Mechanisation of PDA and Grammar Equivalence for
Context-Free Languages

Aditi Barthwal' and Michael Norrisk!

L Australian National University
Aditi.Barthwal@anu.edu.au
2 Canberra Research Lab., NICTA
Michael.Norrish@nicta.com.au

Abstract. We provide a formalisation of the theory of pushdown aut@n(@DAs)
using the HOL4 theorem prover. It illustrates how provershsas HOL can be
used for mechanising complicated proofs, but also how gitersuch a process
can turn out to be. The proofs blow up in size in way difficultpr@dict from
examining original textbook presentations. Even a matigsitext proof has “in-
tuitive” leaps that need to be identified and formalised.

1 Introduction

A context-free grammar provides a simple and precise mestmafor describing the
methods by which phrases in languages are built from smialterks, capturing the
“block structure” of sentences in a natural way. The sinipfiof the formalism makes
it amenable to rigorous mathematical study. Context-freamgnars are also simple
enough to allow the construction of efficient parsing aldonis using pushdown au-
tomata (PDASs). These “predicting machines” use knowledgeitheir stack contents
to determine whether and how a given string can be genergtdtelgrammar. For ex-
ample, PDAs can be used to to build efficient parsers for LRgnars, some of which
theory we have already mechanised [1].

This paper describes the formalisation of CFGs (Sectiom@)RDAs (Section 3)
using HOL4 [4], following Hopcroft & Ullman [2]. The formadiation of this theory is
not only interesting in its own right, but also gives insigttb the kind of manipulations
required to port a pen-and-paper proof to a theorem prover.miechanisation proves
to be an ideal case study of how intuitive textbook proofshdam up in size, and how
details can change during formalisation. The crux of theepapin Sections 4 and 5,
describing the mechanisation of the result that the two &isms are equivalent in
power.

The theory outlined in this paper is part of the crucial gmbuark for bigger re-
sults such as the SLR parser generation cited above. Theethepeven though well-
established in the field, become novel for the way they haviketdreproven” in a
theorem prover. Proofs must be recast to be concrete enoudhef prover: patching
deductive gaps which are easily grasped in a text proof, &ybid the automatic ca-
pabilities of the tool. The library of proofs, techniquedamotations developed here
provides the basis from which further work on verified langgigheory can proceed at
a quickened pace.

2 Context-Free Grammars

A context-free grammar (CFG) is represented in HOL usingdhliewing type defini-
tions:

symbol = NTS of 'nts | TS of 'ts

rule = rule of 'nts => ('nts, 'ts) symbol list

grammar = G of ('nts, 'ts) rule list => ’'nts

(The=> arrow indicates curried arguments to an algebraic typeistractor. Thus, the
rule constructor is a curried function taking a value of types (the symbol at the
head of the rule), a list of symbols (giving the rule’s rigtgtnd side), and returning an
(nts,’'ts) rule)

Thus, a rule pairs a value of typets with a symbol list. Similarly, a grammar
consists of a list of rules and a value giving the start symbi@ditional presentations
of grammars often include separate sets correspondingtgrtmmar’s terminals and
non-terminals. It's easy to derive these sets from the grarisnmules and start symbol,
so we shall occasionally write a gramm@ras a tuple(V, T, P, S) in the proofs to
come. HereV is the list of non-terminals]" is the list of terminalspP is the list of
productions and is the start symbol.

Definition 1. A list of symbols (osentential form s derivest in a single step it is of
the formaA~, t is of the forma3~, and if A — (3 is one of the rules in the grammar.
In HOL:

derives g sl rsl <—

ds; s2 rhs lhs.

(s; ++ [NTS [hs] ++ s2 = Isl) A (s; ++ rhs ++ s = rsl) A
rule lhs rhs € rules g

(The infix++ denotes list concatenation. Thelenotes membership.)

We write (derives g) * sf; sf, to indicate thatsf, is derived fromsf, in
zero or more steps, also writtefi, =* sf, (where the grammay is assumed). This is
concretely represented using what we call derivation lisen arbitrary binary relation
R holds on adjacent elements bfvhich hasz as its first element ang as its last
element, then this is writteR + [<t z — y. In the context of grammard? relates
sentential forms. Later we will use the same notation toteedeerivations in a PDA.
Using the concrete notation has simplified automating tloefsrof many theorems.
We will also use the rightmost derivation relatioderives , and its closure.

