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Exosomes are extracellular vesicles formed by various donor cells that regulate gene
expression and cellular function in recipient cells. Exosomes derived from mesenchymal
stem cells (MSC-Exos) perform the regulatory function of stem cells by transporting
proteins, nucleic acids, and lipids. Intervertebral disc degeneration (IDD) is one of the main
causes of low back pain, and it is characterized by a decreased number of nucleus
pulposus cells, extracellular matrix decomposition, aging of the annulus fibrosus, and
cartilage endplate calcification. Besides, nutrient transport and structural repair of
intervertebral discs depend on bone and cartilage and are closely related to the state
of the bone. Trauma, disease and aging can all cause bone injury. However, there is a lack
of effective drugs against IDD and bone injury. Recent MSC-Exos fine tuning has led to
significant progress in the IDD treatment and bone repair and regeneration. In this review,
we looked at the uniqueness of MSC-Exos, and the potential treatment mechanisms of
MSC-Exos with respect to IDD, bone defects and injuries.
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1 INTRODUCTION

Exosomes are bilayered extracellular functional vesicles released by different cells with a diameter
ranging between 40–120 nm (Simons and Raposo, 2009). In the early stages, endosomes containing
intraluminal vesicles (ILVs) are formed preliminarily, and then large mature multivesicular bodies
(MVBs) within the cell release ILVs into the extracellular space to form exosomes (Zhang et al., 2019)
(Figure 1). Exosomes carry out their functions by fusing with cell membranes or binding membrane
proteins of the recipient cells. They contain functional proteins, nucleic acids (mRNA, miRNA,
lncRNA, etc.) and lipids, and are carriers of intercellular communication between donor and
recipient cells (Wang et al., 2021b). MiRNA is a crucial communication medium contained in
exosomes, which can regulate the expression of genes and proteins in recipient cells and inhibit the
degradation of exosomes (Valadi et al., 2007; Jong et al., 2012). After entering target cells, exosomal
miRNA binds to target gene mRNA through partial sequence complementation and participate in
tissue repair, inflammation, apoptosis and other processes, thus playing an important role in the
regulation of gene expression (Ti et al., 2016; Chen et al., 2019). Exosomes originate from a wide
range of sources, and almost all cells can secrete exosomes. The exosomes secreted under normal and
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pathological conditions are different, even for the same cells
(Zhang et al., 2015). If exosomes fail to bind to their target
cells in time, they are rapidly metabolized.When applied topically
or injected throughout the body, they can provide multiple
therapeutic benefits, such as repairing the damaged
intervertebral discs and bone tissues (Riau et al., 2019).

MSCs with multidirectional differentiation and self-
replication potential have long been considered as an effective
method for repairing intervertebral disc disorders and bone
injuries, but there are many safety problems (Uccelli et al.,
2008; Guadix et al., 2017). Many studies have demonstrated
that exosomes derived from mesenchymal stem cells (MSC-
Exos) have similar biological effects to MSCs in terms of tissue
regeneration and repair functions (Cosenza et al., 2017). The
application of MSCs avoids the problems associated with intact
cell transplantation, such as immune rejection, infection, and
non-directed cell differentiation (Lou et al., 2017). Exosomes

secreted byMSCs from bone marrow, adipose, umbilical cord can
all promote tissue regeneration and repair (Zhou et al., 2019; Li
et al., 2020a; Zhang et al., 2021c). MSCs of different ages can
regulate each other through exosomes, while younger MSC-Exos
can enhance the proliferation and osteogenic differentiation of
older MSCs (Jia et al., 2020).

