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Abstract

We review fundamental aspects of linear poro-elasticity. In contrast to most available text-
books and review articles, our treatment of poro-elastic media is based on the continuum
Mixture Theory. Kinematic state variables and dynamic variables are introduced and for-
mally linearized before the fundamental constitutive relations, between pairs of these, are
extensively discussed. The role of porosity in linear poro-elasticity is highlighted, and it is
shown that porosity is one of the possible choices for one of the two kinematic state vari-
ables, and therefore, relations to alternative pairs of kinematic variables can be formulated.
The treatment is concluded by the formulation of the governing set of partial differential
equations that constitute the basis for analytical or numerical investigations of boundary
value problems.

Keywords Poro-elasticity · Mixture Theory · Consolidation · Biot’s theory ·

Hydromechanical coupling

List of Symbols

:= Indicates “defined as”

Greek Symbols

α Generalized phase index (when used as subscript or superscript)
α Biot–Willis coefficient (56)
γ fR Effective weight of the fluid constituent
γ s Deviatoric part of the strain tensor of solid skeleton
εs Strain tensor of solid skeleton
Γ α

D,N Dirichlet or Neuman boundary of the material body of constituent

φ = nf Current porosity at time t

φ0 = n
f
0 Initial porosity at time t0
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ρ Current density of the mixture at time t

ρ0 Initial density of the mixture at time t0
ρα Current partial density of constituent
ρα

0 Initial partial density of constituent
ραR Current effective/true density of constituent
ραR

0 Initial effective/true density of constituent
σ = σi j ei ⊗ e j Cauchy stress tensor of mixture
σi j Components of Cauchy stress tensor of mixture
σ

α = σ α
i j ei ⊗ e j Cauchy stress tensor of constituent

σ α
i j Components of Cauchy stress tensor of constituent

σ M Total mean stress of the mixture
σ

M,s
E Volumetric effective stress (of solid constituent)

τ Deviatoric part of the Cauchy stress tensor of the mixture
τ

α Deviatoric part of the Cauchy stress tensor of constituent
ζ Increment of fluid content

Latin symbols

a, b, c, and d Coefficients of generic quadratic strain energy function (30)
b Body force (density)
B Skempton coefficient B

B Deformed material body at time t

B0 Undeformed material body at time t0
dm Mass element of the (poro-elastic) mixture
dmα Mass element of constituent
dv Volume element of the (poro-elastic) mixture
dvα Volume element of constituent
eR
α Real volumetric part of strain tensor of constituent

eα Volumetric part of strain tensor of constituent
ēα de Boer’s definition of volumetric part of strain tensor of constituent
ei Basis vectors (i = {1, 2, 3}) of the basis system
f Phase index for fluid constituent
Fα

B
Total body forces of constituent of material body

Fα
∂B

Total contact forces of constituent of material body
Fα Deformation gradient of constituent
G Shear modulus of solid skeleton (35)
Jα = det Fα Jacobian of constituent
J α Total momentum of constituent of the material body
kf Darcy permeability/hydraulic conductivity
K f Bulk modulus of fluid constituent (29)
K s Bulk modulus of solid constituent composing the porous skeleton
K Drained/dry bulk modulus of the solid skeleton (38)
Ku Undrained bulk modulus/Gassmann modulus (36)
Kuj Unjacketed bulk modulus (39, 56)
M Storage modulus (41)
M Total mass of the material body
Mα Total mass of constituent of the material body
nα Volume element of the constituent at current time t

nα
0 Volume element of the constituent at initial time t0

p = −sf Pore/fluid pressure

123



Mechanics of Poro-Elastic Media: A Review with Emphasis… 439

p̂α Local momentum interaction of constituent
p̂α

eq Local equilibrium part of momentum interaction of constituent
p̂α

neq Local non-equilibrium part of momentum interaction of constituent
P(x, t) Material point
P̂α Total Interaction forces of constituent of the material body
s Phase index for solid constituent
sα Volumetric part of the Cauchy stress tensor constituent
ses

Specific storage capacity at constant volumetric deformation of the solid
(41) skeleton

sσ M Specific storage capacity at constant mean stress (42)
t Current time
t Local surface tractions of mixture
tα Local surface tractions of constituent
us Displacement vector of solid skeleton
wf Seepage velocity
W Strain energy function (30)
x Position vector of superimposed continua in current configuration
ẋα = vα Velocity of constituent
ẍα = v̇α Acceleration of constituent
Xα Position vector of constituent in initial configuration

1 Introduction

Poro-elasticity is the branch of mechanics that covers the reversible deformation of aggregates
composed of a solid, assumed to behave linearly elastic, and a viscous and compressible
fluid or several fluids, where we consider the term fluid to comprise liquids and gases. The
composition of such mixtures is conventionally described by the volumetric fractions of the
constituting phases, and in fact most of the time we use porosity as a quantification of the
volume fraction not occupied by solid constituents. It is this notion of a pore space within a
solid frame or skeleton that can be filled with an arbitrary fluid that leads to using the label
“poro-elasticity”, apparently coined by Geertsma (1966). Much of the formal foundation as
we use it today was, however, laid out earlier by Biot (1941) from a continuum perspective
building partly upon the work of Terzaghi (1923, 1943) in the context of soil mechanics and
Fillunger (1936) from the view point of fundamental concepts of Mixture Theory.

Today, users of the theoretical framework provided by linear poro-elasticity come from
quite a number of scientific disciplines, e.g., civil engineering including soil mechanics
(Verruijt 2010), theoretical mechanics (Cheng 2016), materials science (Silverstein et al.
2011), biomechanics (Mow et al. 1980), petroleum engineering (Detournay and Cheng 1993),
hydrogeology (Verruijt 1969; Wang 2000), and rock mechanics (Guéguen et al. 2004). Not
intending to belittle its complexity, it constitutes the most simple approach to the wide range of
phenomena related to the coupled mechanical response of fluids and solids. The phenomena
addressed by the theory have occupied men probably for long (foundations on quick sand,
ground liquefaction in the wake of earthquakes, tidal well level fluctuations, etc.).

In the light of excellent texts by, e.g., Detournay and Cheng (1993), Rice and Cleary
(1976), Lopatnikov and Cheng (2005) and Frenkel (1996), and the above-cited monographs,
one may rightly wonder whether there is actually a need or motivation for another account
of this subject. We find that Mixture Theory provides a framework for a rather rigorous
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development of the theory starting from the axioms of mechanics, the conservation laws for
mass and momentum. Motivated by the studies of diffusion by Adolf Fick in the nineteenth
century, Truesdell (1957) introduced the so-called continuum Mixture Theory, which in our
days serves as the rational basis for the description of miscible and immiscible multiphase
mixtures, cf. also the collections in Truesdell (1984). For the restricted case of immiscible
and incompressible constituents, Bowen (1980) enhanced continuum Mixture Theory by the
concept of volume fractions. In a further contribution, Bowen (1982) extended this framework
for the more general case of compressible constituents. Bedford and Drumheller (1983) pro-
vided an overview of contributions to Mixture Theory up to 1983. Mixture Theory enhanced
by the concept of volume fractions and especially applied to deformable porous media is
also denoted as the Theory of Porous Media, cf. de Boer (2005) and Ehlers (2002). The latter
author discusses finite element implementations of various models including finite deforma-
tions. An extensive review, including historical remarks about the conflict between Terzaghi
and Fillunger, is given by de Boer (1996). Direct comparisons of Biot’s poro-elasticity and
Mixture Theory can be found in Coussy et al. (1998) where it was shown that the basic con-
stitutive equations for the total stress tensor and the pore pressure can be determined from a
potential derived from the Clausius–Duhem inequality.

