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Consider the following scenario.

GPS assisted navigation.

* You type in your destination, Google tells you
a strategy for getting there.

 What strategy should Google compute? [
* Right now, a best response.




Consider the following scenario.

GPS assisted navigation.

But what if everyone uses Google Navigation?
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Consider the following scenario.

GPS assisted navigation.

But what if everyone uses Google Navigation?

[ B X @ 1720
43427 Duboce ... / Mission

Could compute a solution to

minimize average congestion...
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12 miw|414B )




Consider the following scenario.

GPS assisted navigation.

But what if everyone uses Google Navigation?

[ B X @ 1720
43427 Duboce ... / Mission

\But this leaves the door open to

a competing GPS service.

Stay on {3 NORTH
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Consider the following scenario.

GPS assisted navigation.

But what if everyone uses Google Navigation?

[ B X @ 1720
43427 Duboce ... / Mission

Instead, Google should

compute an equilibrium.

Stay on {3 NORTH
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Two Concerns

1. Privacy!
— Alice’s directions depend on my input!
— Can she learn about where | am going?




Two Concerns

2. Incentives!
— Alice’s directions depend on my input!
— Can | benefit by misreporting my destination?

e (Causes Google to compute an equilibrium to the
wrong game.

 Might reduce traffic along the route | really want.



Both Addressed by (Differential) Privacy

D-

' ratio bounded




Both Addressed by (Differential) Privacy

An algorithm A with domain X and range R is

e-private if for every utility function u: R — R and for

every pair of databases D, D’ c X differing in a single
record:

Ex~amylux)] < (1 +e€)- IEx~A(D')[u(x)]



Game Theoretic Implications

[MTO7] A mechanism that is e-private is also
e-approximately truthful.

* Simple Corollary:

A mechanism which computes an a-approximate
equilibrium while preserving e-privacy makes truthful
reporting, followed by suggested play, an (¢ + a)-Nash
equilibrium.

Most interesting when (e + a) —» 0



What can we hope for?

We shouldn’t expect to be able to privately solve
“small” games.

(Alice’s best response reveals Bob’s action, and
therefore potentially his utility function)

Woman

Baseball Ballet

Baseball (3, 2) (1, 1)

Man

Ballet (0, 0) (2,3)




What can we hope for?

Instead, focus on large games.

(In which no player has a substantial impact on
the utility of others...)




Large Games

A game is A-large if for all players i # j € |n/|,
for all action profiles s € |k|™ and for all pairs of
actions s; s € (k]

\u (sj5-j) —wi(sj,s-j)| < A
+ Think of A = 0(1). In this talk, A = 0 (i)

* Your action can have a large effect on your
own payoff, but not on that of others.



What are our inputs and outputs?

* Input: n utility functions u;: [k|™ — [0,1]
* Qutput: n actions a; € | k| which are draws
from an approximate correlated equilibrium.

— In fact, we prove that privacy would still be
preserved even if we output the full marginal
distribution.



What are our inputs and outputs?

* Input: n utility functions u;: [k|™ — [0,1]
* Qutput: n actions a; € | k| which are draws
from an approximate correlated equilibrium.

— Since a; can be highly sensitive to u;, can’t just
publish the whole output...



What are our inputs and outputs?




What are our inputs and outputs?

We require that for all players i, the joint
distribution over the actions a; for all j + i is

differentially private in u;.

— i.e. privacy is preserved even if all other players
collude and share their outputs, so long as you
don’t share yours.



So what can we do?

First, what we can’t do:

Theorem: No differentially private mechanism

can compute an a-approximate coarse

e s 1
correlated equilibrium for a = () (—), even for

Jn
games with only k = 2 actions.



Proof Idea

* Reduce to reconstruction lower bounds for
answering subset-sum queries on boolean
valued databases, due to [DinurNissim03],
[DworkMcsherryTalwar07]

[ DworkYekhanin08].

* “Any private mechanism which answers O(n)
‘subset sum’ queries over n bits must have

error (L(+/n)”



Proof Idea

 Answer the queries with a game.

Data Players Query Players

W ;ﬁ\
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Proof Idea

 Answer the queries with a game.

Data Players
" Two actions: {0, 1}

Parameterized by a bit b;.

