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Abstract

In mechanism design with (partially) verifiable information, the revelation

principle obtains in full generality if allocations are modelled as the product

set of outcomes and verifiable information. Incentive constraints fully char-

acterize the implementable set of these product-allocations. The revelation

principle does not generally hold when an allocation is modelled as only an

outcome. However, any outcome of an implementable product-allocation is

also implementable under this restricted modelling, provided that the mecha-

nism designer can expand communication by adding unverifiable messages and

restrict communication by limiting the use of messages. A canonical represen-

tation of such mechanisms is presented, implying that an inalienable right of

the agent to withhold evidence does not affect implementability.
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1 Introduction

Focusing exclusively on the role of asymmetric information, mechanism design studies

the extent to which the distribution of information restricts economic allocations.

Ideally, the theory places no limitations on the ability of economic agents to interact

and communicate, in principle allowing any type of game or mechanism to govern

their communication and interactions.

The revelation principle plays a crucial role in enabling mechanism design to

achieve, for a given information structure, its goal of analyzing unrestricted mech-

anisms. The principle is well understood in “standard mechanism design”, which I

define as a context in which economic agents can fully commit themselves to any

possible mechanism but cannot credibly reveal their private information in any other

form than by exchanging (unverifiable) messages.

For environments in which agents have (partially) verifiable information, the ap-

plicability of the revelation principle seems less well understood; even under full com-

mitment. Following observations in Green and Laffont (1986), a general revelation

principle for such settings is currently not available.1 A failure of the revelation prin-

ciple for these settings suggests that mechanism design with verifiability information

differs fundamentally from mechanism design without verifiability.

The main goal of this paper is to argue that there is no such fundamental differ-

ence and that the confusion concerning the validity of the revelation principle is an

artifact of the adopted modelling. More precisely, the tradition to model verifiable

information as part of the communication rather than the economic allocation causes

a failure of the revelation principle in general.

Hence, this paper’s main departure from the existing literature on verifiability

and mechanism design is that it models the presentation of the verified information

as part of the economic allocation.2 More specifically, it shows that by modeling the

economic allocation as the product set of the pay-off relevant outcomes and the pay-

off irrelevant provision of verifiable information (or evidence), the revelation principal

obtains as usual. Moreover, any outcome associated with an implementable product-

allocation of outcome and evidence is also implementable by mechanisms that limit

the implementation to pay-off relevant outcomes only, under the provision that the

following two elementary operations in the design of mechanisms are available: 1)

1E.g., Green and Laffont (1986), Bull and Watson (2007), and Deneckere and Severinov (2008)

obtain some variants of the revelation principle only for certain subclasses of models.
2In the context of implementation without private information, Kartik and Tecieux (2012) make

a similar point.
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broadening communication by adding (non-verifiable) messages; and 2) restricting

communication to a subset of available messages.

Because mechanism design (often implicitly) assumes the availability of both op-

erations,3 the failure of the revelation principle is not due to a fundamental difference

of verifiability messages in mechanism design.4 Regardless of whether information is

partially verifiable, the revelation principle holds provided that verifiable information

is modelled as being part of the implementable allocation. Moreover, even if one

does not allow mechanisms to do so, the set of implementable outcomes which these

allocations imply is still fully attainable if these restricted mechanisms allow the two

rather elementary operations of broadening and restricting communication.

Instead, Green and Laffont (1986) model the presentation of verifiable information

as hardwired restrictions on the agent’s reporting structure rather than being part of

the implementable allocation. The subsequent literature on mechanism design and

verifiable information adopts this modeling approach as well. In principle, one can

however just as well capture the verifiable information as part of the economic alloca-

tion.5 It is however exactly this failure to do so that causes this literature’s struggles

with the validity of the revelation principle. A compelling reason for modeling the

verifiable information as an explicit part of the economic allocation is therefore that

it circumvents any conceptual problems concerning the revelation principle.6

Related literature

3E.g., when motivating the agent’s restricted message sets on page 251, Green and Laffont them-

selves explicitly appeal to the principal’s ability to restrict the agent’s message space by imposing

severe enough punishments. Deneckere and Severinov (2008) assumption of a “worst outcome” plays

the same role; it acts as a severe enough punishment by which the principal restricts communication.
4In standard mechanism design, the first operation is clearly also essential for the revelation

principle to hold, while the second operation is available naturally: the mechanism can always

“prevent” any off-limit message by interpreting it as some specific available message and induce the

same allocation. When there is no verifiable information, this does not affect the agent’s reporting

incentives so that preventing the agent to send additional messages is, effectively, implicit in the

model. As Example 3 illustrates, this is not the case with verifiable information. Hence, a subtle

but conceptual difference associated with the verifiability of information is the weaker ability to

restrict communication when information is (partially) verifiable. See however the previous footnote

concerning other natural features that, in mechanism design models with verifiable information,

effectively imply the ability to restrict communication as well.
5E.g., Bull and Watson (2007, p. 79) explicitly mention this possibility but exclude it on the

basis of pay-off relevance: “the players evidentiary actions are not directly payoff-relevant. Thus,

we do not need to include evidence in the definition of the “outcome”.”
6Section 5 shows that the subsequent set of implementable outcomes is also implementable when

the agent’s provision of evidence is modelled as an inalienable action.
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Most points and observations presented in this paper have, in some way or another,

also been raised in the existing literature of mechanism design with verifiable in-

formation or in the literature on (unique) implementation with perfect information.

