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We propose a hybrid auction mechanism for sponsored search, where bidders can be truthful or not, and are
accordingly treated differently. Our class of hybrid mechanisms give incentives for non-truthful bidders to
bid truthfully, while behaving as a non-truthful auction if no bidders are truthful.

Our motivation is that the Generalized Second Price (GSP) auction (the current mechanism of choice) has
appealing properties when ads are simple (text based and identical in size). But GSP does not generalize
to richer ad settings, whereas truthful mechanisms, such as VCG do. Hence there are incentives for search
platforms to migrate to truthful mechanisms, but a straight switch from GSP to VCG either requires all
bidders instantly bid truthfully or incurs significant revenue loss.

We introduce a transitional mechanism which encourages advertisers to update their bids to their valu-
ations, while mitigating revenue loss. The mechanism is equivalent to GSP when nobody has updated their
bid, is equivalent to VCG when everybody has updated, and it has the same allocation and payments of
the original GSP if bids were in the minimum symmetric Nash equilibrium. In settings where both GSP
ads and truthful (TF) ads exist, it is easier to propose a payment function than an allocation function. We
give a general framework for these settings to characterize payment functions which guarantee incentive
compatibility of truthful ads, by requiring that the payment functions satisfy two properties.

Finally, we compare the revenue of our transitional mechanism with revenues of GSP and VCG mecha-
nisms when run on a sample of Bing data.
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1. INTRODUCTION
Sponsored search is the main source of revenue for most search engines, such as
Google, Yahoo! or Bing. In the classic online ad auction or ‘position auction’, all ad
slots and sizes are the same. Search engines typically use a variant of the General-
ized Second Price (GSP) mechanism to select and price ads. In GSP, advertisers are
rank-ordered by decreasing bids (more generally, by expected revenue or rank score)
and slots are assigned in this order. The price of a slot is the minimum bid an adver-
tiser has to make in order to maintain that position, which equates to the next highest
bid in the simplest form of GSP. Payment is made when an ad is clicked. The GSP
auction’s equilibria, bidding strategies, and other properties are well studied (see, e.g.,
[Edelman et al. 2005; Varian 2007]).

However, online advertising is becoming more complex. There may be multiple page-
templates for search results, different ad formats (e.g., text-ads or image-ads) with dif-
ferent sizes, and several other constraints on showing ads. For these settings, GSP is
not well defined and if generalized can be ill-behaved [Bachrach et al. 2014]. There-
fore, there is an incentive for migrating from GSP to another mechanism. Truthful
mechanisms (such as VCG) are attractive (see [Varian and Harris 2014]) because they
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allow externalities to be calculated which makes handling more complex ad scenar-
ios easier. Truthful mechanisms also remove the computational burden of calculating
the optimum bid from advertisers, make the whole system more transparent, and the
same bid (valuation) of an advertiser can be used across multiple auctions. Moreover,
analyzing the market is easier with true valuations as opposed to bids.

One big obstacle to migration from GSP to VCG is the requirement that advertisers
update their bids by increasing them up to their true value. Indeed, as Varian and
Harris note, Google “thought very seriously about changing the GSP auction to a VCG
auction during the summer of 2002.” However, there were several problems, including
that “the VCG auction required advertisers to raise their bids above those they had
become accustomed to in the GSP auction.” As GSP has only gotten more entrenched
over the past decade, this issue has only grown larger. If such a switch were made
today, advertisers may not update their bids quickly and even if they do update, it
might not be their true valuation. Thus, for a long time there will be a mixed set of ads:
(i) advertisers who have updated their bids to true valuations and (ii) advertisers with
GSP bids. Therefore, it would be desirable to have a transitional mechanism which
selects and prices the set of winners from such a mixed set of ads.

In this work we introduce a transitional mechanism in order to migrate GSP bids to
true valuations. At the start of the transition the mechanism behaves the same as GSP.
Then (in one implementation of our mechanism) when an advertiser tries to update
her bid, we notify her that the mechanism will optimize her allocation and payment
assuming that her new bid is her true valuation. This means that the best response
for the advertiser is to bid her true valuation. We show that since this optimization
will not happen for old GSP bids, the mechanism actually encourages advertisers to
update their bids to their valuations as soon as possible (this is exactly what we want
them to do). In the middle of the transition, the mechanism maintains a classification
of bids as either truthful (updated bids) or GSP so that they can be treated differently,
respecting incentives for truthful ads, but not GSP ads. Finally when all advertisers
update their bids, the mechanism behaves as VCG and the transition finishes.

The key difficulty for a transition mechanism is to decide how bids of one group affect
allocation and payment of the other group. For example, if the bid of a truthful ad is
higher than the bid of a GSP ad, it does not necessarily mean that the truthful ad has
to have a better allocation, since we know the GSP ad is shading its bid downward.
Moreover, if a truthful ad is given an ad slot with click probability f and the ad below
him is a GSP ad with bid g, we may want the expected payment of the truthful ad to
be at least g · f . The usual approach for designing truthful mechanisms is to give a
monotone allocation function and then derive the unique payments using Myerson’s
lemma [Myerson 1981]. However, in our setting it is not easy to first give an allocation
function, as the bid of a GSP ad implies that payments of ads above him should be
altered. Hence, designing an allocation function which takes into account the payment
constraints is harder.

In this paper we give a general framework, not limited to only GSP or VCG ads1,
for designing mechanisms in settings similar to the above where it is easier to specify
a payment function than an allocation function. In practice, this flexibility allows our
framework to apply in the presence of some of the additional complexity that exists
in actual auction systems. To describe this framework more formally, assume ad slots
are indexed from 1, the top slot, to n, the bottom one, and there are n advertisers. The
designer just has to specify a payment function pi : Rn−i 7→ R for each i ∈ [n] which
specifies the payment of the advertiser assigned to position i given types of advertisers

1The set of ads can have arbitrary number of groups. For example in addition to GSP and truthful ads, it
may contain advertisers who have pre-established contracts and pay a fixed amount if their ad gets clicked.
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assigned to positions below him. Our framework requires that any payment function
satisfies two simple properties: (i) Minimum Marginal Increase (MMI): the payment
has to be high enough so that truthful bidders assigned to lower slots do not envy the
winner of a higher slot and (ii) Exact Marginal Increase (EMI): the marginal payment
increase of the slot directly above a truthful ad has to be equal to the truthful ad’s
bid. Given a set of payment functions satisfying MMI and EMI, our framework shows
how to construct an allocation rule with payments that are exactly those given by the
payment functions applied to the realized allocation.