IDD is associated with various factors such as aging, abnormal
biomechanical burden, reduced nutrient supply to the cartilage
endplates (Dowdell et al., 2017). In IDD, the water content of the
nucleus pulposus decreases, and the pressure load decreases
(Adams and Roughley, 2006). At the same time, the annulus
fibrosus carries more load and is, therefore, more prone to
damage. The healing potential of intervertebral discs without
vascular nourishment is low, and there is no effective treatment to
inhibit or even repair IDD (Urban and Roberts, 2003). Besides,
the health of the surrounding bone and cartilage is closely related
to the overall condition of the intervertebral disc, since the disc

FIGURE 1 | Typical process of exosome generation, secretion, and transfer from the donor cells to the recipient cells, and the exosome structure is shown. Early
endosomes containing ILVs are formed preliminarily and then developed into mature MVBs to release and form exosomes into the extracellular. The exosomes have a
bilayered membrane structure containing functional proteins, nucleic acids (mRNA, miRNA, lncRNA, etc.), and lipids, some of which are released into recipient cells to
regulate gene expression and cell function.
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receives its nutrients from the endplate’s blood supply (Geer,
2018). Although new materials can reduce bone defects, it is still
necessary to explore bioactive substances that can promote bone
regeneration and repair (Dimitriou et al., 2011; Amini et al.,
2012). Therefore, we focused on acellular MSC-Exos over the past
years to elucidate their potential effectiveness on IDD treatment
and bone regeneration and repair. In this review, we looked at the
relationships between MSC-Exos and IDD, MSC-Exos and bone
repair and regeneration, and further discussed the mechanism of
action of MSC-Exos on the treatment of IDD and promoting
bone repair and regeneration.

2 MESENCHYMAL STEM CELL-DERIVED
EXOSOMES AND INTERVERTEBRAL DISC
DEGENERATION

2.1 Relationship Between MSC-Exos and
Intervertebral Disc Degeneration
Low back pain is a global health hazard (Manchikanti et al.,
2014). Disc herniation and spinal stenosis caused by IDD are the

main causes of low back pain, with a high incidence amongst the
elderly (Croft et al., 2021). The pathogenesis of IDD is
characterized by a decreased number of nucleus pulposus
cells (NPCs), extracellular matrix (ECM) decomposition,
annulus fibrosus aging, and cartilage endplate calcification
(Grunhagen et al., 2011; Yang et al., 2020b). The nucleus
pulposus is located at the center of the intervertebral disc
and is composed of the proteoglycan elastin and ECM, which
are important components responsible for pressure bearing in
the intervertebral disc [2]. In IDD, the nucleus pulposus is the
first to degenerate, mostly following an abnormal amount of
stress on the vertebrae, aging, nutrition and other factors (Urban
and Roberts, 2003). The exosomes derived fromMSCs contain a
variety of regulatory factors that inhibit the development of
IDD. Studies have shown that MSC-Exos could prevent IDD by
inhibiting apoptosis and promoting the proliferation of NPCs,
inhibiting ECM degradation, alleviating inflammatory response
and oxidative stress, promoting chondrogenic differentiation,
and protecting endplate chondrocytes and annulus fibrosus.
Therefore, MSC-Exos may be a promising option to delay or
even reverse IDD (Hu et al., 2020; Krut et al., 2021). The related

