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Mechanism of carrier accumulation in perovskite
thin-absorber solar cells
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Photovoltaic conversion requires two successive steps: accumulation of a photogenerated

charge and charge separation. Determination of how and where charge accumulation is

attained and how this accumulation can be identified is mandatory for understanding the

performance of a photovoltaic device and for its further optimization. Here we analyse the

mechanism of carrier accumulation in lead halide perovskite, CH3NH3PbI3, thin-absorber

solar cells by means of impedance spectroscopy. A fingerprint of the charge accumulation in

high density of states of the perovskite absorber material has been observed at the capaci-

tance of the samples. This is, as far as we know, the first observation of charge accumulation

in light-absorbing material for nanostructured solar cells, indicating that it constitutes a new

kind of photovoltaic device, differentiated from sensitized solar cells, which will require its

own methods of study, characterization and optimization.
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N
anostructured (NS) solar cells constitute a powerful
alternative for the development of the third generation
of photovoltaic devices. The second generation, thin-film

solar cells, allows in many cases a reduction in production cost in
comparison with the first generation, Si solar cells. In the third
generation, in addition, an increase in efficiency is potentially
attainable1. To reduce the cost of photovoltaic devices, an efficient
strategy is to relax the quality requirements of the materials
forming the device. However, in conventional Si solar cells, high
crystal quality is required, as both photogenerated electrons and
holes are transported along the same material, and defects act as
recombination centres reducing the cell performance. The
material quality can be relaxed if just one carrier is transported
along one specific material. This is the working principle
of sensitized solar cells (SSCs), in which light absorption
and carrier transport are decoupled2. In SSCs, charge is
photogenerated in dye (DSSCs), thin semiconductor (SSSCs) or
in a semiconductor quantum dot (QDSSCs), for small
semiconductor nanocrystal sensitizers in which the regime of
quantum confinement is reached3,4. The photogenerated charge
is quickly injected into two different transport media: one for
electrons transport media (ETM), generally a wide band gap
semiconductor such as TiO2, and the other one for holes (HTM).
As only a single carrier is present in the transporting media, the
carrier recombination is reduced and less demanding materials
can be employed. In this context, the necessity of NS devices
arises from the fact that a single-molecular layer or a
semiconductor, extremely thin absorber (Bnm), cannot
completely harvest the incident sunlight. By nanostructuring
the electrode, the effective area to be covered by the sensitizer can
be increased by several orders of magnitude. In fact, the
appearance of these electrodes enormously increased the
efficiency of DSSCs2. In this sense, the role of NS metal oxide
electrodes is well defined in the form of selective electron contact
and ETM with high effective surface area to enhance cell
harvesting.

Since the seminal paper on DSSCs by O’Regan and Grätzel in
the early 1990s2, the recent demonstration of all-solid NS solar
cells with efficiency higher than 10% constitutes one of the most
important breakthroughs in this field5–8. Open circuit voltages as
high as 1.3 V (ref. 9) and efficiencies of 12.3% (refs 7,8), even
higher than that of the record liquid DSSC, have been very
recently demonstrated. In this kind of cell, nanoparticles or a thin
film of CH3NH3PbX3, with a perovskite crystalline structure
(where X is a halogen element I, Cl, Br or a combination), are
deposited on a NS semiconductor with or without hole-trans-
porting material (HTM). Lead halide perovskites have already
shown great potential in quantum dot-sensitized solar cells with a
liquid HTM10,11. However, it was the recent report on all-solid
devices, with easier perspectives for industrialization, that has
revolutionized the field of NS photovoltaic devices. However,
the working principles of these devices are not completely
understood, as there is clear evidence that these devices do not
work as the conventional sensitized solar cell, in which both ETM
and HTM are needed. Solar cells with lead halide perovskite and
no ETM have been prepared with efficiency Z¼ 10.9% using
Al2O3 NS electrodes in which perovskite cannot photoinject
because of a type I band alignment6, whereas devices with no
HTM and Z¼ 5.5% have been prepared by directly contacting the
perovskite with an Au contact12.