Indeed, most of this paper’s findings can be understood as a reinterpretation of similar

findings and notions there. In order to put the insights of this paper in perspective,

it is therefore helpful to carefully point out its relations to previous results.

Green and Laffont (1986) were the first to note a failure of a general revelation

principal in mechanism design problems with (partially) verifiable private informa-

tion. They obtain a revelation principle only under a so-called nested range condition,

where the agent’s verifiability exhibits a nested structure. They show by explicit ex-

amples that without this condition, the revelation principle in general fails. They

note that this failure limits the applicability of mechanism design to study settings

with partially verifiable information, because one cannot characterize the set of imple-

mentable allocations. Green and Laffont do not model the presentation of evidence

as part of the economic allocation and, the two examples below clarify that they

implicitly restrict the design of mechanisms.

Singh and Wittman (2001) give plausible examples of concrete economic environ-

ments for which the nested range condition of Green and Laffont is violated. For

principal-agent models that satisfy a unanimity condition on the agent’s preferences,

they derive necessary and sufficient conditions for the implementability of a social

choice function regardless of the underlying verifiability structure. The authors do

not discuss possible extensions of direct mechanisms such as broadening and restrict-

ing communication. They also do not model the presentation of evidence as part of

the economic allocation.

Bull and Watson (2007) explicitly address the validity of the revelation principle in

mechanism design with partially verifiable information and multiple agents. They do

not model the provision of evidence as part of the economic allocation and motivate

this exclusion by the fact that the provision of evidence is not directly payoff-relevant.

In addition, their mechanism design setup does not allow the operation of restrict-

ing communication. Due to both restrictions, a general revelation principle in their

context is not available, but the authors show that the principle obtains under an

evidentiary normality condition, which is closely related to the nested range condition

of Green and Laffont (1986).

Also Deneckere and Severinov (2008) report a failure of the usual revelation princi-

ple in mechanism design with partially verifiable information. They, instead, present

an extended revelation principle, which uses dynamic mechanisms. They further re-

fine the concepts of nested information under which the revelation principle holds and
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point to similar notions in Postlewaite and Schmeidler (1986) and Lipman and Seppi

(1995). While Deneckere and Severinov do not model the presentation of evidence as

part of the economic allocation, they, however, explicitly allow the operation of adding

non-verifiable messages, which they define as “cheap talk”. Moreover, because the au-

thors mostly focus on principal-agent problems for which there is a type-independent

“worst outcome” for the agent, they also implicitly allow the principal to restrict the

agent’s communication, because by committing to implement the worst outcome for

a certain message, the principal can ensure that the agent will never use this message.

Deneckere and Severinov moreover express a direct interest in analyzing the effect of

ad hoc limitations on the principal’s ability to design communication rules such as

limitations on the number of messages which agent can send.

The literature on (unique) implementation with perfect information has also stud-

ied verifiable evidence (e.g. Bull and Watson, 2004, Ben-Porath and Lipman, 2012

and Kartik and Tercieux, 2012). From the perspective of this literature, the idea of

extending the outcome space as presented in this paper, is not new. In particular,

Section 4 in Kartik and Tercieux (2012) consider the same kind of extended alloca-

tion space and also show that restricting to mechanisms that consider the agent’s

evidence provision as an inalienable action does not reduce the set of implementable

outcomes.7

Analyzing the role of verifiable information in a game theoretical rather than a

mechanism design context, Forges and Koessler (2005) study communication between

players with private but partially verifiable information. Since the authors do not

follow a mechanism design perspective, they do not use the notion of mechanisms

as implementing economic allocations. Yet, the revelation principles they obtain

and their underlying proofs are closely linked to the one shown in this paper. Im-

portantly, the authors also explicitly point out the importance of broadening and

restricting communication for expanding the set of equilibrium outcomes in their

game theoretical framework.

In addition to Forges and Koessler (2005), the revelation of verifiable informa-

tion in games with incomplete information is studied in, for instance, Hagenbach et

al. (2014) and the extensive literature on (Bayesian) persuasion (e.g. Glazer and

Rubinstein, 2004 and Kamenica and Gentzkow, 2011). The main difference to this

literature is that players cannot commit (all) their actions to a mechanism.

7In a private communication, the authors sent notes in which they derive the counterpart of my

Propositions 3 and 4 in a mechanism design context with quasi-linearity and transfers.
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2 The Green and Laffont (1986) example

This section first reiterates the example by which Green and Laffont (1986) demon-

strate the failure of the revelation principle and, subsequently, illustrates how to

recover it by a natural reinterpretation of an economic allocation.

