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Abstract 

Background: Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. 
The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, 
long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic 
consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal 
biomass was investigated with a range of calcium concentrations against various inoculum to substrate ratios as a 
means to alleviate the LCFA inhibition.

Results: Whole algal biomass of Nannochloropsis salina represents high lipid content algal biomass while lipid-
extracted residue represents its low lipid counterpart. The anaerobic digestion experiments were conducted in a 
series of serum bottles at 35 °C for 20 days. A kinetic model, considering LCFA inhibition on hydrolysis, acidogenesis 
as well as methanogenesis steps, was developed from the observed phenomenon of inhibition factors as a function 
of the LCFA concentration and specific biomass content or calcium concentration. The results showed that inoculum 
to substrate ratio had a stronger effect on biogas production than calcium, and calcium had no effect on biogas 
production when inoculum concentration was extremely low. The microbial community analysis by high-throughput 
Illumina Miseq sequencing indicated that diversity of both bacterial and methanogenic communities decreased with 
elevation of lipid concentration. Hydrolytic bacteria and aceticlastic methanogens dominated bacterial and archaea 
communities, respectively, in both high and low LCFA concentration digesters.

Conclusions: This study demonstrated that inoculum concentration has a more significant effect on alleviating LCFA 
inhibition than calcium concentration, while calcium only played a role when inoculum concentration met a thresh-
old level. The model revealed that each functional microbial group was subject to different levels of LCFA inhibition. 
Although methanogens were the most susceptible microbes to LCFA inhibition, the inhibition factor for hydrolytic bac-
teria was more highly affected by inoculum concentration. The microbial community analysis indicated that the bacterial 
community was affected more than the methanogenic community by high LCFAs concentration. Syntrophic acetogens 
were sensitive to high LCFA concentrations and thus showed a decreased abundance in such an environment.
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Background

Oleaginous microalgae offer a promising option for sus-

tainable production of renewable transportation fuels 

while reducing lifecycle greenhouse gas emissions rela-

tive to fossil fuels [1]. Several studies point to both the 

expense and inefficiencies of algae lipid-extraction tech-

niques, demonstrating that the importance anaerobic 

digestion (AD) could have on either whole-algae or resi-

due-algae utilization, respectively, with regard to biofuel/

bioenergy production [2, 3].
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During the AD process, lipids are initially hydrolyzed 

to long-chain fatty acids (LCFAs) and glycerol in a fast 

step by extracellular lipases excreted by hydrolytic bac-

teria. LCFAs then adsorb to and are transported within 

microbial cell membranes. Once inside, LCFAs are fur-

ther degraded to acetic acid and hydrogen through 

β-oxidation by syntrophic acetogenic bacteria. In 

lipid-containing substrates, degradation of LCFAs via 

β-oxidation is the slowest conversion step and controls 

the overall kinetics of the digestion process [4, 5]. �e 

difference between the rates of hydrolysis of lipids and 

β-oxidation of LCFAs could result in a reactant–product 

imbalance and LCFA accumulation over time, resulting 

in inhibition on microbial activity.

�e inhibitory effect of LCFAs on microbial activity of 

hydrolytic bacteria, acidogens, acetogens, and methano-

gens within anaerobic consortium has been well docu-

mented [6–11]. Methanogens were reported to be more 

susceptible to LCFA inhibition compared to acidogens [9, 

11], while acetotrophic methanogens are reported to be 

more severely affected than hydrogenotrophic methano-

gens [8, 10]. If the microbial population is disrupted by 

LCFAs, inhibited digestion will occur, leading to volatile 

fatty acids (VFA) accumulation and depressed methane 

production [12].

Microbial cell membranes, where various essential pro-

cesses occur, are a primary target of LCFAs. Although the 

inhibition mechanism of LCFAs on microbial cell mem-

branes is not completely clear, it can be categorized as 

biochemical and physical in nature. Biochemical inhibi-

tion of LCFAs is correlated with its amphipathic struc-

ture. Due to detergent properties, LCFAs act as detergent 

and solubilize the lipid bilayer or membrane proteins, 

leading to cell lysis [13], enzyme activity inhibition [14], 

and electron transport chain disruption [15]. �e inhi-

bition activity of LCFAs is affected by its structure as 

well. LCFAs with longer carbon chains tend to be more 

problematic to microbes than LCFAs with shorter car-

bon chain [15]. LCFAs with more carbon double bonds 

can be more problematic than same length LCFAs with 

saturated carbon bonds [14, 16], and the inhibition effect 

of LCFAs is positively related to the number of double 

bonds in the LCFAs [15].