. - 1 lf S;i = bi
ui(s) = {O otherwise




Proof Idea

 Answer the queries with a game.
Query Players
—actions: {0, a, 2a, ..., 1}

(04

Parameterized by a subset of
data players T..

1
ui(s) =1- Si=% )5
JET




Proof Idea

* From every a-approximate CCE, can recover
a-approximate answers to all of the query
players’ subset sum queries.

— Recall that even if the query players share their

equilibrium strategies, the privacy of all the data
players is still preserved.

— Lower bound now follows from
[DNO3,DMTO07,DYO08]

— A little more work can reduce query players action
set to 2.



So what can we do?

Theorem: There exists a computationally
efficient algorithm which computes an «-
approximate CE of a large game with n players
and k actions, while preserving e-privacy for:

=0l )
o(E

 Tight for games with k = O(1) actions.




Proof Idea

 Computing a correlated equilibrium can be
reduced to approximately answering a small

number of numeric valued queries (We’'ll see
this)

e Can use tools from the privacy literature to do
this privately.



So what can we do?

Theorem: There exists a computationally
inefficient algorithm which computes an «-
approximate CE of a large game with n players

and k actions and T types, while preserving e-
privacy for:

. log(k) - log(T)3/2
T ( c-yn )

* Nontrivial even for exponential k.




Proof Idea

 Same as before, but use more sophisticated
methods [RR10,HR10] to estimate utilities
privately. With less noise.

— Less computationally efficient.



Approximately Truthful Equilibrium
Selection

* Recall that everyone truthfully reporting their
utility function, and then taking the suggested
equilibrium action from an (€ + «)-Nash
equilibrium

* Choosing € optimally, we get...



Approximately Truthful Equilibrium
Selection
Theorem: In any large game, there is a

computationally efficient, n-approximately
truthful equilibrium selection mechanism for:

k3/4
n=0 (n1/4)




Approximately Truthful Equilibrium
Selection

Theorem: In any large game, there is a
computationally inefficient, n-approximately
truthful equilibrium selection mechanism for:

Jog(k) - log(T)3/2
n=0 174
* Approaches exact truthfulness as the
population grows.

* “Equilibrium selection is a problem of small
games”




Reducing Equilibrium Computation to
Estimating A Small Number of Numeric
Queries.



Using “expert” advice

Say we want to predict the stock market.

* We solicit N “experts” for their advice. (Will the market
go up or down?)

e We then want to use their advice somehow to make our
prediction. E.g.,

'Expt 1 Expt 2 Expt 3 neighbor's dog | truth |
down up up up up
down up up down down

Can we do nearly as well as best in hindsight?



Simpler question

 We have N “experts”.

* One of these is perfect (never makes a mistake). We
just don’t know which one.

e Can we find a strategy that makes no more than Ig(N)
mistakes?

Answer: sure. Just take majority vote over all experts that
have been correct so far.

»Each mistake cuts # available by factor of 2.

»Note: this means ok for N to be very large.

“halving algorithm”



Using “expert” advice

But what if none is perfect? Can we do nearly as
well as the best one in hindsight?

e |terated halving algorithm. Same as before, but once
we've crossed off all the experts, restart from the

beginning.
e Makes at most Ig(IN)[OPT+1] mistakes, where OPT'is
#mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've “learned”.
Can we do better?



Weighted Majority Algorithm

Intuition: Making a mistake doesn't completely
disqualify an expert. So, instead of crossing off, just
lower its weight.

Weighted Majority Alg:

1
prediction correct
weights 1 1 1 1
predictions Y Y Y N Y Y
weights 1 1 1 .5
predictions Y N N Y N Y
weights 1 .5 .5 .5




Analysis: do nearly as well as best expert in
hindsight

M = # mistakes we've made so far.
m = # mistakes best expert has made so far.
W = total weight (starts at N).

After each mistake, W drops by at least 25%.
So, after M mistakes, W is at most N(3/4)M.
Weight of best expert is (1/2)™. So,

(1/2)™ < N@3/4HM
(4/3)M < Nom
M < 2.4(m<%IgN)




Randomized Weighted Majority

2.4(m + lg N) not so good if the best expert makes a mistake
20% of the time. Can we do better? Yes.

* Instead of taking majority vote, use weights as
probabilities.
ldea: smooth out the worst case.

* Also, generalize 2 to 1- ¢.