FIGURE 2 | Potential mechanisms of MSC-Exos for treating IDD. (A) Inhibiting NPC apoptosis and promoting NPC proliferation. MSC-Exos alleviate NPC
apoptosis induced by acidic pH through repressing caspase-3 expression and attenuating caspase-3 cleavage. BMSC-Exos can increase miR-155 expression to
upregulate HO-1 expression and downregulate Bach1 expression, subsequently activating autophagy in NPCs to inhibit the cell apoptosis in the state of low blood
supply. MSC-Exos can deliver miR-532-5p, which targets RASSF5, and eventually inhibit TNF-α-induced NPC apoptosis. By delivering miR-142-3p to target
MLK3 in NPCs, MSC-Exos inhibit the activation of the MAPK pathway and alleviate IL-1β-induced apoptosis and inflammation in NPCs. MSC-Exos can transfer miR-21,
which directly targets PTEN; the PTEN silencing actives PI3K/Akt pathway and suppresses activation of Bad, Bax, and caspase-3 and inhibits TNF-α-induced NPC
apoptosis. (B) Inhibiting ECM degradation. BMSC-Exos suppress the levels of MMP-1, MMP-3, MMP-13 in degenerative NPCs to inhibit ECM decomposition
metabolism and evaluate expression levels of aggrecan, collagen II, SOX9, further inhibiting the ECM degradation. (C) Inhibiting inflammation response. MSC-Exos can
decrease inflammatory factor expression including IL-1α, IL-1β, IL-6, IL-17, NF-κB-p65 and TNF-α in NPCs. MSC-Exos can inactivate the NLRP3 and inhibit the
expression of NT-GSDMD, IL-18 and IL-1β proteins in degenerative NPCs, therefore inhibiting the NLRP3-mediated inflammatory pyroptosis. (D) Inhibiting oxidative
stress. MSC-Exos can reduce the ROS and MDA level and inhibit oxidative stress-induced NPC apoptosis. MSC-Exos can activate Akt/ERK pathway to decrease
CHOP protein expression, therefore inhibiting the cleavage of caspase-3, caspase-12 to treat AGEs-related ER stress-induced IDD. (E) Promoting chondrogenic
differentiation. MSC-Exo treatment can induce chondrogenesis in degenerative NPCs earlier by increased the aggrecan, collagen II and SOX9 expression. (F) Protective
effect on endplate chondrocytes. MSC-Exos containing miR-31-5p could negatively regulate ER stress by targeting ATF6, and further reducing caspase-3, caspase-7
and caspase-9 expression to inhibit apoptosis and calcification of endplate chondrocytes. (G) Protective effect on annulus fibrosus of IDD. BMSC-Exos can suppress
PI3K/Akt/mTOR signaling pathway-mediated autophagy and inhibit the IL-1β-induced inflammation and apoptosis in annulus fibrosus cells.
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mechanisms are described in detail below and displayed in
Figure 2.

2.2 Potential Mechanisms of Action of
MSC-Exos in the Treatment of
Intervertebral Disc Degeneration
2.2.1 Inhibiting Nucleus Pulposus Cell Apoptosis and
Promoting Nucleus Pulposus Cell Proliferation
The main pathophysiologic mechanism of IDD involves a
decline in the number of NPCs and ECM degradation, with
multiple reactions such as inflammation and oxidative stress also
being involved in this process. Therefore, inhibition of nucleus
pulposus cell apoptosis and promotion of cell proliferation is the
focus of IDD treatment. Exosomes derived from bone marrow
mesenchymal stem cell (BMSC-Exos) have been reported to
increase the proliferative ability of NPCs along with increasing
the concentration of MSC-Exos (Li et al., 2020a; Hu et al., 2021).
For exosomes derived from adipose-derived mesenchymal stem
cells (ADMSC-Exos), the proliferation and migration rate of
human NPCs were elevated through the ADMSC-Exo treatment
(Zhang et al., 2021c). Furthermore, BMSC-Exos were able to
prevent and mitigate NPC apoptosis induced by acidic pH by
repressing caspase-3 expression and attenuating caspase-3
cleavage. When NPCs are placed in the pathological state of
low blood supply, BMSC-Exos could increase miR-155
expression in NPCs, thereby downregulating Bach1 expression
and upregulating heme oxygenase-1(HO-1) expression,
activating autophagy in NPCs, inhibiting the level of
apoptosis, thereby inhibiting IDD (Shi et al., 2021). Besides,
BMSC-Exos could reduce the apoptosis rate of NPCs induced by
tumor necrosis factor-α (TNF-α), while the miR-532-5p level
was decreased in apoptotic NPCs. RASSF5 was demonstrated as
a target of miR-532-5p; BMSC-Exos may inhibit apoptosis by
targeting RASSF5 to deliver miR-532-5p to inhibit NPC
apoptosis (Zhu et al., 2020a). BMSC-Exos also could alleviate
interleukin-1β (IL-1β)-induced apoptosis and inflammation in
NPCs, which may be mediated by delivering miR-142-3p to
target mixed-lineage kinase-3 (MLK3) in NPCs and further
inhibiting mitogen-activated protein kinase (MAPK) signaling
(Zhu et al., 2020b). Using MSC-Exos enriched in miR-21 to
transfer miR-21 to TNF-α-induced NPCs, the apoptosis level in
the NPCs could be downregulated (Cheng et al., 2018). In this
process, miR-21 directly targets phosphatase and tensin
homolog (PTEN), which is negatively regulated by miR-21.
The PTEN silencing actives phosphoinositide 3-kinases
(PI3K)/ protein kinase B (Akt) pathway then decreases the
activation level of downstream factors of Bad, Bax and
caspase-3, and finally inhibit TNF-α-induced apoptosis.