�e physical absorption of LCFAs to the surface of 

microbial cell membranes can lead to mass transfer limi-

tation [7, 17, 18]. Product diffusion and nutrient uptake 

are affected by LCFA concentration [6] as well as the 

LCFA:biomass ratio [19], although Rinzema et  al. [4] 

found that the LCFA:biomass ratio is less important than 

LCFA concentration. Mass transfer limitation could also 

be a result of LCFAs undermining of transporter proteins 

located on the membrane or reduction of the proton 

motive force for active transport [15].

Efforts to reduce the inhibitory effect of LCFAs are 

needed to maintain an efficient and stable digestion pro-

cess. Various strategies, including co-digestion [20], addi-

tion of adsorbents [8, 21], or discontinuous feeding [22], 

have been used for overcoming LCFA inhibition. Con-

tinuous or pulse exposure of LCFAs has been suggested 

to acclimate microorganisms for an elevated tolerance 

to LCFAs [7, 22]. Calcium has been used to reduce the 

inhibitory effect of LCFAs [8, 23–25], which could be 

attributed to LCFAs’ precipitation in the form of fatty 

acid calcium salts [8].

�e purpose of this research is to investigate LCFA deg-

radation during AD, focusing in particular on the effect of 

the calcium:LCFA ratio against the LCFA:biomass ratio. 

A kinetic model was developed with the consideration of 

an inhibition factor as a function of LCFA concentration 

and specific biomass content or calcium ion concentra-

tion. Individual inhibition factors for each function group 

were considered rather than a lumped parameter. Both 

hydrolytic bacteria and methanogen community struc-

ture were characterized by high-throughput sequencing 

technology Illumina Miseq to evaluate the community 

structure shift under LCFA inhibition.

Results and discussion

E�ect of calcium concentration against inoculum 

to substrate ratio

Inoculum to substrate ratio (I/S) had a significant effect 

on biogas production (Fig. 1). When I/S ratio was lower 

than 1, the AD process was severely inhibited in the 

high lipid concentration (NS1) digester. �e calcium 

dosed digester showed enhanced biogas production by 

10 % as well as accelerated reaction rate at I/S ratio of 

1 in both the NS1 and low lipid concentration (NS2) 

digesters. At I/S ratio of 1, calcium dosing with calcium 

to LCFAs ratio of 0.5 noticeably increased methane 

production while further increase of calcium to LCFAs 

ratio had barely any effect on biogas production. Actu-

ally, a single calcium ion could bond with two LCFA 

molecules, so that the calcium to LCFA ratio of 0.5 

would be ideal if calcium and LCFAs were completely 

mixed. Further increase in calcium concentration could 

not bond more LCFAs, leading to no effect on free 

LCFA concentration.

Calcium had no effect on biogas production when the 

I/S ratio was extremely low, even with high concentration 

of calcium. A possible explanation was at such a low inoc-

ulum concentration, although calcium was added, the 

slow methanogenesis step controlled the whole process, 

which led to VFA accumulation other than LCFAs as the 

main inhibitor. �e same explanation could be applied 

when the I/S ratio was 0.4: the released and free algal 

cells with use of high concentration of calcium raised the 
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hydrolytic rate, but with an unmatched increase in meth-

anogenic rate, the system generated accumulated VFA, 

prolonging the lag phase and low gas production due to 

VFA inhibition. �e high VFA concentration and low pH 

were also observed by Zhao et al. [2] when digesting algal 

biomass at low inoculum concentration. It was noticed 

that LCFA concentration was higher in digesters with 

calcium addition compared with control, which led to a 

delay in the degradation of LCFAs for all digesters with 

calcium dosage (Figs. 2, 3).

�e modeled relationship of specific methane produc-

tion (SMP) with inoculum:LCFA ratio and calcium:LCFA 

ratio is illustrated in Fig.  4. It can be seen that inocu-

lum concentration had greater effect on SMP than cal-

cium concentration. Sufficient inoculum was extremely 

important for healthy digestion without inhibition. With 

high inoculum:LCFA ratio of 1.0, SMP could reach the 

value reported by [2] (0.56 and 0.38 L CH4/g VS for NS1 

and NS2, respectively). Palatsi et  al. [21] confirm this 

observation, detailing that increases in inoculum concen-

tration are the most efficient and fast recovery strategy 

for an LCFA-inhibited digestion process.