A particular value of the linear theory lies in the application to the propagation of elastic
waves in porous media for material characterization or seismic exploration. Recent investi-
gations include the role of micro- or mesoscale heterogeneities, like stratified media and/or
those containing fractures or fracture networks, for wave-induced fluid flow and effective
material properties, cf. Pride et al. (2004) or Quintal et al. (2011). Nevertheless, we do not
present and discuss the governing set of poro-elastic equations describing acoustic waves
because the dynamic extension of linear poro-elasticity is not influenced much by theoretical
concepts of Mixture Theory. The contributions of Schanz and Diebels (2003) and Gure-
vich (2007) focused on comparing the properties of acoustic waves in poro-elastic media
as obtained from poro-elasticity and Mixture Theory. Open question concerning acoustic
waves in poro-elastic media is more related to physical and constitutive issues, like the role
of dynamic permeability or tortuosity, cf. Smeulders (2005).

Here, we emphasize the “choices” made in the formulation of the theory and the relation to
various previous approaches. Along the way, we clarify the basic step of formal linearization

and present some unusual relations among the “multitude” of frequently used kinematic and
dynamic variables and associated coefficients. The manuscript is organized as follows: After
introducing the basic notions of Mixture Theory as applied to poro-elasticity, we discuss
the partial balance equations for mass and momentum of both phases and introduce the
related balance relations of the mixture. These balance relations are first treated in the most
general global form and thus initially include nonlinearities, e.g., related to the material time
derivatives. In a second step, the local balance relations are linearized. When introducing
the constitutive relations linking the kinematic and dynamic variables, we put emphasis on
clarifying the role of porosity as kinematic state variable.

2 Background/Foundation

2.1 The Subject of Poro-Elasticity

We consider it instructive to address the question how changes in state are imparted to the
poro-elastic medium with a thought experiment involving an “ideal” membrane that (a) has
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no strength but transmits external loads to the medium without modifying them and (b) still
ensures continuity of normal stresses at the medium’s surface. Furthermore, the membrane
(c) imposes no kinematic restrictions to the deformation of the solid skeleton but (d) allows
the medium to exchange fluid with its environment according to yet- to-be specified boundary
conditions. When the material volume at consideration represents only a small part of a larger
body, the neighboring volume elements play the role of the “ideal” membrane. In continuum
mechanics, this latter view is often expressed by addressing the “material volume” as the
“local” and the entire body as the “global” scale. In laboratory tests, any of the requests
may be violated or only approximately achieved due to technical limitations. In numerical
studies, boundary conditions can be prescribed in various ways; a prominent example is
periodic boundary conditions that comply with (a)–(d).

In our thought experiment, we envision the membrane to transmit a hydrostatic pressure,
commonly addressed as “confining pressure” by experimentalists, to a suspension, i.e., a
specific case of a two-phase mixture in which the solid parts, the particles or grains, do not
form a connected skeleton but float in the liquid. Obviously, for an ideal membrane, the fluid
pressure will be identical with the external pressure and all solid grains experience a normal
stress identical to the fluid pressure. Now, assume we allow for a leak in the membrane
through which fluid escapes to a “reservoir” at lower pressure than the exerted confining
pressure. Eventually, the solid grains will start touching each other during this consolidation
at which point the leak is sealed. Now, some of the externally applied pressure is carried
by the forming load-bearing frame or solid skeleton and some by the fluid. Consequently,
mechanical equilibrium at the medium’s surface and interior involves fluid pressure and
stresses of the solid grains, i.e., normal stresses applied at solid–fluid interfaces but also
at solid–solid interfaces as well as shear stresses at solid–solid interfaces. All of our work
restricts to media that reached this state of a load-bearing solid frame, whatever the actual
genesis, e.g., fibrous growth or gravity-controlled sedimentation of particles.

From a thermodynamic perspective, poro-elasticity analyzes the relation of a material
volume, characterized by certain rheologic properties, which mechanically interacts and
may exchange matter with its environment, here specifically only one constituent, the fluid.
Two limiting cases are distinguished regarding the fluid exchange with the environment,
undrained conditions, i.e., no fluid exchange, or (perfectly) drained conditions, i.e., the fluid
pressure remains constant during a change in mechanical state. We restrict to aggregates
whose pore space is fully saturated by a single viscous fluid phase.

2.2 General Formulation for Binary Mixtures

We present (Biot’s) linear poro-elasticity from the perspective of continuum Mixture Theory
that, albeit at the cost of theoretical formality, brings with it the benefit of clarifying the
origin and role of various assumptions involved in poro-elasticity, some of which are, until
today, controversially discussed, cf. Wilmański (2006). Trying to keep the mathematical and
theoretical effort at a minimum, we concentrate on the basic aspects but refer the reader
to standard textbooks of Mixture Theory for distinct contributions to the Theory of Porous
Media, cf. Ehlers (2002); de Boer (2005) or extensions to tri- and multiphasic approaches
including aspects of nonlinearities and further more sophisticated models, cf. Bowen (1976);
Rajagopal and Tao (1996); Schneider and Hutter (2009); Coussy (1995).

Before introducing the basic modeling concepts of linear poro-elasticity, we compile the
assumptions for the modeling framework:

123



442 H. Steeb, J. Renner

(a) linear constitutive relations, i.e.,

– linear elastic (reversible) deformations of the solid skeleton and its components,
considered to hold when restricting to small deformations, and

– viscous fluid and linear equation of state for fluid pressure;

(b) slow, quasi-static “diffusive” processes, inertia terms are neglected;
(c) isotropy of the solid skeleton and the effective behavior of its constituents;
(d) isothermal conditions, specifically all phases have identical thermal conditions;
(e) macroscopic continuum theory, no inherent length or time scales;
(f) pore space is fully saturated with a single fluid;
(g) part of the pore space is connected such that the material body under investigation can

exchange fluid with its environment.

In linear poro-elasticity, constitutive (material) relations between dynamic variables (e.g.,
stresses, pressures, drag forces) and kinematic quantities (e.g., strains, relative fluid velocity)
are formulated in a phenomenological manner. Here, we refrain from a rigorous discus-
sion of the thermodynamic consistency of the poro-elastic constitutive relations but take a
“rheologic” approach to the basic phenomena, i.e., address the question how an ideal linear
poro-elastic material behaves when its state changes.

A continuum-based description of an elastic porous solid saturated with a compressible and
viscous (pore) fluid requires to introduce various macroscopic field quantities characterizing
the volumetric composition of this binary mixture. We rely on the concept of a material
point denoted as P (Fig. 1), i.e., the classical notion of continuum mechanics, that the length
scales of problems at hand, the size of investigated bodies, sufficiently exceed the length
scales involved with the geometrical characteristics of pores and solid constituents, and
thus, locally the material has well-defined properties. At such a material point P(x, t), the
mixture is composed of the two constituents (here each constituent in particular represents
a different phase) indicated by a subscript (for kinematic variables) or superscript (for all
others) α = {f, s} referring to either the fluid or the solid phase (Fig. 1). In the current or
deformed configuration, a volume element of the mixture dv is partly occupied by a fluid
volume element dvf and a solid volume element dvs corresponding to volume fractions of
nα(x, t) := dvα/dv for which it is obvious that 0 ≤ nα ≤ 1 and ns + nf ≡ 1. Depending on
the specific deformation that a material volume is undergoing, the volume fractions nα(x, t)

may evolve, i.e., in general the local amounts of the fluid or the solid phase at P constitute
field variables depending on spatial position (position vector x).