While we primarily focus on deriving a practical rule for transitioning from GSP to
VCG, the set of ad auction mechanisms that fit in our framework is quite general. In
fact, we prove that by using our framework one can design any truthful mechanism
in which the payment of an ad is derived solely from ads below that ad (subject to a
few additional requirements). Equivalently, our framework encapsulates mechanisms
where raising the bid of an ad does not affect the allocation of ads that were previously
allocated below it. More broadly, while the question of what properties of allocation
rules lead to truthful mechanisms has been intensively studied (see, e.g., [Archer and
Kleinberg 2008; Ashlagi et al. 2010; Frongillo and and 2014]), the question of what
properties of payment rules lead to truthful mechanisms has not. Indeed, the only prior
characterization we know of is the taxation principle for single-agent mechanisms.
Since EMI and MMI are more inspired by Myerson than by the details of our auction
setting, this approach may be of independent interest.

Having designed a large class of candidate mechanisms, and selected a representa-
tive member of the class, we analyze it both theoretically and in simulations based on
Bing data. On the theory side, we show that transitional behavior is particularly nice if
the system starts in the lowest symmetric Nash equilibrium. In particular, allocations
and prices do not change regardless of the order of updates, in principle leading to a
painless transition.

This conclusion relies on a number of strong (and false) assumptions. In our sim-
ulations, we analyze the consequences of relaxing them. We find that essentially all
the costs of a transition are in terms of revenue—the welfare effects for both advertis-
ers and users are small. We also see that the hybrid mechanism can have significant
revenue benefits if bidders directly update to true valuations, but these benefits de-
crease if the bidders fail to do that for various reasons such as not knowing the true
valuations, not being utility maximizers, or not trusting the system. So, rather than
simply telling advertisers that they will be treated differently once they change their
bid (which may not even be feasible in practice), it may make sense to attempt to use
a learning approach to identify which bidders to treat as truthful. We simulate a few
behaviors, and consequently identification models, and analyze the performance of the
hybrid, GSP, and VCG mechanisms.

To summarize, our three main contributions in this paper are:

(1) a new framework for deriving truthful mechanisms from payment rules that satisfy
MMI and EMI (Section 4),

(2) a specific hybrid mechanism to enable transitioning from GSP to VCG (Section 5),
and

(3) an evaluation of the mechanism based on Bing data (Section 6).

2. RELATED WORK
Sponsored search auctions are arguably the most successful recent application of auc-
tion theory to a business environment. As a result, much research has been conducted
regarding the influence of the mechanism used for the auction on social welfare and
the generated revenue. In the case where the VCG mechanism is used, truthfulness is
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the dominant bidding behavior. However, the same does not hold for the GSP auction
and predicting bids in this case is trickier.

A complete information analysis of GSP auctions is discussed by Edelman et
al. [2005], Varian [2007], and Aggarwal et al. [2006]. A common theme in this line
of work is the equivalence between the auctioneer’s revenue and bidders’ utility under
a VCG auction and under the lowest symmetric Nash equilibrium of a GSP auction
(which is sometimes referred to as the “bidder-optimal locally envy free equilibrium”).
Ashlagi et al. [2007] generalize this, showing that in many auction types in which
the payments are a function of the lowest ranked bids, there exists an equilibrium in
which bidders’ utility is equivalent to their utility under the VCG auction. Roberts et
al. [2013] generalize this along a different axis, showing that this result also holds for
a variety of rank score functions other than simply ranking by highest bid.

Much of the research on equilibria in GSP auctions has focused on symmetric equi-
libria. Edelman and Schwarz [2010] examined the revenue of different symmetric
Nash equilibria, noting that under a certain comparison to optimal revenue possible
under the Bayesian setting, the “lowest” equilibrium is the reasonable one. A general-
ized auction proposed by Aggarwal et al. [2007] allows advertisers to specify not only a
bid but also the positions they are interested in, ruling out the bottom positions. They
show that this auction has a symmetric Nash equilibrium implementing the same out-
come (i.e., allocation and pricing) as the VCG auction.

Complementary to studies on symmetric equilibria, several researchers have studied
the inefficiency that can result from asymmetric equilibria [Leme and Tardos 2009;
Caragiannis et al. 2011; Lucier et al. 2012]. Some studies of auction tuning have also
explored the full set of equilibria [Thompson and Leyton-Brown 2013]

Taking a Bayesian perspective, Gomes and Sweeney [2014] examined the existence
and uniqueness of Bayes-Nash equilibria in a GSP auction. Several models have also
been proposed for inferring the valuations of advertisers based on the observed bid
data [Pin and Key 2011; Athey and Nekipelov 2010]. The model by Pin and Key [2011]
considers advertisers best responding in an uncertain environment in a repeated auc-
tion setting, relating the bidding behavior to scenarios when the Bayes-Nash Equi-
libria of Gomes and Sweeney [2014] are known to exist. The model of Athey and
Nekipelov [2010] starts directly from the Bayes-Nash Equilibria, but has a different
model of the information available to the bidders. Instead, Vorobeychik [2009] pro-
posed a framework based on agent simulation to approximate the Bayes-Nash equilib-
ria in GSP auctions, which relies on restricting the space of allowed bidding strategies.

The dynamics leading to the equilibrium outcomes in GSP auctions are less stud-
ied. Cary et al. [2007] consider dynamics under a greedy bidding strategy, where each
bidder chooses the optimal bid for the next round assuming the other bidders do not
change their bids. They show this bidding strategy has a unique fixed point, with pay-
ments identical to those of the VCG mechanism.

Closest to our work, Aggarwal et al. [2009] propose a framework that frames both
GSP and VCG in terms of the assignment game with appropriate models of bidder util-
ity. Their framework can be applied to derive a hybrid auction that incorporates both
GSP and VCG bidders that is a special case of our more general framework. However,
they do not explore this and their framework lacks the flexibility ours provides.

3. PRELIMINARIES
We study the standard model of a sponsored search auction. There is a set of {1, . . . , n}
of ads, denoted by [n] . We assume that there are k ad positions ([k]), also called slots,
where position i has CTR (Click-Through-Rate) fi. Without loss of generality we as-
sume that the first position has the highest CTR and the k-th position has the lowest
(0 < fk < . . . < f1 ≤ 1). For notational convenience, and without loss of generality, we
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take k = n and assume that there are no ad quality scores—the probability of any ad
being clicked in slot i is exactly fi.

In our setting ads can have different characteristics. For example they could be,

— Truthful (TF) ads which have updated their bids to their valuations;
— Generalized Second Price (GSP) ads which assume that they are participating in a

GSP auction.
— First price ads which have a contract to pay a fixed amount upon being clicked.

