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Extracellular vesicles (EVs) are nano-sized membrane vesicles secreted by cells. EVs
serve as a mediator for cell-to-cell communication by regulating the exchange of
genetic materials and proteins between the donor and surrounding cells. Current studies
have explored the therapeutic value of mesenchymal stem cells-derived EVs (MSC-
EVs) for the treatment of infectious diseases extensively. MSC-EVs can eliminate the
pathogen, regulate immunity, and repair tissue injury in contagious diseases through the
secretion of antimicrobial factors, inhibiting the replication of pathogens and activating
the phagocytic function of macrophages. MSC-EVs can also repair tissue damage
associated with the infection by upregulating the levels of anti-inflammatory factors,
downregulating the pro-inflammatory factors, and participating in the regulation of
cellular biological behaviors. The purpose of this mini-review is to discuss in detail the
various mechanisms of MSC-EV treatment for infectious diseases including respiratory
infections, sepsis, and intestinal infections, as well as challenges for implementing
MSC-EVs from bench to bedside.

Keywords: mesenchymal stem cells, exosome, extracellular vesicles, acute lung injury, COVID-19, sepsis,
infectious diseases

INTRODUCTION

Infectious diseases have been a significant cause of morbidity and mortality worldwide; respiratory
infections and pneumonia are among the major causes of global death (Sharma et al., 2021b). With
the increasing number of outbreaks of new infectious diseases and the lack of effective treatments,
it is crucial to identify new therapeutic strategies to combat infections and restore infection-related
organ and tissue damage.

Mesenchymal stem cells (MSCs) are among the most commonly employed cell types in tissue
repair and homeostasis, which have become an attractive therapeutic option for treating infectious
diseases and disease-related tissue injury (Kashte et al., 2018; Kotas and Matthay, 2018). The effects
of MSCs include anti-inflammatory properties, immunomodulatory capabilities, and regeneration
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(Fu et al., 2019). The efficacy of MSCs is mainly coming
from the paracrine effect mediated by secreted growth factors,
cytokines, and extracellular vesicles (EVs) (Liang et al., 2014;
Paliwal et al., 2018).

MSC-derived extracellular vesicles (MSC-EVs) are identified
to be the main components responsible for the paracrine effect.
They transfer functional molecules, such as messenger RNA
(mRNA), microRNA (miRNA), lipid, and protein, into tissue-
specific cells that request repair (Taverna et al., 2017). Compared
with MSCs, MSC-EVs possess hypoimmunogenic properties,
have low tumorigenesis, and are more stable (Trounson and
McDonald, 2015). In this mini-review, we briefly summarize
the function of exosomes and discuss their potential role in
therapeutic regimens in infectious diseases, including respiratory
infections, sepsis, and intestinal infections in recent years.

EXTRACELLULAR VESICLES FROM
MESENCHYMAL STEM CELLS

Almost all cells, including MSCs, can secrete EVs due to
intracellular vesicle sorting (Kourembanas, 2015). EVs are nano-
sized spherical bio-membrane structures, which were previously
divided into three main categories based on their size and
biosynthesis: smaller-sized exosomes (30–100 nm) from the
endocytic pathway, medium-sized microvesicles (MVs) (100–
1,000 nm) from the cell plasma membrane shedding, and larger-
sized apoptotic bodies (1,000–5,000 nm) from the apoptosis
(Raposo and Stoorvogel, 2013). The endocytosis of the cell
membrane may form early endosomes, which then develop into
late endosomes, namely, multivesicular bodies (MVBs). MVBs
either combine with lysosomes or be released as exosomes
through exocytosis (Joo et al., 2020). In terms of MVs, they
can be secreted directly by budding from the plasma membrane
(Abbaszadeh et al., 2020) (Figure 1).