Example 1: Green and Laffont (1986)

Consider a principal and one agent, who can be of three types Θ1 = {θ1, θ2, θ3}. The

set of outcomes isX1 = {x1, x2}. The agent has partially verifiable information, which

Green and Laffont concisely capture by type-specific message sets M(θi) with the

interpretation that type θi can only send messages from the setM(θi). In their specific

example they consider the sets M1(θ1) = {θ1, θ2}, M1(θ2) = {θ2, θ3}, M1(θ3) = {θ3}.
The agent’s utilities u1(x, θ) are as follows:

u1(x, θ) θ1 θ2 θ3

x1 10 5 10

x2 15 10 15

For this example, Green and Laffont show that the direct mechanism g1 : Θ→ X

with g1(θ1) = g1(θ2) = x1 and g1(θ3) = x2 induces a game that implements the

social choice function f1(θ1) = x1, f1(θ2) = f1(θ3) = x2. This is so, because type θ1,

who cannot send the message θ3, optimally sends the message θ1, which results in

x1 = f1(θ1). Type θ2, who cannot send the message θ1, optimally sends the message

θ3, which results in x2 = f1(θ2). Type θ3, who can only send the message θ3, optimally

sends the message θ3, which results in x2 = f1(θ3).

Green and Laffont observe that while direct, the mechanism is not truthful, be-

cause it induces type θ2 to misreport his type as θ3. They, subsequently, establish a

failure of the revelation principle, because a truthful direct mechanism ĝ1 that imple-

ments f1, requires ĝ1(θ1) = x1, ĝ1(θ2) = x2, ĝ1(θ3) = x2. This mechanism is however

not incentive compatible, because it induces type θ1 to report θ2.

We can however implement the social choice function f1 with a truthful direct

mechanism if we extend the concept of an allocation as follows. In addition to an

outcome x ∈ X, an allocation also describes a verifiable message θ ∈ Θ which the

agent is to send. Hence, let the set Y = X × Θ represents this extended set of

allocations with a typical element y = (x, θ) ∈ Y . Define utilities as follows:

û(x, θ) =

{
u(x, θ′) if θ ∈M(θ′)

−∞ otherwise.
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In this extended context, a direct mechanism is a function ỹ = (x̃, θ̃) : Θ → Y from

the set of non-verifiable claims about Θ to the extended set of allocations of outcomes

X and verifiable messages about Θ.8 Its interpretation is that if the agent send the

non-verifiable claim θi, the mechanism picks x̃(θi) ∈ X and the agent must present

the message θ̃(θi) ∈ Θ. The direct mechanism y(θ1) = (x1, θ1), y(θ2) = (x2, θ3),

y(θ3) = (x2, θ3) is incentive compatible (truthful) and implements the allocations in

X as intended by the social choice function f1.

3 The Mechanism Design Setup

The above example suggests that by extending the concept of an implementable

allocation, one can recover the revelation principle. This section make precise the

sense in which this insight is general. It is most instructive to do so in the original

framework of Green and Laffont (1986), because it is the simplest framework to

illustrate the two additional requirements for this extension to work: The ability to

both extend and limit communication.

Hence, consider a principal facing an agent with utility function u(x, θ), which

depends on a characteristic θ ∈ Θ and an outcome x ∈ X. For concreteness, we

assume that both sets are finite: Θ = {θ1, . . . , θK} and X = {x1, . . . , xL} with

K,L ∈ N.9 The agent knows θ, whereas the principal only knows that θ ∈ Θ. The

agent has verifiable information represented by a correspondence M : Θ→ Θ with the

interpretation that type θi can only send messages about θ from the set M(θi). Hence,

a type θ describes both the agent’s preferences over X and an available message set.

In short, we can represent the principal-agent problem of Green and Laffont by a

structure Γ = {Θ, X,M(·), u(·, ·)}, which consists and describes all the primitives of

the principal-agent model.

Fully in line with the usual goal of mechanism design, Green and Laffont (p.448)

state their intention to “study the class of social choice functions f from Θ into X

8Hence, claims and messages are different objects in this context and not synonyms. While we will

use û and the mechanism ỹ only as hypothetical constructs for deriving a revelation principle, they

allow the following literal interpretation. Although an agent can costlessly make any unverifiable

claim about his type, he has a prohibitively high cost to back up his claim if he cannot present the

verifiable information to substantiate it. Hence, a person with only $10 dollars in his pocket, can

claim he has $20, but has a prohibitively high cost of actually retrieving $20 from his pocket. In

contrast, a person with $20 dollars in his pocket, can claim to have $20 dollars and also produce

the $20 at zero costs.
9All arguments naturally extend if Θ and X are subsets of some more general Euclidean spaces.
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that can be achieved despite the asymmetry of information between the two players.”

For this, they define a direct mechanism as follows.

Definition 1: A mechanism (M(·), g) consists of a correspondence M : Θ→ Θ such

that θ ∈M(θ) for all θ ∈ Θ, and an outcome function g : Θ→ X.

Hence, the mechanism (M(·), g) presents the agent with a single-person decision

problem in which an agent of type θ has to pick some θ but in which his choice is

restricted to his message set M(θ). Following Green and Laffont, we can describe

the agent’s optimal decision behavior as follows. Given the correspondence M(·), the

outcome function g induces a response rule φg : Θ→ Θ defined by10

φg(θ) ∈ arg max
m∈M(θ)

u(g(m), θ).

This leads to the following two notions of implementability.

Definition 2: A social choice function f : Θ → X is M(·)-implementable iff there

exists an outcome function g : Θ→ X such that:

g(φg(θ)) = f(θ) for any θ in Θ,

where φg(·) is an induced response rule.

Definition 3: A social choice function f : Θ → X is truthfully M(·)-implementable

iff there exists an outcome function g∗ : Θ→ X such that:

g∗(φg∗(θ)) = f(θ) for any θ in Θ

and

φg∗(θ) = θ.

