Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation

Yann K. Petit¹, Eléonore Mourad¹, Christian Prehal¹, Christian Leypold¹, Andreas Windischbacher², Daniel Mijailovic^{1,3}, Christian Slugovc¹, Sergey M. Borisov⁴, Egbert Zojer², Sergio Brutti⁵, Olivier Fontaine^{6,7,8}* and Stefan A. Freunberger^{1,8}*

- ¹Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
- ² Institute of Solid State Physics, Graz University of Technology Petersgasse 16, 8010 Graz, Austria
- ³ University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
- ⁴ Institute Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
- ⁵ Dipartimento di Chimica, Università di Roma La Sapienza. P.le A. Moro 5, 00185 Roma, Italy
- ⁶ Institut Charles Gerhardt Montpellier, UMR 5253, CC 1502, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
- ⁷ School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
- ⁸ IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
- * e-mail: olivier.fontaine@vistec.ac.th, stefan.freunberger@ist.ac.at

Aprotic alkali metal– O_2 batteries function through the reversible filling of a porous cathode with alkali superoxides or peroxides. The two major obstacles to this chemistry occurring efficiently are the insulating nature of the products and parasitic reactions, which are caused by the highly reactive singlet oxygen ($^{1}O_2$). Redox mediators (RMs) are recognized to be key for improving rechargeability, however, how they affect $^{1}O_2$ formation is unclear, hindering strategies for their improvement. Here we clarify the mechanism of mediated peroxide and superoxide oxidation and thus explain how RMs either enhance or suppress $^{1}O_2$ formation. We show that charging commences with peroxide oxidation to a superoxide intermediate and that redox potentials above ~3.5 V vs. Li/Li⁺ drive $^{1}O_2$ from superoxide oxidation while disproportionation always generates some $^{1}O_2$. We find that suppressing $^{1}O_2$ requires superoxide oxidation kinetics to be faster than the $^{1}O_2$ generation kinetics by disproportionation and the $^{1}O_2$ fraction from disproportionation to be small.

Oxygen redox chemistry is in the focus of forefront battery research with the aim to push energy storage beyond the limits of Li-ion batteries in terms of energy, sustainability and cost.¹⁻⁴ Non-aqueous alkali metal–O₂ cells use O₂ redox chemistry most directly by reducing O₂ at a porous, Li⁺, Na⁺, or K⁺ electrolyte filled cathode to form alkali peroxides or superoxides²⁻⁵. Realizing high reversible capacities faces, however, two main challenges: First, the discharge products are insulators, which hampers filling the available pore space and removing it on charge^{2,4-10}. Second and perhaps most vexing is parasitic chemistry, which decomposes cell components and causes poor rechargeability, efficiency, and cycle life¹¹⁻¹⁵.

The problems caused by the insulating nature of, e.g., Li_2O_2 and parasitic chemistry are interrelated and particularly severe on charge^{2-7,9,11-14,16-20}. Deeply discharged O₂-cathodes are filled with Li_2O_2 particles with >100 nm in size^{4,7,9,10,21,22}. Oxidizing them on charge is difficult even at low rates since charge transport becomes increasingly difficult, causing rising voltage and incomplete charge^{4,7,20,21,23,24}. Parasitic reactions on discharge form side products such as Li_2CO_3 and Li carboxylates, which are hard to oxidize^{4,12,13}. More of them form on charge with increasing rate as the voltage rises, which selfamplifies the processes^{12,13,15,24}. Parasitic chemistry is now recognized to be significantly caused by the highly reactive singlet oxygen ($^{1}O_2$)^{5,25-29}.

To suppress parasitic chemistry, redox mediators (RMs) are now accepted to be key as they allow for recharging deeply discharged Li–O₂ or Na–O₂ cathodes at low voltages even at high rates^{4,6,8,11,15-17,29-36}. A dissolved, reduced RM^{red} is oxidized at the cathode surface to RM^{ox}, which diffuses to M₂O₂ particles. These are oxidized to M⁺ and O₂ with the mediator being itself reduced to RM^{red}. Mediators allow, in principle, charging at nearly zero overpotential and were investigated in wide variety for metal–O₂ cells^{4,8,11,16,17,30-34,36}. However, RMs may also induce side reactions with the electrolyte^{8,15,30,37}. Furthermore, since chemical oxidation of peroxides and superoxides in non-aqueous media by, e.g., chlorine or ferrocenium can generate ¹O₂ (Refs. ³⁸⁻⁴²), RMs may themselves produce ¹O₂. Crucially, the mechanism of mediated alkali peroxide oxidation and pathways forming ¹O₂ are unknown.