Assigning an EV to a particular biogenesis pathway remains
extraordinarily difficult because of the absence of specific surface
markers for three EV categories and the overlap in their physical
size (Carnino et al., 2021). Therefore, guidelines set by the
International Society for Extracellular Vesicles (ISEV) suggest
considering the use of operational terms for EV subtypes that
are based on: (a) physical characteristics of EVs, such as size
[“small EVs” (< 200 nm) and “medium/large EVs” (> 200 nm)]
or density (low, middle, high, with each range defined); (b)
biochemical composition (CD63+/CD81+-EVs, Annexin A5-
stained EVs, etc.); or (c) descriptions of conditions or cell of
origin (podocyte EVs, hypoxic EVs, large oncosomes, apoptotic
bodies) (Théry et al., 2018).

Over 80% of researchers chose differential ultracentrifugation
for EVs isolation (Tkach and Théry, 2016). Traditional
identification ways for EVs usually involve nanoparticle tracking
analysis (NTA) for size information, transmission electron
microscope (TEM) for morphological details, and Western
blotting for membrane protein makers (Théry et al., 2018). Kim
et al. (2019) recently developed an atomic force microscope-
infrared spectroscopy (AFM-IR) approach to probe the structural
composition of a single EV. Their protocol involves incubating

the EV sample on a suitable substrate and setting up the AFM-IR
instrument, as well as collecting nano-IR spectra and nano-
IR images. Recorded IR spectra for EVs showed characteristic
peaks at specific wavenumbers; it is possible to determine
the presence of DNA (1,050–1,290 cm−1), RNA (1,250–
1,380 cm−1), proteins (1,500–1,700 cm−1), and phospholipids
(1,000–1,250 cm−1, 1,730–1,750 cm−1, 2,800–3,000 cm−1) (Kim
et al., 2019) that may contribute to the understanding of EV
biology and the development of EV therapies. This method could
improve the understanding of EV biology and the development
of EV therapies.

EVs secreted from MSCs can deliver many functional
molecules such as mRNA, miRNA, lipids, and protein into
recipient cells (Yin et al., 2019). These biological components are
considered stable and can modulate cell behaviors in recipient
cells. EVs use specific receptors or membrane fusion to enter
recipient cells. Once EVs are absorbed, the biomolecules of
EVs can regulate gene expression, essential enzyme reactions,
signal cascade pathways, or other mechanisms in recipient
cells (Ranghino et al., 2017). Thus, MSC-EVs can promote
tissue regeneration by reprogramming several pathophysiological
pathways such as immunomodulation, proliferation, apoptosis,
angiogenesis, and oxidative (Grange et al., 2019a,b).

THE THERAPEUTIC APPLICATION OF
MESENCHYMAL STEM
CELL-EXTRACELLULAR VESICLES IN
INFECTIOUS DISEASES

The function of EVs is mainly dependent on their source cells
(Keshtkar et al., 2018). The therapeutic use of MSCs was reported
in lung injury, sepsis, and necrotizing enterocolitis (NEC) caused
by bacteria or viruses (Krasnodembskaya et al., 2010; Sung
et al., 2016; Rodrigues et al., 2019). MSC-EVs have similar
functions to their parental cells, such as antimicrobial effects,
immunomodulation property, and damage tissue repairability.
Compared with MSCs, MSC-EVs keep the biological function of
MSCs and are more stable and less easy to tumorigenesis, making
them a promising candidate for the treatment of infectious
diseases (Thirabanjasak et al., 2010).

For Respiratory Infection
Acute lung injury (ALI)/acute respiratory distress syndrome
(ARDS) is a heterogeneous syndrome characterized by diffuse
epithelial and endothelial damage and a robust inflammatory
response (Thompson et al., 2017). The most common risk factors
of ARDS are infectious pneumonia caused by bacteria and viruses
(Muraca et al., 2020; Meyer et al., 2021). Respiratory infections
take more than 1.5 million lives a year. The number of deaths
and disabled people is devastating in epidemic and pandemic
outbreaks, such as the severe acute respiratory syndrome (SARS)
outbreak in 2002, H1N1 flu in 2009, Middle East respiratory
syndrome (MERS) outbreak in 2012, and coronavirus disease
2019 (COVID-19) outbreak in 2020 (Sharma et al., 2021b).
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FIGURE 1 | The biogenesis and action of exosomes. Early endosomes are formed by the endocytosis of the cell membrane and then develop into multivesicular
bodies (MVBs) in a budding manner. MVBs either combine with lysosomes and digest their contents or be released as exosomes through exocytosis. Exosomes can
deliver lipids, proteins, and nucleic acid to recipient cells when circulating in the extracellular space.