The example in the previous section proves that there exists social choice func-

tions that are M(·)-implementable but not truthfully M(·)-implementable. In this

result, Green and Laffont see a failure of the revelation principle and the ensuing

problem that one cannot, in general, characterize the set of implementable social

choice functions for all principal-agent problems Γ.11

10Because Θ is finite, the maximum exists.
11Note that the agent’s decision problem involves a type-dependent action set. Hence, extending

this approach to multiple agents leads to the concern that the game induced by the mechanism

does not, strictly speaking, correspond to a Bayesian Game. In the definitions following Harsanyi

(1967), games with imperfect information require that the agent’s action sets are type-independent.

(See footnote 13 for more details and also Bull and Watson (p. 80, 2007) who point out that their

“disclosure game [...] is a Bayesian game with type-contingent restrictions on actions”.)
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The next two examples suggest, however, that not only the notion of truthfully

M(·)-implementability is problematic, but that the more primitive notion of M(·)-
implementability also raises questions. In Example 2, the specified social choice

function is not M(·)-implementable, whereas it is implementable if the mechanism

can, in addition to the messages in M(.), also condition on two non-verifiable mes-

sages. In Example 3, the specified social choice function is not M(·)-implementable,

whereas it is implementable if the mechanism can limit the messages that can be

sent.

Example 2: Too few messages

Consider a third outcome x3 by duplicating outcome x2 in the sense that each type

θ is indifferent between x3 and x2. Hence, the set of outcomes is X2 = {x1, x2, x3}
with the utility

u2(x, θ) θ1 θ2 θ3

x1 10 5 10

x2 15 10 15

x3 15 10 15

Suppose we want to implement the social choice function f2(θ1) = x1, f2(θ2) = x2,

f2(θ3) = x3. Then, based on the reasoning in Example 1, it is straightforward to see

that this social choice function is not M(·)-implementable, but it is implementable by

a mechanism that, in addition to reporting θ, asks for some extra cheap talk message

m̂ ∈ M̂ = {a, b} as follows

g2(θ, m̂) =


x2 if (θ, m̂) = (θ3, a)

x3 if (θ, m̂) = (θ3, b)

x1 otherwise.

With the concept of an extended allocation as introduced in Example 1, the incentive

compatible direct mechanism y2(θ1) = (x1, θ1), y2(θ2) = (x2, θ3), y2(θ3) = (x3, θ3)

implements the outcomes in X2 as intended by the social choice function f2. �

Example 3: Too many messages

Consider three type Θ3 = {θ1, θ2, θ3} with two outcomes X3 = {x1, x2}, message sets

M3(θ1) = {θ1, θ2}, M3(θ2) = {θ2, θ3}, M3(θ3) = {θ3}, and utilities

u3(x, θ) θ1 θ2 θ3

x1 0 1 1

x2 1 0 0
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Consider the social choice function f3(θ1) = x1, f3(θ2) = f3(θ3) = x2, inducing a

utility 0 for each type. This social choice function is not M(.)-implementable. For

suppose it is M(.)-implementable by some function g3 : Θ → X. There are two

cases for g3(θ2). Case 1: g3(θ2) = x1, but then type θ2 can guarantee himself 1

by sending the message θ2, which contradicts that he is supposed to get 0 under

f3. Case 2: g3(θ2) = x2, but then type θ1 can guarantee himself 1 by sending the

message θ2, contradicting that he is supposed to get 0 under f3. Note however that

by restricting the mechanism to only messages {θ1, θ3} ⊂ Θ and setting g3(θ1) = x1

and g3(θ3) = x2, the social choice function f3 is implementable. Hence, to implement

f3 it is crucial that the agent’s communication is restricted: he is not allowed to send

the message θ2. Because Green and Laffont define a mechanism as consisting of an

outcome function whose domain is the entire set of types Θ, they formally do not

allow such restrictions in their framework. �

4 A Revelation Principle

The two last examples of the previous section suggest that for studying the restrictions

on implementable outcomes, the notion of a direct mechanism is too restrictive. From

a perspective of standard mechanism design, this seems a puzzling observation. This

section argues however that the observation is more due to a restrictive modelling of

an economic allocation rather than some deep fundamental difference to mechanism

design with verifiable information. In particular, the revelation principle obtains as

usual if an implementable allocation consists not only of the outcome x, but also the

verifiable message m that is sent.

In order to see that such a definition of an allocation is, from a mechanism design

perspective, also the more natural one, recall that mechanism design is primarily

interested in the equilibrium outcomes which a mechanism induces rather than the

specifics of the mechanism itself. More precisely, it is not the complete equilibrium

outcome that matters, but only the “components” of these equilibrium outcomes

that are relevant to the mechanism design problem. Hence, in order to model some

environment with private information as a problem of mechanism design, it is crucial

to identify first its relevant components.

Clearly, the direct pay-off relevant part, the outcome x ∈ X, is such a component.

Yet, it is important to recognize that, because the verifiable messages allow the

principal to screen among different types of agents, they are just as relevant. Put

differently, verifiable messages are screening variables and because screening variables
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are a crucial part of the mechanism design problem, they should be included as part

of the implementable allocation.