In the context of (biphasic) poro-elasticity, it is common to replace the volume fractions
by local porosity φ(x, t), i.e., the percentage of the material volume occupied by the (pore)
fluid, that is linked to the volume fractions according to φ = nf = 1 − ns. The relation
between fluid volume and porosity is an expression of the saturation condition, i.e., the
volume occupied by the fluid is identical with the pore volume at any point of time. In the
following, we denote the initial (or reference or undeformed) configuration at t = t0 by a

subscript “0”, specifically the initial porosity φ(x, t0) =: φ0(x) reads φ0 = dv
f
0/dv0.

The definition φ = nf = dvf/dv corresponds to the Eulerian spatial porosity, i.e., the
porosity of the material volume currently occupying a specific point in space, of Coussy (2010,
p. 52) who in addition introduced a Lagrangian porosity φ̃ := dvf/dv0, i.e., the porosity of the
specific material volume that had the volume dv0 in the reference configuration. The porosity
in the Eulerian setting is related to the one in the Lagrangian setting via φ̃ dv0 = φ dv. In
linear poro-elasticity, the linearized Eulerian porosity coincides with the Lagrangian porosity,
i.e., lin(φ) = φ̃. Only when poro-elasticity is extended and large (finite) deformations and

123



Mechanics of Poro-Elastic Media: A Review with Emphasis… 443

dms

upscaling / homogenization

REV (dv, dm)

dvs

dmf

dvf

biphasic volume element

e2

e1

e3

x

material body

B

P(x, t)

Fig. 1 Material body B, material point P of a biphasic mixture in current configuration t

nonlinear kinematic quantities have to be taken into account, the choice between Lagrangian
and Eulerian porosities is not obvious but depends on the specific model. Differences in
further kinematic quantities may arise when approaches rest on different perspectives, cf.
Schreyer (2016, p. 816).

In addition to the volume element dv, we introduce a mass element dm of the mixture
as well as mass elements of the phases dmα . The density of the mixture follows in the
standard way of continuum mechanics, i.e., ρ := dm/dv. Two phase-specific densities
are distinguished, partial densities ρα := dmα/dv and effective or true densities ραR :=

dmα/dvα that are linked via the volume fractions by ρα = nα ραR . Expressed by the partial
densities, the density of the mixture reads ρ =

∑

α ρα =
∑

α nα ραR .

3 Kinematic State Variables andMass Conservation

3.1 Choice of Kinematic Variables

Obvious kinematic state variables are the volumetric strains of the fluid and the solid as well
as the shear strains of the solid. Here, we would like to emphasize the basic assumption
made in the framework of (linear) poro-elasticity: Deformations of the solid are assumed to
be small, i.e., strain measures do not exceed about 5 %. The appropriate kinematic quantities
on which to base strain measures for the solid skeleton are the (Lagrangian) displacements
given by us = x−Xs, where Xs is the position vector of the solid phase at the initial state. In
the small deformation framework, the strain tensor of the solid constituent εs = εs,i j ei ⊗ e j

can be calculated from the displacement gradient

εs =
1

2

(

grad us + gradT us

)

with εs,i j =
1

2

(

∂us,i

∂x j

+
∂us, j

∂xi

)

(1)

where the upper index T is used for transposed tensors. The two kinematic state variables
for the solid are gained from splitting the (partial) strain tensor into a scalar volumetric part
es = tr(εs) = div us and a second-order tensor, the deviatoric part or deviator γ s:

εs = vol(εs) + dev(εs) =
1

3
tr(εs)I + dev(εs) :=

1

3
es I + γ s. (2)
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Fig. 2 Individual motion of a fluid χf and a solid particle χs. Only in the current configuration at time t ,
superposition in the Representative Volume Element (RVE) is observed

The volumetric strain of the fluid (at rest) calculates according to

ef = tr(εf) = div(uf). (3)

The volumetric strains es and ef can be geometrically interpreted on the basis of the
previously introduced volume elements:

es =
dv − dv0

dv0
and ef =

dvf − dv
f
0

dv
f
0

. (4)

This comparison of differences in measures (here volumes) of the current and the initial
configuration to the measure in the initial configuration follows classic definitions of strains
in continuum mechanics (e.g., Haupt 2000; Hutter and Jöhnk 2003) and is consistent with
the (linearized) map of volume elements. Volume elements of the skeleton are mapped with
the Jacobian of the solid phase (dv = Js dv0 with det Fs =: Js), the Jacobian that links
the previously introduced Eulerian and Lagrangian porosities, i.e., φ̃ = Js φ, while the
volume elements of the fluid phase are mapped with the Jacobian of the bulk fluid (dvf =

Jf dv
f
0 with det Ff =: Jf). The two partial deformation gradients Fα are two-field tensors

mapping line elements from the reference to the current configuration. The constituents have
their own motion functions χα that only overlap in the current configuration (Fig. 2). The
position vector x in the current configuration refers to a RVE (with superimposed continua)
while the constituents have individual position vectors Xα in the reference configuration.
As an important consequence, only partial deformation gradients Fα (and the Jacobians Jα)
have a kinematic interpretation while a deformation gradient of the total mixture F (and the
associated Jacobian J ) has no further physical significance. Making use of the linearized
form of the Jacobian lin(Jα) = div(uα) + 1 then immediately gives identity of (4) and (3)
and the corresponding relation for the solid phase.

Equation (4) highlights the qualitative difference between the two volumetric strains. The
strain of the solid skeleton es is identical to the total volumetric strain and constitutes the
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kinematic quantity which can be measured or controlled in a physical experiment but does
not give information on the intrinsic strain of the solid material at any point in the skeleton.
The volumetric strain of the fluid phase ef, in contrast, is a local measure of the state of the
fluid phase, consistent with the definition of volume strains of real materials from de Boer
(2005)

eR
α =

dvα − dvα
0

dvα
0

, (5)

cf. comments in Coussy (2010, Eq. 3.51). De Boer, in addition, introduced volumetric strains
of the phases

ēα =
dv − dvα

0

dvα
0

=
dv

dvα
0

− 1 (6)

that neither have simple geometric interpretations nor are consistent with the mapping rules
of measurable kinematic quantities

The “increment of fluid content” introduced in Biot and Willis (1957, Eq. 26), i.e., the
change in fluid volume in the material volume associated with a change in mechanical state
and thus a measure of the fluid volume exchanged by the mixture volume with its environment,
is calculated from the difference in the two volumetric strains as

ζ = φ0
(

es − ef

)

. (7)

The increment of fluid content is a convenient theoretical concept because it allows for a direct
link to fluid flux or filter (or Darcy) velocity qf = φ0 wf in the form ζ̇ = φ0

(

ės − ėf

)

=

div(qf) that, in general, describes the motion of the fluid phase in a modified Eulerian frame-
work where wf = u̇f − u̇s denotes the seepage velocity.

The geometrical interpretation of (7) has been presented in various previous studies (e.g.,
Detournay and Cheng 1993). A change in fluid volume present in the material volume due
to a change in mechanical state has two contributions, owing to changes in fluid pressure
(compressibility effect) and owing to changes in pore volume present in the (deforming)
skeleton. Coussy (1995) introduced a more general, nonlinear relation

ζC = (es + 1)
ρfR

ρ
fR
0

φ − φ0 (8)

that can be shown to be equivalent to (7) when linearized, and the introduced definitions

φ = dvf/dv and φ0 = dv
f
0/dv0 are applied. Schreyer (2016) remarked recently that (8) is

only equivalent to the increment of fluid content ζRC = (φ − φ0) ρfR/ρ
fR
0 defined in the

work of Rice and Cleary (1976) and Wang (2000, p. 17, Eq. 1.5) when the solid skeleton is
undeformable, i.e., es ≡ 0.

