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ABSTRACT: Seasonal changes of microcystin (MC) bioaccumulation in three freshwater Unionid bivalves,
Anodonta woodiana, Cristaria plicata, and Unio douglasiae, were investigated in the hypereutrophic Lake
Suwa. Total MC concentrations (MC-RR and -LR) as determined by reverse-phase high-performance
liquid chromatography were at high levels in the hepatopancreas of C. plicata and U. douglasiae, with
maxima at 297 and 420 �g/g dry weight, respectively. The amounts and seasonal changes in the
accumulated MC concentration differed in all species. The total MC concentration of A. woodiana was
always less than that of other species (maximum concentration of 12.6 �g/g dry weight). The toxin
concentration of C. plicata remained very low in summer, when the Microcystis bloom occurred, but
increased rapidly in autumn, when the toxic bloom disappeared. For U. douglasiae, simple regression
analyses were performed to clarify the relationship between MC bioaccumulation and environmental
parameters such as water temperature, chlorophyll a, suspended solids (SS), intracellular MC per unit
volume of lake water and per-unit weight of SS and extracellular MC. The toxin concentration of U.
douglasiae correlated more closely with qualitative factors, with intracellular toxin per SS (p � 0.001, R2 �
0.72) than with quantitative factors such as chlorophyll a and intracellular toxin per unit volume of lake
water. No correlation could be found between MC in the tissues and extracellular MC. These results
indicate that a long-term survey is needed to assess the safety of bivalves. The study should take into
consideration both interspecific differences in toxin content and what is the optimal monitoring parameter.
© 2002 Wiley Periodicals, Inc. Environ Toxicol 17: 424–433, 2002; Published online in Wiley InterScience (www.interscience.
wiley.com). DOI 10.1002/tox.10075
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INTRODUCTION

Toxic cyanobacterial blooms occur worldwide in eutrophic
waters and cause a range of problems in human health,
water management, and fishery and livestock farming (Bill-

ings, 1981; Skulberg et al., 1984; Andersen et al., 1993;
Pouria et al., 1998; Codd et al., 1999; Pitois et al., 2000).
Among several cyanobacterial toxins, microcystin (MC) is a
well-recognized hepatotoxin produced by Microcystis,
Anabaena, Oscillatoria, and Nostoc (Sivonen, 1996). MC is
a cyclic heptapeptide consisting of five common amino
acids and two variable L–amino acids (Botes et al., 1984).
Sixty-five analogues of MC have been identified so far
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(Rinehart et al., 1994; Park et al., 2001). MC may have
adverse effects on various aquatic organisms and livestock.
Administration of MC to mammals and fish potently inhib-
its protein phosphatases 1 and 2A in hepatocytes in the same
manner as okadaic acid, followed by destruction of the
hepatic cytoskeleton, leading to liver necrosis, apoptosis,
and hemorrhage (Sugaya et al., 1990; Yoshizawa et al.,
1990; Råbergh et al., 1991; MacKintosh et al., 1995; Ten-
calla and Dietrich, 1997; Solter et al., 1998; Fischer et al.,
2000). In some exposure experiments with MC, zooplank-
ton and fish exposed to the toxin showed death or sublethal
effects such as developmental and behavioral abnormalities
(Peñaloza et al., 1990; DeMott et al., 1991; Baganz et al.,
1998; Oberemm et al., 1999).