In contrast, the tradition in the literature on mechanism design with verifiable

information includes only the outcome x ∈ X as part of the implementable alloca-

tion. Its motivation for not including the verifiable messages themselves lies in the

suggestion that sending a verifiable message is costless and, thus, pay-off irrelevant.

This view is however partially misguided, because whilst it is true that for a type

who can send a verifiable message, the cost is zero, the cost is effectively infinite for

a type who cannot send it. Hence, one can just as well argue that, in contrast to

unverifiable messages, verifiable messages actually exhibit an extreme form of payoff-

relevance. Taking a pure pay-off relevance perspective, they should therefore be part

of the implementable allocation.

Importantly, the inclusion of verifiable messages as part of the implementable

allocation fully restores the revelation principle in mechanism design with verifiable

information. In order to show this formally in the original context of Green and

Laffont, one first has to make a modeling choice about an aspect, which Green and

Laffont leave unspecified: whether the verifiable messages which the agent can send

are “exhaustive”.

Subsequent literature provides two perspectives on this. By interpreting that the

agent’s verifiable message is effectively a collection of possible pieces of evidence, Bull

and Watson (2007) present a micro-foundation for the underlying verifiable messages,

which implies that the agent can only send one verifiable message. In contrast,

Deneckere and Severinov (2008) do not model this intermediate step of differentiating

between the verifiable message and its underlying pieces of evidence. As the authors

explicitly explain, without this distinction, it is appropriate to model the possibility

that the agent can send multiple verifiable messages.

For the validity of the revelation principle it is inconsequential which modeling

choice to make. For the exposition of the result, it is however less cumbersome to

follow the interpretation of Bull and Watson (2007). In this case, the verifiable-

message component of an equilibrium outcome that is induced by some mechanism is

an element of Θ, whereas under the interpretation of Deneckere and Severinov (2008),

where the agent could send multiple verifiable messages, a verifiable message is an

element of the power set 2Θ.

Given a principal-agent problem Γ = {Θ, X,M, u}, define the extended allocation set

X̂ ≡ X ×Θ and the extended utility function û(x̂|θ̃) = û(x, θ|θ̃) as

û(x, θ|θ̃) ≡
{
u(x, θ̃) if θ ∈M(θ̃)

u(x, θ̃)− C otherwise.
(1)
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with C = maxx,θ,x′,θ′ u(x, θ)− u(x′, θ′).12,13 We can interpret the expanded structure

Γ̂ = {Θ, X̂,M, û} as representing a principal-agent problem in which the principal

wants to implement an extended social choice function f̂ : Θ → X̂ given that the

agent is privately informed about his type θ.

A social choice function f̂ is implementable if there exists some single-person deci-

sion problem in which for any type θ there exists an optimal decision inducing the

allocation f̂(θ). A special class of such decision problems are incentive compatible

direct mechanisms defined as follows.

Definition 1̂: An incentive compatible direct mechanism in Γ̂ is a composite function

ĝ = (ĝ1, ĝ2) with ĝ1 : Θ→ X and ĝ2 : Θ→ Θ such that

û(ĝ(θ)|θ) ≥ û(ĝ(θ′)|θ) for any θ, θ′ ∈ Θ. (2)

Hence, an incentive compatible direct mechanism ĝ represents a single-person

decision problem in which it is an optimal decision for the agent to report his type

truthfully. We adapt Definition 2 to Γ̂ as follows.

Definition 2̂: A social choice function f̂ : Θ → X̂ is ĝ-implementable iff the direct

mechanism ĝ = f̂ is incentive compatible.

Standard arguments yield the revelation principle for the principal-agent problem

Γ̂: If there exists some single-person decision problem in which for any type θ there

exists an optimal decision leading to the extended allocation f̂(θ), then there exists

an incentive compatible direct mechanism with ĝ(θ) = f̂(θ). Hence, the mechanism

ĝ implements the social choice function f̂ . Therefore the next proposition follows.

Proposition 1 (Revelation principle) Any extended allocation f̂(θ) that is the

outcome of some single-agent decision problem in Γ̂ is ĝ-implementable.

While the previous proposition establishes a revelation principle for the principal-

agent problem Γ̂, it leaves open its relation to the underlying problem Γ.

12Because Θ and X are finite, C is well-defined. If the sets Θ and X are infinite, one may take

the supremum rather than the maximum, which is well-defined provided that u is bounded. If u is

unbounded, all arguments still go through by picking, for a given social welfare function f , a large

enough (finite) value for C.
13Extending the agent’s payoff function by introducing the prohibitively high cost C effectively

renders the agent’s action set type-independent and solves the issue pointed out in footnote 11 . It

is an illustration of the idea of Harsanyi (p. 168, 1967) that “the assumption that a given strategy

si = s0i is not available to player i is equivalent, from a game-theoretical point of view, to the

assumption that player i will never actually use strategy s [emphasis in the original].”
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Proposition 2 Consider some principal-agent problem Γ and its corresponding ex-

tension Γ̂. If there exists some mechanism in Γ which implements the social choice

function f : Θ → X, then there exists a function θ̂ : Θ → Θ such that the extended

social choice function f̂(·) = (f(·), θ̂(·)) is ĝ-implementable.