Cell-based therapy with MSCs has been promising in
ALI/ARDS in pre-clinical models for their immunomodulation
and tissue repair properties (Laffey and Matthay, 2017). However,
there were higher mean scores of Acute Physiology and
Chronic Health Evaluation III (APACHE III) in models treated
with MSCs than in those treated with placebo, but without
difference of their 28-day mortality (Matthay et al., 2019). Since
MSCs have limited engraftment and differentiation efficacy,
high risk of tumorigenicity, and unstable ability (Eggenhofer
et al., 2014), researchers paid more attention to MSC-EVs
as a new candidate cell-free treatment for ALI/ARDS. Both
other researchers and we demonstrated that intratracheal
administration of MSC-EVs showed therapeutic effects in
hyperoxia-induced lung injury, revealing that MSC-EVs could
ameliorate impaired alveolarization in both short-term and long-
term bronchopulmonary dysplasia (BPD) models and activate
M2 macrophages (Porzionato et al., 2019, 2021; You et al., 2020).
The anti-inflammatory and pro-regenerative properties of MSC-
EVs are well established and have been exploited in a large
number of studies (Phinney and Pittenger, 2017).

The application of MSC-EVs on ALI/ARDS and severe
pneumonia has been investigated in some pre-clinical
studies. MSC-EVs’ main effects on ALI/ARDS are reducing
inflammation, promoting alveolar epithelial regeneration, and
enhancing pulmonary endothelial repair (Shah et al., 2019). As
a result, pro-inflammatory cytokine production was decreased,
and alveolar fluid clearance was improved in ALI/ARDS models.

Two clinical trials are undergoing to determine the effects
of MSC-EVs on COVID-19, a pandemic that lacks specific
antiviral medicine. MSC-EVs will be administrated intravenously
(NCT04798716) or by inhalation (NCT04276987). A prospective
non-randomized open-label cohort study showed that allogeneic
bone marrow MSC-derived exosomes (ExoFloTM) could be safe
and effective in severe COVID-19 patients, which could restore
oxygenation, downregulate cytokine storm, and reconstitute
immunity (Sengupta et al., 2020). However, it is premature to

draw any conclusion based on a single study, and it should
be emphasized that there are no approved MSC-EV therapies
for COVID-19 to date. The specific and scientific rationale for
administering MSC-EV treatment in COVID-19 patients needs
to be better understood and justified (Börger et al., 2020). In
the meantime, the prevention and control of urgent COVID-19
should make efforts to test existing approved vaccines, antiviral
therapeutics, and monoclonal antibodies (Sharma et al., 2021a).

miRNA, protein, mRNA, and mitochondria in MSC-EVs
play vital roles in modulating immune responses and repairing
lung damage of ALI/ARDS. miR-21-5p plays an essential
role in alleviating ALI by reducing pro-inflammatory cytokine
secretion and enhancing M2 polarization (Li et al., 2019).
MSC-EVs are reported to ameliorate ALI via transferring miR-
27a-3p to alveolar macrophages inhibiting NF-κB expression
and inducing M2 polarization (Wang et al., 2020). MiR-145
mediated the antimicrobial effect of MSC-EV by suppressing the
expression of multidrug resistance-associated protein 1 (MRP1)
and increasing the levels of leukotriene B4 (LTB4) (Hao et al.,
2019), a chemoattractant for immune cells including T cells,
macrophages, and neutrophils, with the role of facilitating
pathogen elimination (Saeki and Yokomizo, 2017).