Bioaccumulation of MC in aquatic organisms also has
been demonstrated in laboratory experiments and field in-
vestigations. Several studies have shown that MC is accu-
mulated by those zooplankton which are primary consumers
of toxic cyanobacteria (Watanabe et al., 1992; Laurén-
Määttä et al., 1995; Kotak et al., 1996; Thostrup and Christ-
offersen, 1999). Williams et al. (1997a) reported that the
larvae of Cancer magister accumulated MC from their diet
containing cyanobacteria and may play a role as a food
chain vector for the introduction of this toxin into Atlantic
salmon, which had accumulated the toxin in livers infected
with netpen liver disease(Andersen et al., 1993). To eluci-
date MC bioaccumulation in aquatic ecosystems, many re-
searchers have thoroughly studied mollusks. Table I sum-
marizes the maximum concentrations of MC in mollusks
reported in the literature. Although the concentration of
bioaccumulated toxin was found to vary with the individual
experimental procedure and analytical method and between
species, bivalves in general seem to be the organisms that
tend to accumulate this toxin. The results of several labo-
ratory experiments have suggested that filter-feeding bi-
valves accumulated cyanobacterial toxin by ingestion of
toxic cyanobacteria (Eriksson et al., 1989; Lindholm et al.,
1989; Vasconcelos, 1995; Williams et al., 1997b; Amorim
and Vasconcelos, 1999). Moreover, bivalves actually accu-
mulated toxin at sites where toxic cyanobacterial bloom
occurred (Falconer et al., 1992; Prepas et al., 1997; Wa-
tanabe et al., 1997; Williams et al., 1997b). A few studies
have investigated the relationship between MC bioaccumu-
lation and environmental parameters throughout the year.
Kotak et al. (1996) studied the influence of environmental
parameters on the MC-LR concentration of zooplankton
during the warm season for 2 years in lakes of varying
trophic states. Zurawell et al. (1999) suggested that the
uptake of MC by gastropods was associated with toxin in
the phytoplankton (r � 0.37–0.57). However, this relation-
ship has not yet been established clearly. To elucidate the
bioaccumulation mechanism of MC by bivalves and predict
their contamination in a natural lake, we monitored the toxin
concentrations in bivalves beginning prior to the occurrence
of Microcystis bloom until the subsequent disappearance of

the bloom; this revealed the environmental parameters as-
sociated with the bioaccumulation of MC.

MATERIALS AND METHODS

Study Site and Water Quality

Lake Suwa, a typical hypereutrophic shallow lake, is in
central Honshu, Japan. A dense bloom of Microcystis con-
taining MC-RR and -LR has occurred in this lake during the
summer since the 1970s (Park et al., 1993, 1998). An
investigation was carried out from April to December in
both 1997 and 1998 at a point in the south littoral zone
(about 1 m in depth); this was done monthly in 1997 and
biweekly in 1998. The bottom material is sand, and several
species of freshwater bivalves such as Unionidae inhabit
this zone. Electric conductivity (HEC-110, DKK, Japan),
pH (Model PH81, Yokogawa, Japan), water temperature,
and dissolved oxygen (Model 55, YSI, USA) were mea-
sured at the surface. To determine the concentrations of
chlorophyll a, suspended solids (SS), intra- and extracellu-
lar MC, water samples were taken from the surface water.
For measurement of chlorophyll a concentration, the water
sample was filtered through a glass microfiber filter (GF/C,
Whatman, UK), and the filter was extracted with methanol
for 24 h at 4°C in the dark. After centrifugation of the
extract, the concentration of chlorophyll a was determined
spectrophotometrically according to Marker et al. (1980). A
heat-treated (450°C, 30 min) and weighed glass fiber filter
(GF/C, Whatman, UK) was used for filtration of the surface
water sample to measure the concentration of SS. After
filtration the filter was dried at 70°C for 48 h. The concen-
tration of SS was determined from the difference between
weight of the filter before and after filtration.

Analysis of MC in Lake Water

MC in lake water was fractionated to intra- and extracellular
MC. These toxins were evaluated according to Park et al.
(1998). The intracellular toxin was extracted from cya-
nobacterial cells on the glass-fiber filters (GF/C, Whatman,
UK) through which the lake water sample (5 L) had been
filtered. The intracellular MC was expressed as micrograms
per liter (�g/L) of lake water or as micrograms per gram
(�g/g) of SS. The filtered water (about 5 L) was used to
measure the extracellular toxin expressed as micrograms per
liter of lake water. Both extra- and intracellular MC were
quantified by reverse-phase high-performance liquid chro-
matography (HPLC).