Proof of Proposition 2: Suppose some decision problem implements the social

choice function f in Γ. Then for type θ, some decision(s) leading to the outcome

f(θ) and some verifiable message θ̂(θ) ∈M(θ) that he sends when achieving outcome

f(θ) is optimal. Consider the direct mechanism ĝ : Θ → X̂ with ĝ1(θ) = f(θ) ∈ X
and ĝ2(θ) = θ̂(θ) ∈ M(θ) ⊂ Θ. Fix some θ ∈ Θ. Inequality (2) holds for any

θ′ s.t. θ̂(θ′) 6∈ M(θ), because u(f(θ′), θ) − C ≤ minx,θ̃ u(x, θ̃) ≤ û(f(θ), θ̂(θ)), since

θ̂(θ) ∈M(θ). Moreover, the optimality of the decision(s) leading to f(θ) and message

θ̂(θ) imply that inequality (2) holds for any θ′ s.t. θ̂(θ′) ∈M(θ). It then follows that

the constructed ĝ satisfies (2) for any θ, θ′ ∈ Θ so that ĝ is an incentive compatible

direct mechanism in Γ̂. Hence f̂ is ĝ-implementable. Q.E.D.

The main insight is therefore that, despite the presence of (partially) verifiable

information, there is nothing peculiar about the principal-agent problem if we, ap-

propriately, specify the concept of an implementable allocation. We can then use the

revelation principle as usual to analyze the class of implementable allocations for all

possible mechanisms. In particular, the incentive constraints (2) full characterize the

set of implementable social choice functions f̂ . Taking the first component of f̂ gives

us the set of implementable outcomes x ∈ X.

5 Inalienable Mechanisms

Proposition 2 provides the answer to the question how to characterize the set im-

plementable social choice functions f for any Γ: First characterize the set of imple-

mentable social choice functions f̂ in the corresponding problem Γ̂ by the incentive

constraints (2). The set all implementable social choice function f can then be ob-

tained in a second step by taking the first component of each implementable f̂ .

The procedure characterizes the set of implementable outcome via mechanisms

ĝ = (ĝ1, ĝ2) that map into the extended allocation X × Θ rather than the outcome

space X. One interpretation of such mechanisms is that they are evidence-conditional.

The agent receives the allocation ĝ1(θ) ∈ X conditional on presenting the evidence

ĝ2(θ) ∈ Θ. While the previous section shows that evidence-conditional mechanisms

allow us to characterize the set of implementable outcomes with the usual tools of

13



mechanism design and, in particular, the notion of incentive compatible direct mech-

anisms, one may object that these mechanisms may be too coercive for some practical

environments, because they effectively force the agent to present his evidence.14

This has lead the mechanism design literature with verifiability to introduce the

concept of inalienability, which is the notion that the principal should not be able to

force the agent to present any evidence, if the agent does not want to. The evidence-

conditional mechanisms ĝ have the strong flavor that they violate this notion, because

the agent is forced to give up the evidence ĝ2(θ) if he wants the allocation ĝ1(θ).

Following the concern that evidence-conditional mechanisms violate the notion of

inalienability, we introduce the following definition:

Definition: An inalienable mechanism (M, g) consists of a set M and an outcome

function g : M → X.

Hence, the restrictive notion of an inalienable mechanism is that, just as in the

original framework of Green and Laffont, it maps into the set of outcomes X in-

stead of some larger set. While clearly relevant from a practical perspective, it is

however important to be aware that, from a pure mechanism design perspective, the

introduction of inalienability is a restriction on the choice of mechanisms that is not

directly related to the presence of asymmetric information. Clearly, any additional

restrictions on the available mechanisms can only reduce the set of implementable

allocations.

Taking the concern of inalienability seriously, an interesting question is however to

ask how restrictive the introduction of such mechanisms is in terms of implementabil-

ity. Ideally, the set of implementable allocation with inalienable mechanisms coincides

with the set of implementable allocations via unrestricted mechanisms.

One example of an inalienable mechanism is a direct mechanism, g : Θ → X,

as modelled in Green and Laffont. Yet, Examples 2 and 3 show that the set of

implementable allocations via these mechanisms is strictly smaller than the set of

implementable allocations via unrestricted mechanisms. Indeed, starting with a direct

mechanism of Green and Laffont and broadening it by adding unverifiable messages

or reducing it further by restricting communication, still yields a mechanism that

is inalienable. Hence, the examples show that, in general, there exist inalienable

mechanisms which can implement outcomes that are not implementable via a direct

mechanism in the sense of Green and Laffont.

The remainder of this section shows that starting with a direct mechanism of

Green and Laffont and using the two elementary operations of broadening it by

14E.g., the “right to remain silent” is a right recognized in many of the world’s legal systems.
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adding unverifiable messages and limiting it by restricting communication, obtains

an inalienable mechanism that implements an outcome that is implementable by

some non-inalienable evidence-conditional mechanism ĝ. This result implies that

inalienable mechanisms are not restrictive in terms of the implementable outcomes

they induce. Because the proof is constructive, it shows exactly how to obtain the

inalienable mechanism that implements the same outcome as its evidence-conditional

counterpart ĝ.

Given a principal-agent problem Γ with the message correspondence M(.), first

extend the agent’s message as follows:

M̂(θ) = M(θ)×Θ.