In this work, to unveil the working principles of these devices
and concretely understand the mechanism of charge accumula-
tion needed for the photovoltaic conversion, a systematic study
based on impedance spectroscopy (IS) characterization has been
carried out under both dark and illuminated conditions. The
direct signature of perovskite light-absorbing material has been

observed in the capacitance of the device, indicating charge
accumulation in the electronic states of perovskite. In the DSSC,
the charge accumulation in the light-absorbing material (the dye)
has not been detected by electrochemical measurement, and for
QDSSCs it was detected indirectly as a change in the capacitance
slope13. Here we present the first report of charge accumulation
in light-absorbing material for NS solar cells, which is attributed
to a density of states (DOS) that is larger in the perovskite
absorber than in either ETM or HTM. This fact makes lead halide
perovskite solar cells a new type of photovoltaic device halfway
between NS and thin-film solar cells.

Results
Performance of flat and NS solar cells. In order to have a general
view of the performance of photovoltaic devices using perovskite as
light-absorbing material, different cells with flat and NS electrodes
have been prepared using CH3NH3PbI3 as the light-absorbing
material. CH3NH3PbI3 was prepared following the previously
reported methods5. Briefly, glass covered with a thin film of
transparent conductive SnO2:F (FTO) was used as the substrate for
electrode preparation. A compact layer of TiO2 was deposited on
top of FTO. Electrodes prepared in this way are hereafter called
‘Flat’ electrodes. Two types of NS electrodes were prepared with an
additional layer formed by TiO2 or ZrO2 nanoparticles. Finally, on
these electrodes are sequentially deposited CH3NH3PbI3, spiro-
MeOTAD as HTM and Au contact. Details of SEM, TEM and
energy-dispersive X-ray spectroscopy (EDXS) characterization of
Flat and NS devices can be found in Supplementary Figs S1–S4.
Blank cells prepared exactly in the same way but without perovskite
were also prepared. See Methods section for more details on sample
preparation.

Figure 1 shows the current–potential (J–V) curves of samples
prepared with different electrodes at one-sun illumination. The
solar cell parameters, components and geometrical issues of these
samples are reported in Table 1. All the prepared devices exhibit
high open circuit potential, VOC. The photocurrent (JSC) obtained
decreases from NS TiO2 to NS ZrO2 to Flat electrode. The light
absorption measured for NS ZrO2 with perovskite electrodes is
lower than that for NS TiO2 electrodes of the same thickness, see
Supplementary Fig. S5. Cells prepared with NS TiO2 also exhibit
higher FF and consequently the highest conversion efficiency of

20

15

10

5

0
0.0 0.2 0.4 0.6

Vapp (V)

J 
(m

A
 c

m
–2

)

0.8

NS TiO2

NS ZrO2

Flat

1.0

Figure 1 | Solar cell performance. Current–potential J–V curves of lead

iodine PS with three different electrodes: FTO/compact TiO2 (Flat),

FTO/compact TiO2/nanostructured TiO2 (NS TiO2) and FTO/compact

TiO2/nanostructured ZrO2 (NS ZrO2). Solar cell parameters and conversion

efficiency are summarized in Table 1.
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the set, a significant Z¼ 7.8%. Samples prepared on the NS ZrO2

electrode present an appreciable efficiency of 4.2%. It is also
interesting that non-negligible efficiency and photocurrent is
obtained even for Flat devices, as it has been already seen for
other inorganic semiconductors14, but not for dyes15, because of
the high perovskite extinction coefficient. In Supplementary Fig.
S6 the results obtained in this work for NS and flat samples
are compared with our previous report on all-solid QDSSCs of
TiO2/Sb2S3/P3HT (ref. 14) to highlight the consistency between
them.

The conduction band of CH3NH3PbI3 is situated at � 3.93 eV
compared with vacuum, whereas TiO2 is situated around � 4 eV, as
determined by ultraviolet photoelectron spectroscopy5. Therefore,
the photogenerated charge in CH3NH3PbI3 perovskites can
potentially be injected into TiO2, as there exists an adequate band
alignment. This is not the case for ZrO2 with a conduction band
0.82 eV higher than the conduction band of TiO2 (ref. 16). ZrO2 is
commonly used as control measurement for the characterization of
sensitizers, as no injection into ZrO2 is observed, in contrast with
TiO2 (ref. 17). In fact, no photovoltaic performance was observed
for samples prepared with a compact ZrO2 layer instead of compact
TiO2, as we have verified experimentally.

