the product CKIc in equation (9), a larger value of
KIc can be compensated by a smaller value of C without
changing the theoretical curve in Figure 4. Our empirical
value of C = 0.7 is slightly smaller than C =

ffiffiffiffiffiffiffiffi
2=3

p
= 0.82

for the prismatic grain in Figure 1. The implication is that it
takes slightly less force to fracture a spherical particle than a
prismatic one, but this difference may not be significant in
view of the uncertainty in the critical stress intensity factor
and other material properties. The effect of fragment geom-
etry on fracture strength appears to be small. The differ-
ences between the two commercial data sets may be due to

Figure 2. Deformation mechanism map for dislocation glide mechanism in aluminum oxide.

Table 1. Material Properties for a-Alumina and Olivine

Material Property Symbol Units a-Alumina Al2O3 Olivine Mg2SiO4

Melting point at 1 atm Tm K 2320 2140
Burgers vector at 1 atm b m 4.76 	 10�10 6.0 	 10�10

Shear modulus at 300 K and 1 atm m Pa 1.55 	 1011 8.13 	 1010

Flow stress at 0 K (lattice resistance)/modulus
t̂p
m . . . 0.05 0.033

Preexponential for lattice resistance _gp s�1 1011 1011

Activation energy for lattice resistance
DFp

mb3 . . . 0.5 0.5

Flow stress at 0 K (obstacle control)/modulus
t̂o
m . . . 5 	 10�3 8 	 10�3

Preexponential for obstacle control _go s�1 106 106

Activation energy for obstacle control
DFo

mb3 . . . 0.5 0.5
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differences in KIc associated with the differences in purity.
As expected, the data for the higher-purity microspheres are
more consistent with those of Yoshida et al. [2005].

5. Minimum Grain Size as a Function of
Temperature and Strain Rate in
Compressive Loading

[20] Even though the flow stress in Figures 2 and 3 is not
very sensitive to temperature or strain rate, we can deter-

mine an absolute minimum grain size that is independent of
both temperature and strain rate. Note that the flow stress
never exceeds its value at 0 K (t̂p/m in Table 1) for any
strain rate at any higher temperature. Hence the compressive
yield stress never exceeds Ymax = 2t̂p, and the absolute
smallest fragment independent of temperature and strain
rate from equation (10) is

dmin ¼ 16
CKIc

2t̂p

� �2

: ð13Þ

Figure 4. Crushing strength as a function of particle size for a-alumina spheres. The triangle is from
Yoshida et al. [2005]. The circles are F-200 (93.1% pure) a-alumina spheres manufactured by Almatic
AC, Inc., Houston, Texas. The squares are Denstone 99 (99+% pure) a-alumina spheres manufactured by
Saint-Gobain Norpro, Stow, Ohio. The data are on the Web sites of these companies.

Figure 3. Deformation mechanism map for dislocation glide mechanism in olivine.
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[21] Equation (13) gives dmin = 180 nm for aluminum
oxide and dmin = 268 nm for olivine. Although no defor-
mation map exists for quartz, t̂p cannot be larger than the
ultimate lattice strength, which can be approximated as t̂p �
E/15, where E = 71.7 GPa. Taking KIc = 1 MPa m1/2 gives
dmin = 86 nm for quartz. This is an extreme lower limit for
slow compressive loading since t̂p is probably a bit smaller
for crystalline quartz. The implication is that quartz particles
smaller than 86 nm could not have been produced in
compression at any temperature or strain rate.
[22] Figure 6 shows the minimum strain rate required

to fracture an olivine particle with diameter d as a function
of temperature. The curves were calculated by solving
equation (10) for the minimum shear stress required to
fracture a particle of specified diameter d

ss ¼ Y=2 ¼ 2CKIcffiffiffi
d

p ð14Þ

and substituting this value of ss into equation (11) to find
the corresponding strain rate.