We are going to provide a framework for mechanism designers which only requires a
payment rule to be specified, and which places special constraints on the payments of
TF ads. Therefore, we specially differentiate between TF and non-TF ads and assume
each ad has a type taken from set T = {TF,non-TF} × R+ that specifies the truth-
fulness attribute and bid. Here, non-TF ads can be of any nature and our framework
does not limit the designer’s ability for deciding the allocation and payments of them.
This can be thought of as modeling a situation where we are designing a system for
the TF bidders, and therefore care about their incentives. However, there will be some
“legacy” bidders whose behavior does not reflect the new system (and perhaps cannot,
because inherently changing their bid will result in them being reclassified as TF).
Since the right way to treat these legacy bidders will depend on their exact nature, we
do not put any constraints on what they are charged (and indeed neglect modeling this
entirely in the proving the theoretical results of Section 4).

In section 5, we examine what happens when we look to maintain parity with ex-
isting GSP prices for non-TF bidders, and where the non-TF bidders behave as GSP
bidders in equilibrium.

We denote an assignment of ads to slots by the permutation Π = (π1, . . . , πn) where
ad πi is assigned to position i. The (expected) payment of ad πi is the cost per click for
being in position i multiplied by the CTR of position i. Throughout the paper we work
with expected payments pi,∀i ∈ [n] as opposed to cost per click. Further, we assume
that all ads have quasilinear utilities, i.e., if ad πi is assigned to position i and pays
pi then its utility will be ui(Π, p) = fi ∗ v(πi) − pi, where v(πi) is the valuation of ad
πi. Throughout the paper, we use b(i) for the bid of ad i and if a TF ad, we also use
v(i) = b(i) to emphasize the fact that the bid and valuation are the same.

In this work we assume that the auctioneer can distinguish between TF ads and
non-TF ads, i.e., the nature of each ad is known. Since we are aware that this is a
strong assumption in practice, in Section 6 we elaborate on this point and show some
empirical results where the auctioneer is uncertain about the ads nature. Additionally,
our model assumes away the growing richness that is part of the ad ecosystem that is
part of the motivation for a switch. However, at this point basic text ads still represent
the bulk of ad impressions, so a solution that works well for them would be useful to
aid a near-term transition in anticipation of this future richness.

4. TOP INTERFERENCE FREE PAYMENT FRAMEWORK
In this section we introduce a framework for designing mechanisms in ad auction-like
settings where it is easier to provide a payment rule than to give an allocation rule. In
other words, we do not know exactly what we want the final allocation of ads to be, but
we do know what we want the payment for ad πi assigned to position i in the overall
assignment Π to be. More formally, we explore the space of payment rules which are a
set of n functions P = {p(i)}i∈[n], where function

p(i) :

n−i︷ ︸︸ ︷
T × . . .× T 7−→ R+.
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That is, if the ad in slot i is TF its payment will be p(i)(πi+1, . . . , πn). (Recall that we
allow the payments of non-TF bidders to be arbitrary.) Note that p(i) is the expected
payment of the ad assigned to position i and p(i)/fi is its cost per click.

This formulation implicitly restricts the set of payment rules we consider. Without
loss of generality, the payment of a truthful ad does not depend on its own bid. How-
ever, with loss of generality, we also assume that payment does not depend on the bids
of ads assigned to slots above it. This is a natural restriction in a setting without ex-
ternalities, and indeed one that is satisfied by both the GSP and VCG payment rules.

Our framework specifies two further intuitive properties which we require the pay-
ment rule satisfy. We show that these two properties are necessary in the sense that
any anonymous mechanism whose payment rule for an ad depends only on ads below
it can be implemented using our framework. By anonymous, we mean that permuting
the input to the mechanism simply permutes the output (up to tie breaking among
ads with identical bids). In order to specify these properties we need to restrict the
domain of the payment rules to exclude nonsensical inputs where the TF bidders are
mis-ordered, e.g., where TF ads are not assigned to slots monotonically with respect to
their bid.

Let Π = (π1, . . . , πn) denote the assignment of ads to positions. We use the notation
Π(k) = (πk, . . . , πn) to show the partial assignment of the last n− k + 1 ads to positions
k to n. In the following we define what partial assignments are valid and thus form the
domain of payment rule {p(i)}i∈[n].

DEFINITION 4.1 (VALID ORDERING). A partial assignment of n − k + 1 ads Π(k) is
valid if and only if for any i, j ∈ {k, . . . , n} such that πi and πj are TF ads and i < j, we
have v(πi) ≥ v(πj).

Recall that Myerson’s characterization of truthful mechanisms asks a designer to
give a monotone allocation rule and the payments are then uniquely derived from
the area above the curve. A monotone allocation rule, when seen from the payment
perspective, implies monotone marginal increases of the payments (see Figure 1).

CTR

value

allocation curve

Marginal Increase A

Marginal Increase B

Fig. 1: The area above the allocation curve of a winner is his payment. The two arrows
show the marginal increase of the payment at different points. If the allocation curve
is monotone the marginal increases are also monotone.
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DEFINITION 4.2 (MARGINAL OPERATOR ∇(i,j)). For two positions i, j ∈ [n] where
i < j, the marginal increase of payment rule P for a valid assignment Π is

∇(i,j)P(Π) =
p(i)(Π(i+1))− p(j)(Π(j+1))

fi − fj
.

Now we are ready to specify the first property which the payment rule P should
satisfy.

DEFINITION 4.3 (EXACT MARGINAL INCREASE (EMI)). The payment rule P sat-
isfies EMI, if for any valid assignment Π and position i ∈ [n − 1], if πi+1 is a TF ad
then

∇(i,i+1)P(Π) = v(πi+1).

The intuition behind the EMI requirement (Definition 4.3) is that, since TF ads are
shown in the order of their bid, the minimum bid TF ad πi needed to get shown above
the TF ad πi+1 is exactly v(πi+1). Thus, the marginal payment he should make for
being in slot i as opposed to i+ 1 is exactly this minimum bid.

Note that in our setting there are non-TF ads that can be placed between TF ads.
Therefore, we need to generalize EMI in order to make sure that the payments for TF
ads remain incentive compatible.

DEFINITION 4.4 (MINIMUM MARGINAL INCREASE (MMI)). The payment rule P
satisfies MMI if for any valid assignment Π, position i ∈ [n] such that πi is a TF ad, and
position j ∈ {1, . . . , i− 1} we have

∇(j,i)P(Π) ≥ v(πi).