2.2.2 Inhibiting ECM Degradation
Disc height is reduced due to the loss of matrix, which is
mainly caused by matrix metalloproteinases (MMPs), which
can hydrolyse ECM components such as proteoglycan
collagen, thereby accelerating the pathological process of
IDD (Kozaci et al., 2006). BMSC-Exo treatment can
promote the expression levels of anabolic/matrix protective

genes including aggrecan, collagen II, SRY-box transcription
factor 9 (SOX9); suppress the levels of matrix-degrading
genes such as MMP-1, MMP-3, MMP-13 in degenerative
NPCs (Lu et al., 2017; Li et al., 2020a). Moreover, studies
have shown that lactic acid accumulation can reduce the pH
value in IDD (Malandrino et al., 2014). Acidic pH adversely
affects the proliferation of NPCs, and destroys the metabolic
balance of the ECM, which limits the therapeutic potential of
MSCs and is a negative factor affecting intervertebral disc
repair (Huang et al., 2013). Moreover, ADMSC-Exos have
also been found to suppress the MMP-13 expression, inhibit
ECM decomposition in degenerative NPCs, and increase
collagen II expression to promote ECM formation (Xing
et al., 2021).

2.2.3 Inhibiting Inflammation Response
Previous researches have confirmed inflammation and related
signaling pathways as important factors in the onset and
progression of IDD, an obvious etiologic factor of low back
pain (Lyu et al., 2021). Studies have demonstrated that the
secretion of inflammatory factors such as IL-1α, IL-1β, IL-6,
IL-17, nuclear factor-κB p65 (NF-κB p65), TNF-α was
increased in the NPCs from degenerative discs, and found
that ADMSC-Exos could decrease the inflammation level
(Zhang et al., 2021c). Additionally, ADMSC-Exos could
inactivate the NLRP3 inflammasome, inhibit the
expression of N-terminal gasdermin D (NT-GSDMD) and
IL-1β proteins in degenerative NPCs, thereby more
significantly reducing the inflammatory response (Xing
et al., 2021). Besides, it was also shown that MSC-Exos
significantly decrease NLRP3 expression and reduce
caspase activation, hence downregulating the expression
levels of downstream cytokines IL-18 and IL-1β, inhibiting
NLRP3-mediated inflammatory pyroptosis in the
degenerative NPCs (Zhang et al., 2020a). And the
establishment of an ECM hydrogel system could
sustainably release ADMSC-Exos, allowing exosomes to
remain in the degenerative disc for up to 28 days to exert a
more anti-inflammatory effect.