Here, we decipher the mechanism of mediated alkali peroxide and superoxide oxidation and identify the pathways towards ${}^{1}O_{2}$. ${}^{1}O_{2}$ forms by disproportionation of the superoxide intermediate and by mediated superoxide oxidation at redox potential >3.5 V vs Li/Li⁺ (>3.3 V vs. Na/Na⁺) with their relative kinetics governing the ${}^{1}O_{2}$ fraction. We show that superoxide oxidation kinetics slows down for RM potentials >3.2 V vs. Li/Li⁺ and hence operates in the Marcus inverted region.

Results and discussion

We start with hypothesis of possible mediated oxidation mechanisms and pathways towards ${}^{1}O_{2}$. To prove them, we select mediators that span a wide range of redox potentials and we present ${}^{1}O_{2}$ and ${}^{3}O_{2}$ yields upon (su)peroxide oxidation. We then derive a general mechanism of mediated (su)peroxide oxidation, governed by mediator redox potential, the relative kinetics of electron transfer and disproportionation, and ${}^{1}O_{2}$ quenching.

Singlet oxygen evolution thresholds upon alkali (su)peroxide oxidation

Mediated alkali peroxide oxidation (M = Li, Na) has so far been described by the sum reaction^{4,6,8,11,16,17,30-34,36}

$$M_2O_2 + 2 RM^{ox} \xrightarrow{k_{app}} 2 M^+ + 2 RM^{red} + O_2$$
(1)

However, the individual steps need to be known to identify rate limitations and pathways towards ${}^{1}O_{2}$. We hypothesize that mediated oxidation may follow two possible pathways. First, direct two-electron oxidation according to equation (1). Second, analogous to electrochemical Li₂O₂ oxidation^{2,5,19,21}, a sequence of one-electron oxidation to form a superoxide species (denoted as MO₂ without implying the exact nature of the species)

$$M_2O_2 + RM^{ox} \xrightarrow{k_1} M^+ + RM^{red} + MO_2$$
(2)

followed by O2 release through either a second one-electron oxidation

$$MO_2 + RM^{ox} \xrightarrow{k_2} M^+ + RM^{red} + O_2$$
 (3)

or disproportionation. Thereby we consider three possible pathways towards ${}^{1}O_{2}$: First, disproportionation generates ${}^{3}O_{2}$ and ${}^{1}O_{2}$ according to

$$2 \text{ MO}_2 \xrightarrow{k_{\text{DISP}}} M_2 O_2 + x^{-3} O_2 + (1-x)^{-1} O_2$$
(4)

The other two pathways are the electrochemical steps in equations (1) and (3), which can release ${}^{1}O_{2}$ beyond the thermodynamic threshold $E^{\lim} = E^{\circ} + \Delta G ({}^{1}\Delta_{g} \leftarrow {}^{3}\Sigma_{g}^{-})/zF$ (Fig. 1a). E^{\lim} is ~3.54 V vs. Li/Li⁺ for superoxide oxidation. Fig. 1a brings the M/M⁺ scales (M = Li, Na, K) to a common scale based on their M/M⁺ potentials vs. SHE. Since the standard potentials of the O₂/MO₂ couples are very similar on this scale, also the ${}^{1}O_{2}$ evolution thresholds E^{\lim} for superoxide oxidation are very similar (dashed lines). Readily available KO₂ may therefore be used as a substitute for in pure form inaccessible LiO₂ (more detailed justifications are given in Supplementary Note 1). To clarify which of these possible steps prevail and how ${}^{1}O_{2}$ forms, we used a range of partly previously used mediators^{8,16,17,30,34} with redox potentials ranging from just above the equilibrium potential of the O₂/Li₂O₂ couple at 2.96 V vs. Li/Li⁺ to well beyond the ${}^{1}O_{2}$ generation threshold.