In this research, the LCFA concentration in NS1 and 

NS2 digesters was 9.9 g COD/L and 3.1 g COD/L, respec-

tively, noticeably higher than the approximate inhibi-

tory threshold range (~0.5–1.5  g  COD/L) mentioned 

in literature [6, 8, 26, 27]. Severe inhibition occurred in 

digesters with low inoculum concentration, as noticed by 

extremely low methane production. However, no inhibi-

tion was observed for digesters with appropriate I/S ratio 

and proper calcium dosing. It seems that high inoculum 

concentration could be used as a mean of alleviating the 

inhibition mediated by LCFAs. Calcium ion could also be 

an effective way to bond LCFAs and thus keep microbial 

cells from being tightly wrapped by LCFAs. �e impact of 

calcium ion, however, is dependent on the concentration 

of inoculum, in which a minimum inoculum concentra-

tion is required.

Fig. 1 Effect of inoculum to substrate ratio on methane production from anaerobic digestion of NS1 and NS2 with different concentrations of 
calcium. IS is inoculum to substrate ratio, and Ca is calcium to LCFA ratio
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Kinetic analysis of inhibition on anaerobic digestion 

of algal biomass

�e accumulated methane production curves for NS1 

and NS2 at various I/S ratio and calcium concentration 

were simulated with the developed kinetic model (Figs. 2, 

3). �e LCFA degradation profiles were then predicted 

with the developed model.

�e inhibition of LCFAs on anaerobic microbial con-

sortia has been kinetically investigated as KI with a range 

of 1.3–3.4  kg COD/m3 [28, 29]. However, the extent 

of inhibition varies among hydrolytic bacteria, acido-

gens and methanogens. �us, a lumped inhibition fac-

tor KI for whole anaerobic microbial consortium is not 

sufficient to kinetically describe the different inhibi-

tion effect of LCFAs on each microbial group. In this 

research, the inhibition of LCFAs was evaluated based 

on individual microbial groups for a more accurate esti-

mation. �e results show that inhibition factors for 

hydrolytic bacteria (Kh), acidogenic bacteria (Kv), and 

methanogens (Km) were in the range of 2.6–9.4, 2.1–7.9, 

and 1.0–2.9  kg  COD/m3, respectively (Fig.  4). �e data 

suggested a more severe LCFA inhibition on methano-

gens than on hydrolytic bacteria and acidogens. As a first 

time kinetic evidence of LCFA inhibition on different 

functional groups, methanogenesis could be the rate-lim-

iting step in an LCFA-inhibited digestion process, which 

is consistent with previous research [9, 11].

�e I/S ratio had a remarkable effect on each inhibition 

factor, with regard to its role in affecting SMP. However, 

kinetic behavior of each microbial group varies against 

the change of I/S ratio. As the I/S ratio increased from 0.1 

to 1.0, Kh, Kv and Km boosted from 2.6, 2.1 and 1.0 to 8.5, 

5.8 and 2.3 kg COD/m3, respectively, when calcium was 

not added. Apparently, the inhibition factor of hydrolytic 

bacteria was most affected by inoculum concentration 

while that of methanogen was less affected.

Calcium ion concentration showed a limited effect on 

inhibition factors and the effects on each inhibition fac-

tor were similar. However, these effects were dependent 

on I/S ratio. �e value of inhibition factors doubled with 

Fig. 2 Methane production and LCFA degradation during anaerobic digestion of NS1 with different concentrations of calcium. IS is inoculum to 
substrate ratio, and Ca is calcium to LCFA ratio
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calcium dosing at low I/S ratio while the impacts of cal-

cium ion concentration were less significant at high I/S 

ratio.

�is is the first research that kinetically investigated 

individual inhibition factors for hydrolytic bacteria, aci-

dogens and methanogens, respectively, rather than a 

lumped inhibition factor for whole microbial consortium 

by LCFAs. In previous research, one inhibition factor was 

used for all biological process including hydrolysis, aci-

dogenesis and methanogenesis [17, 19, 29, 30]. �e LCFA 

model developed in this study provided new insights 

regarding dynamics of the LCFA inhibition process and 

showed a different inhibition level on each function 

group. Methanogens were the most fastidious group and 

were severely impacted by LCFAs; thus, methanogen-

esis could be the rate-limiting step during AD. Although 

hydrolytic bacteria were inhibited by LCFAs, and were 

most impacted by I/S ratio, hydrolysis could be consid-

ered the fastest step. Acidogens were also inhibited by 

LCFAs, one of its products, which led to acidogenesis 

being a self-limiting step. However, under the condition 

without LCFA inhibition, hydrolysis is still the rate-lim-

iting step in anaerobic digestion of microalgae, in which 

pretreatment could play a role.