3.2 Balance of Mass

In global form, i.e., for the total material body B, the partial masses of the solid and the fluid
phase are conserved according to

M
α = M

α
0 or [Mα]′α =

[∫

B

ρα dv

]′

α

= 0 (9)

where the masses of the fluid Mf and the solid Ms combine to the total mass M = Ms+Mf

of the material body and ( • )′α indicates the material or substantial derivative with regard
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to the velocity of the phase. Using standard arguments for continua, e.g., Haupt (2000), the
localized form of the balance of masses of the constituents reads

∂t (n
α ραR) + div(nα ραR vα) = 0 ⇔

nα ∂t (ρ
αR) + ραR ∂t (n

α) + nα ραR div vα + vα · grad(nα ραR) = 0. (10)

Linearizing (10) around the reference state characterized by initial quantities S0 =
{

ραR
0 , nα

0 , eα,0 = 0
}

, we obtain

nα
0 ρ̇αR + ραR

0 ṅα + nα
0 ραR

0 ėα = 0 (11)

or written out explicitly for the two phases

(1 − φ0) ρ̇sR − ρsR
0 φ̇ + (1 − φ0) ρsR

0 ės = 0 and (12)

φ0 ρ̇fR + ρ
fR
0 φ̇ + φ0 ρ

fR
0 ėf = 0. (13)

In a linear kinematic description, the time derivatives are calculated from the partial time
derivatives alone, e.g., u̇s = ∂t (us). The convective part of the more general material time
derivative is of higher than linear order and assumed to be small for small strains and accord-
ingly neglected. A formal derivation of the linearized mass balance for the single constituent
is given in “Appendix A”.

Equations (12) and (13) express the dual role of porosity. On the one hand, the “constant

parameter” initial porosity φ0 = n
f
0 characterizes the mixture in the initial state and thus

affects the linearized form of the balance of mass. On the other hand, porosity evolves. The
appropriate evolution law has been a matter of discussion (e.g., Wilmański 1998, 2006), but
the mass balances of the solid and fluid can obviously immediately be recast to

φ̇ = (1 − φ0)
ρ̇sR

ρsR
0

+ (1 − φ0) ės (14)

and

φ̇ = −φ0
ρ̇fR

ρ
fR
0

− φ0 ėf, (15)

respectively. Furthermore, when the current configuration is summarized by S =
{

ρα,R, nα,

eα}, integration of the linearized mass balance for the solid (13) gives

t
∫

t0

ns ρ̇sR dτ +

t
∫

t0

ρsR
0 ṅs dτ +

t
∫

t0

ns
0 ρsR

0 ės dτ =

ns
0 (ρsR − ρsR

0 ) + ρsR
0 (ns − ns

0) + ns
0 ρsR

0 es = 0.

(16)

or after inserting ns = 1 − φ

ρsR

ρsR
0

+
1 − φ

1 − φ0
+ es − 2 = 0 (17)

which leads to an expression for the porosity

φ = φ(ρsR, es) = 2 φ0 − 1 + (1 − φ0)

(

ρsR

ρsR
0

+ es

)

. (18)
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Analogously, integration of the linearized balance of mass of the fluid yields

ρfR

ρ
fR
0

+
φ

φ0
+ ef − 2 = 0 (19)

giving a second expression for the porosity

φ = φ(ρfR, ef) = 2 φ0 − φ0

(

ρfR

ρ
fR
0

+ ef

)

. (20)

Equations (18) and (20) allow us to express one of the three field quantities {nα, ραR, eα} by
the two remaining ones, e.g., eα = eα(nα, ραR). Thus, current porosity depends on effective
density and volumetric deformation of the phases, yet to be further constrained by constitutive
equations.

4 Dynamic State Variables and Conservation of Momentum

We first discuss the partial stress tensors σ
α of the fluid and the solid constituent. In continuum

Mixture Theory, the partial stress tensors are abstract quantities used for the formulation of
the balance of momentum (and moment of momentum). They simply express the notion that
each constituent contributes to the “load bearing”. We refer the interested reader to detailed
discussions of the technical derivation of the balance relations in the framework of continuum
Mixture Theory to Schneider and Hutter (2009), de Boer (1996), Ehlers (2002), or Coussy
(2010).

From the conservation of partial moment of momentum, we simply obtain for poro-elastic
media that the partial stress tensors are symmetric, i.e., σ

α ≡ σ
α,T , or in index notation for

the components σ α
i j ≡ σ α

j i (e.g., Renner and Steeb 2015). The symmetry conditions also

holds for the total stresses of the mixture, σ =
∑

σ
α ≡ σ

T . Similar to the formal split
performed for the strain tensor (2), we introduce a formal tensorial split of the partial (phase)
stresses into a deviatoric and a volumetric part

σ
α = vol(σ α) + dev(σ α) =

1

3
tr(σα)I + dev(σα) := sα I + τ

α (21)

where sα is the partial mean stress. Analogously, the total stress of the mixture σ is split
according to

σ = σ M I + τ = (ss + sf) I + τ
s (22)

with the total mean stress σ M = ss + sf and the fluid or pore pressure p := −sf.
The momentum J α of a constituent is changed by the sum of the body forces Fα

B
, contact

forces Fα
∂B

, and interaction forces P̂
α

, i.e.,

[

J
α
]′

α
= F

α
B

+ F
α
∂B

+ P̂
α
, (23)

[∫

B

vα ραdv

]′

α

=

∫

B

ρα b dv +

∫

∂B

tαda +

∫

B

p̂αdv. (24)

Again, standard arguments from mechanics of continua yield the local form of the partial
momentum balance

ρ ẍα − div σ
α = ρα b + p̂α . (25)
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Similarly, the global conservation of momentum for the mixture

[J ]′ = FB + F∂B, (26)
[∫

B

v ρ dv

]′

=

∫

B

ρ b dv +

∫

∂B

t da (27)

reads in local form
ρ ẍ − div σ = ρ b. (28)

In the derived general partial and total balances of momentum (25) and (28), the first terms
on the left side represent the inertia contributions. In the following, we restrict ourself to the
discussion of linear poro-elasticity in the quasi-static regime and thus neglect these inertia
terms that, however, are central in the treatment of elastic waves.

5 Constitutive Relations

Basically, the constitutive behavior of a poro-elastic medium has to be constrained for two
situations, equilibrium and non-equilibrium. Equilibrium is reached when the fluid is at rest,
i.e., when the pore pressure field p(x, t) is homogeneous and fluid flow driving pressure
gradients are absent. In the non-equilibrium case, the porous medium is characterized by
a fluid with a spatially inhomogeneous pore pressure distribution. Pressure gradients cause
fluid flow in the pore space. Depending on the type of the porous medium and the boundary
conditions under consideration, which can be drained or undrained for the pore fluid, the
medium may be consolidated or pressure diffusion effects may be observed. In the non-
equilibrium case, energy is dissipated owing to the viscous momentum interaction at the solid–
fluid interface. In classical poro-elasticity, such (pore-scale) interface effects are, however,
not explicitly taken into account. Implicitly, interface effects are captured in poro-elasticity
through the solid–fluid momentum interaction term in (23) and (25).

In the sequel, we attribute the same sign to volume changes and the stresses causing them.
Following the “engineering” sign convention, volume increase is considered positive, and
thus, tensile stresses are positive, but fluid pressure is also positive.