Figure 1 | Thermodynamics of alkali (su)peroxides, ¹O₂ evolution thresholds and the used mediators. a, Standard potentials E^0 of the O₂/MO₂ and O₂/M₂O₂ redox couples on the M/M⁺ scales with M = Li, Na, K. The scales are brought to a common scale based on their M/M⁺ potentials vs. SHE. Thermodynamic thresholds for ¹O₂ evolution $E^{\text{lim}} = E^{\circ} + \Delta G ({}^{1}\Delta_{\text{g}} \leftarrow {}^{3}\Sigma_{\text{g}}^{-})/zF$. $\Delta G ({}^{1}\Delta_{\text{g}} \leftarrow {}^{3}\Sigma_{\text{g}}^{-})$ is the Gibbs free energy difference between ¹O₂ and ³O₂ (0.97 eV), z the transferred electrons, and F the Faraday constant^{13,25,26,43}. Black arrows indicate E^{lim} for M₂O₂ oxidation via a hypothetical two-electron oxidation ($E^{\circ} + 0.48$ V), red arrows E^{lim} for MO₂ oxidation ($E^{\circ} + 0.97$ V). With $E^{\circ}_{O_2/\text{LiO}_2}$ has been estimated to be ~2.57 V vs. Li/Li⁺ (Ref. ⁴⁴) resulting in a threshold for ¹O₂ generation of 3.54 V vs. Li/Li⁺. **b**, The selected RMs, their abbreviations, and measured redox potentials on the Li/Li⁺ scale. TBA⁺ denotes tetrabutylammonium. Cyclic voltammograms of mediators not used before in metal– O₂ cells are shown in Supplementary Fig. 1 and 2. The red dashed lines in **a** and **b** indicate E^{lim} for superoxide oxidation.

Singlet oxygen and triplet oxygen yields

Figure 2 shows the ${}^{3}O_{2}$ and ${}^{1}O_{2}$ yields for the different RMs as a function of their redox potentials when reacted with Li₂O₂ or KO₂ (see Methods for experimental details). Values are given per two and one equivalents of RM^{ox} for Li₂O₂ or KO₂, respectively, according to the formally required equivalents per mol O₂. The mediators can be divided into three groups: 1) mediators with potentials \geq 3.5 V that give significant ${}^{1}O_{2}$ yields (Fc, I₂, BP66, TEMPO); 2) mediators with a potential <3.5 V that evolve close to the expected total O₂ and small ${}^{1}O_{2}$ yields (BP55, TMPD, DMPZ, BP56); 3) low-voltage mediators that give significant ${}^{1}O_{2}$ yields (MBT, TDPA, F₄BQ). The total O₂ evolution is partly below the value

expected from the amount of RM^{ox} , particularly when oxidizing KO₂. This can be rationalized by imperfect ¹O₂ trapping efficiency of DMA and that for some RMs only part of the RM^{ox} reforms RM^{red}, whilst a fraction of the RM forms side products (Supplementary Note 2).

Figure 2 | Singlet and triplet oxygen evolution upon mediated peroxide and superoxide oxidation. a, b, Obtained ${}^{3}O_{2}$ and ${}^{1}O_{2}$ per two or one equivalents RM^{ox} when 10 mM RM^{ox} in TEGDME were added to an excess of Li₂O₂ (a) or KO₂ (b), respectively. ${}^{3}O_{2}$ and ${}^{1}O_{2}$ were measured by MS and DMA-to-DMA-O₂ conversion using HPLC, respectively. DMA is not compatible with F₄BQ and was hence not used there. Electrolytes contained either 0.1 M LiTFSI (a) or 0.1 M TBATFSI (b). The bars are positioned according to the equilibrium potentials of the RM^{ox/red} couples and data are presented as mean \pm s.d. The red dashed line indicates the thermodynamic threshold E^{lim} for ${}^{1}O_{2}$ evolution from MO₂ oxidation.

Considering first group 1, potentials $\gtrsim 3.5$ V, which exceed E^{lim} , partly explain significant ${}^{1}\text{O}_{2}$ yields for Fc, I₂, TEMPO, and BP66 as they could evolve ${}^{1}\text{O}_{2}$ via equation (3) from superoxide oxidation. The results are in accord with previous work observing ${}^{1}\text{O}_{2}$ from the reaction between O_{2}^{-} and oxidized mediators with sufficiently high potentials such as $Fc^{40.42}$. Disproportionation according to equation (4) is another source of ${}^{1}O_{2} {}^{27,45}$.

At this point the question arises whether direct two-electron oxidation of Li₂O₂ according to equation (1) takes place as this could formally evolve ¹O₂ above ~3.5 V vs. Li/Li⁺ (Fig. 1a). Importantly, if direct oxidation were possible, then low-voltage mediators (E_{RM}° _{ox/red} < 3.5 V) would evolve pure ³O₂ directly without passing via the superoxide intermediate. However, we show in Supplementary Note 3 that direct two-electron oxidation is unlikely. Therefore, peroxide oxidation passes via the superoxide intermediate, which in turn feeds with disproportionation a proficient ¹O₂ source.