6. Producing Nanometer Particles
in Compression

[23] On the basis of the arguments thus far, the produc-
tion of quartz fragments smaller than about 80 nm in
compression seems impossible, and therefore the smaller
fragments observed by Chester et al. [2005] must have
been formed in tension. However, it may be possible to get
around the size limit imposed by plastic deformation in
two ways: by shock loading or by subcritical crack
growth. Under shock conditions, stresses can be as much
as 50 times higher than the flow stress [Meyers, 1994],
which, according to equation (13), can reduce the mini-

mum grain size by a factor of 2500, well below the
nanometer scale.
[24] It may also be possible to produce smaller particles if

the effective value of KIc is substantially reduced by stress
corrosion. A limit to the effective KIc for subcritical crack
growth in the presence of water has been very hard to
demonstrate experimentally in silicates [Scholz, 2002] be-
cause of the very low crack velocities involved, which are
typically <10�9 m s�1. Atkinson [1984] suggests that the
effective KIc may be as low as 20% of its normal value.
Note that a crack velocity of 10�9 m s�1 will split a 1 mm
particle in only 1000 s or about 17 min. Comminution may
thus occur in the wake of a large earthquake. Replacing KIc

with 0.2 KIc in equation (13) reduces the minimum particle
size to dmin = 11 nm for olivine and to dmin = 3 nm for
quartz.
[25] Subcritical fragmentation may explain how Yund et

al. [1990] were able to produce 10–15 nm particles in
rotary shear experiments on granite. Stresses were compres-
sive (the normal stress was 50–75 MPa), and the very low
sliding velocities (10�3–103.5 mm s�1) rule out shock
loading. They also produced up to 60% ‘‘amorphous
material’’ that they argued was not quenched melt but might
be composed of fragments too small to produce an X-ray
signature. Their observation that the dislocation density in
the resolvable particles was not above that in the original
grains rules out significant plastic deformation during the
comminution.
[26] Scholz [1987] has studied the accumulation of wear

products generated during frictional slip, and one may
consider the possibility that abrasion in the wear generation
process may produce nanometer particles. However, the
mechanics of wear is not significantly different from grain
crushing. Both mechanisms involve fragmentation at points
of stress concentration between asperities or grains, and

Figure 5. Deformation mechanism map used to estimate the flow stress at the experimental strain rate in
the crushing strength tests of aluminum oxide microspheres by Yoshida et al. [2005].
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both are therefore subject to the same size limitations
imposed by plastic yielding.

7. Fragmentation Under Tensile Loading

[27] Rice et al. [2005] found from fitting their analytic
slip pulse model to the source parameters of several large
earthquakes that uniaxial tension is developed within a few
meters of the crack tip. An even larger tensile region is
expected if there is an elastic contrast across the fault
[Andrews and Ben-Zion, 1997; Ben-Zion and Huang,
2002]. Unlike compressive loading, fragmentation under
tensile loading is not limited by ductile flow. Rather, the
minimum particle size appears to be limited by a competition
between the nucleation of tensile cracks and the subsequent
relaxation of stress in their immediate vicinity. It is also
possible that tensile fragmentation might be driven by local
high temperatures and steep temperature gradients during
flash heating on localized slip surfaces as discussed by Rice
[2006]. We note that macroscopic tensile loading can only
occur in a well-healed cataclasite, since an incohesive gouge
would simply separate at the particle boundaries.
[28] The physics of tensile fragmentation is best illustrat-

ed by considering the one-dimensional expansion of a ring
that contains a Poisson distribution of initial flaw spacing.
Following each nucleation event, a domain of stress relax-
ation spreads bilaterally from the new crack at the elastic
wave velocity c =

ffiffiffiffiffiffiffiffi
E=r

p
, where E is the elastic modulus

and r is the density. Grady [1981] derives the following
expression for the resultant distribution of particle length L:

F Lð Þ ¼ 2Ix

pc
exp � Ix

4c
L2

� �� �ZL
0

exp � Ix

4c
z2

� �� �
dz: ð15Þ

[29] In this expression, Ix is the nucleation rate of regions
of stress relaxation (twice the fracture nucleation rate) and is

a function of the strain rate. The distribution is characterized
by one parameter, a characteristic length L* =

ffiffiffiffiffiffiffiffi
c=Ix

p
, which

reflects the competition between the nucleation rate and
stress relaxation,

F Lð Þ ¼ 2ffiffiffi
p

p 1

L*

� �
exp � L

2L*

� �2
" #

erf
L

2L*

� �
: ð16Þ

[30] Equation (16) has a maximum value at L/L* = 1.24.
As the loading rate is increased, the nucleation rate Ix
increases, the scaling length L* =

ffiffiffiffiffiffiffiffi
c=Ix

p
decreases, and

the most likely particle size also decreases. In the limit of
shock loading, Grady [1981] shows that equation (16) can
be written as

F Lð Þ ¼ Noe
�NoL; ð17Þ

where No is the number of fractures (per unit length) that
nucleate. The number of particles per unit length with 0 < L
< Lmin is then

N 0 < L < Lminð Þ ¼ No

ZLmin

0

Noe
�NoLdL ¼No 1� e�NoLmin

� �
;

ð18Þ

which gives for No 
 1

Lmin ¼ � 1

No

ln 1� 1

No

� �
� 1

N 2
o

:

[31] If Lmin is 10 nm, then No = 104 fractures per meter.
These results do not provide a useful constraint on the
minimum size.

Figure 6. Minimum strain rate required to fracture an olivine particle of specified size at a given
homologous temperature.
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[32] Grady and Kipp [1987] suggest that the extension of
equation (17) to three-dimensional shock loading in tension
can be written as

N Vð Þ ¼ Noe
�NoV : ð19Þ

[33] If we assume that each particle is a cube, then the
surface area of a particle with volume V is A(V) = 6V2/3.
Since N(V) is the number of particles between V and V + dV,

the area of particles in this size range is N(V)A(V), and the
total area of the No particles is

Atot ¼ 6N2
o

Z1
0

V 2=3e�NoV dV ¼ 6N1=3
o G 5=3ð Þ ¼ 5:42N 1=3

o ; ð20Þ

where the units of Atot are area per unit volume and No is the
number of particles per unit volume.

Figure 7. Time required to double the size of a quartz grain as a function of grain size at various
temperatures.

Figure 8. Effect of a temperature pulse with a 6 s duration and various amplitudes on an initially fractal
distribution of fragments with dimension Df = 3.
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[34] The particle density is limited by the strain energy
available to create the area Atot. The required energy is Es =
Atotg = Atot(Kc

2/2E). For uniaxial elastic loading the elastic
energy is Eel = s1

2/2E so the maximum particle density is
found by setting Es = Eel, which gives AtotKc

2 = s1
2 or No =

(1/5.42)3 (s1/Kc)
6 = 0.0063(s1/Kc)

6 particles per unit volume.
Using a tensile stress of 5 GPa near the rupture front
[Reches and Dewers, 2005] leads to No = 0.0063(5000 MPa/
1 MPa m1/2)6 = 9.8 	 1019 particles per cubic meter. The
minimum particle size imposed by this energy constraint can
be found using the volumetric equivalent of equation (18)

N 0 < V < Vminð Þ ¼ No

ZVmin

0

Noe
�NoV dV ¼No 1� e�NoVmin

� �
¼ 1;

ð21Þ
which gives Lmin � Vmin

1/3 � 4 	 10�14 m. The above
considerations indicate that there is sufficient energy to
make nanometer-sized particles in tension.

[35] Another way to look at this is to ask what is the
smallest flaw that can be activated at a tensile stress of
5 GPa (calculated by Reches and Dewers [2005]) regardless
of loading rate? For quartz this is given by s

ffiffiffiffiffiffi
pa

p
= KIc =

1 MPa m1/2 (where a is the flaw radius), so amin =
(1/p)(106/5 	 109)2 = 13 nm. If we assume that flaws in a
given size range are uniformly distributed in the solid, then
this would be the dimension of the smallest fragment. If, on
the other hand, the initial flaws follow a Poisson or other
nonuniform spatial distribution, even smaller fragments are
possible.