The electrical differences between TiO2 and ZrO2 electrodes
have been investigated by three-electrode electrochemical mea-
surements using a liquid electrolyte. Liquid electrolytes are
excellent contacts for NS samples, as liquid wets the entire NS
surface. Moreover, through the utilization of a redox couple, the
Fermi level at the solution can be fixed, and the observed voltage
drop is at the semiconductor electrode side. Fig. 2 shows the
capacitance of different electrodes formed with a compact layer
and a nanoporous layer of TiO2 and ZrO2. It can be observed that
the capacitance of a bare FTO layer presents only a slight
variation as a function of the applied voltage, Vapp. Similar
behaviour is observed for the electrode with a ZrO2 compact layer
(ZZ) and with a nanoporous ZrO2 layer but no compact layer
(0Z). Thus, NS ZrO2 layers are not charged with the applied bias.
Moreover, at high Vapp, an exponential increase in capacitance is
observed for the electrode with only the TiO2 compact layer (T0),
corresponding to the chemical capacitance of the compact TiO2

(refs 18,19). The increase in capacitance is higher for the electrode
with a NS layer of TiO2 (TT) as well because of the higher TiO2

volume compared with the T0 electrode. Contrary to ZrO2, TiO2

can be charged. The chemical capacitance pattern reflects the
exponential TiO2 DOS18,19. As the Vapp is increased, charge is
accumulated in the TiO2 DOS but not in ZrO2. Only when the
TiO2 compact layer is used with a ZrO2 nonporous electrode (TZ)
can the exponential increase in the chemical capacitance be
observed, corresponding to the chemical capacitance of TiO2

compact layer, as can be inferred from the results in Fig. 2. This
analysis gives an additional proof that no charge is accumulated

into ZrO2. In this case, ZrO2 acts as a scaffold for perovskite
similar to Al2O3 in previous reports6,9.

IS interpretation. On the basis of J–V curves alone it is difficult
to extract conclusions about the mechanism that determines the
different behaviours observed among the different electrodes
analysed. Decoupling the effect on the J–V curve of each part of
the device merely with this characterization cannot be performed
in a straightforward manner, and many times it is impossible.
Nevertheless, IS is a frequency characterization technique that
allows the decoupling of physical processes with different char-
acteristic times19. Its interpretation is not trivial, but once
the appropriate models are developed this technique allows
separate characterization of each part of the full device at cell
working conditions. We have employed this method to analyse
the prepared solar cells under dark and one-sun illumination
conditions. Here we have focused on the determination of charge
accumulation, which is strictly needed for the photovoltaic
process. The detailed analysis of all aspects of the impedance
spectra is beyond the scope of this communication. Nevertheless,
we have developed an advanced model that allows the extraction
of all relevant information from the impedance spectra, taking
into consideration some previous results on DSSCs20. All details
on the IS model employed for the characterization of the
measured samples can be found in Supplementary Note 1.

Fig. 3 shows an example of the Nyquist plots obtained for the
analysed cells. The results correspond to those for NS TiO2 and
ZrO2 solar cells under both dark and illuminated conditions, both
at Vapp¼ 0 and 0.8V. The first remarkable fact is that, despite the
clear differences between TiO2 and ZrO2 electrodes, as discussed
previously (Fig. 2), similar impedance patterns are obtained for
both electrodes. The appearance of a transmission line (TL)
under dark and low Vapp conditions, characterized by a straight
line followed by an arc, is also significant (see Fig. 3a,b). TL is
the classical feature seen in NS electrodes, in which transport
is coupled with recombination21, see Supplementary Fig. S9.
However, this feature is usually not seen for very thin NS
TiO2 electrodes (Fig. 3, see Table 1), and electrodes thicker than

Table 1 | Solar cell parameters.