Now we give our algorithm to derive the final allocation given payment rule P which
satisfies EMI and MMI. Our algorithm is very simple and intuitive. It starts filling
from position n all the way up to position 1. The TF ads get assigned to positions
in the increasing order of their valuations. Let us assume that the current TF ad to
be assigned to a position is π. Our algorithm tries to fill all the remaining positions
by non-TF ads which are not yet assigned, choosing the ads sequentially such that
the payment of the next position is minimized. Then, our algorithm puts ad π in the
position i for which its profit is maximized. The algorithm then takes the next TF ad
and restarts from position i − 1. The formal description of our Allocation Algorithm
(AA) is given in Algorithm 1.
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Algorithm 1: Allocation Algorithm (AA)
input : n ads {1, . . . , n} and payment rule {p(i)}i∈n.
output: assignment (π1, . . . , πn) of ads to positions and their payments.

1 T ← Extract-TF-ads({1, . . . , n});
2 N ← Extract-NonTF-ads({1, . . . , n});
3 `← n ;
4 while |T | > 0 do
5 Let π ∈ T be a TF ad with minimum value ;
6 Remove π from T ;
7 Fill-With-NonTF-ads ;
8 i← arg maxj∈{`−|N |,`−|N |+1,...,`} fj · v(π)− p(j)(πj+1, . . . , πn) ;
9 πi ← π ;

10 N ← N − {πi+1, . . . , π`} ;
11 `← i− 1;
12 end
13 Fill-With-NonTF-ads ;
14 Set the payment of πi to be p(i)(πi+1, . . . , πn);

/* Sub-procedure Fill-With-NonTF-ads provisionally assigns all the
remaining non-TF ads to next available positions. At each step it
selects a non-TF ad which makes the next payment as small as
possible. */

15 Fill-With-NonTF-ads:
16 begin
17 N ′ ← N ;
18 for i← ` downto `− |N | − 1 do
19 πi ← arg minπ∈N ′ p(i−1)(π, πi+1 . . . , πn) ;
20 N ′ ← N ′ − {πi}
21 end
22 end

Description of the algorithm. Set T contains all the TF ads which are not yet
assigned. Similarly set N contains all the non-TF ads which are not yet assigned. In
Line 3 we initialize the value of ` which keeps the index of current position to be filled.
In Line 5 we select a TF ad with minimum value in order to assign it to a position. In
Line 7 we provisionally fill the next |N | positions with non-TF ads. In Lines 8 and 9
we find and assign a position with the best profit for TF ad π. In Line 10 we remove all
the non-TF ads which are assigned permanently (appear after the position i) from N .
In Line 13 we fill the remaining positions by the rest of non-TF ads. Finally at Line 14
we set the payments of allocated ads according to p(i).

Note that at Lines 5 and 19, we might have multiple valid choices, in which case we
break the ties by the choosing the ad with the smallest index. The only other instance
where a tie can happen is at Line 8, when we select the largest feasible j.

The following theorem shows that mechanisms derived from our framework are in-
centive compatible for TF ads.

THEOREM 4.5. Given a set of payment functions P = {p(i)}i∈[n] that satisfy EMI
and MMI, the mechanism derived from applying AA to P is incentive compatible for TF
ads.
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PROOF. Let M be the resulting mechanism after applying AA to set of payment
functions. Observe thatM assigns TF ads to positions in the increasing order of their
value, i.e., the larger the value of a TF ad is, the higher position he receives. This
follows from Line 5 of AA.

In order to prove incentive compatibility of mechanism M, we show that an arbi-
trary TF ad gets the best utility when he bids his true valuation. Assume that θ is an
arbitrary type profile,M outputs assignment Π = (π1, . . . , πn) for θ, and πk is a TF ad.
We show that utility of πk does not increase if he bids v′ considering three cases: (1)
he is considered in the same iteration of Algorithm 1, (2) he is considered in a later
iteration, and (3) he is considered in an earlier one.

Case (1): Since he is considered in the same iteration, all that changes is that Line 8
optimizes with respect to v′ rather than v, giving him a weakly worse position. Thus,
he does not benefit.

Case (2): Since he is considered in a later iteration, some other TF with value v′′ ≥ v
is considered in his original iteration and assigned to slot k′′. By MMI, ∇(k′,k′′)P(Π′) ≥
v′′ ≥ v. Thus, his marginal payment for all the clicks he gets beyond what he would
get in slot k′′ is at least his value, and he is no better off than he would have been
originally taking slot k′′, which is a contradiction.

Case (3): Without loss of generality, let πk be the bidder in the lowest slot (according
to π) who can benefit from lowering his bid. Let k′′ be the highest slot below k such
that πk′′ (with value v′′) is TF. By the taxation principle, there is a price that πk′′ faced
for every slot at or below k′′, and at those prices he preferred k′′. πk could have faced
those same prices by bidding v′′− ε for sufficiently small ε, and as v ≥ v′′ he too prefers
slot k′′ among all those options. By EMI, ∇(k′′−1,k′′)P(Π) = v′′ ≤ v. Thus, he weakly
prefers taking slot k′′ − 1 to taking slot k′′. Since slot k′′ − 1 was one of his options, he
weakly prefers slot k to it, a contradiction.

Having shown that every mechanism derived from our framework is truthful, it
is natural to characterize the class of mechanisms that are implementable with our
framework. We show that this class is characterized by three natural axioms and one
technical one.

First note that payment functions {p(i)}i∈[n] only use the bid and nature of the ads
and do not use the identity (index) of the ads to determine payments2. This means that
mechanisms derived from our framework satisfy anonymity, defined formally below.

DEFINITION 4.6. [Anonymous Mechanism (AM)] A mechanism (M = (x, p)) with
allocation function x and payment function p is anonymous if the following holds. Let θ
and θ′ be two type profiles that are permutations of each other (i.e. the set of natures and
bids are the same but the identities of ads are permuted) and have no ties. Say θ = σ(θ′),
for some fixed permutation σ. Then we have x(θ) = σ(x(θ′)) and p(θ) = σ(p(θ′)). For
type profiles with ties we require permutations to permute the output, except that the
payments and allocations of tied bidders can be exchanged arbitrarily.

Secondly, note that the payment of the ad assigned to position i is specified by looking
only at the ads that are assigned to positions below i. Therefore, mechanisms in our
framework also satisfy the following property.