2.2.4 Inhibiting Oxidative Stress
Reactive oxygen species (ROS) is a crucial factor for
intervertebral disc signal transduction, and the excessive
production of ROS can accelerate IDD (Suzuki et al., 2015;
Feng et al., 2017). Finding therapeutic targets to reduce
excessive ROS is a valuable research orientation, which
could work mainly by inhibiting oxidative stress. Hu et al.
(Hu et al., 2021) found that BMSC-Exos could reduce ROS
and malondialdehyde (MDA) level and inhibit oxidative
stress-induced NPC apoptosis. Besides, suppressing the
Akt/extracellular signal-regulated kinase (ERK) pathways
was demonstrated to aggravate endoplasmic reticulum
(ER) stress-induced apoptosis (Xu et al., 2017). MSC-Exos
could protect the NPCs against advanced glycation end
products (AGEs)-related ER apoptosis by activating Akt/
ERK signaling, which could reduce C/EBP homologous
protein (CHOP) expression, and attenuate the cleavage of

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 8338404

Liang et al. MSC-Exos Repair IDD and Bone

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


caspase-3, caspase-12 (Liao et al., 2019). Therefore, BMSC-
Exos may be the effective therapeutic method to treat AGEs-
related ER stress-induced IDD.

2.2.5 Promoting Chondrogenic Differentiation
The reduction of chondrogenic NPCs and the lower
expression of chondrogenic genes were the critical
manifestations of IDD (Maldonado and Oegema, 1992;
Choi et al., 2015). An important function of chondrocyte-
like NPCs was to produce ECM, and more chondrocyte-like
NPCs can produce more ECM (Adams and Roughley, 2006).
SOX9 is one of the early markers of chondrogenesis for NPCs
(Chimal-Monroy et al., 2003). It was reported that MSC-Exos
could promote SOX9 expression in NPCs from degenerative
NP tissue more quickly, meaning that MSC-Exo treatment
can induce earlier chondrogenesis in degenerative NPCs
(Hingert et al., 2020). A study (Zhang et al., 2021c)
reported that after treatment of NPCs with ADMSC-Exos
for 7, 14 and 21 days, the levels of chondrocytic genes
(collagen II, aggrecan and SOX9) were significantly
increased, suggesting that ADMSC-Exos had restored the
chondrogenic differentiation properties of
degenerative NPCs.

2.2.6 Protective Effect on Endplate Chondrocytes
Degenerative changes of the cartilage endplate can hinder
nutrient transfer to the intervertebral disc and aggravate IDD
(Zhu et al., 2016; Wong et al., 2019). It was reported that MSC-
Exos containing miR-31-5p could negatively regulate activating
endoplasmic reticulum (ER) stress by targeting transcription
factor 6 (ATF6), and further inhibit expression of caspase-3,
caspase-7, and caspase-9, thereby inhibiting tert-butyl
hydroperoxide-induced apoptosis and calcification in endplate
chondrocytes (Xie et al., 2020). By injectingMSC-Exos to the sub-
endplate of the IDD model in rat tails, the MSC-Exos displays an
inhibiting effect on IDD. Conversely, the protective effects were
reduced when the miR-31-5p levels were downregulated in MSC-
Exos.

2.2.7 Protective Effect on Annulus Fibrosus of
Intervertebral Disc Degeneration
Due to complicated biomechanics, both the number of cells in
the annulus fibrosus and nucleus pulposus are found to be
considerably decreased during the IDD (Vergroesen et al.,
2015). Gene analyses have delineated that autophagy-related
gene expression is significantly increased in degenerative
annulus fibrosus tissues. The number of autophagic
vesicles and autophagosomes was enhanced, suggesting
that autophagy may play an essential role in the
pathogenesis of IDD (Gruber et al., 2015). Research has
equally revealed that, BMSC-Exos could inhibit IL-1β-
induced inflammation and apoptosis and promote the
proliferation of annulus fibrosus cells, thus exerting a
protective effect on the annulus fibrosus, and this may be
by suppressing PI3K/Akt/mTOR signaling pathway-
mediated autophagy (Li et al., 2020b).