Compact
layer/
nano-
structured
film

Thickness
of the
nano-

structured
film (lm)

Area
(cm2)

JSC
(mA/cm2)

VOC(mV) FF g
(%)

TiO2/– 0 0.180 4.4 841 0.39 1.5
TiO2/ZrO2 0.36 0.195 12.0 899 0.39 4.2
TiO2/TiO2 0.55 0.195 18.1 903 0.48 7.8

Structure, material, thickness, area and solar cell parameters of the devices analysed in Fig. 1.
The solar cell parameters indicated are short circuit current, JSC, open circuit voltage, VOC, fill
factor, FF, and photoconversion efficiency, Z.
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Figure 2 | Capacitance of non-sensitized electrodes. Capacitance has

been extracted from IS measurements in liquid electrolyte with I-/I3- redox

couple. Capacitance of the bare conductive SnO2:F (FTO) electrode is

compared with electrodes with different layers of TiO2 and ZrO2. The

electrodes are called using the notation XY, where X is a compact layer,

Y is a porous layer and T and Z are TiO2 and ZrO2 layers, respectively.

0 indicates no layer – that is, T0 compact TiO2 layer with no nanoporous

layer.
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2–3 mm are needed to appreciate this feature. These two facts
indicate that new behaviours, in comparison with conventional
SSCs, can be attributed to NS perovskite solar cells.

The capacitance and DOS. The direct fingerprint of charge
accumulation should be observed in the capacitance, as chemical
capacitance reflects the capability of a system to accept or release
additional carriers because of a change in its Fermi level18. The
Nyquist plots in Fig. 3 present a rich impedance pattern with
several features. It is not possible to determine in a straight-
forward manner the part of the IS spectra that contains
information about chemical capacitance, see Supplementary
Note 1 for further discussions. The IS spectra have been fitted
using equivalent circuits previously used for solid DSSC utilizing
spiro-MeOTAD22. The use of spiro-MeOTAD as the HTM adds
an extra degree of complexity to the analysis, as has been pointed
out recently23, and in some cases it introduces an additional R–C
feature to the TL circuit. By focusing on the spectra under
illumination conditions, Fig. 3c, d, we can identify three regions
at high, intermediate and low frequencies, hereafter called hf, if
and lf, respectively. Considering these features, capacitance of
different electrodes has been determined from the if region, see
Supplementary Note 1.

From the general information gathered from IS analysis of
DSSC, it is well established that the compact layer generally used
to cover the conducting glass has a large effect on the capacitance
when the interface is polarized at reverse or moderate forward
bias. It is therefore important to analyse such layers using
Flat samples in order to separately determine the capacitance
contribution of the NS layers, which are the active photovoltaic
layers. Fig. 4 shows the capacitance extracted from the IS spectra
fitting for Flat and NS samples with and without perovskite for

both TiO2 and ZrO2 electrodes. The left graph includes Flat and
blank NS samples (without perovskite) and the right graph
includes NS solar cells with perovskite. In the left graph of Fig. 4,
two regions, independent of the NS film material, can be
appreciated. One at low Vapp, Vapp o0.6–0.7 V, and the other at
high Vapp. For Flat samples at low Vapp, the growth of capacitance
with voltage is moderate and in Fig. 4 it is seen as being
practically constant with the logarithmic scale employed in the
representation (see red dashed line used as eye guide). At high
Vapp, an increase in the capacitance slope is observed. This
exponential enhancement of capacitance can be attributed to the
chemical capacitance of the flat TiO2 compact layer, as it has been
pointed out in Fig. 2 for the T0 electrode with only a TiO2

compact layer. Moreover, the less-voltage-dependent capacitance
at low Vapp could be related to the capacitance of the spiro-
MeOTAD with some contribution from the interface capacitance
at compact TiO2/spiro-MeOTAD24. We consider that the role of
perovskite in this capacitance is minor (just reducing the compact
TiO2/spiro-MeOTAD interface effective area), as the amount
of perovskite involved is minimal. Confirming this aspect, we
observed a similar behaviour for perovskite-free (blank) NS
samples independently of the NS layer material TiO2 or ZrO2.
For blank NS samples an increase in capacitance at high Vapp