5.1 Fluid Phase

The pressure of a compressible fluid is a thermodynamic state variable, i.e., it is determined
by a constitutive equation (equation of state). In linear (isothermal) poro-elasticity, we assume
that the pore fluid is a (linear) barotropic fluid, and thus, the pressure in the fluid is a function
of the effective fluid density, i.e., p = p(ρfR) ∝ ρfR . Introducing the bulk modulus of the
fluid, K f, the linear relations connecting density at some elevated pressure with density at
zero pressure (the reference state) read

p = K f

[

ρfR

ρ
fR
0

− 1

]

or ρfR = ρ
fR
0

[

p

K f
+ 1

]

. (29)

Nearly, incompressible fluids, such as water and oil, are closely described by (29) in the vast
majority of applications, while gases obey linear relations only for very restricted ranges in
pressure.
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5.2 Solid Phase

In the equilibrium case, the poro-elastic medium behaves like a biphasic elastic composite.
For a fluid at rest, (viscous) shear stresses in the fluid do not occur and the solid–liquid
interfaces are traction-free. Shear stiffness of the composite results only from the shear
stiffness (modulus) G of the solid skeleton, determined by the (intrinsic) shear stiffness
of the solid material Gs and the geometrical characteristics of the skeleton. The effec-
tive bulk stiffness of the composite is (potentially) affected by three different bulk moduli
(or their inverses, compressibilities), the two describing the intrinsic behavior of the two
phases, i.e., K f for the compressible fluid phase introduced in (29) and K s for the com-
pressible solid material composing the skeleton, in turn described by the skeleton modulus
K .

The moduli of the solid material composing the skeleton, e.g., anisotropic crystals and
crystals with a range of compositions but also “empty” or fluid-filled isolated pores, gener-
ally require some upscaling from the properties of individual solid constituents to effective
or average moduli, Ḡs and K̄ s, that can typically be quantified in meaningful limits, the cele-
brated Voigt–Reuss or Hashin–Shtrikman bounds for general and isotropic material behavior,
respectively (Nemat-Nasser and Hori 1993; Mavko et al. 2009). In the sequel, we will refrain
from using this explicit notation for the material parameters, but Gs and K s should be under-
stood to represent effective parameters. The same bounding treatment can in principle be
applied to the two-phase mixture to constrain the drained and the undrained modulus, but
often the bounds are wide and thus of limited use owing to stark contrasts between the moduli
of the solid and fluid phases. Without constraints on the structure of the skeleton (or the pore
space), the bounds cannot be tightened.

A range of upscaling or homogenization methods yields the explicit results within the
rigorous bounds (e.g., Klusemann and Svendsen 2010). The microstructural heterogeneities
have to be significantly smaller than the material point under consideration (a requirement
that also applies to the choice of sample size for experiments to yield meaningful material
parameters). Methods frequently applied to derive effective properties of composite materials,
such as the effective medium approximation (EMA) or the Mori–Tanaka methods (MTM),
rely on the seminal work of Eshelby for ellipsoidal inclusions (Eshelby 1957, 1959). Every
inclusion is considered to either be embedded in a matrix characterized by the sought effective
elasticity coefficients (e.g., EMA) or to experience a mean strain (or stress) field (e.g., MTM).
The various approaches also differ in the number of phases considered.

5.3 Mixture at Equilibrium

From the analyses of the balance of momentum, we found three stress quantities as obvious
candidates for dynamic variables. Besides the deviatoric stress tensor τ

s which only exists
for the solid skeleton as the pore fluid at rest does not have any (elastic or viscous) shear resis-
tance, these are the pore fluid pressure p and the total mean stress σ M . From a thermodynamic
perspective, the kinematic and dynamic variables constitute generalized displacements and
forces, respectively. As a direct consequence of the evaluation of the second law of thermo-
dynamics in form of the Clausius–Planck inequality, the generalized forces (sometimes also
called response functions) result from partial differentiation of a thermodynamic potential,
here a strain energy function W , with respect to the generalized displacements (sometimes
also called process variables). The interested reader is referred to the technical derivations
outlined, e.g., in Ehlers (2002).
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Following the seminal work of Biot (1941), we use the set of kinematic variables
{γ s, es, ζ } to formulate the most general strain energy function, which Biot (1941) called a
potential energy density, of a linear poro-elastic material as

W = dev(W ) + vol(W ) = W (γ s) + W (es) + W (es, ζ ) + W (ζ ),

= a
[

γ s : γ s

]

+ b e2
s + c es ζ + d ζ 2,

(30)

comprising a total of four linear independent coefficients {a, b, c, d} relating kinematic and
dynamic variables, see also Wang (2000) and Cheng (2016, eq. 2.21). The decoupling of
deviatoric (γ s) and volumetric (es, ζ ) contributions is a direct consequence of the additive
decomposition of the strain tensor (2) and the assumption of linearity. Shear stresses and
strains relate simply by τ = ∂W/∂γ s. The two remaining dynamic variables, fluid pressure
and mean stress, allow for only two kinematic variables in a linear treatment. Using ef instead
of either es or ζ does not change the form of the function but only the physical meaning of
the involved coefficients. Thus, the linearity requirement for the strain energy function limits
the number of constitutive parameters for isotropic poro-elastic media at equilibrium to four,
of which three relate to volumetric relations.

The strain energy function (30) is a function of the kinematic variables. It acts as a potential
for the dynamic variables and comprises a single term accounting for the stored elastic energy
associated with deviatoric deformations and three terms related to volumetric deformations.
One of the latter terms is a mixed term in the two volumetric kinematic variables reflecting
the coupling between the (volumetric) deformations of the solid and the fluid phase: When
the fluid-saturated pore space is deformed, we expect to observe a change in the fluid pressure
and in the volumetric stresses of the solid phase.

Evaluating the partial derivatives of the strain energy function yields that shear stresses
relate to shear strains by

τ =
∂W

∂γ s

= 2 a γ s. (31)

The remaining dynamic variables are obtained from the potential as

σ M =
∂W

∂es

= 2 b es + c ζ and p =
∂W

∂ζ
= c es + 2 d ζ. (32)

It is common practice to cast this result for the link between the two volumetric dynamic
variables and the two volumetric kinematic variables in a matrix formulation:

[

σ M

p

]

=

[

2 b c

c 2 d

] [

es

ζ

]

(33)

or its inverse
[

es

ζ

]

=
1

4 b d − c2

[

2 d −c

−c 2 b

] [

σ M

p

]

. (34)

These relations are particularly helpful for physical interpretation of the coefficients by con-
sideration of thought or idealized experiments.

5.3.1 Physical Interpretation of the Coefficients in the Strain Energy Function

According to Hooke’s law for isotropic media, shear stresses relate to shear strains by

τ = 2 G γ s (35)
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and we thus identify the first coefficient in the strain energy function with the shear modulus
of the skeleton, i.e., a = G. Next, we investigate the relation between a change of total mean
stress and the change in volumetric deformation for (a) undrained conditions and (b) drained
conditions:
Undrained bulk modulus Ku: Undrained conditions, i.e., ζ = const. in (33), give

∂σ M

∂es

∣

∣

∣

∣

∣

ζ

= 2 b =: Ku. (36)

Here and in the sequel, we use the conventional notation of thermodynamics to indicate the
constraint under which a derivative is evaluated, a vertical bar with a subscript denoting the
variable that is kept constant. Thus, for undrained conditions, the second coefficient of the
strain energy function has a ready physical interpretation. It controls the relation between the
change in mean stresses of the skeleton and a change in volumetric solid deformation and thus
is conventionally identified as a “new” bulk modulus Ku, the undrained (or saturated) bulk
modulus, sometimes also called Gassmann modulus honoring the work of Fritz Gassmann
(Gassmann 1951).
Skempton parameter B: Evaluation of ζ in (34) gives

0 = −c σ M + 2 b p ⇐⇒
∂ p

∂σ M

∣

∣

∣

∣

∣

ζ=0

=
c

2 b
=: B (37)

demonstrating that, for undrained conditions, the variation in pore pressure per amount
of applied total mean stress is fixed by the constitutive parameters. The constancy of the
pressure–stress ratio motivates to introduce a related material property, called the Skempton
coefficient (or parameter) B.
Drained bulk modulus K : Drained conditions, i.e., p in (34), lead to

∂es

∂σ M

∣

∣

∣

∣

∣

p

=
2 d

4 b d − c2
=:

1

K
(38)

providing a relation between coefficients of the strain energy function and the skeleton’s bulk
modulus K , which describes the stiffness of the “drained” or empty (or dry) skeleton. The
terms “skeleton bulk modulus”, “drained bulk modulus”, and “dry bulk modulus” are thus
synonymously used.