3 MESENCHYMAL STEM CELL-DERIVED
EXOSOMES AND BONE REPAIR AND
REGENERATION

3.1 Relationship Between MSC-Exos and
Bone Repair and Regeneration
Various bone defects caused by trauma, tumor, infection,
congenital deformity and osteoporosis, seriously reduce the life
quality of patients and are commonly seen in the clinic
(Benjamin, 2010). A small quantity of bone defects or injuries
can usually repair themselves, but large and complex bone defects
usually need to be filled with artificial or autologous bone, but
issues such as bone insufficiency and immune rejection are still
encountered. Additionally, osteoarthritis is a common disease of
progressive destruction of articular cartilage, accompanied by
increased pain, currently lacking effective drugs targeting
cartilage repair and regeneration (Li et al., 2013). MSC-Exos
are effective at promoting bone repair and regeneration
independently, and play an immunomodulatory role by
binding with receptors to promote osteogenesis (Zhang et al.,
2020b; Fan et al., 2021). Current research suggests that MSC-Exos
can promote osteogenic differentiation and angiogenesis, regulate
immune function, induce chondrogenesis and improve
osteoporosis (Lu et al., 2019; Yang et al., 2021). The related
mechanisms are described in detail in the following contents and
shown in Figure 3.

3.2 Potential Mechanisms of MSC-Derived
Exosomes for Promoting Bone Repair and
Regeneration
3.2.1 Promoting Osteogenic Differentiation
MSCs have outstanding osteogenic differentiation capacity, and
they have been widely used in promoting bone repair and
regeneration (Pittenger et al., 1999; Jiang et al., 2002). The
miRNAs, growth factors, cytokines contained in MSC-Exos
could promote the osteogenic differentiation abilities of MSCs
(Wang et al., 2015). Studies have shown that MSC-Exos can
profoundly improve the osteogenic differentiation and
proliferation of BMSCs, and reinforce the osteogenic response
of BMSCs by activating the PI3K/Akt signaling pathway (Zhang
et al., 2016). Besides, the exosomes derived from younger BMSCs
depicted a stronger ability to promote osteogenic differentiation.
It was reported that younger BMSC-Exos (2 weeks) could
enhance the proliferation and osteogenic differentiation of
older BMSCs (15 months) (Jia et al., 2020). The in vivo
experiments also verified that bone regeneration was
significantly accelerated in rats treated with MSC-Exos.
Moreover, activation of the Wnt/β-catenin signaling pathway
can stimulate osteoblast proliferation and differentiation, and
promote bone fracture repair and regeneration (Gaur et al., 2005).
The human umbilical cord MSC-Exos treatment could promote
the expression levels of β-catenin and Wnt3a protein in the Wnt
signaling pathway in fracture site cells, indicating that MSC-Exos
probably promotes osteoblast proliferation and differentiation as
well as bone fracture repair through the Wnt signaling pathway
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(Zhou et al., 2019). Furthermore, exosomes enriched with miR-
375 could promote the osteogenic differentiation of BMSCs by
inhibiting insulin-like growth factor binding protein 3 (IGFBP3)
expression as a negative regulator of osteogenic differentiation
(Chen et al., 2019).

3.2.2 Promoting Angiogenesis
Angiogenesis is a prerequisite for bone regeneration and
provides the necessary growth factors and nutrients for the
repair of bone injuries and defects (Yu et al., 2009). Besides, new
blood vessels serve as a route for transferring the inflammatory
cells, and the precursor cells of cartilage and bone, allowing
them to reach the site of bone injury. Angiogenesis is regulated
by various growth factors, such as various miRNAs, vascular
endothelial growth factors (Hankenson et al., 2011). BMSC-
Exos stimulates angiogenesis by activating the Akt/mammalian
target of rapamycin (mTOR) pathway, which further promotes
bone regeneration (Liang et al., 2019). Besides, MSC-Exos can
enhance the proliferation, migration, and angiogenic
differentiation of endothelial progenitor cells, further driving
the process of angiogenesis (Zhang et al., 2021b). Mechanistic
studies revealed that exosomal miR-21 promote angiogenesis by
upregulating the NOTCH1/DLL4 pathway (Zhang et al.,
2021b). It was also found that miR-214-3p was significantly

increased in the BMSC-Exos of bone-losing mice. Moreover,
knee loading was found to promote angiogenesis and bone
regeneration by enhancing the formation of type H vessels
and downregulating miR-214-3p levels in BMSC-Exos (Wang
et al., 2021a).