Extraction of MC from the Hepatopancreas
of Bivalve

Three Unionid bivalves, Anodonta woodiana, Cristaria pli-
cata and Unio douglasiae, were collected monthly at the site
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on Lake Suwa. Their shell lengths were 134 � 13.6 mm,
208 � 17.0 mm, and 69 � 3.8 mm (mean � SD), respec-
tively. The bivalves were dissected and the hepatopancreas
isolated from other organs. The tissues were frozen at
�30°C and weighed after lyophilization. After homogeni-
zation of the hepatopancreas in a glass mortar, 0.2 g of the
tissue (dry weight) was stirred and extracted for 24 h with
10 mL of a butanol:methanol:water solution (5:20:75) as
reported by Eriksson et al. (1989). After centrifugation (1 h,
18,000 rpm, 4°C), the supernatant was pooled at 4°C in the
dark. The pellet was then reextracted twice using the same
procedure. When the 3-day extraction was finished, three
pooled supernatants were combined and diluted with water
to twice the volume. The sample was applied to an ODS
(octadecylsilane) silica gel cartridge (5 g; Chromatorex
ODS, 10–200 mesh, packed into a polypropylene car-
tridge), which was preconditioned with methanol and water.
The cartridge was rinsed with water and 20% methanol–
water and then eluted with 90% methanol–water. The eluate
was evaporated to dryness, and the residue was dissolved in
5 mL of methanol. The methanol solution was applied to a
silica gel cartridge (2 g; SepPak), which was preconditioned
with methanol, and the cartridge was rinsed with methanol.
The eluate from the cartridge with 70% methanol–water
was evaporated to dryness, and then the residue was dis-
solved in methanol. The methanol solution was subjected to
HPLC analysis.

HPLC Analysis

The sample methanol solution was applied to a reverse-
phase HPLC system equipped with an ODS column (Cos-
mosil 5C18-AR, 4.6 � 150 mm, Nacalai, Japan). The HPLC
system consisted of a Shimadzu (Kyoto, Japan) LC-9A
pump coupled to a SPD-10A set at 238 nm and a SPD-
M10A photodiode array detector and a C-R6A integrator.
The sample was separated with a mobile phase consisting of
methanol:0.05 M phosphate buffer (pH of 3.0, 58:42) at a
flow rate of 1 mL/min. The MC concentration was quanti-
fied with standard MC-RR and -LR provided by Dr. K.-I.
Harada, Meijo University (Japan).

Statistical Analysis

Simple regression analyses were performed with Microsoft�

Excel 97 (Microsoft Corp., Redmond, WA) for prediction
of the concentration of MC in the hepatopancreas of U.
douglasiae in relation to environmental factors and the toxin
concentration in lake water. Standardized residuals were
also calculated with Microsoft� Excel 97 to measure the
accuracy of the estimates of the regression model.

RESULTS

Ambient Water Conditions for Bivalves

Figure 1 shows seasonal variations in ambient water con-
ditions for bivalves, such as chlorophyll a, SS, and intra-
cellular MC. Chlorophyll a concentration is considered an
index of phytoplankton biomass in lakes. Higher concen-
trations of chlorophyll a were observed from July to early
October, with maxima of 162 and 827 �g/L in September
1997 and 1998, respectively [Fig. 1(a)]. It appears that
Microcystis blooms occurred from July to early October in
both 1997 and 1998 because the phytoplankton biomass
associated with chlorophyll a declined in November to the
concentration before the bloom. Suspended solids were
closely related to chlorophyll a (r � 0.99, p � 0.001, df �
25). This shows that the SS comprised mainly organic
matter from phytoplankton and represented an abundance of
food for bivalves in Lake Suwa. The values were 19.4 �
8.62 and 31.5 � 36.4 mg/L (mean � SD) in 1997 and 1998,
respectively [Fig. 1(a)]. Intracellular MC, expressed as mi-
crograms per liter, is a quantitative factor of MC in lake
water. As shown in Figure 1(b), total intracellular MC
(MC-RR and -LR) increased to more than 5 �g/L in July
and then remained at this level in 1997 until November.

Fig. 1. Seasonal changes of (a) chlorophyll a (solid bars) and
SS (open circles), (b) intracellular MC (�g/L) in lake water,
and (c) intracellular MC (�g/g) in SS at the sampling site for
bivalves during April to December (1997–1998); *not deter-
mined.
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However, in 1998 the toxin concentration varied markedly,
with three peaks at 33.4 and 35.6 �g/L on July 29 and
September 9, respectively, and 20.6 �g/L on November 4.
Although the intracellular MC in lake water in 1998 was
high until November, in contrast with the decreasing chlo-
rophyll a concentration, changes in the toxin corresponded
to those of chlorophyll a (r � 0.87, p � 0.001, df � 25).