8. Survivability of Nanometer-Sized Fragments

[36] The observation of nanometer-sized fragments in
fault zone rocks also limits the amplitude and duration of
the temperature pulse that was generated during the last
earthquake. Simple grain growth in the absence of impu-
rities and other structural complexities is commonly
described by

L2 � L2o ¼ Co exp � H þ PV*
� �

=RT
h i

t; ð22Þ

where Lo is the original grain size, L is the grain size after t
seconds at temperature T in degrees Kelvin, H is the
enthalpy, R is the universal gas constant, and pressure P is
in pascals.
[37] For wet quartz, Hacker et al. [1992] give the fol-

lowing parameter values from laboratory work done by
Tullis and Yund [1982] and Pierce and Christie [1987]: Co =
7.4 	 10�4 m2 s�1, H = 281 KJ mol�1, and V* = �1.86 	
10�8 m3 mol�1. These values were used in equation (22) to
produce Figure 7, which shows the time required to double
the grain size as a function of the original grain size for a
range of temperatures. For example, a 10 nm quartz particle
will double its size in 0.1 s at 1000�C, in 20 s at 800�C, in
14 hours at 600�C, and in 10 years at 400�C. Rice [2006]
estimated maximum temperature rises between 300�C and
1200�C for his thermal pressurization fault model, with the
higher values corresponding to more heavily damaged wall
rock that is not as effective in confining the heated water.
See also Bizzarri and Cocco [2006a, 2006b]. The implica-
tion is that the observation of 10 nm particles in fault zone
gouge constrains the temperature of an earthquake-generat-
ed heat pulse that lasts for a few tens of seconds to less than
about 800�C. The survival of 5–10 nm particles in the
rotary shear experiments by Yund et al. [1990] and the
possibility that even smaller particles may survive to com-
pose the ‘‘amorphous material’’ are consistent with their
estimate of a very small temperature increase (0.02�C)
during sliding.
[38] To get a better idea of how grain growth might affect

the particle size distribution in a fault zone, suppose that
the earthquake produces a fractal grain size distribution
given by

N Loð Þ ¼ N 1ð Þd�Df ; ð23Þ

where N(Lo) is the number of particles of (pregrowth) size
Lo ± DLo and Df is the fractal dimension. If Lo is measured
in nanometers, then N(1) is the number of particles with
dimension 1 ± DLo nanometers. The effect of an earth-

Figure 9. Schematic diagram of the fragmentation of
gouge deformed in simple shear. (a) The stress is
heterogeneous; the load is supported by grain bridges at
all scales. (b) Grain bridges are idealized as beams. Rotation
of a beam increases compression along its length while
reducing compression across its width. (c) Grains that form
the beam fail in tension. The failure plane is parallel to the
long axis of the grain bridge and, because of the reduced
compression across the bridge, tends to have its normal in
the plane of Figure 9c (orthogonal to the intermediate
principal stress s2). This anisotropy of failure planes is not
expected when the tensile failure occurs in a global isotropic
tensile field. Modified from Sammis and King [2007].
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quake-related temperature pulse of amplitude T and duration
t is to change the dimensions of all the particles in the
distribution according to equation (22). The new distribu-
tion is just N(L) = N(Lo), with L given in terms of Lo by
equation (22).
[39] To illustrate the above results for a case associated

with a large earthquake, we assume that the earthquake
rupture produces 6 m of slip over 6 s. Figure 8 shows how
an initial fractal particle distribution with Df = 3 is changed
by a 6 s temperature pulse with amplitudes ranging from
750�C to 1200�C. Note that for T > 800�C, no particles
smaller than 10 nm survive. The observation of 4 nm
particles by Chester et al. [2005] implies that temperatures
during a 6 s slip pulse on the slip surfaces of the Punchbowl
fault never reached 800�C. In the context of the Rice [2006,
Table 2] pore fluid heating model this temperature limit
constrains the permeability in the core of the Punchbowl
fault to be less than about 2 	 10�20 m2.