DEFINITION 4.7 (TOP INTERFERENCE FREE (TIF)). A mechanismM = (x, p) sat-
isfies TIF, if when an ad changes its type and gets a better position then the allocation

2This would appear to rule out current systems that incorporate other information such as click probability
and other quality measures into a rank score. However, our results still apply in this more general setting
as long as the rank scores are treated anonymously.
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of ads assigned to lower positions remains unaltered. More formally, let x(θ) be the al-
location given by x on type profile θ = {θ1, . . . , θn} and x(θ′) the allocation given by x on
type profile θ′ where θ′h = θh,∀h ∈ [1, . . . , k− 1, k+ 1, . . . , n] and θ′k 6= θk. Assume that ad
k is in position i with allocation x(θ) and in position j with allocation x(θ′) such that
j < i. MechanismM satisfies TIF if the ads assigned to positions i+ 1 to n are the same
in both allocations x(θ) and x(θ′).

In the following theorem, we prove that our framework can implement all mecha-
nisms that are incentive compatible, anonymous, and top interference free, as well as
satisfying an additional technical axiom (one which seems to be satisfied for reason-
able mechanisms). Hence, requiring EMI and MMI does not restrict the designer in
ways that current standard designs such as VCG and GSP do not.

THEOREM 4.8. A mechanism is derived from our framework if and only if it satis-
fies IC, AM, TIF, and 2T.

See Appendix A for a definition of the technical axiom (2T), a proof of the theorem, and
a discussion of 2T.

5. PRICING FUNCTIONS
In the preceding section we designed a general framework. In this section, we apply it
to the desired special case of transitioning from a GSP auction to a VCG auction. To
do so, we must decide how to price GSP bidders, since our framework is silent about
how they should be charged. We make perhaps the simplest decision, to charge them
the same amount a truthful bidder would be charged in the same slot, and show that
this has several desirable properties.

We begin by discussing what happens when users can evolve and switch types: that
is, they are either TF or GSP bidders, and in each case act as utility maximizers.
When the hybrid mechanism is first put into use, all bidders are GSP bidders, but as
time goes on some bidders will change to being truthful. Given perfect rationality, this
means i’s bid changes from b(i) to v(i). We can then show that if GSP bidders begin
from the lowest revenue Symmetric Nash Equilibrium (SNE) then the revenue and
allocations are unaltered, provided a particular hybrid pricing function is employed,
irrespective of the order in which users transition from GSP to TF bids. (As SNE rank
bidders in decreasing order of bid, in this section we assume that ad i is in slot i.)
Formally,

PROPOSITION 5.1. For any GSP algorithm where GSP bidders bid as in the lowest
revenue SNE and truthful bidders bid truthfully, the revenue, allocation and prices
paid will be independent of the number and identity of TF and GSP bidders if and only
if the payment function satisfies MMI and EMI and further satisfies

p(i−1)(Π(i)) =

{
p(i)(Π(i+1)) + v(i)(fi−1 − fi) if θi = (TF, v(i))

b(i)fi−1 if θi = (GSP, b(i))
(1)

PROOF. Both directions of the proof follow almost directly from the definitions of
a lowest SNE, EMI and MMI. In order for payments of TF and GSP bidders to be
identical, the payment functions p(i)(Π(i+1)) must be the same regardless of whether
i is TF or GSP, and independent of the mix of bidder types in Π(i+1). Consequently no
GSP or TF bidder wants to change bid or position, since by the definition of an SNE(

v(i)− p(i)(Πi+1)
)
fi ≥

(
v(i)− p(j)(Πj+1)

)
fj for all i, j. (2)
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By standard arguments about the lowest SNE (see, e.g., [Varian 2007; Roberts et al.
2013]) we in fact have that for all i,

b(i) = b(i+ 1) + v(i)(fi−1 − fi). (3)
Thus, by induction, the two conditions of (1) are in fact equal at the lowest SNE. This
gives that the form is necessary and sufficient for prices to coincide, as pricing must be
equivalent to the case θj = (GSP, b(j)) for all j ≥ i. As this outcome is equivalent to the
outcome of a truthful auction, it follows that EMI and MMI are satisfied as well.

In the statement of the proposition, we say that it applies to any GSP algorithm. By
this we mean that GSP is, strictly speaking, just a payment rule. It can be applied to
a variety of rank score allocation rules. As long as the one chosen admits an SNE, the
proposition applies. The following corollary results from applying a sufficient condition
[Roberts et al. 2013] for this.

COROLLARY 5.2. The result holds true for any GSP ranking function that uses a
rank score of the form

y(b, i) =
(
g(i)b− h(i)

)+
, (4)

where g and h are arbitrary non-negative values that can depend on i.

The necessary and sufficient conditions only hold when we start from a lowest SNE.
For example if we are in another SNE, then moving just one bidder i from GSP to TF
will not change the position or prices paid by i or those below i, but potentially changes
prices (and hence positions) of bidder(s) above i (since equality in (3) need no longer
hold for i− 1). Hence, we want to construct price functions that satisfy EMI and MMI
when other equilibria hold, and for more general non-truthful prices. Specifically, we
shall consider two natural examples, where the pricing functions for ad i are the same
for truthful and non-truthful i. First,

A : p(i−1)(Π(i)) = max
(
p(i)(Π(i+1)) + vmax(Π(i))(fi−1 − fi), bmax(Π(i))fi−1

)
(5)

where

vmax(Π(i))
def
= max {v(θj) : j ≥ i ∩ θj = (TF, v(j))} (6)

bmax(Π(i))
def
= max {b(θj) : j ≥ i ∩ θj = (GSP, b(j))} (7)

are the largest TF valuation and GSP bid at or below i, respectively, and

B : p(i−1)(Π(i)) = max
(
p(arg max v(Π(i)))(Π(arg max v(Π(i))+1))

+vmax(Π(i))(fi−1 − farg max v(Π(i))), bmax(Π(i))fi−1

)
(8)

where

arg max v(Π(i))
def
= arg max

j
{v(j) : j ≥ i ∩ θj = (TF, v(j)} (9)

is the identity of the largest TF ad at or below i.
Either of these hybrid auctions is consistent with Proposition 5.1, and so in fact

they are identical in this case. It is easy to see, however, that they do differ in other
scenarios. In some sense, we can think of these as the two extremes of reasonable
prices. In any “reasonable” extension of GSP, an advertiser ought to pay at least the
bid of a GSP bidder below him, and B is the lowest set of prices consistent with this,
EMI, and MMI. At the other extreme, A charges the highest prices that are consistent
with no GSP bidder paying more than his bid.

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.



X:12

OBSERVATION 1. When setting prices according to (5), GSP bidders pay exactly
their bid when an indifferent TF bidder is put below them.