Figure 1(c) shows the qualitative factor of intracellular
MC in suspended solids expressed as micrograms per gram.
This value indicates the toxin content in food for filter-
feeding bivalves. Overall, the toxin concentration in 1997
was lower than that in 1998, but its pattern of seasonal
changes corresponded to 1998. The total intracellular MC
(MC-RR and -LR) was low from April to June in both years.
From then until November higher toxin concentrations were
observed, ranging from 189 to 340 �g/g and from 94.8 to
1093 �g/g in 1997 and 1998, respectively. In 1998 the toxin
concentration declined on August but then increased and
reached its highest concentration on November 4. The toxin
concentration in December of both years returned to the
concentration in the spring. The pattern of seasonal changes
in the microcystin of the suspended solids did not coincide
with that of chlorophyll a (r � 0.04, p � 0.05, df � 25). The
mean ratio of MC-LR to total MC was 52.5 � 25% [Fig.
1(c)].

Figure 2 indicates the seasonal changes of extra- and
intracellular MC concentrations in surface water in 1998.
Extracellular MC was very low compared with intracellular
toxin, and its ratio to total microcystins (extracellular MC
plus intracellular MC) in lake water was always less than
2% during the investigation. The seasonal changes in ex-
tracellular MC were related to the occurrence and decay of
the Microcystis bloom. From April to September the extra-
cellular toxin increased gradually with the increase in the
intracellular toxin. The extracellular toxin reached a maxi-
mum of 0.211 �g/L in October, when intracellular toxin
decreased rapidly. Thereafter, extracellular toxin in Decem-
ber fell to the level in the spring.

Bioaccumulation of MC in Three Bivalves

As shown in Figure 3, all three Unionids, A. woodiana, C.
plicata, and U. douglasiae, bioaccumulated MC into the
hepatopancreas. Figure 3 also indicates periods of repro-
duction recognized by observations of the outer gill la-
mella, which contain eggs or glochidia during the repro-
ductive season. The seasonal changes in the accumulated
toxin concentration differed between species. In A.
woodiana total toxin (MC-RR and -LR) concentration
was always less than in the other two species, and max-
imum value (12.6 �g/g dry weight) was observed in
November 1997. There was no significant trend in sea-
sonal changes of toxin accumulation by A. woodiana
[Fig. 3(a)]. However, in C. plicata and U. douglasiae the

Fig. 3. Seasonal changes of MC concentration in the hepa-
topancreas of (a) Anodonta woodiana, (b) Cristaria plicata,
and (c) Unio douglasiae from Lake Suwa. Data of U. dougla-
siae show mean values. *not determined; †the period during
which eggs or glochidia were observed in brood chambers
of the outer gill lamella; �the value derives from one sample
taken on December 3, 1998. Vertical bars in panel c repre-
sent the range of total MC (MC-RR and -LR) concentrations
in two or three samples.

Fig. 2. Seasonal changes in extra- and intracellular MC
concentrations in surface water of Lake Suwa from April to
December 1998.
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maximum individual concentration of total toxins was
297 and 420 �g/g dry weight, respectively, in November
1998. The MC concentration of C. plicata was low during
the Microcystis blooming season but increased when
autumn came with the season for reproduction [Fig.
3(b)]. Especially in 1998 there was a great difference in
accumulated toxin concentration in C. plicata between
summer and autumn. In U. douglasiae MC was detected
in all samples collected during the investigation period
[Fig. 3(c)]. In spring, when there was no bloom, toxin
was detected in the hepatopancreas of U. douglasiae in
both 1997 and 1998. Thereafter, toxins were accumulated
rapidly into the tissue with the occurrence of bloom but
subsequently decreased in August. Toxins increased
again in the bivalve in the autumn, reaching mean peaks
of 71.1 and 362 �g/g dry weight in November 1997 and
1998, respectively. Despite the disappearance of the
bloom, the bivalve had a higher toxin concentration in
December than in summer. Figure 3(c) also shows that U.
douglasiae had reproduced from spring to summer in
Lake Suwa.

The ratios of MC-LR to total MC in A. woodiana and C.
plicata were 9.8 � 19.7 and 8.9 � 10.1% (mean � SD),
respectively, and were significantly lower than the 38.6 �
17.4% of U. douglasiae (p � 0.001, Scheffe’s multiple
range test).