Microbial community structure analysis with Illumina 

Miseq sequencing

Two samples from digesters fed with NS1 and NS2, 

respectively, at I/S ratio of 1 without calcium addition 

as well as original inoculum were subject to microbial 

community structure analysis. In total, 36,825 bacteria 

sequences for 3 samples were classified into 591  gen-

era. �e difference of phylum distribution was observed 

between the two digesters. NS1 digester was dominated 

by Proteobacteria, followed by Chloroflexi, and Firmi-

cutes, while Firmicutes, Bacteroidetes, Chloroflexi, and 

Proteobacteria were dominant in NS2 digester with bal-

anced abundance. Moreover, Gammaproteobacteria 

belonging to Phylum Proteobacteria was enriched in both 

digesters. �e genus level identification of the bacteria 

Fig. 3 Methane production and LCFA degradation during anaerobic digestion of NS2 with different concentrations of calcium. IS is inoculum to 
substrate ratio, and Ca is calcium to LCFA ratio
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communities is illustrated in Fig. 5. Bacteria community 

in original inoculum showed a balanced population with 

high diversity. Bacteria community in the NS1 digester 

showed a distinct pattern with domination of Acinetobac-

ter (blue, 39.6 %), Levilinea (red, 7.0 %), Proteiniclasticum 

(green, 7.7  %), and Stenotrophomonas (purple, 13.9  %). 

Acinetobacter was reported to be the main strain among 

several pure cultures degrading lipid-containing waste-

water with efficient lipase secretion capability [31, 32]. 

�is correlates well with the domination of Acinetobacter 

in the NS1 digester. �e bacterial community in the NS2 

digester was dominated by Levilinea (red, 7.6 %), Tissiere-

lla (light blue, 11.9  %), Proteiniclasticum (green, 6.4  %), 

Clostridium (orange, 7.6  %), and Parabacteroides (dark 

blue, 11.0 %). �e population analysis demonstrates that 

a clearly different microbial community structure was 

formed in the two digesters due to different lipids load-

ing, although hydrolytic/acidogenic bacteria dominated 

both NS1 and NS2 digesters.

Stenotrophomonas is responsible for the hydrolysis 

and fermentation of carbohydrate and amino acids [33]. 

Syntrophic acetogens, including Clostridium, Smith-

ella, Tissierella, Syntrophorhabdus, Sedimentibacter and 

Sporacetigenium, also presented in the two digesters, 

although the concentrations were low. Interestingly, the 

abundance of syntrophic acetogens in the NS1 digester 

Fig. 4 Effect of biomass to LCFA ratio and Ca to LCFA ratio on SMP and inhibition factors



Page 7 of 12Ma et al. Biotechnol Biofuels  (2015) 8:141 

(10.8  %) was significantly lower than that in the NS2 

digester (28.2  %), suggesting that syntrophic acetogens 

were more sensitive to high lipid concentration.

Methanogenic archaea communities were analyzed 

in the three samples, with a total of 14,220 reads affili-

ated to 15 genera and 3 orders. �e genus level identifi-

cation of the archaea communities is illustrated in Fig. 6. 

Methanogenic archaea community in the original inocu-

lum was dominated by Methanolinea (purple, 47.0 %), a 

strict hydrogenotrophic genus, and Methanosaeta (blue, 

44.1  %), a strict aceticlastic methanogen genus. How-

ever, Methanosaeta (blue) prevailed in both of the com-

munities of the NS1 and NS2 digesters (77.6 and 74.4 %, 

respectively), followed by two hydrogenotrophic gen-

era, Methanobacterium (red, around 8 %) and Methano-

methylovorans (light blue, around 11 %) in both digesters, 

indicating that aceticlastic methanogenesis was the main 

pathway for methane formation in the two digesters, 

Fig. 5 Bacteria communities of inoculum, NS1 and NS2 digester. Relative abundance was defined as the number of sequences affiliated with that 
taxon divided by the total number of sequences per sample. Legends were only shown for genus making up more than 2 % of total composition

Fig. 6 Archaea communities of inoculum, NS1 and NS2 digester. Relative abundance was defined as the number of sequences affiliated with that 
taxon divided by the total number of sequences per sample
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regardless of the different lipids content. Dominance of 

Methanosaeta was also found in the anaerobic reactors 

treating microalgal biomass which was attributed to the 

low levels of acetate [34].