3.2.3 Immunoregulation
Bone regeneration and healing is a complicated process, and
the levels of cytokines produced in bone injury are first
elevated and then gradually decline (Marsell and Einhorn,
2011; Einhorn and Gerstenfeld, 2015). However, continuous
or abnormal activation of immune cells or secretion of
proinflammatory molecules is detrimental to bone
regeneration (Gibon et al., 2017). Macrophages as immune
cells play a crucial role in bone regeneration, secreting
inflammatory and chemotactic mediators, and initiating
the recruitment of MSCs (Loi et al., 2016). MSC-Exos
possess a sustained inflammation-regulatory ability, which
could decrease the gene expression of IL-1β, IL-6, TNF-α, and
suppress the expression of an M1 phenotypic marker (iNOS)
mRNA in the inflammatory macrophages (Wei et al., 2019;
Zhang et al., 2020b). The scanning electronic microscopy
results depicted that the morphology of macrophages was
significantly elongated after treatment with BMSC-Exos.

FIGURE 3 | Potential mechanisms of MSC-Exos for promoting bone repair and regeneration. (A) Promoting osteogenic differentiation. MSC-Exos can activate the
PI3K/Akt signaling pathway to promote osteogenic differentiation and proliferation of BMSCs. The Wnt/β-catenin signaling pathway activated by MSC-Exos with
increased expression of β-catenin andWnt3a can promote osteoblast proliferation and differentiation. Exosomes enriched withmiR-375 inhibit the IGFBP3 expression to
promote osteogenic differentiation of hBMSCs. (B) Promoting angiogenesis. BMSC-Exos activates the Akt/mTOR pathway to stimulate angiogenesis and further
promotes bone regeneration. Exosomal miR-21 can upregulate the NOTCH1/DLL4 pathway and promote angiogenesis. (C) Immunoregulation. MSC-Exos can
decrease the gene expression of IL-1β, IL-6, TNF-α, and iNOS in the inflammatory macrophages. (D) Inducing chondrogenesis. MSC-Exos increase the protein and
mRNA expression of collagen II and SOX9 to improve cartilage regeneration. MSC-Exos can promote the macrophage’s polarization toward the M2 phenotype and
further inhibit the inflammatory response to benefit chondrogenesis. BMSC-Exo treatment can decrease the c-MYC expression level, which indicates the chondrocyte’s
maturation. (E) Improving osteoporosis. MALAT1 contained in BMC-Exos promotes alkaline phosphatase activity of osteoblasts and mineralizes nodules by increasing
SATB2 expression. Activating MAPK signaling and increasing the P-p38 and P-JNK expression by MSC-Exos can promote osteoblast differentiation. BMSC-Exos
enriched with miR-196a can inhibit Dkk1 expression to activate the Wnt/β-catenin pathway, thereby improving osteoporosis. Exosomes derived from human umbilical
cord MSCs can inhibit BMSC apoptosis through the miR-1263/Mob1/Hippo signaling pathway to improve osteoporosis.
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3.2.4 Inducing Chondrogenesis
Cartilage damage and defect regeneration remain challenges due
to its limited healing capacity. (Sun et al., 2010; Chen et al., 2018).
Osteoarthritis is one of the most common joint diseases
associated with progressive damage and loss of articular
cartilage, thus exploring drugs that promote cartilage
regeneration could be promising for the treatment of
osteoarthritis (Hunter and Bierma-Zeinstra, 2019). MSC-Exos
could increase chondrocyte proliferation and improve cartilage
regeneration by increasing the protein translation and mRNA
expression of hyaline cartilage-specific genes aggrecan, collagen
II, and SOX9 (Li et al., 2021; Liao et al., 2021). Similarly, MSC-
Exos could promote macrophage polarization toward the M2
phenotype and further inhibit the inflammatory response,
creating favorable conditions for osteochondral regeneration
(Jiang et al., 2021). In the process of cartilage formation
treated with BMSC-Exos, the expression level of c-MYC was
reduced, indicating that the exosomes could promote cartilage
maturation (Iwamoto et al., 1993).