Relationship Between Environmental
Parameters and MC Bioaccumulation by
U. douglasiae

The MC concentration of U. douglasiae was predicted sig-
nificantly (p � 0.05) by water temperature or intracellular
MC concentration expressed as �g/L and �g/g, respectively
(Table II). There was a negative relationship between the
toxin in the hepatopancreas and water temperature, whereas
both the intracellular MC showed a positive relationship
with toxin in the tissue. Although standard regression coef-
ficients were significant in the regression analysis for MC
versus the parameters of water temperature and intracellular
toxin per unit volume of lake water (�g/L), these R2 values
were low. Thus, these parameters were inappropriate for
strict prediction of toxin concentration in the tissue. Intra-
cellular MC in SS could predict toxin concentration in the
tissue correctly, as the standard regression coefficient and
R2 value were very high (Fig. 4, Table II). Other parameters,
such as chlorophyll a, which represents the extent of the
Microcystis bloom in summer, and SS, which indicates the
abundance of food for bivalves in Lake Suwa, could not
predict bioaccumulation of MC in the bivalve adequately.

Seasonal variation of MC-RR and -LR in U. douglasiae
corresponded well to their analogues in SS (the R2 values of
MC-RR and -LR were 0.732 and 0.561, respectively, p �
0.001, simple regression analysis).

DISCUSSION

Environmental Parameters Affecting on
Seasonal Variation of MC Bioaccumulation
in Unio douglasiae

Swan mussels (Anodonta cygnea) accumulated Oscillatoria
toxin when exposed to Oscillatoria-rich surface water in

TABLE II. Standard regression coefficients and R2

values in simple linear regression analysis for MC
concentration in Unio douglasiae versus environmental
parameters

Parameter

Standard
Regression
Coefficient R2 a

Temperature (°C) �0.35* 0.10
pH �0.01 �0.02
Electric conductivity (�S/cm at 25°C) �0.11 �0.03
Dissolved oxygen (mg O2/L) �0.27 0.03
Chlorophyll a (�g/L) �0.07 �0.02
Suspended solids (mg/L) �0.06 �0.02
Intracellular MC (�g/L) 0.41** 0.15
Intracellular MC (�g/g SS) 0.85*** 0.72
Extracellular MC (�g/L) 0.22 0.01

a Coefficient of determination adjusted for the degrees of freedom;
* p � 0.05; ** p � 0.01; *** p � 0.001.

Fig. 4. Linear regression between the tissue concentration
of MC in Unio douglasiae versus MC in SS during 1997–98.
A solid line is a regression line for all the data; dashed and
dotted lines indicate 95% confidence limits for the regres-
sion and standard errors for the predicted values, respec-
tively.
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Lake Östra Kyrksundet but did not accumulate the toxin
when exposed to clear water at a depth of 12 m (Lindholm
et al., 1989). Kotak et al. (1996) showed that accumulation
of MC-LR in zooplankton correlated with intracellular toxin
expressed (as micro g/L (r � 0.69). Prepas et al. (1997)
studied the accumulation of MC-LR by the freshwater clam
Anodonta grandis simpsoniana in lakes of three trophic
states and showed that the MC-LR concentrations in the
clams reflected the toxin concentration (�g/L) in lake phy-
toplankton. These findings suggest a relationship between
bioaccumulation and the quantitative occurrence of MC in
lake water. However, in the present study it was impossible
to predict the toxin concentration in U. douglasiae correctly
by quantitative factors such as chlorophyll a (�g/L), SS
(mg/L), intracellular MC in lake water (�g/L), and extra-
cellular MC (�g/L). The bioaccumulation could be pre-
dicted only by a qualitative factor, intracellular MC in SS
(�g/g; Table II, Fig. 4). Extracellular MC had no relation-
ship to toxin concentration in U. douglasiae (Table II).
When A. grandis simpsoniana was exposed to a high con-
centration of extracellular MC-LR (50 �g/L) for 3 days, it
did not accumulate the toxin (Prepas et al., 1997). Micro-
cystin-LR concentration in gastropods did not relate to the
extracellular MC (r � 0.14–0.19) in Canadian lakes
(Zurawell et al., 1999). De Maagd et al. (1999) found that
the log n-octanol:water distribution ratio (log Dow) of
MC-LR was low, ranging from �1.76 to 2.18. These results
suggest that MC can scarcely be accumulated through the
epithelia of aquatic organisms. Therefore, we conclude that
bivalves accumulate MC mainly via the oral route from
food rather than via gill from water.