Turning to groups 2 and 3, mediators with redox potentials <3.5 V, thermodynamics in Fig. 1 suggests no ${}^{1}O_{2}$ to form by electrochemical oxidation (equations (1) and (3)). Indeed, negligible to little ${}^{1}O_{2}$ is observed for group 2 (BP55, TMPD, DMPZ, BP56). Group 3 (TDPA, MBT, F₄BQ) shows large ${}^{3}O_{2}$ deficiencies and significant ${}^{1}O_{2}$ yields. The possibility of ${}^{1}O_{2}$ forming with low-voltage mediators implies superoxide disproportionation to be the ${}^{1}O_{2}$ source. But also the virtual absence of ${}^{1}O_{2}$ with some mediators (group 2) suggests that the ${}^{1}O_{2}$ fraction from disproportionation may be suppressed. TDPA forms ${}^{1}O_{2}$ via a pathway involving TDPA²⁺, highlighting that multistep mediators with a low first step are not necessarily save if they have steps >3.5 V (Supplementary Note 4). The general trend of ${}^{1}O_{2}$ yields found for mediated Li₂O₂ oxidation (Fig. 2a) is also found when Li₂O₂-packed carbon composite electrodes are electrochemically charged with electrolytes containing the mediators, confirming that the here described mechanism captures the mediated step in electrochemical cells (Supplementary Note 5).

Competing reactions kinetics

Disproportionation of superoxide intermediates according to equation (4) will always yield ${}^{1}O_{2}$ (Ref. 27) even if mediated superoxide oxidation with $E_{RM^{0X/red}}^{\circ} < 3.5$ V will not. The ${}^{1}O_{2}$ yield hence results from competing kinetics of mediated oxidation and MO₂ disproportionation and the fraction of ${}^{1}O_{2}$ from disproportionation. To decipher the individual steps, we separately measured their rates as shown in

Fig. 3: (i) the reaction between Li_2O_2 and RM^{ox} , (ii) the reaction between KO_2 and RM^{ox} , and (iii) the rate of superoxide disproportionation.

The oxidation rates were measured by UV-Vis as detailed in the Methods. Compared to purely electrochemical methods, this has the advantage that possible side reactions not reforming RM^{red} could be spotted (Supplementary Note 6). The disproportionation rate was measured by immersing KO₂ pellets in Li⁺ electrolyte and measuring the pressure increase in the closed vessel, Supplementary Fig. 7.

With respect to the apparent reaction rate $v_{app} = k_{app} \cdot c_{RM^{ox}}$ between RM^{ox} and Li₂O₂ in Fig. 3a, we show in Supplementary Note 3 that it does not result from a direct two-electron oxidation (equation (1)). The apparent rate is hence a compound rate between the first one-electron extraction M₂O₂ + RM^{ox} $\stackrel{k_1}{\rightarrow}$ M⁺ + RM^{red} + MO₂ and the following MO₂ + RM^{ox} $\stackrel{k_2}{\rightarrow}$ M⁺ + RM^{red} + O₂, which competes with disproportionation. Comparing the kinetics of the latter two requires assuming a RM^{ox} concentration $c_{RM^{ox}}$ to give the areal rate $v_2 = k_2 \cdot c_{RM^{ox}}$, which may be compared to the areal disproportionation rate v_{DISP} at the solid superoxide surface.

Figure 3b compares these rates. Superoxide oxidation rates show a maximum for BP55 at ~3.2 V and decreasing values as the redox potential (driving force) rises. Also k_{app} decreases in a similar way (Fig. 3a). Regarding the disproportionation, a previous report²⁷ has shown that weak Lewis acids such as tetrabutylammonium (TBA⁺) markedly boost the rate and the ¹O₂ fraction. We consider first the rate. To narrow down typical ranges of v_{DISP} in presence of weakly Lewis acidic RM^{ox}, we measured v_{DISP} in pure Li⁺ electrolyte and a Li⁺/TBA⁺ mixture (Fig. 3b). This range of v_{DISP} values allows rationalizing whether disproportionation or mediated superoxide oxidation dominates O₂ evolution. Accordingly, O₂ evolution is dominated by disproportionation for most mediators except for BP55. For all mediators, the combined kinetics of disproportionation and second electron transfer is much faster than the first one, meaning that the first electron extraction from peroxide is the rate-limiting step.