Proposed mechanism of calcium mitigated LCFA inhibition

Inhibition of LCFAs could be mainly attributed to physi-

cal attachment on the surface of microbial cells. As 

microbes are coated by LCFAs, limitations on transpor-

tation hinder substrate access and subsequent biogas 

release [17]. Calcium ions could bond free LCFAs, thus 

reducing the amount of LCFAs available for microbial 

cells to half of original LCFA concentration (Graphic 

abstract). �is reduction delayed LCFA degradation, 

compared with the control. Moreover, the steric hin-

drance effect of calcium bonded LCFAs could further 

mitigate LCFA inhibition by loosening the LCFA coat. 

However, calcium ions could not exclusively compete the 

LCFAs from the surface of microbial cells. As a result, 

calcium ion addition could not help mitigate LCFA inhi-

bition for those LCFAs already attached on the surface of 

microbial cells. Moreover, the effect of calcium ion was 

limited, and it only played a role when the microbial con-

centration reached a minimal requirement.

It is foreseeable that multivalent ions, ferric ion for 

example, could bond more LCFAs according to its charge 

and give rise to a more sophisticated steric hindrance 

effect, leading to a stronger effect on alleviating LCFA 

inhibition while using a reduced amount. �e optimal 

multivalent ion to LCFA ratio would be reciprocal to the 

value of its charge. However, the same rule as calcium 

still applies, in that it could not relieve LCFAs inhibition 

after LCFAs attached to the surface of microbial cells.

Conclusion

High inoculum concentration is the key for a healthy 

process when digesting high concentration of LCFAs. 

Inoculum concentration had a more pronounced effect 

on overcoming the inhibition of LCFAs than that of 

calcium ion, while calcium ion plays a role only when 

inoculum concentration met a threshold level. Calcium 

ion could bond with free LCFAs available to the surface 

of microbial cells and reduce half of the original LCFAs 

concentration. Kinetic modeling revealed a remarkable 

difference among the inhibition factors for each function 

group of microorganisms. Although methanogens were 

the most susceptible microbes to LCFA inhibition, the 

inhibition factor for hydrolytic bacteria was more highly 

affected by inoculum concentration. �e bacterial com-

munity was affected more than the methanogenic com-

munity by high concentration of LCFAs. Diversity of 

both bacterial and methanogenic communities decreased 

with elevation of lipid concentration in the digester. 

Hydrolytic bacteria and aceticlastic methanogens domi-

nated bacterial and archaea communities, respectively, 

in both high and low LCFA concentration digesters. Syn-

trophic acetogens were sensitive to high LCFA concen-

trations and thus showed a decreased abundance in such 

environment.

Methods

Microalgae and inoculum

Nannochloropsis salina (Solix BioSystems) was selected 

as it was the algal biomass with greatest availability and 

had lipid content emblematic of industrial strains. Whole 

algal biomass of Nannochloropsis salina (NS1) represents 

high lipid content algal biomass while lipid-extracted res-

idue (NS2) represents its low lipid content counterpart. 

Freeze-dried solid biomass of both NS1 and NS2 was 

provided by Solix BioSystems, Inc. (CO, USA). Lipid in 

NS1 was extracted with a 3:2 mixture of hexane/isopro-

panol at 70  °C and 1500 psi [2]. Detailed characteristics 

of NS1 and NS2 are listed in Table  1. Anaerobic sludge 

was sampled from an anaerobic digester at the Pullman 

Wastewater Treatment Facility with TS of 17.1  g/L and 

VS of 11.7 g/L.