Definition 2. Thelanguagef a grammar consists of all the words (lists of only termi-
nal symbols) that can be derived from the start symbol.

language ¢ =
{tsl | (derives g9) ™ [NTS (startSym)] tsl A isWord tsl}

3 Pushdown Automata

The PDA is modelled as a record containing the start s&ttat(or ¢p), the start-
ing stack symbolgsSym or Zy), list of final statesfinal or F') and the next state
transitions final or).

pda = <| start : ’'state; ssSym : 'ssym; final : ’'state list;
next : (isym, ’'ssym, ’state) trans list |>

The input alphabets)), stack alphabets/() and the states for the PDA)] can be
easily extracted from the above information. In the proatswill refer to a PDAM as

the tuple(Q, X, I, 4, qo, Zo, F) for easy access to the components. We have used lists
instead of sets to avoid unncessary finiteness constraiotgriproofs.

Thetrans type implements a single transition. A transition is a tupi@n ‘op-
tional’ input symbol, a stack symbol and a state, and the siex¢ along with the stack
symbols (possibly none) to be added onto the current stdekirdns type describes
a transition in the PDA's state machine. Tinext field of the record is a list of such
transitions.

trans = (lisym option # ’'ssym # ’state) # (‘state # 'ssym list)

In HOL, a PDA transition in machin@/ is expressed using a binary relation on
“instantaneous descriptions” of the tape, the machinaskstand its internal state. We
write M + (q,ia,s) — (¢’,',s’) to mean that in statg, looking at input with stack
s, m can transition to statg’, with the input becoming’ and the stack becoming.

The input:’ is either the same as (referred to as am move) or is equal tev. Here,
consuming the input symbol corresponds t&OME iand ignoring the input symbol
is NONEn thetrans type.

Using the concrete derivation list notation, we w2 M + ¢ <z — y to mean
that the list¢ is a sequence of valid instantaneous descriptions for madii, starting
with descriptionz and ending withy. Transitions are not possible in the state where the
stack is empty and only moves are possible in the state where the input is empty. In
this paper, we will consider the language “accepted by emsigigk” (aes):3

Definition 3 (Language accepted “by empty stack”).
laes (M) = {w]|M*F (q,w,Zy) =" (p,e,¢) forsomepinQ

To be consistent with the notation in Hopcroft and Ullmaredicatdaes is referred
to asN (M) in the proofs to follow. When the acceptance is by empty stdekset of
final states is irrelevant, so we usually let the list of firtatas be empty.

In the remainder of the paper we focus on the equivalence 8&8RIDd CFGs. Con-
structing a PDA for a CFG is a straightforward process sceatstve devote much of
the space to explaining the construction of a CFG from PDAinequivalence proof.
In order to illustrate the huge gap between a textbaotheorem prover formalisation,
we try to follow Hopcroft and Uliman as closely as possibla. iA the book, for the
construction of a PDA from a CFG, we assume the grammar is @b@ch normal
form.

% In the background mechanisation we have proved that thigige is equivalent to the other
standard notion: “accepted by final state”.

4 Constructing a PDA for a CFG

LetG = (V,T, P, S) be a context-free grammar in Greibach normal form genegdtin
We construct maching/ such that\l = (¢,T,V, 6, q, S, ¢), whered(q, a, A) contains
(¢,v) wheneverd — av is in P. Every production in a grammar that is in GNF has to
be ofthe formA — aa, wherea is aterminal symbol and is a string (possibly empty)
of non-terminal symbolsi§Gnf). The automaton for the grammar is constructed by
creating transitions from the grammar productiofis;~ ac« that read the head symbol
of the RHS) and push the remaining RH%(on to the stack. The terminals are
interpreted as the input symbols and the non-terminalsherestack symbols for the
PDA.

trans ¢ (rule [r) = (SOME (HD r),NTS 1, q), ¢,TL 1)

grammar2pda g ¢q =

(let ¢s = MAP (trans ¢) (rules g) in
<|start := q; ssSym := NTS (startSym g); next := ts;

final = []|>)

(HereHDreturns the first element in the list ad returns the remaining list. Function
MAPapplies a given function to each element of a list.)