Figure 3 | Kinetics of mediated (su)peroxide oxidation and superoxide disproportionation. a, b, Rate constants k (left axis) and rates v (right axis) for the reaction between RM^{ox} and the Li₂O₂ surface (a) and the KO₂ surface (b) (data are presented as mean ± s.d., n ≥ 3). Rates are for a RM^{ox} concentration of 10 mM. The dashed lines in **b** indicate the disproportionation rate v_{DISP} of solid KO₂ in 0.1 M LiTFSI or 0.1 M LiTFSI plus 0.1 M TBATFSI, respectively. **c**, **d**, Sankey plots of relative rates during mediated Li₂O₂ oxidation for the examples of BP55 (**c**) and BP66 (**d**) to a superoxide intermediate (denoted as LiO₂ without implying its exact nature) and ongoing competing disproportionation (DISP) or mediated oxidation to yield ¹O₂ (red) or ³O₂ (blue). The widths of the arrows are proportional to the rates (for 10 mM RM^{ox}) and the vertical scale bar corresponds to 1×10⁻⁷ mol·cm⁻²·s⁻¹. ¹O₂ quenching by the RM is denoted by Q. The ³O₂ and ¹O₂ yields per 2 equivalent RM^{ox} are given at the right of each panel. Data are combined from Fig. 2 and 3a,b.

Turning to the changing ${}^{1}O_{2}$ fractions from disproportionation in presence of weak Lewis acids, the ${}^{1}O_{2}$ fraction was found to increase from ~3 to ~20% upon changing Li⁺ for Li⁺/TBA⁺ electrolyte²⁷. These resulted from the relative kinetics of singlet and triplet paths being influenced by the cations present. RM^{ox} are weak Lewis acids and will also affect the ${}^{1}O_{2}$ fraction from disproportionation as elaborated in Supplementary Note 7 and Extended Data Fig. 1. The ${}^{1}O_{2}$ fraction from disproportionation grows strongly with the RM^{ox} concentration and depends on the nature of the RM, reaching up to 90% ${}^{1}O_{2}$.

To more generally explain the ${}^{3}O_{2}$ and ${}^{1}O_{2}$ yields, Figs. 3b and d relate v_{1} , v_{2} , and v_{DISP} for BP55 and BP66, which are prototypical cases for mediators below and above 3.5 V. The widths of the arrows are proportional to the rates of the individual steps and the bar graph at the right shows the shares of ${}^{3}O_{2}$ and ${}^{1}O_{2}$. Equivalent graphs for the other mediators are shown in Supplementary Fig. 8. The crucial outcome of this considerations is that (i) due to the fast disproportionation kinetics and (ii) considering that disproportionation always yields some ${}^{1}O_{2}$, ${}^{1}O_{2}$ is expected to be produced in all systems. Hence, suppressing ${}^{1}O_{2}$ requires superoxide oxidation kinetics to be faster than the kinetics of ${}^{1}O_{2}$ generation from disproportionation. For the ${}^{1}O_{2}$ fraction from disproportionation to be small, the RM^{ox} concentration must be small (Extended Data Fig. 1), which requires the charge transfer kinetics k_{1} and k_{2} to be fast (see Extended Data Fig. 2 and Supplementary Note 7 for a more detailed discussion). Furthermore, vanishing ${}^{1}O_{2}$ yields with BP55, TMPD, DMPZ and BP56 suggest that, besides favourable differences in the kinetic barriers between singlet and triplet reaction paths (Supplementary Note 8), an important step to suppress ${}^{1}O_{2}$ is the mediators' ability to quench ${}^{1}O_{2}$. Quenching rate constants of some mediators (BP55, TMPD, DMPZ, BP56, and I₂) are high enough to contribute to the small ${}^{1}O_{2}$ fractions (Supplementary Fig. 9).

Taken together, ${}^{1}O_{2}$ generation upon mediated peroxide oxidation is governed by the relative kinetics of superoxide oxidation and disproportionation, the fraction of ${}^{1}O_{2}$ from disproportionation (growing with RM^{ox} concentration), and the ${}^{1}O_{2}$ quenching ability of the mediator. Maximizing superoxide and peroxide oxidation kinetics is hence the most important handle to suppress ${}^{1}O_{2}$ generation for which the detailed analysis in the following provides mechanistic guidelines.