E�ect of calcium addition and inoculum to substrate ratio 

on methane production

A series of biochemical methane potential (BMP) assays 

were set up to investigate the effect of calcium addition 

and inoculum to substrate ratio (I/S) on methane produc-

tion from NS1 and NS2. �e experimental design con-

sidered treatments with calcium (CaCl2·2H2O, Sigma) 

at concentrations of 0.5, 1 and 2 times that of the algal 

lipid concentration (mole/mole) against I/S ratios of 0.1, 

0.4 and 1.0 (gVS/gVS). All BMP assays were conducted 

in serum bottles with working volume of 150  mL and 

headspace of 100  mL. No additional external nutrients/

trace elements were added to the BMP bottles as it was 

assumed that basic nutrient requirements for anaerobic 

microorganisms were provided by the wastewater-based 

inoculum [35]. Algal biomass was added to the serum 

bottles to impose an organic loading rate of 10  gVS/L, 

and mixed with CaCl2·2H2O at designed calcium 

Table 1 Chemical composition of  Nannochloropsis salina 

(NS1) and lipid-extracted residue (NS2)

Composition NS1 NS2

Algal lipid (%) 37.2 11.8

Carbohydrates (%) 11.5 17.0

Protein (%) 17.2 26.7

Unknown (%) 27.2 34.1

VS/TS (%) 93.0 89.7



Page 9 of 12Ma et al. Biotechnol Biofuels  (2015) 8:141 

concentration, before inoculum was added according to 

the respective I/S ratio. Before experiments were initi-

ated, each bottle was flushed with N2 gas for 15 min to 

induce anaerobic conditions, and then incubated in a 

16-cell automated Challenger AER System (Fayetteville, 

AR, USA) maintained at 35 ±  1  °C and mixed continu-

ously with a magnetic stirrer set to 200 rpm. Daily meth-

ane production was monitored via scrubbing of carbon 

dioxide with sodium hydroxide pellets containing color 

indicator.

Chemical analysis

�e analysis for TS, VS and COD was done accord-

ing to the standard methods [36]. �e volume of biogas 

from the digester was determined by water displacement 

method. Contents of CH4 and CO2 were determined 

via a Varian gas chromatograph (Palo Alto, CA, USA) 

equipped with a thermal conductivity detector [37].

Lipids were analyzed as fatty acid methyl esters after 

a one-step acid catalyzed in  situ trans-esterification 

reaction using a GC-FID (Agilent 6890N) equipped 

with an HP-5  ms capillary column (30  m  ×  0.25  mm 

id  ×  0.25  µm) according to the procedure of Laurens 

et al. [38]. Protein was calculated from elemental N con-

tent [39]. Carbohydrates were determined by H2SO4 acid 

hydrolysis followed by HPLC measurement of monosac-

charides [40].

DNA extraction

At the end of the digestion experiment, samples of initial 

saved inoculum and mixed liquor from the two digesters 

fed with NS1 and NS2 at I/S ratio of 1 with no calcium 

addition were collected. Genomic DNA was extracted 

and purified using the PowerSoil DNA isolation kit (Mo 

Bio Laboratories, Inc., CA, USA) according to the manu-

facturer’s instructions.

Illumina Miseq sequencing on V4–V5 regions of 16S rRNA 

genes

�e V4–V5 hypervariable region of the 16S rRNA gene 

was amplified with region-specific primers designed 

to include Illumina adaptor and barcode sequences 

(518F-926R for bacteria, 518F-958R for archaea) [41, 

42]. Generation of sample amplicons was performed 

using a double round of PCR and dual indexing on 

PTC-200 DNA Engine Peltier �ermal Cycler (Bio-Rad 

Laboratories, Inc., CA, USA). �e first round of PCR 

extracts the targeted regions (here 16S V4 to V5) with 

initial denaturation at 95 °C for 2 min, 20 cycles of dena-

turing at 95  °C for 1 min, annealing at 51  °C for 1 min 

and extension at 68  °C for 1 min, plus a final extension 

at 68  °C for 10 min. �e second round of PCR attaches 

the sample barcode and sequencing adapters with initial 

denaturation at 95  °C for 10 min, 10 cycles of denatur-

ing at 95 °C for 15 s, annealing at 60 °C for 0.5 min and 

extension at 68  °C for 1  min, plus a final extension at 

68 °C for 3 min.