By now, we found three independent relations between the strain energy coefficients
b, c, and d and three measurable material properties with simple physical interpretations
{K , Ku, B}, and thus, the constitutive behavior of linear poro-elastic media is in prin-
ciple fully described. Inverting (36), (37), and (38) gives b = Ku/2, c = B Ku, and
d = B2 K 2

u /(2 Ku − 2 K ). However, a number of further material parameters have been
employed owing to their aptness in specific applications.
Unjacketed modulus Kuj: The condition that the sample is subjected to equal changes
in external mean stress and pore fluid pressure, i.e., σ M = −p, technically realized by
performing a test on an unjacketed sample immersed in a fluid that—when its pressure is
changed—exerts the loading on the outer surface and in the pore space (the inner surface),
yields

∂σ M

∂es

∣

∣

∣

∣

∣

σ M =−p

=
4 b d − c2

2 d + c
=: Kuj. (39)
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Biot–Willis coefficient α: According to an evaluation of the second line of (33) for drained
conditions, i.e., p = const ., the change in fluid increment per change in volumetric defor-
mation of the solid skeleton is constant:

∂ζ

∂es

∣

∣

∣

∣

∣

p

= −
c

2d
=: α. (40)

This constant ratio is referred to as the Biot–Willis coefficient α, cf. Biot and Willis (1957).
Specific storage capacity s: Next, we consider the variation in fluid increment per change
in pore pressure. This quantification of the yield and storage of fluid volume per change in
fluid pressure is, for example, crucial for the assessment of (a) natural reservoirs hosting
liquid resources that are produced through boreholes, i.e., owing to a local reduction in fluid
pressure and (b) natural repositories for liquid wastes that are injected through boreholes. For
a process during which the solid skeleton does not deform volumetrically, i.e., es = const.,
the second line of (33) gives

∂ζ

∂ p

∣

∣

∣

∣

∣

es

=
1

2 d
=: ses

=:
1

M
. (41)

The inverse of the specific storage capacity ses
is called storage modulus M , one of the

parameters actually used by Biot (1941) in his treatment of the constitutive behavior of poro-
elastic media. For a process during which the mean stress on the solid skeleton does not
change, i.e., σ M = const., the second line of (34) gives a second specific storage capacity:

∂ζ

∂ p

∣

∣

∣

∣

∣

σ M

=
2b

4 b d − c2
=: sσ M . (42)

Concluding the physical interpretation of the coefficients of the strain energy function,
we present the constitutive relations for the specific set {G, Ku, α, M} (skipping the details
of the algebraic derivation)

[

σ M

p

]

=

[

Ku −α M

−α M M

] [

es

ζ

]

, (43)

with the inverse relation
[

es

ζ

]

=
1

Ku − α2 M

[

1 α

α Ku/M

] [

σ M

p

]

. (44)

Yet, the parameter set {Ku, α, M} of volumetric deformation-related parameters can be
replaced by arbitrary combinations of three of the parameters introduced above. An extensive
conversion table for poro-elastic constants can be found in the recently published monograph
of Cheng (2016, Appendix B) but also in Kümpel (1991). For example, the drained and
undrained moduli are related by

K = Ku − α2 M, (45)

the unjacketed modulus holds the relation

Kuj =
K

1 − α
, (46)

the two specific storage capacities obey

ses

sσ M

=
K

Ku
, (47)
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and the Skempton coefficient reads

B =
α M

Ku
. (48)

5.3.2 Constitutive Relations for Alternative Choices of State Variables

It is straightforward to replace, for example, ζ (or es) in (33) and (34) by the volumetric strain
of the fluid ef using (7). The constitutive relations for the pair (es, ef) were already given
in Renner and Steeb (2015). In addition, it is straightforward to derive “mixed” relations for
“state vectors” composed of dynamic and kinematic variables, e.g.,

[

σ M

ζ

]

=

[

Ku − α2 M −α

α 1/M

] [

es

p

]

, (49)

or again in inverted form

[

es

p

]

=
M

Ku

[

1/M α

−α Ku − α2 M

] [

σ M

ζ

]

, (50)

or
[

ζ

p

]

=
1

α M

[

−1 Ku

M Ku − α2 M2 M

] [

σ M

es

]

. (51)

All these transformations of the relations from one set of variables to another correspond to
matrix manipulations. Rather than aiming for comprehensiveness, we focus on formulations
involving porosity as one of the two kinematic variables in the sequel because they have
experienced less attention in the past than the sets investigated above.

Since we defined the type of pore fluid by (29), we can further elaborate on our results
for the evolution of porosity φ(x, t) from the balance of mass of the fluid. We replace the
effective fluid density ρfR in the balance of mass of the fluid (20) by the pore pressure using
(29)

φ = φ0 − φ0

[

p

K f
+ ef

]

, (52)

and insert the definition of the increment of fluid content to arrive at

φ = φ0 +
φ0

K f

[

α M − K f
]

es +
1

K f

[

K f − φ0 M
]

ζ, (53)

or alternatively

φ = φ0 +
φ0

K f
[M(α − φ0)] es +

φ0

K f

[

M φ0 − K f
]

ef. (54)

Thus, porosity (or its change φ − φ0) linearly depends on pairs of the kinematic variables
es, ef, and ζ , i.e., the evolution of porosity depends on the volumetric deformations of the
fluid and solid and/or the increment of fluid content. Thus, porosity is a “dependent” field
variable governed by the previously chosen kinematic state variables. Porosity can, however,
also be interpreted as a “fundamental” kinematic state variable, for example paired with es.
Replacing ζ in (43) by the change in porosity φ − φ0 in (53) leads to

[

es

φ − φ0

]

=
1

K

[

1 α

α − φ0 α − φ0

] [

σ M

p

]

, (55)
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after “some” algebraic manipulations. Analyzing (55) reveals that for unjacketed conditions,
no change in porosity occurs, φ − φ0 = 0, despite the finite bulk volumetric strain of
es = (1 − α)σ M/K . Thus, all of the volumetric deformation has to come from volumetric
deformation of the solid material composing the skeleton and the unjacketed modulus has to
be identified with the “mean” bulk modulus of these solid constituents

Kuj = K s and thus α = 1 −
K

K s
. (56)

We see that the Biot–Willis coefficient reflects the ratio between the moduli of the specific
configuration of a solid material and the material itself.