9. Discussion and Conclusions

[40] Observations indicate that particles as small as 4 nm
are observed in the fault zones of large displacement strike
slip faults [e.g., Chester et al., 2005]. We have shown that
these particles are too small to have been formed by grain
crushing in simple shear under elastic compressive loading,
even at high strain rates. However, such small particles can
be produced under compressive loading by either shock
loading or, at the other extreme, by subcritical crack growth.
The production of �10 nm particles at low strain rates in

compressive rotary shear [Yund et al., 1990] is probably an
example of such subcritical fragmentation.
[41] There appears to be no physical reason why nano-

meter-size particles cannot be produced under conditions of
tensile loading at high strain rates. In such cases the grain
size is limited by the competition between nucleation and
local stress relaxation. For a nonuniform distribution of
initial flaws the strain rate can always be made sufficiently
high to nucleate closely spaced flaws and produce nanoscale
particles. For a Poissonian distribution of initial flaws a
tensile shock is expected to produce a particle distribution
that increases exponentially toward small particles [e.g., see
Gilvarry, 1961; Gilvarry and Bergstrom, 1961]. Energy
limitations in this case allow particles smaller than 1 nm.
[42] The only constraint that the observation of submi-

cron particles places on the comminution process is that it is
probably not due to sequential grain crushing in compres-
sive shear. Because of the effect of temperature on healing
rates the survivability of nanoscale particles in fault zone
structures requires a strong dynamic weakening mechanism
to limit the amplitude and duration of the temperature pulse
generated during earthquake ruptures.
[43] Careful analysis of the morphology of the grains and

rock damage in fault zone structures may allow the distinc-
tion between fragmentation that occurred under macroscop-
ic tension or compression. Tensile grain failure in an overall
compressive shear field is likely to produce anisotropic
structures in the gouge material because normal vectors to
the fracture planes all tend to be orthogonal to the inter-
mediated principal stress direction (Figure 9). To the extent

Figure 10. Morphology of mud cracks formed in the two-dimensional (2-D) isotropic tensile stress field
in the shrinking mud as it dries. Note that the individual tensile cracks curve to intersect preexisting
cracks at right angles because this is the orientation of the principal tensile axis near an existing crack.
The faces of the resultant 2-D fragments tend to meet at right angles. There would be no preferred
orientation of the fracture planes in a 3-D isotropic expansion. Image courtesy NASA, Visible Earth,
http://www.earthscienceworld.org/images/imageuse.html.
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that the flow is simple shear, subsequent grain rotation will
preserve this anisotropy. If, however, the grains are formed
by the nucleation, growth, and intersection of tensile cracks
in a macroscopic polyaxial tensile field, without significant
shear displacement, the orientation of the fracture surfaces
should be more random. In such cases the grains are likely
to exhibit isotropic expansion, and the surfaces of the
resultant fragments should meet at right angles, as illustrat-
ed by the mud crack pattern shown in Figure 10. Such
patterns form because the principal tensile stress in isotropic
tension is always parallel to an existing fracture. This
pattern of orthogonal intersections can also be seen in
crazed pottery glaze and the surface of old oil paintings.
These expected differences in grain morphology should be
observable in oriented orthogonal thin sections.
[44] Although this paper focuses on how the stress state

during faulting may be inferred from the size and morphol-
ogy of fault zone fragments, these constraints may be
strengthened by other microscopic and macroscopic obser-
vations. For example, the observation of a fractal fragment
size distribution may imply compressive shear where the
fractal dimension provides an indication of total strain
[Sammis and King, 2007]. Macroscopic features that may
help to resolve the amplitude and type of the stress field
operating during an earthquake rupture include injection
structures and asymmetry of rock damage with respect to
the principal slip surface [Ben-Zion and Shi, 2005; Dor et
al., 2006a, 2006b].
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