The PDA M simulates leftmost derivations @f. SinceG is in Greibach normal
form, each sentential form in a leftmost derivation comssdta string of terminals:
followed by a string of variablea. M stores the suffixe of the left sentential form on
its stack after processing the prefixFormally we show that

S 4% 2a by a leftmost derivation if and only ffg, 2, A) —3; (g¢,€, @) Q)

This turns out to be straightforward process in HOL and issdoyrepresenting the
grammar and the machine derivations using derivation ligsd! represent the gram-
mar derivation fromS to xa anddl’ represent the derivation frofg, z, A) to (g, ¢,)
in the machine. Then an induction dhgives us the “if” portion of (1) and induction
ondl’ gives us the “only if” portion of (1). Thus, we can conclude following,

HOL Theorem 1
Vg. isGnf g = dm. z € language g <= =z € laes m

5 Constructing a CFG from a PDA

The CFG for a PDA is constructed by encoding every possiklesttion step in the
PDA as a rule in the grammar. The LHS of each production erctuestarting and
final state of the transition while the RHS encodes the castafithe stack in the final
state.

Let M be the PDAQ, 4, g0, Zo, ¢) andX andI the derived input and stack alpha-
bets, respectively. We construgt = (V, X, P, S) such thatV is a set containing the
new symbolS and objects of the forrfy, A, pl; for ¢ andp in @, andA in I".

The productions? are of the following form: Rule 1) S — [qo, Zo, ¢] for each
g in Q; and Rule 2) [q, A, gm+1] — alq1, B1,q2)[q2, B2, q3]...[gm, Bm, Gm+1] for
eachq, q1, g2, .., gm+1 IN @, eacha in X' U {e}, andA, By, Ba, ..., By, in I, such that
0(q,a, A) contains(qi, B1Bs...B,,) (if m = 0, then the production i, A, ¢1] — a).
The variables and productions 6fhave been defined so that a leftmost derivation in
G of a sentence is a simulation of the PDA/ when fed the input. In particular, the
variables that appear in any step of a leftmost derivatid@r @orrespond to the symbols
on the stack of\/ at a time whenV/ has seen as much of the input as the grammar has
already generated.

From text to automated text: For Rule 1we only have to ensure that the statis in
@. On the other hand, there are multiple constraints undeglifie statement diule 2
which will need to be isolated for mechanisation and are sarisad below.

C2.1 The states;, ¢; andp belong in@ (a similar statement for terminals and non-
terminals can be ignored since they are derived);
C2.3 the corresponding machine transition is based on the valueandm and steps
from stateq to some state; replacingA with Bj...By,;
C2.3 the possibilties of generating the different grammar rbkesed on whether = e,
m = 0 or a is a terminal symbol;
C2.4 if m > 1i.e.more than one nonterminal exists on the RHS of the rule then
C2.4.1 « is composed of only nonterminals;
C2.4.2 a nonterminal is an object of the forfp, A, p] for PDA from-stateg and
to-statep, and stack symbod;
C2.4.3 the from-state of the first object ig and the to-state of the last object is
Qm-l-l;
C2.4.4 the to-state and from-state of adjacent nonterminals neugtdosame;
C2.4.5 the states encoded in the nonterminals must belody to

Whether we use a functional approach or a relational onesubeinctness of the
above definition is hard to capture in HOL. Using relationsaa@ avoid concretely
computing every possible rule in the grammar and thus wokk lsigher level of ab-
straction. The extent of details to follow are charact&rist mechanising such a proof.
The relatiorpda2grammar captures the restrictions on the rules for the grammar cor-
responding to a PDA.

pda2grammar m g <=
(¢ € states m <~

rule (startSym g) [NTS (m.start, m.ssSym, ¢q)] € rules g) A
Vr. r € rules g <= p2gtrans m r

The first conjuct of the relation correspondsRale 1 and the second conjunct
(p2gtrans) ensures that each rule conforms wiRule 2. As already mentioned,
Rule 2 turns out to be more complicated to mechanise due to the anufutetail
hidden behind the concise notation.