Electron transfer in the Marcus inverted region

Electron transfer rates slowing down as the driving force (mediator redox potential) increases beyond a certain value was strikingly observed in Fig. 3 for superoxide oxidation and similarly for k_{app} . Such

counterintuitive behaviour is predicted for homogeneous electron transfer by Marcus theory and termed the 'inverted region'^{46,47}. Marcus' expression for the rate constant $k_{\rm ET}$ is given by

$$k_{\rm ET} = Z_{el} \cdot e^{\frac{-\Delta G^{\ddagger}}{R \cdot T}} \tag{6}$$

where Z_{el} is the collision factor. The activation free energy is given by $\Delta G^{\ddagger} = (\Delta G^{\circ} + \lambda)^2 / 4\lambda$, where ΔG° is the driving force and λ the total reorganization energy, i.e., the energy required to change the nuclear configurations of reactants and solvent to the product states^{46,47}. λ is composed of the 'inner' reorganization of the reactants, λ_i and the 'outer' reorganization of the solvent, λ_0 . The latter depends hence on the electrolyte environment^{37,46,47}. For superoxide oxidation it can be written as $\lambda = \lambda_{MO_2} + \lambda_{MO_2}$ $\lambda_{\rm RM^+} = \lambda_{\rm i,MO_2} + \lambda_{\rm o,MO_2} + \lambda_{\rm i,RM^+} + \lambda_{\rm o,RM^+}$. Equation (6) predicts a maximum for $k_{\rm ET}$ when $-\Delta G^\circ =$ λ and barrier-less electron transfer as ΔG^{\ddagger} vanishes and decreasing $k_{\rm ET}$ with larger driving force. Equation (6) was derived for homogeneous electron transfer but does not apply to redox molecule reacting at metallic conductors^{46,48}. With the latter, the inverted region disappears because of the nearcontinuum distribution of electrons around the Fermi level in metals, which creates intersections of a multitude of energy surfaces^{48,49}. However, M₂O₂ and MO₂ are wide band-gap insulators. The distribution of occupied/unoccupied electronic states of an insulator can be approximated by a narrow Gaussian function and electron transfer involves discrete energy levels akin to free molecules, which may still justify using the formalism in equation (6) for homogeneous electron transfer between discrete energy levels. In support of this, Fig. 4 shows that equation (6) adequately fits the measured superoxide oxidation rates k_2 as a function of the driving force $-\Delta G^{\circ} = (E_{\text{RM}^{\circ x/\text{red}}}^{\circ} - E_{\text{O}_2/\text{LiO}_2}^{\circ})F$. Similarly, the trend for k_{app} is reproduced (Supplementary Fig. 11, Extended Data Fig. 2). Importantly, adequate description of rates by Marcus theory shows that physical meaning can be ascribed to Z_{el} and λ .

Figure 4 | Free energy dependence of superoxide oxidation kinetics. Plot of $\ln(k_2)$ versus $-\Delta G^\circ$. The full line parabola is k_{ET} from the best fit of equation (6) which gives $Z_{\text{el}} = 6.4 \cdot 10^{-3} \text{ cm} \cdot \text{s}^{-1}$ and $\lambda = 0.607 \text{ eV}$. The dashed parabolas are obtained with $\lambda \pm 0.1 \text{ eV}$.

A central information from the adequacy of the fit is that chemically very different RMs can be described with a common value of $\lambda \sim 0.6$ eV (i.e., $E_{\rm RM^{ox/red}}^{\circ} \sim 3.2$ V vs. Li/Li⁺). This means that λ is dominated by the contributions of the oxide, which outweighs differences between contributions from the RMs. Or in other words $\lambda_{\rm RM^+} < (\lambda_{i,\rm MO_2} + \lambda_{o,\rm MO_2})$, where the latter terms are associated with the M^+ –O₂⁻ bond breaking and solvent reorganization from the MO₂ surface to $M^+_{\rm (sol)}$ and $O_{2(\rm sol)}$, respectively. Similar kinetics of chemically different RMs with similar redox potential supports this statement. Nevertheless differing reorganization energies between the RMs may in part account for deviations from the overall fit. To illustrate this, the dashed parabolas were drawn with the best fit $\lambda \pm 0.1$ eV, which to a large extent captures deviations from predictions. Furthermore, deviations of measured kinetics from the overall fit in Fig. 4a will foremost also stem from differing collision factors $Z_{\rm el}$ (Refs. ^{47,49,50}).