Ever since the work of Brown and Korringa (1975), who extended the considerations
regarding homogeneity of the skeleton by Gassmann (1951), the constitutive relation for
unjacketed conditions has been vividly discussed (e.g., Lehner 2011). Frequently, three mod-
uli are introduced to express the balance of changes in bulk, pore, and skeleton volume, using
various notations of which {K s, K s′

, K s′′
} is probably most common. As much as real rocks

may warrant such an extended constitutive description owing to their microscopic inhomo-
geneity, a linear theory with two pairs of volumetric state variables does not allow for more
than three independent volumetric coefficients but necessitates the equality of the three mod-
uli K s = K s′

= K s′′
. A treatment of material behavior beyond linear poro-elasticity requires

introducing additional kinematic and dynamic state variables.
The inverse of (55) reads

[

σ M

p

]

= K s

⎡

⎢

⎢

⎣

1 −
α

α − φ0

−1
1

α − φ0

⎤

⎥

⎥

⎦

[

es

φ − φ0

]

, (57)

Recalling that the volumetric strain for the skeleton, es, is identical to the bulk volumetric
strain as used by Zimmerman et al. (1986), the result (57) is consistent with their constitutive
description that is frequently used in rock mechanics. The chosen dynamic variables are the
same as above, but Zimmerman et al. (1986) restricted to hydrostatic loading, and thus, the
mean stress σ M reduces to “confining pressure”.

The specific forms of “stress–strain” relations (55) and (57), as well as the ones presented
by Zimmerman et al. (1986), i.e., those that do not involve either ef or ζ or another fluid-related
kinematic variable, depend only on two material parameters {α, K s} or, using the definition
of α (56), the set {K , K s}. This reduction in number of required constitutive parameters is
also evidenced by the interrelations between the four considered compressibilities presented
in equations (12–14) of Zimmerman et al. (1986).

5.3.3 Concept of Effective Stress

Compressive normal stresses exerted on a poro-elastic medium and fluid pressure acting in its
pore space oppose each other. The concept of effective stress, first introduced by Terzaghi for
incompressible constituents (ραR ≡ ραR

0 ), formalizes the balance between the two dynamic
variables. The constitutive relations of the type represented by (49) and (55) readily provide
effective stress “laws” for the involved kinematic variables.

The first line of (49) actually entails an important aspect of linear poro-elasticity:

σ M + α p = K es, (58)
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i.e., only the weighted balance of mean stress and fluid pressure effectively loads the solid
skeleton and causes its volumetric deformation. Any two mechanical states with the same
(volumetric) effective stress σ

M,s
E := σ M + α p are characterized by the same volumetric

deformation of the solid skeleton. The weighting factor, here the Biot–Willis coefficient
0 ≤ α ≤ 1, is often referred to as the effective stress coefficient. Likewise, the second line of
(44) and (48) gives an effective stress coefficient for the fluid increment of 1/B ≥ 1 because
0 ≤ B ≤ 1. The effective stress coefficient for porosity changes is simply “1”, as readily
seen from the second line of (55) (see also equation (35) of Zimmerman et al. 1986) and
implicitly already used in the above discussion of unjacketed tests:

σ M + p = K s
1 − α

α − φ0
(φ − φ0). (59)

These examples demonstrate that the magnitude of effective stress is, in general, governed
by material parameters.

5.4 Non-equilibrium Case

We now extend our treatment to situations where pore pressure gradients appear and therefore
also fluid flow occurs. The derived partial balance of momentum (25) then necessitates
considering the remaining dynamic variable p̂α . Here, we shortly outline the derivation of
the constitutive response without going into technical details but refer again to Ehlers (2002)
for a comprehensive derivation.

First, the momentum interaction p̂f = −p̂s is split into an equilibrium and a non-
equilibrium part

p̂f = p̂f
eq + p̂f

neq , (60)

with

p̂f
eq = p grad φ, (61)

p̂f
neq = −

φ2
0 γ

fR
0

kf
wf, (62)

where we introduced the effective weight of the fluid γ
fR
0 and the hydraulic conductivity

(Darcy permeability) kf. In general, Eq. (61) takes into account the static contribution of
porosity gradients to the equilibrium, cf. details in Ehlers (2002). The product (p grad φ)

is, however, nonlinear and thus disappears in linear poro-elasticity. Equation (62) represents
the viscous drag forces, i.e., viscous momentum exchange caused by fluid flow through the
porous skeleton. These constitutive relations close the problem, by now allowing formulation
of a set of coupled partial differential equations (PDEs).

6 Governing Set of PDEs of Linear Poro-Elasticity

The set of governing PDEs consists of the (quasi-static form) of the balance of momentum of
the mixture (28) and the balance of momentum of the fluid (25) combined with the (linearized)
form of the balance of mass in the form of (15). To derive the final set of equations, we start
from the partial balance of momentum of the fluid. Insertion of the constitutive relation for
the interaction term (61) into − div σ

f = p̂f yields
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div(φ p I) = p grad φ −
φ2

0 γ
fR
0

kf
wf ⇔ (63)

grad p = −
φ0 γ

fR
0

kf
wf + ραR b. (64)

Taking the divergence of (64) (body forces b will cancel out) and replacing the seepage
velocity wf by the rate of fluid increment ζ̇ lead to

ζ̇ =
kf

γ
fR
0

div grad p. (65)

Replacing the volumetric strain of the fluid in the linearized balance of mass for the fluid
(15) by ėf = ės − ζ̇ /φ0 gives the following balance of four rate terms:

ρ̇fR

ρ
fR
0

+
φ̇

φ0
+ ės −

ζ̇

φ0
= 0. (66)

We specify the rate terms as functions of the two variables fluid pressure p and volumet-
ric deformation of the solid es. The first term corresponds to the rate formulation of the
constitutive equation for the barotropic fluid (29):

ρ̇fR

ρ
fR
0

=
ṗ

K f
. (67)

The second term represents a rate form of the porosity relation (53):

φ̇

φ0
=

α M − K f

K f
ės +

K − φ0 M

φ0 K f
ζ̇ . (68)

The fourth can be evaluated with the help of (65). Insertion of these rate terms into (66) leads
to the governing set of PDEs formulated in the solid displacements us and the pore pressure
p (and their spatial and temporal derivatives)

− div σ = ρ b, (69)

ṗ

M
−

kf

γ
fR
0

div grad p = −α ės. (70)

Equation (69) contains the total stress σ for which the split into the partial stresses of the
phases and their volumetric and deviatoric contributions were introduced in (21) and (22).
According to the effective stress principle (compare the volumetric form in (58) and note
that the deviatoric part of the total stress tensor is only a function of γ s (35)), equation (69)
is a vectorial PDE in the two variables (p, us). The second scalar PDE (70) also depends on
(p, us); its coupling to (69) is given by the “source” term α es which depends on the rate of
volumetric solid deformation. The left side of (70) is a pressure diffusion equation.

The PDEs in the domain are supplemented by Dirichlet boundary conditions for the solid
displacement, ūs, the pressure, p̄, Neumann boundary conditions for the fluxes of the total
stresses, t̄, and the fluid, w̄f,

us = ūs on Γ s
D and p = p̄ on Γ

f
D, (71)

σ · n = t̄ on Γ s
N and wf · n = w̄f on Γ

f
N . (72)
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Special (even decoupled) forms of PDEs can be derived for specific boundary value prob-
lems. One example is the classical one-dimensional consolidation problem which leads to
a “standard” diffusion equation extensively discussed (including an analytical solution) in
the textbook of Verruijt (2010). The set of governing PDEs for linear poro-elasticity can be
reduced to specific cases assuming a priori incompressible constituents expressed by con-

straints for the effective densities ρsR = ρsR
0 and/or ρfR = ρ

fR
0 . When, for example, both

constituents are assumed to be incompressible, (69) and (70) reduce to Terzaghi’s (1923,
1943) set of equations. For a detailed review of these reduced models, we refer to the discus-
sion in Renner and Steeb (2015).