Thep2gtrans predicate (see Figure 1) enforces the conditio@sl, C2.2, C2.3
(the three possibilities for the ruld, — ¢; A — a, wherea is a terminal symbol and

p2gtrans m (rule I ntsl) <=
Jisymo ssym q ¢ p mrhs.
(1l = (gq, ssym, p)) A q € states m A ¢ € states m A
p € states m A ((isymo, ssym, q), ¢, mrhs) € m.next A
((ntsl = []) A (isymo = NONE) A (¢ = p) A (mrhs =) V
(3ts. (ntsl = [TS ts]) A (isymo = SOME (TSts)) A (¢ = p) A
(mrhs =) Vv
dh t. ((ntsl = h: t) At £ A
((Fts. (h =TS ts) A (isymo = SOME (TS ts)) A
(MAP transSym ¢ = mrhs) A ntslCond m (¢, p, mrhs) t) V
(isymo = NONE) A (MAP transSym nitsl = mrhs) A
ntsiCond m (¢, p, mrhs) ntsl))

Fig. 1. Definition of p2gtrans

A — aa) and the structure of the RHS of the rule which is based on timelbrer of
components in it (remaining three-way disjunction).

For the third type of production (more than one nontermimaln > 1), condition
ntsiCond capturesC2.4. It enforces thatits! (« in C2.4.1) has only nonterminals,
[q, A, p] is interpreted as a non-terminal symbol andrmState) andp (toState)
belong in the states of the PD&2.4.2), the conditions o’ andg; that reflect<2.4.3
condition ong; andg.,,+1 respectivelyC2.4.4using relatiomdj andC2.4.5using the
last conjunct.

ntslCond m (¢', ql, mrhs) ntsl <

EVERY isNonTmnISym ntsl A

(Ver e2 p s. (ntsl = p ++ [er; e2] ++ s) = adj e e2) A

(frmState (HD ntsl) = ¢') A (toState (LAST ntsl) = ql) A

(Ve. e € ntsl = toState e € states m A frmState e € states m)

(The; is used to separate elements in a list BAGT returns the last element in a list.)

The constraints described above reflect exactly the infoomaorresponding to
the two criteria for the grammar rules. On the other hand, dear that the automated
definition looks and is far more complex to digest. Concraferimation that is eas-
ily gleaned by a human reader from abstract concepts has ¢éxgieitly stated in a
theorem prover.

Now that we have a CFG for our machine we can plunge ahead e gre follow-
ing.

Theorem 1. If L is N(M) for some PDAVM, thenL is a context-free language.

To show thatL.(G) = N (M), we prove by induction on the number of steps in a
derivation ofG or the number of moves d¥/ that

(Qa xz, A) _)RI (pa €, 6) iff [Qa Avp] é*G €T . (2)

5.1 Proof of the “if” portion of (2)
First we show by induction onthat if (¢, z, A) —' (p, €, €), then[q, A, p] =* .

HOL Theorem 2
ID m F dl < (q,z[A) — (p[.0) A isWord z A
pda2grammar m g = (derives 9) " INTS (q, 4, p)] =

Proof. The proof is based on induction on the lengthdbf. The crux of the proof
is breaking down the derivation such that a single stack syméts popped off after
reading some (possibly empty) input.

Letz = ay and(q,ay,4) — (q1,7, B1B2...B,) —'1 (p, e ¢€). The single
step is easily derived based on how the rules are construebedhei — 1 steps, the
induction hypothesis can be applied as long as the derivatitvolve a single symbol
on the stack. The string can be writteny = ~1,...7, where~; has the effect of
poppingB; from the stack, possibly after a long sequence of moves. tatd3; need
not be thent” stack symbol from the bottom during the entire timeis being read by
M. In general,B; remains on the stack unchanged whjle~,...y;_1 is read. There
exist statesy, ¢, ..., gn+1, Wheregq,11 = p, such that(g;,v,, B;) —* (gj,€,¢)
by fewer thani moves ¢; is the state entered when the stack first becomes as short
asn — j + 1). These observations are easily assumed by Hopcroft amaad|br for
that matter any human reader. The more concrete constndctionechanisation is as
follows.

Fillingin thegaps: For a derivation of the form(gy, v, B1Bz2...B,) —* (p,€,€), this

is asserted in HOL by constructing a list of objeg@i8, v;, B;, g») (combination of the
object’s from-state, input, stack symbols and to-statehshat(q0,v;, B;) —' (gn,€),
wherei > 0, v; is input symbols reading which stack symli®j gets popped off from
the stack resulting in the transition from stageo ¢,,. The from-state of the first object
in the list is¢; and the to-state of the last objectisAlso, for each adjacent object
el, e2, the to-state of1 is the same as the from-statec@f This process of popping off
the B; stack symbol turns out to be a lengthy one and is reflecteceipribof statement
of HOL Theorem 3.