As before an interpretation of this extension is that, in addition to a message from

M(θ), an agent of type θ also makes some non-verifiable claim about his type Θ.

However, this additional non-verifiable message does not necessarily be a literal claim

about the agent’s type. Another interpretation is that the agent has to say some

natural number between 1 and K, which, given that there are K types, effectively is

like reporting some Θ.

Let M̂ ≡ ∪θ∈ΘM̂(θ) and define a mechanism as follows:

Definition 1̄: A mechanism (M̄, ḡ) in Γ consists of a set M̄ ⊆ M̂ such that M̄ ∩
M̂(θ) 6= ∅ for all θ ∈ Θ and an outcome function ḡ : M̄ → X.

Hence, a mechanism (M̄, ḡ) is inalienable. Moreover, it is constructed by starting

with the message sets M(θ), which Green and Laffont consider as primitives of the un-

derlying principal-agent problem, extending them by adding non-verifiable messages,

in the form of the set Θ, to obtain the extended messages set M̂ , and, subsequently,

restricting this overall message set to M̄ , which is a (possibly strict) subset of M̂ .

Hence, if, in the mechanism design problem, the principal has the ability to perform

the two elementary operations of adding non-verifiable messages and restricting the

agent’s communication, then it is compelling that the principal can use mechanisms

as defined in Definition 1̄.

As before, a mechanism (M̄, ḡ) presents the agent of type θ with a single-person

decision problem in which he has to pick some m from the message set M̄ that is

consistent with his message set M̂(θ). That is, the mechanism induces a response

rule φ̄ḡ : Θ→ M̄ defined by15

φ̄ḡ(θ) ∈ arg max
m∈M̂(θ)∩M̄

u(ḡ(m), θ).

15The provision in Definition 1̄ that M̂(θ) ∩ M̄ 6= ∅ for all θ ∈ Θ implies that the agent does not

maximize over an empty set.
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Because the function φ̄ḡ maps Θ into the Cartesian product Θ × Θ, it is convenient

to write the composed function φ̄ḡ component-wise as φ̄ḡ = (φ̄1
ḡ, φ̄

2
ḡ) of two functions

φ̄1
ḡ : Θ→ Θ and φ̄2

ḡ : Θ→ Θ.

The adapted notions of a mechanism and a response rule lead to the following

concept of implementability.

Definition 2̄: A social choice function f : Θ→ X is M̄-implementable in Γ iff there

exists a mechanism (M̄, ḡ) with an outcome function ḡ such that:

ḡ(φ̄ḡ(θ)) = f(θ) for any θ in Θ, (3)

where φ̄ḡ(·) is a response rule with respect to the mechanism (M̄, ḡ).

The next proposition makes precise the idea that any implementable outcome is

implementable by an inalienable mechanism (M̄, ḡ).

Proposition 3 Consider a principal-agent problem Γ and the corresponding problem

Γ̂. If f̂ = (x̂, θ̂) is ĝ-implementable in Γ̂ and θ̂(θ) ∈ M(θ) for all θ ∈ Θ, then f = x̂

is M̄-implementable in Γ.

Proof of Proposition 3: Fix f̂ = (x̂, θ̂) and define M̄ as

M̄ = {(θ̂(θi), θi) : θi ∈ Θ}.

Because θ̂(θ) ∈ M(θ), it holds by construction of M̂(θ) that M̄ ⊂ ∪θM̂(θ). Define

the outcome function ḡ : M̄ → X as ḡ(θ̂(θ), θ) = x̂(θ) for any (θ̂(θ), θ) ∈ M̄ . Note

M̂(θi) ∩ M̄ = (θ̂(θi), i) 6= ∅ for any θi ∈ Θ. Hence, (M̄, ḡ) is a mechanism according

to Definition 1̄. Moreover, because M̂(θi) ∩ M̄ = (θ̂(θi), θi) is a singleton, (θ̂(θ), θ)

is a response rule with respect to the mechanism (M̄, ḡ). Hence, φ̄ḡ(θ) = (θ̂(θ), θ)

so that ḡ(φ̄ḡ(θ)) = ḡ(θ̂(θ), θ) = x̂(θ) = f(θ). Therefore, f = x̂ is M̄ -implementable.

Q.E.D.

By constructively deriving the incentive compatible mechanism ĝ that implements

the same outcome as some inalienable mechanism (M̄, ḡ), the next proposition makes

precise the converse of the previous proposition.

Proposition 4 Consider a principal-agent problem Γ and the corresponding prob-

lem Γ̂. If f is M̄-implementable in Γ, then the social choice function f̂ = (f, φ̄1
ḡ)

is ĝ-implementable in Γ̂, where φ̄1
ḡ is the first component of the response rule φ̄ḡ

corresponding to the outcome function ḡ satisfying (3).
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Proof of Proposition 4: Given f in Γ is M̄ -implementable, there is a ḡ and an asso-

ciated response rule φ̄ḡ = (φ̄1
ḡ, φ̄

2
ḡ) satisfying (3). Fixing functions (ḡ, φ̄1

ḡ, φ̄
2
ḡ), consider

the social choice function f̂ = (f, φ̄1
ḡ) in Γ̂ and the direct mechanism ĝ = f̂ . The pro-

postion follows if ĝ is incentive compatible, i.e. satisfies (2). To show this, fix a type