EVs from interferon (IFN)-γ-primed MSCs more effectively
attenuated Escherichia coli-induced lung injury via enhancing
phagocytosis and killing of bacteria in macrophage (Varkouhi
et al., 2019). MSC-EVs decreased the lipopolysaccharide (LPS)-
induced permeability of microvascular endothelial cells partly
through the presence of hepatocyte growth factor (HGF) (Wang
et al., 2017). The expression of keratinocyte growth factor (KGF)
(Zhu et al., 2014) and angiopoietin-1 (Ang1) (Tang et al., 2017)
mRNA enclosed in EVs partly mediated the anti-inflammatory
effects on E. coli endotoxin-induced ALI in mice models.
The effectiveness of MSC-EVs has also been demonstrated in
large animals and found that EVs from swine bone marrow-
derived MSCs had anti-influenza and anti-inflammatory effects
in influenza virus-induced pig ALI (Khatri et al., 2018).
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TABLE 1 | The related exosomal cargo and mechanisms of mesenchymal stem cell-derived extracellular vesicles treatment in infectious diseases.

Related exosomal
cargo

Disease model Exosome source MSC-EV
isolation

Experimental outcome and related mechanism

miR-27a-3p (Wang
et al., 2020)

LPS-induced ALI in mouse hADMSCs UC Elevated miR-27-3a levels in alveolar macrophages, induced
M2 polarization, and decreased alveolar macrophage
expression of NF-κB

miR-145 (Hao et al.,
2019)

E. coli-induced ALI in
mouse

hBMSCs UC Suppressed MRP1 activity through transfer of miR-145, thereby
resulting in enhanced LTB4 production and antimicrobial activity
through LTB4/BLT1 signaling

Unknown (Varkouhi
et al., 2019)

E. coli-induced ALI in rat IFN-γ-primed
hUCMSCs

UC Enhanced macrophage phagocytosis and killing of E. coli

HGF (Wang et al.,
2017)

In vitro LPS treatment of
endothelial cells

mBMSCs UC Increased the expression of VE-cadherin and occluding,
decreased endothelial apoptosis, induced endothelial cell
proliferation

KGF (Zhu et al., 2014),
Ang-1 (Tang et al.,
2017)

E. coli/LPS-induced ALI in
mouse

hBMSCs UC Demonstrated a reduction in pulmonary edema, lung protein
permeability, and inflammation

RNAs (Khatri et al.,
2018)

Influenza virus-induced ALI
in pig

sBMSCs UC Reduced virus shedding in the nasal swabs, influenza virus
replication, and pro-inflammatory cytokines in the lungs

miR-146a (Song et al.,
2017), miR-21 (Yao
et al., 2021)

CLP-induced sepsis in
mouse

IL-1β primed
hUCMSCs

UC Exosomal miR-146a/miR-21 was transferred to macrophages,
resulted in M2 polarization by modulating IRAK1, TRAF6, and
IRF 5 signaling, or inhibited the effects of PDCD4.

miR-223 (Wang et al.,
2015)

CLP-induced sepsis in
mouse

mBMSCs UC Exosomal miR-223 was transferred to cardiomyocytes,
inhibited the expression of Sema3A and Stat3, and reduced
inflammation and cell death.

Unknown (Rager et al.,
2016; McCulloh et al.,
2018)

Premature and hypercaloric
feeds-induced NEC in rat

rAFMSCs,
rBMSCs, and
mBMSCs

UC Reduced the incidence and severity of experimental NEC and
protected the intestines from NEC

miR-200b (Sun et al.,
2020b)

In vitro TNF-α treatment of
endothelial cells

HO-1-modified
rBMSCs

Exosome
separation kits

Targeted HMGB3 in intestinal epithelial cells to alleviate
inflammatory injury

Let-7f, miR-145,
miR-199a, and
miR-221 (Qian et al.,
2016)

In vitro HCV treatment of
human hepatoma-7 cells

hBMSCs UC Suppression of HCV RNA replication, combined with INF-α or
telaprevir, enhanced their anti-HCV ability

Unknown (Gu et al.,
2020)

In vitro D-GaIN/LPS
treatment of hepatocytes

BMSCs UC Decreased the expression levels of the pro-apoptotic proteins
Bax and cleaved caspase-3, upregulated the anti-apoptotic
protein Bcl-2, reduced hepatocyte apoptosis

Unknown (Sun et al.,
2020a)

CVB3-induced myocarditis
in mouse

hBMSCs UC Activated AMPK/mTOR-mediated autophagy flux pathway to
attenuate cardiomyocyte apoptosis