Mediated alkali (su)peroxide oxidation mechanism

Figure 5 summarizes the mechanism of mediated alkali (su)peroxide oxidation and implications for ${}^{1}O_{2}$ evolution revealed here. Direct two-electron oxidation of Li₂O₂ or Na₂O₂ may be largely excluded. Instead, our data are consistent with, first, a one-electron oxidation to form a superoxide intermediate according to M₂O₂ + RM^{ox} $\stackrel{k_{1}}{\rightarrow}$ M⁺ + RM^{red} + MO₂, which is the rate limiting step. With MO₂ we do not imply any particular species as it may, for example, be a Li-deficient solid solution $\text{Li}_{2,x}O_2$ phase or dissolved $\text{LiO}_{2(sol)}$ as proposed before^{2,5,18,19,21}. O₂ evolves by two competing pathways. First, a second one-electron oxidation $\text{MO}_2 + \text{RM}^{\text{ox}} \rightarrow \text{M}^+ + \text{RM}^{\text{red}} + O_2$, which partly yields ${}^{1}\text{O}_2$ beyond the thermodynamic threshold $E^{\text{lim}} = E_{O_2/MO_2}^0 + 0.97 \text{ V}$. This gives values for $E_{O_2/MO_2}^{\text{lim}}$ of 3.54 V, 3.24 and 3.45 vs. Li/Li⁺, Na/Na⁺, and K/K⁺, respectively. Mediators beyond the threshold consistently show large ${}^{3}\text{O}_2$ deficiencies and significant ${}^{1}\text{O}_2$ yields. The second O₂ evolving pathway in case of Li–O₂ and Na–O₂ chemistry is disproportionation of the superoxide intermediate, which yields ${}^{1}\text{O}_2$ via 2 MO₂ \rightarrow $M_2O_2 + x \, {}^{3}\text{O}_2 + (1 - x) \, {}^{1}\text{O}_2$. Given that disproportionation always generates ${}^{1}\text{O}_2$, the extent to which low-voltage mediators (below the ${}^{1}\text{O}_2$ threshold) may suppress ${}^{1}\text{O}_2$ depends on three factors. First, the relative kinetics of mediated oxidation and ${}^{1}\text{O}_2$ formation from superoxide disproportionation. Second, since the ${}^{1}\text{O}_2$ fraction from disproportionation grows with RM^{ox} concentration, the mediated oxidation kinetics needs to be fast to keep the RM^{ox} concentration low. Third, the quenching ability of the mediator, which tends to be best with low voltage mediators.

Figure 5 | Mediated alkali (su)peroxide oxidation mechanism. a-c, Oxidation mechanism of Li₂O₂ (a), Na₂O₂ (b), and KO₂ (c). The standard potentials E^0 of the O₂/MO₂ and O₂/M₂O₂ redox couples are shown on the M/M⁺ scales (M = Li, Na, K). K₂O₂ is omitted because of KO₂ being the more stable species. The reaction arrows indicate the e⁻ extraction steps and their kinetics. First, a superoxide species (denoted as LiO₂ or NaO₂ without implying the exact nature of the species) is formed with kinetics k_1 . This is followed by competing mediated second oxidation with kinetics k_2 or disproportionation (DISP, 2 MO₂ $\xrightarrow{k_{DISP}}$ M₂O₂ + x^3 O₂ + (1-x) ¹O₂ for M = Li, Na) to yield ¹O₂ (red) or ³O₂ (blue).

Conclusions

The mechanism of mediated alkali peroxide and superoxide oxidation is described and pathways leading to, in some cases substantial, ${}^{1}O_{2}$ generation are identified. This also suggests strategies to suppress ${}^{1}O_{2}$. Peroxide oxidation commences with the rate limiting step of a one-electron oxidation to a superoxide intermediate. Mediators with redox potentials $\gtrsim 3.5$ V vs. Li/Li⁺ drive ${}^{1}O_{2}$ from superoxide oxidation. Parallel disproportionation is found to dominate O₂ evolution for most mediators and always yields some ${}^{1}O_{2}$ and is hence the major source of ${}^{1}O_{2}$. The extent to which ${}^{1}O_{2}$ or ${}^{3}O_{2}$ evolve is governed by the relative kinetics of superoxide oxidation versus ${}^{1}O_{2}$ generation from disproportionation, the RM^{ox} concentration, and the mediator's ${}^{1}O_{2}$ quenching efficiency. The superoxide oxidation kinetics has a maximum at ~ 3.2 V vs. Li/Li⁺ and decreasing values with higher potential. The apparent reaction rate between mediator and peroxide shows similarly decreasing rate. Remarkably, such behaviour is described by Marcus inverted region. The observation of an inverted region governing mediated (su)peroxide oxidation should enable strategies to find mediators that suppress ${}^{1}O_{2}$ generation.