�e concentrations of amplicons were determined 

using a picogreen assay and a Fluorometer (SpectraMax 

GeminiXPS 96-well plate reader) and then pooled in 

equal amounts (~100  ng) into a single tube. �e ampli-

con pool was then cleaned to remove short undesirable 

fragments using the following procedure. First, the pool 

was size selected using AMPure beads (Beckman Coul-

ter), the product was then run on a 1 % gel, gel cut and 

column purified (Qiagen MinElute PCR purification kit), 

and size selected again with AMPure beads. To deter-

mine the final quality, we PCR amplified the resulting 

amplicon pool with Illumina adaptor-specific primers 

and ran the PCR product on a DNA 1000 chip for the 

Agilent 2100 Bioanalyzer. �e final amplicon pool was 

deemed acceptable only if no short fragments were iden-

tified after PCR. Otherwise, the procedure was repeated 

again. �e cleaned amplicon pool is then quantified using 

the KAPA 454 library quantification kit (KAPA Bio-

sciences) and the Applied Biosystems StepOne plus real-

time PCR system. Finally, sequences were obtained using 

an Illumina MiSeq paired-end 300 bp protocol (Illumina, 

Inc., San Diego, CA, USA) [43].

Bioinformatics

Raw DNA sequence reads from the Illumina MiSeq were 

demultiplexed and identified with the custom python 

application dbcAmplicons (https://github.com/msettles/

dbcAmplicons) by both expected barcode and primer 

sequences. Barcodes were allowed to have at most 1 mis-

match (hamming distance) and primers were allowed 

to have at most 4 mismatches (Levenshtein distance) as 

long as the final 4 bases of the primer matched the tar-

get sequence perfectly. Reads were then trimmed of 

their primer sequence and merged into a single ampli-

con sequence using the application flash [44]. Finally, the 

RDP Bayesian classifier was used to assign sequences to 

phylotypes [45]. Reads were assigned to the first RDP 

taxonomic level with a bootstrap score ≥50. �e Illumina 

sequences are available through the National Center 

for Biotechnology Information (NCBI) Sequence Read 

Archive (http://www.ncbi.nlm.nih.gov/sra) under project 

SRP052619.

Development of kinetic model

Hydrolysis, acidogenesis and methanogenesis were con-

sidered for model development in this study. �e particu-

late algal biomass (Sp) and dead biomass were hydrolyzed 

into soluble hydrolysate (Sh) by hydrolytic bacteria (Xh), 

then hydrolysate was further degraded into VFA (Sv) by 

https://github.com/msettles/dbcAmplicons
https://github.com/msettles/dbcAmplicons
http://www.ncbi.nlm.nih.gov/sra
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acidogenic bacteria (Xv); finally, methanogens (Xm) con-

vert VFA into methane (Sm).

�e Contois kinetic model was adopted for all three 

steps due to improved performance over the first order 

kinetics [46, 47]. Decay of biomass was considered as 

first-order kinetics. Non-competitive inhibition type was 

used as it has been proved to successfully predict inhibi-

tion by LCFAs [48, 49]. In this study, the ratio of active 

biomass plus calcium to LCFAs was adopted by consid-

ering that LCFA inhibition is primarily an absorption 

process onto surface of biomass. According to the above 

discussion, AD of algal biomass can be described as the 

following equations: 

(1)

dSp

dt
= −km,p

Sp

Ks,pXh + Sp
XhKh

+ kd,hXh + kd,vXv + kd,mXm

(2)

dSh

dt
= km,p

Sp

Ks,pXh + Sp
XhKh − km,h

Sh

Ks,hXv + Sh
XvKv

(3)

dSv

dt
= km,h

Sh

Ks,hXv + Sh
XvKv − km,v

Sv

Ks,vXm + Sv
XmKm

(4)

dSfa

dt
= ffakm,p

Sp

Ks,pXh + Sp
XhKh

− km,fa
Sfa

Ks,faXv + Sfa
XvKv

(5)
dSm

dt
= km,v

Sv

Ks,vXm + Sv
XmKm

(6)
dXh

dt
= Yhkm,p

Sp

Ks,pXh + Sp
XhKh − kd,hXh

(7)
dXv

dt
= Yvkm,h

Sh

Ks,hXv + Sh
XvKv − kd,vXv

(8)
dXm

dt
= Ymkm,v

Sv

Ks,vXm + Sv
XmKm − kd,mXm

(9)Kh =

Kh,fa

(

a(Xh+Xv+Xm)+bSCa

Sfa

)

Kh,fa

(

a(Xh+Xv+Xm)+bSCa

Sfa

)

+ Sfa

(10)Kv =

Kv,fa

(

a(Xh+Xv+Xm)+bSCa

Sfa

)

Kv,fa

(

a(Xh+Xv+Xm)+bSCa

Sfa

)

+ Sfa

Sensitivity analysis was applied in this study to deter-

mine the significance of model parameters and iden-

tify the dominant parameters [50]. �e relative–relative 

sensitivity function (δ) was used to measure the relative 

change in methane production for a ±  100% change in 

kinetic parameters and stoichiometric parameters by 

Eq. (12) [51].

where y is the given input parameter value, and p is 

the output of corresponding parameter with a relative 

change.