The set of PDEs (69) and (70) can be formulated in a weak form as the basis for sub-
sequent finite element investigations. Primary variables in such a setting are, again, solid
displacements and pore pressure. This displacement–pressure formulation allows for the for-
mulation of physically sound boundary conditions which can be also controlled in related
physical experiments. Mathematically, alternative sets of PDEs can be formulated, e.g., in
the displacement and the increment of fluid content, but formulation of boundary conditions
becomes cumbersome.

Analytical solutions of the set of PDEs are known for special cases. Here, we would like
to mention the classical solutions of Cryer (1963) and Mandel (1953) or the one-dimensional
consolidation problem (Verruijt 2010; Cheng 2016). General boundary value problems, how-
ever, require numerical solution techniques which are not topic of this discussion.

7 Summary and Outlook

Often, the term “poro-elasticity” is simply considered a set of constitutive equations con-
taining a number of “familiar” parameters. Yet, the basic conservation laws for mass and
momentum take on specific forms for poro-elastic media resulting in a set of coupled partial
differential equations (PDEs) that govern their isothermal deformation. A variety of con-
stitutive relations have been presented in the past, and it is all too easy to lose sight of the
number of required independent state variables. Thermodynamic consistency demands an
equal number of kinematic and dynamic state variables for a linear theory. Assuming perfect
decoupling of shear and volumetric deformations, the number of volumetric strain-related
dynamic variables is restricted to two, e.g., mean stress and fluid pressure. Also, the “zoo”
of constitutive parameters may be rather confusing for the “newcomer”. Full description of
an isotropic poro-elastic medium requires a maximum of three independent parameters for
volumetric stress–strain relations (e.g., three bulk moduli) and one for shear-related defor-
mations. All other parameters, handy in specific situations, follow from conversion relations.
The number of volumetric strain-related parameters reduces to two (bulk modulus of the solid
material and the skeleton it forms) when porosity is chosen as a kinematic state variable. In
this respect, porosity is “peculiar”, but otherwise it is just one choice of state variable and its
evolution law follows from mass balance constraining the relation to alternative kinematic
state variables. One is mistaken to think that porosity is constant in linear poro-elasticity
because only the “fixed” initial porosity φ0 appears in the resulting set of PDEs. Porosity
is a “hidden”-dependent field variable normally not used to formulate boundary value prob-
lems whose evolution, however, can always be calculated a posteriori. Porosity evolution is
governed by the difference between mean stress and fluid pressure, i.e., an effective stress
coefficient of 1 holds.
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Even for the apparently “oversimplifying” case of linear poro-elasticity, analytical solution
of the governing differential equations can be obtained only in few cases. Numerical solution
techniques are required for most investigations. The finite element method is for sure a
powerful and widely available solution tool, e.g., Zienkiewicz et al. (1999). Today, even some
commercial finite element solvers allow a numerical treatment of poro-elastic boundary value
problems.

Classical poro-elasticity disregards various phenomena observed during the deformation
of porous media. For example, dilatancy effects, i.e., a volumetric strain occurring during
pure deviatoric deformation commonly addressed as simple shear, are not taken into account.
While widely accepted this process might not be fully inelastic and thus beyond the realm
of an elastic theory for instance in (porous) granular media and in thus particularly in vari-
ous types of soils. Especially, granular aggregates potentially require extended constitutive
modeling that addresses various sources of nonlinear elastic behavior, resulting, for example,
from contact problems on grain scale, cf. Brandt (1955), Digby (1981) or Walton (1987).
Regarding extensions of poro-elasticity toward inelastic and nonlinear effects, we refer to
the thermodynamical framework including the modification of the constitutive behavior of
the solid constituent as presented, e.g., by Coussy (2010) and Ehlers (2002).

In a wide range of applications, inertia effects play a dominant role and have to be taken into
account in poro-elasticity. Investigating ultrasound propagating through human cancellous
bones (trabecular solid skeleton saturated with bone marrow) is an established noninvasive
medical technique for the diagnosis of osteoporosis. The theory of sound wave propagation for
(linear) poro-elastic media was already investigated more than 60 years ago by Biot (1956a, b);
a fundamental result of Biot’s equations for acoustic waves is a second compressional wave
(in our days often denoted as the Biot wave to honor his contribution). Further, in contrast
to classical waves in elastic media, (both) compressional waves are highly dispersive with
distinct frequency-dependent effects due to the momentum exchange between the solid and
fluid.

Last and definitely not least, heterogeneities play an important role in various applica-
tions in geomechanics and/or geophysics and related fields. Heterogeneities can be observed
nearly on every length scale of rocks and soils (from sub-pore (l < 10 µm ) to the field or
reservoir scale (l > 1 km). Heterogeneities are due to fractures or faults but also to sedimen-
tary structures. Mechanical loading of such porous media causes wave-induced fluid flow
sometimes also denoted as “squirt flow”, i.e., local morphology-dependent pressure diffusion
that in principle can be captured even within linear poro-elasticity if heterogeneities are fully
resolved, e.g., in a finite element model, cf. Vinci et al. (2014) or Quintal et al. (2011). The
list of problems which have not been discussed here is “endless”, and we do not claim to
give here a comprehensive overview of current problems related to poro-elasticity. Readers
who are interested in state-of-the-art models and applications in the field of poro-elasticity
can find numerous articles in this “topic-oriented” journal or in the multitude of journals in
the various application fields.
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A Linearized Balance of Mass

Proper linearization plays a crucial role for a treatment of linear poro-elasticity from the
viewpoint of the rather general continuum Mixture Theory. Thus, we elaborate on the formal
linearization process of the mass balance in technical detail “step by step”. We start from (9),
the partial mass balance of a constituent in global form:

M
α =

∫

B

ρα dv =

∫

B0

ρα
0 dv0 = M

α
0 . (73)

Applying the transport properties of volume elements dv = Jα dv0 we rewrite (73) as
∫

B

ρα Jα dv0 =

∫

B0

ρα
0 dv0, (74)

or locally at a single material point P

ρα Jα = ρα
0 . (75)

With the relations between the partial densities and the linearized Jacobian lin(Jα) = eα +1,
we finally get

nα ραR (eα + 1) = nα
0 ραR

0 . (76)

Linearization of (76) has to be performed around the initial configuration at time t = t0 with

initial properties x0 =
[

nα(x, t0), ραR(x, t0), eα(x, t0)
]T

=
[

nα
0 , ραR

0 , 0
]T

. Linearization

around t0 has the interesting aspect that in general two of the properties (nα
0 , ραR

0 , ) are
nonzero. Linearizing the two terms on the left-hand side leads to:

lin(F(nα ραR eα) = nα
0 ραR

0 eα, (77)

and with Δx = x − x0 to

lin(F(nα ραR) = F0 +
∂

[

(nα
0 + ǫ Δnα)(ραR + ǫ ΔραR)

]

∂ǫ

∣

∣

∣

∣

∣

ǫ=0

,

= F0 + nα
0 ΔραR + Δnα ραR,

= nα
0 ραR

0 + nα
0 (ραR − ραR

0 ) + ραR
0 (nα − nα

0 ),

= nα ραR
0 + nα

0 ραR − nα
0 ραR

0 .

(78)

Inserting (77) and (78) into the local balance of mass in form of (76), we get

eα +
nα

nα
0

+
ραR

ραR
0

− 2 = 0, (79)

the linearized form of the balance of mass of the constituent that we used in our discussions.
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