is also observed, and it is more significant for NS TiO2, as in
this case the chemical capacitance of the NS TiO2 layer also
participates, as has been shown in Fig. 2. Note that, with the
experimental procedure reported in the Methods section for
the preparation of CH3NH3PbI3, the amount of perovskite
deposited in Flat samples is low and is not enough to produce
a distinguishable continuous thin layer of perovskite as can
be observed in SEM pictures in Supplementary Fig. S3. This
fact prevented the investigation of the capacitance of thicker
CH3NH3PbI3 layers.
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Figure 3 | Nyquist plots of lead iodine PS solar cells in TiO2 and ZrO2 electrodes. Nyquist plot of solar cells prepared as FTO/compact TiO2/

nanostructured oxide/PS/spiro-MeOTAD/Au. The left column corresponds to the device using TiO2 as the NS oxide, whereas the right column corresponds

to the device with ZrO2, as shown in Fig. 1 and summarized in Table 1. (a) and (b) correspond to IS measurements under dark conditions; transmission

line behaviour is clearly visible. The inset is a zoom of the low impedance region. (c) and (d) correspond to measurements under 1-sun illumination.

Nyquist plots for two different applied DC signals, Vapp, are shown in the graphs. Solid lines are the fits obtained using equivalent circuits previously used for

solid DSSC with spiro-MeOTAD,22 and in some cases additional R–C feature to the TL for an accurate fitting, see Supplementary Fig. S9.
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In the case of complete NS devices with perovskite (right graph
Fig. 4), a clear difference in the capacitance value is observed,
obtaining higher capacitances for samples with perovskite than for
blank samples (see red and green dashed lines in Fig. 4). It is worth
pointing out that the normalized capacitance is independent of
the electrode material (TiO2 or ZrO2), the NS layer thickness
and the illumination conditions at which the IS characterization
was carried out (only NS ZrO2, 0.35mm thickness, under dark
conditions separates from the general trend at low Vapp). This
observation indicates that the capacitance observed in this case is
neither the interfacial capacitance at the compact TiO2 interface
nor the spiro-MeOTAD nor the TiO2 (compact or NS) chemical
capacitance, or at least not only the TiO2 chemical capacitance, as
similar behaviour is observed in ZrO2 samples. The remaining
possibility is that this capacitance is originated by the perovskite
deposited in the NS layer. Charge accumulation in perovskite
materials is directly observed. As chemical capacitance maps
the DOS, the high perovskite capacitance indicates a high DOS

density in this material. This is as far as we know the first
observation of charge accumulation in the light-absorbing material
for NS solar cells using a combination of absorber, ETM and
HTM. This conclusion is also supported by the observation of
a large capacitance in Flat samples with a thin film of perovskite,
as described below.

In order to highlight this new feature observed in NS
perovskite solar cells, classical all-solid DSSC with dye N719
and spiro-MeOTAD as the HTM has been prepared and
characterized (see Supplementary Figs S10 and S11).

The result of the comparison of the capacitance observed for
DSSC and the other samples analyzed (with NS TiO2 or ZrO2) is
shown in Fig. 5. It is well known that the chemical capacitance
extracted from DSSC is the chemical capacitance of the NS TiO2

layer18,19,22. Chemical capacitance of DSSC, obtained from the if
region, represented with inverted triangles with a red edge in
Fig. 5, reflects the exponential DOS of TiO2. Note the significant
difference between the chemical capacitance of DSSC and

100

C
 (

F
 c

m
–3

)

0.0 0.2 0.4
Vapp (V)

TiO2 ZrO2

Vapp (V)
0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 1.2

N719 light if

N719 light hf

NS with PS dark

NS with PS light if

NS with PS light hf

NS no PS

Flat with PS

0.0

10–1

10–2

Fig. 5 | Capacitance analysis of TiO2 and ZrO2 and comparison with a solid DSSC using N719 dye. The left graph plots capacitance of the following: flat

sample with PS; blank NS TiO2 (0.35mm thickness) with no PS; NS TiO2 (0.55mm thickness) with PS extracted from measurement under dark and under