PROOF. Let b be the GSP bidder assigned to slot i and v be the value of the truthful
bidder assigned to slot i+ 1 and indifferent between that and slot i. Then

fi(v − b) = fi+1v − p(i+1)(Π(i+1)).

Rewriting shows that the GSP bidder pays exactly his bid.

Since the main concern with switching to VCG is the loss of revenue, we use A in our
simulations. However, this does come at a cost in welfare relative to B, since it will
tend to put higher TF bidders below lower GSP bidders more often.

6. SIMULATION RESULTS
We saw in Proposition 5.1 that if bidders always play the lowest SNE, we can perfectly
identify which bidders have adjusted to the new truthful auction, and that adjustment
consists of instantly switching to the advertiser’s true value, then there would be no
effect on efficiency or revenue from switching to the hybrid auction. Of course, none
of these assumptions are realistic. In this section, we discuss a variety of simulations
that analyze the practical effects of the hybrid auction in more realistic scenarios.

6.1. Simulation Setup
We base our simulations on a non-random sample of Bing data on 3984 auctions. It is
a filtered subset of a larger random sample that ensures the auctions are “interesting.”
In particular, we wanted thick auctions (with at least 12 participants), and with other
properties such that techniques for inferring true values from GSP bids could give
reasonable answers. The metrics have been normalized. Nevertheless, we believe the
sample is representative enough to allow a meaningful exploration of our approach.

We restrict each auction to the top 12 participants, and only actually run an auction
for the top three slots. In order to run our simulations we need to have an estimate of
true valuation of GSP ads. One estimate of true valuations is to assume that GSP ads
have played the minimum symmetric Nash equilibrium and invert their bids to their
valuations. In this case, we would essentially be baking in the first of the assump-
tions from Proposition 5.1, so unsurprisingly the transition would happen without any
changes as the allocation and payment of ads remain identical at each point of time.

Instead, we use the stochastic formulation from Pin and Key [2011]. This approach
derives the valuations under the hypothesis that each advertiser chooses her bid to
maximize her expected net utility under the assumption that she faces a stationary
bid distribution. In our calculations we assume that the CTRs are known, with the
opposing bid distribution estimated from the opponents’ empirical bid distributions.

In our simulations we run four different mechanisms.

— GSP. The first mechanism is GSP run on the original set of bids when no updates
have happened. This represents the current state of the world and serves as a bench-
mark to which the other approaches can be compared.

— VCG-V. The second mechanism is VCG run on the final set of true valuations when
all the ads have updated their bids. This represents the ideal end state when all
bidders have transitioned to being truthful. It also serves as a sanity check on the
reasonableness of our value estimation (i.e. it should display similar performance to
GSP).

— HYBRID. The third mechanism is the one derived from our framework, using pricing
rule A described in (5).
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— VCG-B. Finally the last mechanism is VCG run on the current set of bids when
some ads have updated their bids and some have not. This is the obvious alternative
strategy for transitioning: simply transition directly to VCG and wait for bidders to
catch up.

6.2. Perfectly Rational Bidders
The first set of simulations we run assumes that bidders are perfectly rational and that
they know that any bid change will result in them being classified as truthful. Such a
bidder would directly update his bid to his true valuation without bidding any other
intermediate amounts since the mechanism is incentive compatible. In this simulation
we assume that at each time step one randomly selected ad decides to change its bid
from the GSP value to the true value.

Figure 2 shows the normalized average revenue, welfare, and click yield3 for differ-
ent mechanisms during the transition. The estimated revenue from ultimately running
VCG (i.e. VCG-V) is close to GSP, which is consistent with the reasonableness of our
value estimation procedure. Immediately switching to VCG (curve VCG-B) results in a
significant revenue drop, which is steadily recovered as more advertisers update their
bids. In contrast, there is a more modest revenue drop under the hybrid mechanism
(since bidders are not always following the lowest SNE). In particular, revenue always
dominates directly switching, substantially so in the initial time steps. In both the
estimated welfare and click yield there are no significant differences between VCG-B
and Hybrid auction. The observation that welfare and click yield do not differ much
in the Hybrid auction and in the VCG-B strengthens the importance of the revenue
improvement that the former has over the latter because it is not coming at the cost of
other important metrics. Note also that, in the worst case, the drop in welfare is less
than 1.5% and the drop in click yield is less than 0.3% from the optimal case. Thus, we
focus on revenue in our subsequent simulations.

6.3. Cautious Bidders
The second set of simulations relaxes the idea that bidders are willing to immediately
jump to their true value, no matter how large a bid increase this implies. Instead we
parameterize them with a triple (p, q, i). At each time step, bidders decide randomly
whether to update their bid, doing so with probability p. If their consumer surplus
decreased in the last step (i.e. because the bid changes of others changed their slot
or increased their price) they update with a higher probability q. This allows us to
model advertisers who are attentive only when needed. Finally, when they update
they increase their bid by a percentage i until they reach their true value. Bidders are
treated as truthful as soon as they change their bid.

Different parameterizations lead to somewhat different pictures, but all share the
same general trends as in Figure 2. Note however, that relative to that figure their
x-axis has been compressed, since it now takes significantly more than 12 rounds for
all bidders to fully adapt. Figure 3, with parameters (0.3,0.6,0.1) shows that these cau-
tious updates hurt the performance of the hybrid relative to a direct switch to VCG.
There is still a benefit for the first 8 rounds, but then essentially all bidders are classi-
fied as truthful, so performance is the same as if we had switched directly. This points
to the need for more subtle methods of determining how to treat bidders than just
on the basis of whether or not they have updated their bids since the process began.
Figure 4 shows that the benefits persist longer if we have bidders who are lax about
updating (unless something bad happens) with parameters (0.1,0.9,0.1). Larger values

3Here click yield includes both bad clicks, the ones users do not stay in the clicked website for enough time,
and good clicks.
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Fig. 2: Perfectly Rational Bidders

of i (not shown) lead to more of the benefits of the hybrid approach being maintained,
since the period when a bidder is not GSP but not yet truthful is shortened.

Fig. 3: Cautious Bidders Fig. 4: Cautious Bidders, Lax Updates

6.4. Identification Strategies
In the preceding simulations, bidders are homogeneous. Thus, in some sense trying to
identify which bidders are truthful is meaningless: bidders differ only in the number of
times they have increased their bid. In this simulation, we consider instead a heteroge-
neous population of bidders. Some update more frequently and in smaller increments,
representing advertisers who use automated tools to optimize their campaigns, while
others update only occasionally (and in practice there are many advertisers who go
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long periods of time between updates). Intuitively, we can likely tolerate simply treat-
ing the former as truthful immediately since they will rapidly adapt to the new setting,
while we can update the latter as soon as they first change their bid, since that first
change represents a large step towards their true value. Advertisers in between are
more problematic.