—min(l—¢)4+In(N) o 1

Solves to: M




Analysis

Say at time t we have fraction I, of weight on experts that
made mistake.

So, we have probability I, of making a mistake, and we
remove an ¢l fraction of the total weight.

— W, =N(1-e F))(1-¢F,)..
— In(W; ) =In(N)+ 2, [In(1-eF)] < In(N)-€ 2, F,

= In(N) - € M.
If best expert makes m mistakes, then In(W¢, ;) > In((1-€)™).

Now solve: In(N) - € M > m In(1-¢).

—mIn(1 —¢) + In(N)

,, o 1 .
M ~ (L +¢e/2)m+ —10g(N)



Summarizing

E[# mistakes] < (1+&)m + £log(N).

If set e=(log(N)/m)*/2 to balance the two terms out
and get bound of E[mistakes] = m+2(mlog N)¥/?

Since m <T, this is at most m + 2(Tlog(N))2.

M<m+ Jlog(N)
T T T




What if we have N options, not N
predictors?

 We’re not combining N experts, we're choosing
one. Can we still do it?

* Nice feature of RWM: can still apply.
— Choose expert i with probability p, = w,/W.
— Still the same algorithm!

— Can apply to choosing N options, so long as costs are
{0,1}.

— What about costs in [0,1]?



What if we have N options, not N
predictors?

What about costs in [0,1]7

* If expertihas costc, do:w, =w,(1-cg).
* Our expected cost = 2. c.w./W.

* Amount of weight removed = ¢ > w.c.
* So, fraction removed = ¢ * (our cost).

* Rest of proof continues as before...



What does this have to do with
computing equilibria?

* |tis natural to use the weighted majority
algorithm to play a game.
— |ldentify experts with actions, payoffs with utilities.

* |f all players use WM algorithm to play for T

rounds, we end up with profiles: s?, ... sT such
that for each player i and action a;:

log(N)
T

Eeoir[ui(sD] = E¢ <y wi(asst_) |

\



What does this have to do with
computing equilibria?

: In(N)
* Taking T = .

Et i1 [u;(sH)] = E; ~[T] [ui(ai,st_i) ] —a
* An a-approximate “Coarse Correlated
Equilibrium”

and we get:

* A little more work gets convergence to
correlated equilibrium.



Computing an Equilibrium with Very
Little Information

* The game matrix of an n player k action game
has size = k™.

* Yet we can compute an a-approximate

correlated equilibrium by communicating only
~ klogk
CZ

utilities per player.



Computing an Equilibrium with Very
Little Information

* These reported utilities need not be exact...

* Recall what we are bounding is:
T

rr}laixz u;(a;,st_,) — Z u; (s

t=
 What if the algonthm instead observes payoff
estimates ; such that for all a;:

%Zul(al, ) Zul(al, _i <p

t=1




Computing an Equilibrium with Very
Little Information

 Then, we get a sequence of action such that:

Et~ [u (S )] = Et ~|T] [ut(av L)] —a— Zﬁ

* i.e. we get an (a + 2f)-approximate
equilibrium.

* In reality, both «a, f will be a function of T.

— Increasing T decreases a (as we saw) but
increases [5.

— Can pick T to optimize the tradeoff...



Briefly...

We took the perspective of mechanism
designers:

— We simulate play of the game to compute a
solution

— We add noise explicitly.



Briefly...

* Instead, can think of the noise as inherent to
the interaction and study the equilibria of the
repeated game.

— Even in the infinitely repeated game, if the noise
rate grows...

* Or if the noise is constant and the population grows

— ... the observed payoffs of each player j # i will be
differentially private in i’s actions.



Briefly

* Then, all of the “Folk Theorem” equilibrium of
the repeated game are eliminated.
— Intuition: If play is privacy preserving, this
removes the power to punish deviations.
— Equilibrium of the repeated game collapse to
equilibrium of the single shot game.
* Alittle noise can improve the “price of

anarchy” of the repeated game by arbitrarily
large factors.



Open Questions

Can we get sub-polynomial dependence on k
in polynomial time?

Can we get sub-polynomial dependence on k
without dependence on the size of the type
space?

Better equilibrium selection mechanisms via
other means?

What else can privacy say about noise in
games?



Open Questions

el

Kk You!
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