To be able to prove this, it is neccessary to provide the ige¢hat each derivation
in the PDA can be divided into two parts, such that the first (st d/0) corresponds
to readingn input symbols to pop off the top stack symbol. This is our HOledrem
4.

The proof of above is based on another HOL theorem tifatifn, o3) —* (¢', 7, 3)
then we can concludg, v, «) —* (¢, ¢, ¢€) (proved in HOL). This is a good example
of a proof where most of the reasoning is “obvious” to the eza@his when trans-
lated into a theorem prover results in a cascading struetheze one has to provide the
proofs for steps that are considered “trivial’. The gapdioed here are just the start of
the bridging process between the text proofs and the mesdwpiroofs.

Proof resumed: Once these gaps have been taken care of, we can apply theiweduc
hypothesis to get

L .)
45, Bj,qj+1] =" v for1 < j <n. (3

HOL Theorem 3
ID p + dl < (gq,inp, stk) — (qf,0.0) =
31. (inp = FLAT (MAP inp 1)) A (stk = MAP stk 1) A
(Ve. e € MAP tost [= e € states p) A
(Ve. e € MAP frmst [= e € states p) A
(Vh t. (1 =ht) = (frmst h = ¢q) A (stk h = HD stk) A
(tost (LAST)= qf)) A
Ver ez pfr sfr. (1 = pfr ++ [er; e2] ++ sfr) =
(frmst ex = tost e;) A
Ve. e € 1l = dm. m < |dl] A
NRC (ID p) m (frmst e,inp e,[stk ¢]) (tost e[,

(RelationNRC R m z y is the RTC closure aR from x to y in m steps.)

HOL Theorem 4

ID p F dl < (gq,1np, stk) — (q¢f,0,0) =
Jdlyp qo 10 so spfz. ID p F dlp < (gq, inp, stk) — (qo, i0, So) A
(I sol =] stk] - 1) A

(Vq" i s'. (¢,i,s) € FRONTdly = |stk] < |s]) A

((3dl;. ID p F dis < (qo, i0, s0) — (qf LD A
Ll < |dil A |dl| < |dl) v

((90, 70, 50) = (of ,ILO))

(PredicateFRONT [returns the list minus the last element.)

This leads tog[q1, B, ¢2][q2, B2, q3)---[4n, Bn, ns1] =" 2.

Since(q, ay, A) — (q1,7, B1Ba...By,), we know that

[q7 Aap] :l> a’[qla Ba q2] [qQa B27 Q3][qn; an Qn+1]’ SO flna”y we can conclude
that[q, A, p] = ay172..7m = .

The overall structure of the proof follows Hopcroft and Uimbut for each asser-
tion made in the book, we have to provide concrete proofsrbef@ can proceed any
further. These proofs were quite involved, only a small stb$which has been shown
above due to space restrictions.

5.2 Proof of the “only if” portion of (2)
Now supposéyg, 4, p] = x. We show by induction onthat(q, z, A) —* (p, €, ¢€).

HOL Theorem 5

derives g F dl < [NTS (q, A, p)] — z = isWord z =
pda2grammar m g =

(D m)™ (g zl AD C p0.0)

Proof. The basis; = 1, is immediate, sincéy, A, p] — = must be a production af
and thereforé(q, x, A) must containp,). Notex is € or in X' here. In the inductive

step, there are three cases to be considered. The first isvibédase,[¢, A,p] = a,
whereaq is a terminal. Thusg = a andd(q, a, A) must contain(p, ¢). The other two
possibilities arelq, A,p] = a[q1, B1,q2)---[qn, Bn, @n+1] ="' x, whereg,11 =p
orlg, A, p| = laq1,B1,q)...[qn, Bn,gns1) =1 x, whereg,.1 = p. The latter case
can be considered a specialisation of the first one sucla teat. Thenz can be written
asx = arixs...Tn, Where[g;, Bj, gj+1] =* x; for 1 < j < n and possiblya = e.
This has to be formally asserted in HOL. Letbe of lengthn. If o = ™ 3, thena
can be divided inta parts,o = aj ..., ands = B15...0,, such thaty; =7 3; in

i < m steps.

HOL Theorem 6
derives ¢ F dl <z y =
J1. (z = MAP FSTI) A (y = FLAT (MAP SNDI)) A
Va b. (a,b) €l = 3dl'.| dl'l < |dl|l A derives g+ dI'’ < [a] b

(TheFLAT function returns the elements of (nested) liSND returns the second ele-
ment of a pair.)