Here we model each bidder’s behavior by an update factor x where x ∈ [0..1] is a
real number. The bidder with update factor x updates her bid with probability of x and
increases her bid by factor 1 + b

x where base increment percentage b is the parameter
of the simulation. Note that the larger x is the less is the increment factor. At the start
we assign the update factors to bidders by selecting a random number from [0..1].

Our identification strategy is as follows. We update a bidder to a TF bidder with prob-
ability IncPer/BasePer where IncPer is the total percentage of increases that the bid-
der has made since the start of the transition and BasePer is a parameter of the simu-
lation. Moreover we update a bidder to a TF bidder with probability IncNum/BaseNum
where IncNum is the total number of increases that the bidder has made since the start
of the transition and BaseNum is a parameter of the simulation. Therefore, we describe
our simulations by a triple (b,BasePer ,BaseNum). Note that the smaller BasePer or
BaseNum are, the more likely is to tag an ad as a TF bidder.

Figure 5 shows the performance of the hybrid auction in three different simulations:
(0.2, 0.1, 5), (0.2, 0.2, 10), and (0.2, 0.3, 30). In all the simulations the base increment per-
centage b is 0.2. In simulation (0.2, 0.1, 5) values BasePer and BaseNum are the smallest
among others, hence, we tend to tag a bidder as a TF ad more likely. As one expects,
this reduces the overall revenue as it is more likely that a bidder who is not fully
adapted (does not bid his true valuation) get tagged as a TF bidder. In simulation
(0.2, 0.3, 30) values BasePer and BaseNum are the largest among others, hence, we are
less likely to tag a bidder as a TF ad and hence get more revenue. Although these
simulations suggest that we should less likely tag bidders as TF, but we note that in
order to give incentive to bidders to update at all, we cannot decrease this probabil-
ity too much. Thus, perhaps the biggest message is that there is a tension between
preserving revenue and giving bidders an incentive to update their bids.

Fig. 5: Identification Strategies
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7. CONCLUDING REMARKS
We have described a framework for a hybrid mechanism design where bidders may
be either truthful or not, and compete for goods where there is an intrinsic ordering
by worth amongst the goods. If we can identify each group in this dichotomy, then we
have shown that the fundamental building block is a payment function, which maps
the bids for lower value goods to the payment for a good, and which needs to satisfy
two properties. The two properties, EMI and MMI relate solely to the bids of truthful
agents, and place constraints on the discrete derivative of the payment function; the
payment for non-TF bidders may be arbitrary.

We have given details of a bottom-up allocation procedure, which when used with
an EMI and MMI payment function gives an Incentive Compatible (IC) mechanism,
and hence gives incentive for bidders to change type to truthful. If in addition, the
mechanism is Top Interference Free, TIF , then this characterization is both necessary
and sufficient for IC anonymous mechanisms which satisfy an additional technical
axiom. Any mechanism derived from a bottom-up procedure, such as standard GSP or
VCG, are all examples of TIF mechanisms.

The motivation for our work is sponsored search, where ad-slots are auctioned off.
But as the previous paragraph suggests, our framework does not have to be tied to this
setting. Our particular starting point was wanting to provide a pathway for migrating
from one non-truthful mechanism (GSP) to a truthful mechanism whilst mitigating
the revenue loss that would occur if there was a switch to a truthful mechanism but
bidders did not immediately update (increase) their bids to their true valuation. We
have shown empirically that revenue loss can indeed by mitigated if users do switch
between being non-truthful with a GSP bid or truthful and bid their true valuation, but
that the situation is more nuanced if users update partially (i.e. are not fully truthful).

The latter illustrates the difficulties involved in ascertaining a users type, and points
to the need for further research into the best way to classify users, and the trade-offs
involved in mis-classification. The example pricing functions we gave appear to work
well for vanilla sponsored-search auctions, and this was our intended target. For use
in richer settings (e.g. where there are richer ad variants), the pricing functions can
be straightforwardly adapted for bottom-up or TIF settings, but would need additional
work to adapt them to non-TIF settings.
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A. PROOF OF THEOREM 4.8
Before we begin, we observe that our requirements ensure that the mechanism allo-
cates truthful ads in increasing order of value.

OBSERVATION 2. If M satisfies IC, AM, and TIF then it allocates TF ads in in-
creasing order.
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PROOF. Suppose for contradiction that v1 < v2 but ad (TF, v1) got a better slot than
ad (TF, v2). By IC, if we replace (TF, v1) by another copy of (TF, v2), its slot can only
improve. By TIF, this means that the slot of the original copy is unchanged. But by
AM, if the original ads had been permuted the ad with value v1 could raise its bid to
v2 and receive a worse slot, contradicting IC.

We begin with sufficiency. LetM′ = (x′, p′) be a mechanism with allocation function
x′ and payment function p′ which satisfies IC, AM, TIF, and 2T (see below). We useM′
to propose payment rule P such that mechanismM derived from applying P to TIFP
framework is equivalent toM′. In order to deal with technicalities of ties, we assume
that in the case of tiesM′ use the same tie breaking rule as our framework.

Let Π(k) = (πk, . . . , πn) for k ∈ {3, . . . , n} be the assignment of M′ for positions k to
n. We say that ad i is less than j with regard to Π(k) (show by i ≺Π(k) j), if there exist
a type profile θ such that

— The allocation x′(θ) is the same as Π(k) for positions k to n.
— i, j ∈ θ.
— Ad i is assigned to position k − 1 and ad j is assigned to a position better than i

(x′(i) > x′(j)).

Intuitively, i ≺Π(k) j means that fixing Π(k) allocation x′ prefers to assign i to position
k over j. In the following lemma we prove that ≺Π(k) is a total order over all the ads
which can be assigned to position k − 1 fixing Π(k). It turns out that TIF is almost,
but not quite strong enough to prove this lemma. The difficulty is that it has no “bite”
when applied to the case of k = 3 (i.e. the final 2 slots). That is, ad in slot 2 has no (non-
fixed) ads below it (so the definition is vacuous), while an ad in slot 1 that changes type
and remains in slot 1 forces the other ad to stay in slot 2 (again making the definition
vacuous). Thus, we need a property that ensures the mechanism is well-behaved in
this case.