3.2.5 Improving Osteoporosis
Osteoporosis is caused by complex metabolic factors and is
characterized by an obvious decline in bone mineral density
and bone microstructure damage (Saito and Marumo, 2010;
Hamann et al., 2012). The disease is related to an imbalance
between the number and function of osteoblasts and osteoclasts.
Moreover, angiogenesis, inflammation, oxidative stress and
miRNAs have been involved in the process of osteoporosis (Li
et al., 2018; Lu et al., 2021). It was reported that MSC-Exos could
promote osteogenesis of BMSCs and promote the proliferation of
osteoblasts to alleviate osteoporosis (Qi et al., 2016; Zhao et al.,
2018). It was demonstrated that BMSC-exosomal metastasis-
associated lung adenocarcinoma transcript 1 (MALAT1)
promoted osteoblast activity in osteoporotic mice by the miR-
34c/SATB2 signaling pathway (Yang et al., 2019). MALAT1
contained in exosomes derived from BMSCs promoted alkaline
phosphatase activity of osteoblasts and mineralized nodules by
increasing the expression level of SATB2 (Yang et al., 2019).
Previous researches have demonstrated that activating MAPK
signaling plays a crucial role in inducing osteoblasts
differentiation to reduce and prevent osteoporosis, which may
be mediated by increasing the expression levels of P-p38 and P-Jun
N-terminal kinase (P-JNK) (Gallea et al., 2001; Zhao et al., 2018).
Besides, MSC-Exos could suppress the activation of the NLRP3
inflammasome, inhibit the IL-1β and IL-18 secretion, and alleviate
the inflammatory response to improve osteoporosis (Zhang et al.,
2021a). Moreover, BMSC-Exos enriched with miR-196a could
promote osteogenic differentiation (Peng et al., 2021).
Mechanistic studies showed that miR-196a delivered by BMSC-
Exos plays an essential role in enhancing osteoblastic
differentiation by inhibiting Dkk1 expression to activate the
Wnt/β-catenin pathway. Exosomes from human umbilical cord
MSCs are also able to inhibit BMSC apoptosis and improve the
degree of osteoporosis in rats, which was mediated via the miR-
1263/Mob1/Hippo signaling pathway (Yang et al., 2020a).

4 CONCLUSION

Currently, exosomes are widely viewed as effective therapeutic
components derived from MSCs, and the secretion of
exosomes is an important way for MSCs to promote the
repair of surrounding tissue injuries. There are ongoing
researches on the benefits of therapy with MSC-Exos for
IDD, as well as bone defects and injuries. The core
underlying pathophysiologic mechanism of IDD are
abnormalities and a reduced number of NPCs. The
functional substance in MSC-Exos can regulate the cell
metabolism and function by transferring to NPCs, endplate
chondrocytes and annulus fibrosus cells, thus inhibiting IDD.
Additionally, MSC-Exos also showed great therapeutic
potential in terms of repair in bone defects and injuries via
promoting osteogenic differentiation and angiogenesis and
regulating the immune response, and similar results have
been illustrated with respect to its therapeutic and
preventive effects against cartilage injuries and osteoporosis.
Furthermore, the application of novel biomaterials such as
hydrogels could prolong the duration of exosomes at the bone
injury site and maintain the function and stability of
intracapsular proteins and miRNA. In order to enable
MSCs to play a better role in repairing tissue injury, studies
should continue the exploration of new methods to promote
the delivery of bioactive substances in exosomes more efficient
and novel biomaterials that can maintain the physiological
state of MSC-Exos.
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