InsertingB;+1...B,, at the bottom of each stack in the above sequence of ID’s gives
us,
(qj’ Tj, Bij+1"'Bn) -7 (qj+17 €, Bj+1--'Bn)- (4)

The first step in the derivation affrom [¢, A, p] gives us,
(¢,2,A) — (q1,71%2...20, B1Ba...By,) (5)

is a legal move of\/. From this move and (4) for = 1,2, ..., n, (¢, z, A) —* (p,¢€,¢)
follows. In Hopcroft and Ullman, the above two equationdisafto deduce the result
we are interested in.

Unfortunately, the sequence of reasoning here is too capered for HOL4 to
handle. The intermediate steps need to be explicitly stitethe proof to work out
using a theorem prover. These steps can be further eladaatillows. By our in-
duction hypothesis,

(g5, 75, B;) =" (gj41.€€). (6)

Now consider the first step, if we insed...z,, after inputz; andBs... B, atthe bottom
of each stack, we see that

(q1,%1...wp, B1...By) —" (p,€,¢€). @)

Another fact that needs to be asserted explicitly is reagpfar (7).
This is done by proving the affect of inserting input/stagkbols on the PDA
transitions. Now from the first step, (5) and (@, z, A) —* (p, €, €) follows.

Equation (2) withy = qo andA = Z, saySqo, Zo, p] =* xiff (q0,2, Zo) —* (p, €, €).
This observation, together wifRule 1 of the construction o7, says thatS =* z if

and only if(qo, x, Zo) —* (p, ¢, ¢€) for some state. That is,x is in L(G) if and only
if zisin N(M) and we have

4 Their HOL versions can be found as part of the source code

HOL Theorem 7
pda2grammar m g A isWord z =
(derives g)" [INTS (¢, 4, p)] =z <= (D m)" (¢, z[A (p0.0)

To avoid the above being vacuous, we additionally prove diewing:

HOL Theorem 8
VY'm. Jg. pda2grammar m g

6 Related work and conclusions

In the field of language theory, Nipkow [3] provided a verifimod executable lexical
analyzer generator. This work is the closest in nature tontkehanisation we have
done.

A human reader is not concerned with issues such as finitefisgts which have
to be dealt with explicitly in a theorem prover. The form offid#ions (relationsvs.
functions) has a huge impact on the size of the proof as wélleease of automation.
These do not necessarily overlap. A number of what we calp"gaoofs have been
omitted due to space restrictions. These “gaps” cover tdea®e steps that get omit-
ted in a textbook proof and the intermediate results need@eduse of the particular
mechanisation technique. Formalisation of a theory resaltools, techniques and an
infrastructure that forms the basis of verifying tools lthea the theory for example
parsers, compilers, etc. Working in a well understood darsuseful in understand-
ing the immense deviations that automation usually regult§lore often than not the
techniques for dealing with a particular problem in a donaa@nhard to generalise. The
only solution in such cases is to have an extensive libragnats call.

The mechanised theory of PDAs~8000 lines and includes various closure prop-
erties of CFGs such as union, substitution and inverse haramsm. It took 6 months
to complete the work which includes over 600 lemmas/thesréi®L sources for the
work are available dtttp://users.rsise.anu.edu.au/ ~aditi/

References

1. Aditi Barthwal and Michael Norrish. Verified, executalgarsing. In Giuseppe Castagna,
editor, Programming Languages and Systems: 18th European SympasiuProgramming
volume 5502 ol ecture Notes in Computer Scienpages 160-174. Springer, March 2009.

2. John E. Hopcroft and Jeffrey D. Ullmamntroduction to Automata Theory, Languages and
Computation Addison-Wesley, Reading, Ma., USA, 1979.

3. Tobias Nipkow. Verified lexical analysis. In J. Grundy adNewey, editorsProceedings of
the 11th International Conference on Theorem Proving intdigOrder Logics (TPHOLS’98)
pages 1-15, Canberra, Australia, 1998. Springer-VerlaG&MN479.

4. Konrad Slind and Michael Norrish. A brief overview of HOL4 O. A. Mohamed, C. Mufioz,
and S. Tahar, editorgheorem Proving in Higher Order Logicgolume 5170 ofNCS pages
28-32. Springer, 2008. See also the HOL websitatat//hol.sourceforge.net