θ ∈ Θ. It follows that û(ĝ(θ), θ) = û(f(θ), φ̄1
ḡ(θ)|θ) = u(f(θ), θ), because ĝ = f̂ =

(f, φ̄ḡ) and φ̄1
ḡ(θ) ∈M(θ). Hence, we have to show that û(ĝ(θ′)|θ) = û(f(θ′), φ̄1

ḡ(θ
′)) ≤

u(f(θ), θ) for any θ′ ∈ Θ. Note first that while it holds φ̄ḡ(θ
′) ∈ M̄ , we can have

φ̄1
ḡ(θ
′) 6∈ M(θ) or φ̄1

ḡ(θ
′) ∈ M(θ). First, suppose that φ̄1

ḡ(θ
′) 6∈ M(θ), it then follows

û(ĝ(θ′)|θ) = u(f(θ′), θ)−C ≤ maxx̃,θ̃ u(x̃, θ̃)−C = minx̃,θ̃ u(x̃, θ̃) ≤ u(f(θ), θ). Next,

suppose that φ̄1
ḡ(θ
′) ∈M(θ), it then follows û(ĝ(θ′)|θ) = u(f(θ′), θ) = u(ḡ(φ̄ḡ(θ

′)), θ) ≤
u(ḡ(φ̄ḡ(θ)), θ), where the inequality follows because φ̄ḡ(θ) maximizes u(ḡ(m), θ) over

all m ∈ M̂(θ) ∩ M̄ , which includes φ̄ḡ(θ
′). Q.E.D.

Combining these two propositions with the previous two implies that Definition

1̄ gives a canonical representation of mechanisms in the sense that, in terms of im-

plementable outcomes, there is no loss of generality in restricting attention to these

mechanisms; any implementable outcome is implementable by some mechanism cor-

responding to Definition 1̄.

Example 1 revisited:

As an illustration to see how one can check the implementability of any social choice

function in any principal-agent problem Γ and find the inalienable mechanism which

implements it, reconsider the principal-agent problem Γ1 = (Θ1, X1,M1, u1) of exam-

ple 1 and the social choice function f1. First construct the hypothetical principal-

agent problem Γ̂1 = (Θ1, X1 ×Θ1,M1, û1) where the hypothetical utility function û1

follows from its definition in (1):

û1(x, θ|θ1) θ1 θ2 θ3

x1 10 10 0

x2 15 15 5

û1(x, θ|θ2) θ1 θ2 θ3

x1 -5 5 5

x2 0 10 10

û1(x, θ|θ3) θ1 θ2 θ3

x1 0 0 10

x2 5 5 15

Next check whether there exists a social choice function f̂1 = (f1, θ̂1) that is

ĝ-implementable in Γ̂1. Given that the revelation principle holds in Γ̂, this can

be done as usual: find an incentive compatible direct mechanism ĝ1 = (ĝ1
1, ĝ

2
1) :

Θ → X̂ with ĝ1
1 = f1 and ĝ2

1 = θ̂1 which satisfies the familiar incentive compatible

conditions (2). Using these incentive constraints one can verify that ĝ1(θ1) = (x1, θ1),

ĝ1(θ2) = ĝ1(θ3) = (x2, θ3) is such an incentive compatible direct mechanism. Hence,

the conclusion follows that f1 is indeed M̄ -implementable in Γ1.
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While this procedure confirms that f1 is M̄ -implementable by the familiar means

of checking incentive constraints of direct mechanisms, it does not yield the mecha-

nism (M̄1, ḡ1) which actually implements f1 in the principal-agent problem Γ1. The

constructive proof of Proposition 3 shows how to recover this mechanism from ĝ1.

Using that ĝ1 = (ĝ1
1, ĝ

2
1) = (f1, θ̂1) = f̂1, it follows

M̄1 = {(θ̂1(θi), θi) : θi ∈ Θ} = {(ĝ2
1(θi), θi) : θi ∈ Θ} = {(θ1, θ1), (θ3, θ2), (θ3, θ3)}.

This set yields the required ḡ1 after linking it to the social choice function f1 by

setting ḡ1(θ̂(θ), θ) = f̂ 1
1 (θ) = f1(θ) for each (θ̂(θ), θ) ∈ M̄1. For Example 1, this yields

ḡ1(θ1, θ1) = x1, ḡ1(θ3, θ2) = ḡ1(θ3, θ3) = x2. �

6 Conclusion

This paper argues that, in their specific modeling of partially verifiable information,

the seminal paper of Green and Laffont (1986) and subsequent literature implicitly

restrict the notion of an implementable allocation. It, moreover, demonstrates a rev-

elation principle in its full generality after expanding the notion of an implementable

allocation without affecting the underlying information and verifiability structure.

As usual, the obtained revelation principle allows a complete characterization of the

set of implementable allocations by incentive constraints. In addition, it shows that

any outcome associated with some (extended) implementable allocation is also im-

plementable under the restricted interpretation of an allocation, provided that the

mechanism designer is allowed to expand communication by adding unverifiable mes-

sages and to restrict communication by limiting the use of messages. These results

lead to the conclusion that conceptual problems with the revelation principle are more

related to a limited interpretation of an allocation and the implicit limitations on con-

structing these mechanisms rather than to the presence of verifiable information per

se.
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