U. douglasiae accumulated MC in Lake Suwa to 28% of
the concentration in food particles (Fig. 4). To predict the
MC bioaccumulation in U. douglasiae through ingestion of
food particles contaminated with toxin, it is not appropriate
to use the simple equilibrium partitioning bioaccumulation
model, which is based on the difference in fugacity capacity
between biota and the ambient water, which in turn depends
on the physicochemical properties of the contaminant. To
predict more accurately the accumulation in bivalves, it is
necessary to use the physiologically based (PB) model
(Björk and Gilek, 1997), which considers physiological
processes such as clearance, filtration, and ingestion, all of
which vary in response to feeding conditions. According to
the PB model, the important factor for toxin uptake is the
exposure rate, calculated as the ingestion rate by the bivalve
times the toxin concentration in food particles. The expo-
sure rate is a saturation function of food concentration as
well as the ingestion rate at a constant concentration of the
toxin in food particles (Björk and Gilek, 1997). In other
words, the exposure rate also depends on the qualitative
factor, the toxin concentration in food when the bivalve
ingests food particles at the maximum rate. During the
warm season at Lake Suwa, when primary productivity was
high, suspended solids were also high [Fig. 1(a)] and similar

to the level (10–30 mg/L) at which the filtration rate of
bivalves is generally saturated (Hornbach et al., 1984;
Burky et al., 1985; Iglesias et al., 1996; Lei et al., 1996).
Iglesias et al. (1996) showed that the ingestion rate became
saturated in parallel with the filtration rate with increasing
particulate matter concentration at high organic content of
the particles. Concerning the significant relationship be-
tween chlorophyll a and SS in Lake Suwa [Fig. 1(a)], the
organic content of SS was considered high. It is assumed
that the ingestion rate had reached a maximum level. Thus,
the MC exposure rate of U. douglasiae was affected
strongly by the qualitative factor, intracellular MC in SS
(food particles for bivalves), and correlated closely with this
factor. For low phytoplankton productivity, quantitative fac-
tors, such as Microcystis abundance and intracellular MC in
lake water, may be adequate for prediction of MC bioaccu-
mulation in bivalves.

Microcystin bioaccumulation responded quickly to
changes in the intracellular MC in SS [Figs. 1(c) and 3(c)].
For example, U. douglasiae accumulated MC rapidly in
response to a slight rise of the toxin in SS in May and in
1998 depurated quickly with decreasing toxin in the food
particles from June to August. However, in December 1997
and 1998 the toxin in the tissue remained high despite the
low concentration of toxin in the SS. For hydrophobic
contaminants, which have a lower depuration rate coeffi-
cient (kd) than hydrophilic contaminants, a time lag has been
observed between values in the tissue and the surrounding
water, as shown by a field experiment that investigated
uptake and depuration of various agrichemicals in shellfish
(Uno et al., 1997). Although MC bioaccumulation was
predicted significantly by the intracellular MC concentra-
tion in SS (Table II and Fig. 4), there was a seasonal trend
in the standardized residuals between observed and pre-
dicted values (Fig. 5). This indicates that using only the
toxin concentration in SS is insufficient to predict MC
bioaccumulation. The standardized residuals were negative
in summer, when the water temperature was above 20°C
and thereafter increased with a fall in the water temperature
to less than 15°C in autumn. Thus, we presume that MC
bioaccumulation was enhanced relatively in autumn be-
cause it is thought that kd decreases with a decrease in water
temperature. Assuming that the kd value is lower in winter,
MC in the tissue can not be depurated easily and will remain
till spring. The standardized residuals were also high in
spring at a time when the water temperature was higher than
in autumn. At least in April the toxin in the tissue might
have been residual MC that had accumulated during the
previous year; however, we cannot rule out the possibility of
MC uptake in spring. Spring is the reproductive season for
U. douglasiae. Some bivalves are known to increase their
filtration rate in the reproductive period (Hornbach et al.,
1984; Burky et al., 1985), so U. douglasiae may also en-
hance its filtration and ingestion rates in spring. The expo-
sure rate probably accelerated, thus increasing MC bioac-
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cumulation during this period. Therefore, the standardized
residuals increased, particularly in June, although the water
temperature was relatively high (about 20°C).