MSC-EV, mesenchymal stem cell-derived extracellular vesicle; hADMSCs, human adipose-derived MSCs; hBMSCs, human bone marrow-derived MSCs; hUCMSCs,
human umbilical cord-derived MSCs; mBMSCs, mouse bone marrow-derived MSCs; sBMSCs, swine bone marrow-derived MSCs; rAFMSCs, rat amniotic fluid-derived
MSCs; rBMSCs, rat bone marrow-derived MSCs; HCV, hepatitis C virus; HGF, hepatocyte growth factor; KGF, keratinocyte growth factor; Ang-1, angiopoietin-1; LPS,
lipopolysaccharide; ALI, acute lung injury; E. coli, Escherichia coli; CLP, cecal ligation and puncture; NEC, necrotizing enterocolitis; D-GaIN, D-galactosamine hydrochloride;
CVB3, coxsackievirus B3; HO-1, heme oxygenase-1; IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α; UC, ultracentrifugation; NF-κB, nuclear factor kappa B subunit
1; MRP1, multidrug resistance-associated protein 1; LTB4, leukotriene (LT) B4; HMGB3, high mobility group box 3.

For Sepsis
Sepsis is a systemic inflammatory response to infection that
leads to multiple organ dysfunction, and one out of four
sepsis patients died during their hospital stay (Iskander et al.,
2013; Fleischmann-Struzek et al., 2020). Sepsis is caused by the
accumulation of various pro-inflammatory factors in the process
of inflammatory response and immune dysfunction (Prescott and
Angus, 2018). Even with the continuous development of intensive
care and advances in the antibiotic application, the mortality of
sepsis in intensive care units remains high (Angus and van der
Poll, 2013). Therefore, a new therapy is urgent to improve the
clinical outcomes.

Patients with sepsis had severe immunosuppression,
leading to macrophage dysfunction and poor wound healing

(Davis et al., 2019). Therefore, the new therapy strategy could be
related to the immunoregulation of macrophages. Several studies
have proven that MSC-EVs can improve the outcomes of sepsis
in animal models. MiRNAs in MSC-EVs have been considered
as a critical substance to exert efficacy in sepsis. For example,
miRNA-146a was found to be strongly upregulated in MSC-EVs
primed with interleukin-1β (IL-1β), which could more effectively
induce M2 polarization by modulating IRAK1, TRAF6, and
IRF5 signaling (Song et al., 2017). MiR-21 in MSC-EVs was
abundantly upregulated in IL-1β-stimulated MSCs, which
induced M2 polarization of macrophages in vitro and in vivo
sepsis by inhibiting the effects of PDCD4, which can participate
in multiple cellular biological behaviors, including apoptosis
and transcription (Yao et al., 2021). Both studies supported
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that pretreated MSCs with pro-inflammatory cytokines could
enhance their immunomodulatory function of MSCs. The
exosomal miR-223 was reported to contribute to MSC-mediated
cardioprotection in sepsis by downregulation of Sema3A and
STAT3 (Wang et al., 2015).

For Intestinal Infection
The balance between beneficial and harmful bacteria plays an
important role in neonatal intestinal health (Rhoads et al., 2018).
Bacterial infection is one of the most significant risk factors
in NEC pathogenesis, a life-threatening disease in premature
infants, with mortality as high as 30% (Neu and Walker, 2011;
Markel et al., 2020). Full-thickness destruction of the intestine is
the character of NEC, and inflammatory response is increased in
infants affected by this disease, leading to intestinal perforation,
peritonitis, bacterial invasion of the bloodstream, and systemic
infection (Neu, 2014; Neu and Pammi, 2018). Survivors are
faced with severe sequelae, including short gut syndrome and
neurodevelopmental retardation (Neu, 2014). Despite decades of
research on the pathophysiology of NEC, the treatment remains
inadequate and supportive and desired a novel preventive and
therapeutic intervention.