�e parameters, km,p, km,h, km,fa, Ks,p, Ks,h, Ks, fa, Ks,v, 

Yh, Yv, kd,h and kd,v with low sensitivity on model output, 

were used directly from references without modification 

in this study [30, 52–54], and their values are presented 

in Table 2. Other parameters, km,v, Ym, kd,m, Kh, fa, Kv, fa, 

Km, fa, a and b showing significant impact on model out-

put, were estimated according to the batch experimental 

data.

(11)
Km =

Km,fa

(

a(Xh+Xv+Xm)+bSCa

Sfa

)

Km,fa

(

a(Xh+Xv+Xm)+bSCa

Sfa

)

+ Sfa

(12)δ =

p/∂p

y/∂y

Table 2 Kinetic parameters for anaerobic digestion of NS1 

and NS2

Symbol Units Initial value

km,p day−1 10

km,h day−1 20

km,fa day−1 6

km,v day−1 20

Ks,p 0.5

Ks,h 0.5

Ks,fa 0.5

Ks,v 0.5

Yh kgCOD/kgCOD 0.05

Yv kgCOD/kgCOD 0.05

Ym kgCOD/kgCOD 0.05

kd,h day−1 0.8

kd,v day−1 0.8

kd,m day−1 0.05

ffa 0.35 (NS1)
0.11 (NS2)

Kh, fa kgCOD/m3 5

Kv, fa kgCOD/m3 5

Km, fa kgCOD/m3 5

a 0.5

b 0.5
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Abbreviations

LCFA: long-chain fatty acids; NS1: whole cell algal biomass of Nannochloropsis 
salina; NS2: lipid-extracted residue of Nannochloropsis salina; AD: anaerobic 
digestion; I/S: inoculum to substrate ratio; TS: total solids content; VS: volatile 
solids content; SMP: specific methane production; COD: chemical oxygen 
demand; Sp: concentration of particulate algal biomass (kg COD/m3); Sh: 
concentration of hydrolysate (kg COD/m3); Sv: concentration of VFA (kg COD/
m3); Sfa: concentration of LCFAs (kg COD/m3); Sm: concentration of methane 
kg COD/m3; SCa: concentration of calcium (kmole/m3); Xh: concentration of 
hydrolytic bacteria (kg COD/m3); Xv: concentration of acidogens (kg COD/
m3); Xm: concentration of methanogens (kg COD/m3); km,p: maximum specific 
hydrolysis rate (day−1); km,h: maximum specific utilization rate of hydrolysate 
(day−1); km,fa: maximum specific utilization rate of LCFAs (day−1); km,v: maxi-
mum specific methanogenesis rate (day−1); Ks,p: half-saturation coefficient for 
the ratio Sp/Xh; Ks,h: half-saturation coefficient for the ratio Sh/Xv; Ks,fa: half-satu-
ration coefficient for the ratio Sfa/Xv; Ks,v: half-saturation coefficient for the ratio 
Sv/Xm; Yh: yield coefficient of hydrolytic bacteria (kg COD/kg COD); Yv: yield 
coefficient of acidogenic bacteria (kg COD/kg COD); Ym: yield coefficient of 
methanogens (kg COD/kg COD); kd,h: decay rate of hydrolytic bacteria (day−1); 
kd,v: decay rate of acidogens (day−1); kd,m: decay rate of methanogens (day−1); 
ffa: stoichiometric coefficient for LCFAs from algal biomass; Kh: inhibition factor 
of LCFAs on hydrolysis step; Kv: inhibition factor of LCFAs on acidogenesis step; 
Km: inhibition factor of LCFAs on methanogenesis step; Kh, fa: inhibition coef-
ficient of LCFAs on hydrolytic bacteria (kg COD/m3); Kv, fa: inhibition coefficient 
of LCFAs on acidogens (kg COD/m3); Km, fa: inhibition coefficient of LCFAs on 
methanogens (kg COD/m3); a: weight coefficient of absorption of LCFAs by 
microbes; b: weight coefficient of absorption of LCFAs by calcium.
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