DEFINITION A.1 (TWO TRANSITIVE(2T)). M is two transitive if for all choices of
Π(3) the relation ≺Π(3) is transitive.

LEMMA A.2. The relation ≺Π(k) is antisymmetric (if i ≺Π(k) j then j 6≺Π(k) i), total,
and transitive.

PROOF. We prove the lemma by contradiction. To show antisymmetry, let θ be a
type profile for which i ≺Π(k) j and θ′ be a type profile for which j ≺Π(k) i. Consider a
sequence of type profiles that are intermediate between θ′ and θ in the sense that the
transition from one profile to the next results from changing the type of a single ad
from its value in θ′ to its value in θ. Let θ′ = θ1, θ2, . . . , θa−1, θa = θ be the sequence of
type profiles.

We show that this sequence maintains the following invariant: the ad in slot k − 1
is not i and has already changed its type. Clearly this is true for θ′, since j is in slot
k − 1 in x(θ′) and its type will never change. Suppose it is true for θb, and let ad e be
the ad that changes type between θb and θb+1. By our invariant, e is not in slot k− 1 of
x(θb). Thus, by TIF, if the ad in slot k − 1 changes from x(θb) to x(θb+1) it must be that
in x(θb+1) the ad in slot k − 1 is in fact e, which is not i and has already changed its
type. This shows that i is not is slot k − 1 of x(θ), contradicting our assumption.

To see that the relation is total, take some θ and i and j. Create θ′ by replacing all
ads other than i and j shown in a slot above k in x(θ) with a copy of either i or j. Thus,
by an inductive argument that shows this does not change the allocation below slot
k − 1, some copy of i or j must be allocated to slot k − 1.
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Finally, transitivity follows via a similar construction. If k > 3, simply transform θ to
θ′ by replacing all ads above slot k with copies of one of the relevant i, j, or `. If k = 3,
transitivity is by assumption (i.e. 2T).

Now we are ready to specify how we build set of payment functions P = {p(i)}i∈[n]

fromM′. Let Π(k) be a valid assignment of ads to positions k to n. By Lemma A.2 we
have a total ordering of candidate ads for position k − 1, so set p(k−1)(Π(k)) to be the
infimum of TF ads among those candidates.

Now we prove that the mechanism (M) derived from our framework using payment
rule P always gives the same allocation and payments asM′ which finishes the proof
of this sufficiency.

LEMMA A.3. MechanismM = (x, p) is the same asM′ = (x′, p′).

PROOF. We need only verify thatM always gives the same allocation asM′ as the
fact that the payments are the same (at least up to a constant) then follows via revenue
equivalence. (The constant can be matched by changing p to p′′ to include this constant
shift.)

Now we prove by contradiction that the allocation functions x and x′ are the same.
Let θ be a type profile for which x(θ) 6= x(θ′). Let Π(k) = (πk, . . . , πn) be the largest
common suffix of x(θ) and x(θ′) and assume for now that p(k−1)(Π(k)) is finite. Let e be
the ad assigned to position k − 1 in x(θ) and e′ be the ad assigned to position k − 1 in
x′(θ). Note that

e′ ≺Π(k) e (10)

since x′(θ) assigned positions k − 1 to e′.
Because x(θ) assigns position k − 1 to e as opposed to e′ this means that

p(k−2)(e, πk, . . . , πn) < p(k−2)(e′, πk, . . . , πn)

(Recall Lines 5 and 19 of algorithm AA). This means that there exists a TF ad x with
valuation ∇(k−2,k−1)P((e, πk, . . . , πn)) < v(x) < ∇(k−2,k−1)P((e′, πk, . . . , πn)). Now if we
replace the rest of ads with TF bidders with valuation v(x) then they appear before e
but after e′. This contradicts with Equation 10 and the fact that ≺Π(k) is a total order
for any Π(k).

Now we deal with the case where p(k−1)(Π(k)) is infinite. Intuitively, this is the case
where only non-truthful ads can be shown before the suffix Π(k). Since prices are all
infinite, we need a way for the algorithm to match the order that M′ chooses. We do
this by allowing prices of the form (∞, a), where a is the type of a non-TF ad. The total
order ≺Π(k) then gives a well defined notion of the lowest price as the one whose a is
lowest according to that ordering. With this enlarged set of prices, the proof proceeds
as before.

Finally, the necessary part is easy to prove. Let M be a mechanism derived from
using TIFP framework. The AM and TIF properties follow by the fact that in algorithm
AA (Figure 1) when assigning the next TF ad, AA uses only its value and neither its
index nor the value of higher TF ads. The IC property ofM is the result of Theorem 4.5.
2T follows from the greedy nature of the allocation.

A.1. Discussion of Two Transitivity (2T)
Two transitivity is a technical assumption. The intuition is that we require the mech-
anism to be well-behaved when considering the top two slots, which TIF is not strong
enough to enforce. If all non-TF ads are of the same nature, a sufficient condition is

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.



X:20

thatM′ is monotone for non-TF ads (MN). That is, if a non-TF ad raises its bid, it gets
a (weakly) better slot.

LEMMA A.4. IF M satisfies IC, AM, TIF, and MN and all non-TF ads have the
same nature then it satisfies 2T

PROOF. By AM and IC/MN, ≺Π(3) is transitive if all 3 ads are TF or non-TF respec-
tively. Thus, WLOG let 2 be TF and 1 be non-TF (replace IC by MN below if only 1 is
TF). There are 3 cases.

Case 1: N ≺ V1 ≺ V2. By IC, N ≺ V2 (otherwise a truthful ad V1 could raise its bid
and go from slot 1 to slot 2).

Case 2: V1 ≺ N ≺ V2. By AM+IC, V1 ≺ V2 (otherwise a truthful ad V2 could raise its
bid and go from slot 1 to slot 2 when facing N ).

Case 3: V1 ≺ V2 ≺ N . By IC, V1 ≺ N (otherwise a truthful ad V1 could raise its bid
and go from slot 1 to slot 2).

Such a nice sufficient condition is not obvious if there is more than 1 nature of non-
TF ad. Non-degenerate examples still appear to satisfy 2T, but we do not know of a
less technical way to explain the way in which they are non-degenerate. To see why,
consider an example with 2 slots. If the bidders have at least one truthful ad, this
becomes a form of second price auction. However, when there are two non-truthful ads
of different natures, nothing obviously constrains the rule for determining the order in
which they are shown in a way that corresponds to enforcing transitivity. This same
example shows why we require MN in Lemma A.4. Without it we would be equally at
a loss in this situation.
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