MSCs have great potential in NEC treatment, decreasing NEC
incidence in rat models (Augustine et al., 2017; Thébaud, 2019).
EVs from MSCs carry important biological components and can
be utilized in disease prevention and treatment (Baglio et al.,
2015). EVs from bone marrow-derived MSCs, heparin-binding
EGF-like growth factor (HB-EGF) primed MSCs, and human
umbilical cord MSCs have been reported to protect the integrity
of the intestinal barrier and reduce the severity and incidence
of NEC in an experimental model (Rager et al., 2016; McCulloh
et al., 2018). Both miR-34 and miR-29 improved the intestinal
epithelial barrier through the Snail/Claudins signaling pathway
(Li et al., 2020). MiR-200b in heme oxygenase-1 (HO-1)-modified
bone marrow MSCs-derived EVs was reported to target high
mobility group box 3 (HMGB3) gene in intestinal epithelial cells
to alleviate its inflammatory response (Sun et al., 2020b).

For Other Infectious Diseases
Qian et al. (2016) revealed that miRNAs, especially let-7f, miR-
145, miR-199, and miR-221 from MSC-EVs, inhibited viral
replication in hepatitis C virus (HCV)-treated cells. Hepatocyte
injury model caused by D-galactosamine (D-GaIN) and LPS
could be ameliorated by MSC-EVs through inducing autophagy
and inhibiting apoptosis (Zhao et al., 2019). In addition, MSC-
EVs had therapeutic effects on coxsackievirus (CVB3)-induced
myocarditis in the mice model, which can shrink the production
of pro-inflammatory cytokines and improve cardiac function via
activating the AMPK/mTOR-mediated autophagy flux pathway
to attenuate apoptosis (Gu et al., 2020).

CONCLUSION

MSC-EVs had outstanding prospects in treating infectious
diseases, such as respiratory infections, sepsis, and intestinal
infections. The therapeutic mechanisms included direct

antimicrobial effects, immunomodulation, and tissue repair.
MSC-EVs exert their effect through the transfer of mRNAs,
miRNAs, and proteins (Table 1). MiRNA containing EV may
be a new target for the development of new therapeutic drugs.
The use of MSC-EVs has several benefits, namely, (a) small
vesicles, readily circulating and penetrating biological barriers,
like blood–brain; (b) low tumorigenesis; and (c) stable properties,
MSC-EVs may achieve a higher “dose” than MSCs due to the
poor viability and considerable death of engrafted MSCs in target
tissues (Barbash et al., 2003). Importantly, EVs can maintain high
activities at low temperatures. All the profits make MSC-EVs a
promising agent in infectious diseases.

Despite the promising progress that has been made in the
treatment of MSC-EVs on infectious diseases, several challenges
are faced by the field in clinical translation: (a) there is wide
variability of MSC-EVs preparations in the whole process (Börger
et al., 2020), such as the different productions of cell sources,
purification, and identification of the final product. Careful
consideration of the optimal purity and rational clinical trial
design of MSC-EVs is necessary to advance large-scale clinical
trials (Muraca et al., 2018). Furthermore, lacking standardized
quality parameters caused discrepancies and controversies about
the biology and function of MSC-EVs. Members of four societies
(SOCRATES, ISCT, ISEV, and ISBT) identified potential metrics
of MSC-EVs to facilitate data sharing and comparison of MSC-
EVs among different studies, including biological activity, vesicle
integrity, the concentration of membrane lipid vesicles, the
ratio of specific lipids, the ratio of membrane lipids to protein,
and the ratio of MSC to non-MSC surface antigens (Witwer
et al., 2019). Each metric needs to be quantified and validated
in further studies. (b) How to determine reproducible and
robust parameters to predict the therapeutic potency of MSC-
EVs is unsolved. The therapeutic efficacy of MSC-EVs depends
not only on the cell, such as the cell source and status of
MSCs, delivery dose and route (Sun et al., 2020a), and half-
life and in vivo biodistribution of MSC-EVs, but also on the
disease condition, such as the disease microenvironment and
the time window for intervention. (c) MSC-EVs from different
sources have been reported to be efficacious in various kinds of
infectious diseases; the therapeutic mechanism may be different
and specific for each source and disease condition. To better
understand the therapeutic activity, the mode of action needs to
be studied further, trying to find out the key components in MSC-
EVs, target cells in injured tissues, and the involved molecular
signaling cascade.
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