1-sun illumination (light) conditions; and all-solid DSSC (2.2 mm thickness) with N719 as dye and spiro-MeOTAD as HTM. The right graph plots

capacitance of the following: flat samples with PS; blank NS ZrO2 (0.39mm thickness) with no PS; NS TiO2 (0.36mm thickness) with PS extracted from

measurements under dark and under 1-sun illumination (light) conditions; and all-solid DSSC (2.2mm thickness) with N719 as dye and spiro-MeOTAD

as the HTM. Capacitance has been normalized to the electrode volume. Capacitance for both graphs has been extracted by fitting the IS spectra from

the if region if nothing else is indicated. In some cases, capacitance has been extracted from the hf region as it is indicated in the legend.

10–2

Flat with PS
NS TiO2 no PS
NS ZrO2 no PS

0.0 0.2 0.4 0.6
Vapp (V) Vapp (V)

0.8 1.0 0.0 0.2 0.4 0.6 0.8

NS TiO2 0.55 μm with PS dark

NS TiO2 0.55 μm with PS light

NS ZrO2 0.36 μm with PS dark

NS ZrO2 0.36 μm with PS light

NS ZrO2 0.94 μm with PS dark

NS ZrO2 0.94 μm with PS light

1.0

10–1

C
 (

F
 c

m
–3

)

100

Fig. 4 | Capacitance analysis of flat samples and NS samples with and without PS. The left graph plots capacitance of flat with PS, and blank samples

without PS, NS TiO2 and ZrO2 samples present NS layers of 0.35 mm TiO2 and 0.39mm ZrO2, respectively. The right graph plots the capacitance of

NS TiO2 and ZrO2 samples with PS of samples with different NS layer thicknesses as indicated in the legend. Capacitance values obtained in measurements

under dark and under 1-sun illumination (light) conditions are plotted. Capacitance for both graphs has been extracted by fitting the IS spectra from

the if region as discussed in Supplementary Note 1. Capacitance has been normalized to the electrode volume. Red and green dashed lines are only eye

guides to highlight the difference in capacitance obtained for samples with and without PS.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3242 ARTICLE

NATURE COMMUNICATIONS | 4:2242 | DOI: 10.1038/ncomms3242 | www.nature.com/naturecommunications 5

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


NS TiO2 perovskite solar cells (consider only the capacitance
extracted at the if region). Only at high Vapp do both capacitances
merge to indicate a possible contribution of both materials,
perovskite and NS TiO2, to the charge accumulation. In the case of
NS ZrO2 samples with perovskite, the main contribution to the
capacitance is from perovskite, but a contribution of compact TiO2

cannot be ruled out at high Vapp. These results indicate that,
although SSCs and perovskite NS solar cells present similar
configuration (when a NS TiO2 electrode is used), the working
principles are different, with charge accumulation and transport in
perovskite material exhibiting a very large DOS. Deep knowledge
of these working principles of perovskite NS solar cells is
mandatory for a further improvement of this new kind of devices.

Thin-film solar cell. As the results reported so far in the literature
indicate that the organometal halide perovskite may work both as
light absorber and as ambipolar electron and hole transport
material, it is of great interest to explore the operation of these
materials in thin-film solar cell configurations in which a compact
layer is sandwiched between selective contacts. It is important,
therefore, to confirm that the distinctive large DOS observed in
NS samples is found in planar samples as well. We have com-
mented above on very thin layers of CH3NH3PbI3, but the
capacitance results were not conclusive. Therefore, we have also
prepared a Flat cell of CH3NH3PbI3� xClx following a processing
method recently reported8, obtaining a Flat sample with a
perovskite layer of 300 nm. The measurements of capacitance of
such thin-film configurations, described in Supplementary Note
2, indicate a large capacitance that doubtless corresponds to the
perovskite layer, see Supplementary Fig. S13, confirming our
results above on the huge intrinsic DOS of this type of materials
for NS perovskite samples.