Differences in the Bioaccumulation Patterns
of the Three Bivalve Species

MC-RR and -LR were detected in various organs of U.
douglasiae on July 22. A. woodiana in Lake Suwa were
found to contain only MC-RR in the hepatopancreas on
August 10, 1992 (Watanabe et al., 1997), and on July 19,
1992, no MCs were detected in C. plicata. However, MC
bioaccumulation by these bivalves has not yet been identi-
fied in detail. In the study reported here, MCs were detected
at much higher concentrations in C. plicata and U. dougla-
siae than in other bivalves (Table I). Furthermore, the study
revealed that the MC bioaccumulation pattern differed be-
tween the three bivalves. In A. woodiana the concentration
of bioaccumulated toxin was always very low, and its sea-
sonal pattern showed no relationship with environmental
parameters. In C. plicata the toxin in the tissue was low in
summer, when the Microcystis bloom occurred, and in-
creased in autumn as the bloom decayed. In this bivalve MC
sometimes accumulated at a very high concentration in
autumn. In U. douglasiae bioaccumulation was at a higher
concentration than in two other bivalves and could be pre-
dicted by the intracellular MC in SS and by the water
temperature. The different seasonal bioaccumulation pat-
terns in the three bivalves may be a result of interspecific
differences in selective ingestion, reproductive season, MC
metabolism, and depuration rate. Bougrier et al. (1997)
showed that the oyster Crassostrea gigas ingested flagel-
lates selectively rather than diatoms depending on differ-

ences in algal shape and flexibility. A. woodiana might
reject Microcystis as pseudofeces prior to ingestion. Two
species of Unionidae, Actinonaias ligamentina and
Amblema plicata, were found to have different seasonal
patterns of physiology and biochemical composition (Baker
and Hornbach, 2001). Baker and Hornbach (2001) indicated
that larval blooding affected the physiology of A. ligamen-
tina. The reproductive season for bivalves would affect the
MC bioaccumulation pattern. In C. plicata, increasing bio-
accumulation in autumn resulted from enhancement of the
exposure rate in the reproductive season from October to
December, as mentioned above. The mean ratio of MC-LR
to total MC differed significantly among the three bivalves.
These bivalves tend to accumulate MC-RR because their
ratios of MC-RR were higher than that in the SS. In partic-
ular, A. woodiana and C. plicata accumulated MC-RR se-
lectively up to about 90% of the total MC. It is clear that
these two bivalves differ from U. douglasiae in MC metab-
olism, which is involved with uptake and depuration. The
depuration rate also differs among bivalves. The Mytilidae,
Mytilus galloprovincialis and M. edulis apparently elimi-
nate completely in 10–13 days at 10°C–16°C (Vasconcelos,
1995; Williams et al., 1997b). On the other hand, Unionidae
are considered to have a low ability for depuration because
Anodonta cygnea and A. grandis simpsoniana were found to
not eliminate completely in 2 months or 21 days at 18°C–
20°C (Eriksson et al., 1989; Prepas et al., 1997). Presum-
ably, Unionidae tend to depurate the toxin more slowly. In
the study reported here, C. plicata and U. douglasiae con-
tained MC at a relatively high concentration in spring. This
might be a residual portion of toxin accumulated in the
previous year.

The present study has shown that a high concentration of
MC is accumulated by Unionidae, which are numerous in
Lake Suwa, and there is an interspecific difference in the
seasonal pattern of bioaccumulation. It has been shown that
MC bioaccumulation in U. douglasiae is influenced not
only by intracellular MC in SS but also by water tempera-
ture and reproduction. At present, the three species of bi-
valve in Lake Suwa are a food source for few people. This
study has made clear the following problems concerning
risk assessment of edible bivalves contaminated by cya-
nobacterial toxin: (1) the bioaccumulation pattern must be
known for each species; otherwise it will be especially
difficult to predict MC bioaccumulation in species such as
C. plicata, in which bioaccumulation did not necessarily
correspond to the abundance of Microcystis and/or MC; (2)
although previous researchers only have reported on bioac-
cumulation in the bloom season, a long-term survey that
begins prior to a bloom and continues until the bloom
disappears is necessary to assess the safety of contaminated
bivalves considering both their lifecycle and seasonal
changes in their kd; and (3) when bioaccumulation is mon-
itored, optimal monitoring parameters, such as quantitative

Fig. 5. Seasonal changes in surface water temperature
(solid lines) and time-series plots of standardized residuals
of the simple regression between tissue concentration of
MC in Unio douglasiae versus MC in SS (solid circles).
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or qualitative factors, should be selected depending on the
trophic state of the lake.

REFERENCES
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