Discussion
In this article we showed for the first time the charge accumulation
in light-absorbing materials, CH3NH3PbI3 perovskite, in a NS
solar cell. High DOS has been observed for perovskite. This direct
evidence has been observed by the capacitance extracted from IS
measurements for both NS TiO2 and ZrO2 electrodes, despite the
large differences from the electrical point of view between these
two materials. This study indicates that the analysed solar cell
constitutes a new kind of photovoltaic device halfway between
sensitized and thin-film solar cell for NS TiO2 and a thin-film
solar cell with ZrO2 scaffold for NS ZrO2. The optimization and
further improvement of a new photovoltaic technology requires a
deep knowledge of the working principles of this photovoltaic
device. Understanding how charge accumulation is reached and
how it can be identified and characterized is an important step
forward, with significant implications on the development of this
technology.

Methods
Electrode preparation and characterization. The electrodes analysed in this
study include flat and nanoporous morphologies for TiO2 and ZrO2. The semi-
conductor compact layers (CLs) were prepared by spin-coating a solution of M
(IV) bis(ethyl acetoacetato)-diisopropoxide (M¼Ti or Zr), 0.15M, in 1-butanol on
fluorine-doped tin oxide (FTO)-covered glass substrates (Pilkington) TEC 15. The
coated films were cooled down, and the spin–cast was repeated twice with a
double-concentrated precursor solution followed by thermal treatment at 450 �C.
The thicknesses determined by scanning electron microscopy were B100 nm and
B60 nm for TiO2 and ZrO2, respectively. Porous TiO2 films were prepared using
the doctor-blade method with a 20-nm-sized paste prepared according to the
method described elsewhere25 and sintering at 450 �C for 30min in air. Porous
ZrO2 films were also prepared by means of the doctor-blade method using ZrO2

paste with a particle size of 15 nm25 and sintered under the same conditions than
porous TiO2 film. The thicknesses of nanoporous films were B0.3–2 mm for solar
cell characterization and 2–4mm for electrode characterization. CH3NH3PbI3
perovskite precursor solution was prepared by mixing PbI2 (1.23mmol, 99%,

Aldrich) and CH3NH3I (1.23mmol, synthesized) in g-butyrolactone (1ml, 99%,
Fluka), producing 40 wt% solution. The CH3NH3I was readily synthesized by
reacting CH3NH2 (0.273mol, 40% in methanol, TCI) with HI (0.227mol, 57 wt.%
in water, Aldrich) according to the method reported elsewhere5,10. The perovskite
precursor solution, kept at 60 �C with stirring for 12 h, was deposited on the
prepared flat or nanoporous TiO2 and ZrO2 films by spin-coating, which was
followed by heating at 100 oC for 15min. The perovskite-adsorbed films were
covered with hole transport material (HTM) using spin-coating, where HTM
solution is composed of 0.14M 2,20 ,7,70-tetrakis-(N,N-di-p-methoxyphenyl-
amine)-9,90-spirobifluorene (spiro-MeOTAD, Merck), 64mM
bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI, 99.95%, Aldrich) and 0.198
M 4-tert-butylpyridine (tBP, 96%, Aldrich) in a mixture of chlorobenzene (99.8%,
Aldrich) and acetonitrile (99.8%, Aldrich) with a volume ratio of 10:1.
A 70-nm-thick Au (99.99%) layer as a counter electrode was evaporated on top of
the HTM overlayer under B10� 6mbar. J–V characteristics of solar cells were
determined under 1-sun illumination (AM 1.5 G, 100mWcm� 2) with an ABET
Sun 2000 solar simulator (1,000W Xe source) and a Keithley 2,400 sourcemeter.
Measurements were recorded without a mask. This procedure overestimates the
efficiency byB10%26. Photoelectrochemical measurements were recorded using an
FRA-equipped PGSTAT-30 from Autolab. A three-electrode configuration was
used where a Pt wire was connected as the counter-electrode and Ag/Agþ non-
aqueous was used as the reference electrode. Anhydrous and degassed acetonitrile
with redox iodide/triiodide (0.5 M LiI, 0.05 M I2) was used as the electrolyte. Cyclic
voltammetries were recorded at a scan rate of 50mV/s and impedance
characterization was performed at forward bias, applying a 20mV AC sinusoidal
signal over the constant applied bias with the frequency ranging between 400 kHz
and 0.1Hz.
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