References

1	Luo, K. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. <i>Nat. Chem.</i> 8 , 684-691 (2016)
2	Lu, YC. et al. Lithium-oxygen batteries: bridging mechanistic understanding and battery
•	performance. Energy Environ. Sci. 6, 750-768 (2013).
3	densities. <i>Nat. Rev. Mater.</i> 1 , 16013 (2016).
4	Aurbach, D., McCloskey, B. D., Nazar, L. F. & Bruce, P. G. Advances in understanding mechanisms underpinning lithium–air batteries. <i>Nat. Energy</i> 1 , 16128 (2016).
5	Wang, Y. et al. A Solvent-Controlled Oxidation Mechanism of Li ₂ O ₂ in Lithium–Oxygen Batteries. <i>Joule</i> 2 , 2364-2380 (2018).
6	Ko, Y. et al. Redox Mediators: A Solution for Advanced Lithium-Oxygen Batteries. <i>Trends in Chemistry</i> 1 , 349-360 (2019).
7	Gao, X., Chen, Y., Johnson, L. & Bruce, P. G. Promoting solution phase discharge in Li–O ₂ batteries containing weakly solvating electrolyte solutions. <i>Nat. Mater.</i> 15 , 882–888 (2016).
0	Lim H-D at al Patienal design of redox mediators for advanced Li-Os batteries. Nat Energy

Lim, H.-D. et al. Rational design of redox mediators for advanced Li–O₂ batteries. *Nat. Energy* 1, 16066 (2016).

- 9 Aetukuri, N. B. et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O₂ batteries. *Nat. Chem.* 7, 50-56 (2014).
- 10 Liu, T. et al. The Effect of Water on Quinone Redox Mediators in Nonaqueous Li–O₂ Batteries. J. Am. Chem. Soc. **140**, 1428-1437 (2018).
- 11 Liang, Z. & Lu, Y.-C. Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium–Oxygen Batteries. *J. Am. Chem. Soc.* **138**, 7574-7583 (2016).
- 12 McCloskey, B. D. et al. Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li– O₂ Batteries. *J. Phys. Chem. Lett.* **3**, 997-1001 (2012).
- 13 McCloskey, B. D. et al. Limitations in Rechargeability of Li–O₂ Batteries and Possible Origins. *J. Phys. Chem. Lett.* **3**, 3043-3047 (2012).
- 14 Liu, T., Kim, G., Casford, M. T. L. & Grey, C. P. Mechanistic Insights into the Challenges of Cycling a Nonaqueous Na–O₂ Battery. *J. Phys. Chem. Lett.* **7**, 4841-4846 (2016).
- 15 Burke, C. M. et al. Implications of 4 e[−] Oxygen Reduction via Iodide Redox Mediation in Li–O₂ Batteries. *ACS Energy Lett.* **1**, 747-756 (2016).
- 16 Chen, Y. et al. Charging a Li–O₂ battery using a redox mediator. *Nat. Chem.* **5**, 489-494 (2013).
- 17 Bergner, B. J. et al. TEMPO: A Mobile Catalyst for Rechargeable Li–O₂ Batteries. *J. Am. Chem. Soc.* **136**, 15054-15064 (2014).
- 18 Lu, Y.-C. & Shao-Horn, Y. Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li–O₂ Batteries. J. Phys. Chem. Lett. 4, 93-99 (2012).
- 19 Kang, S., Mo, Y., Ong, S. P. & Ceder, G. A Facile Mechanism for Recharging Li₂O₂ in Li–O₂ Batteries. *Chem. Mat.* **25**, 3328–3336 (2013).
- 20 Wang, J. et al. Identifying Reactive Sites and Transport Limitations of Oxygen Reactions in Aprotic Lithium–O₂ Batteries at the Stage of Sudden Death. *Angew. Chem. Int. Ed.* **55**, 5201-5205 (2016).
- 21 Ganapathy, S. et al. Nature of Li₂O₂ Oxidation in a Li–O₂ Battery Revealed by Operando X-ray Diffraction. *J. Am. Chem. Soc.* **136**, 16335-16344 (2014).
- 22 Kwabi, D. G. et al. Controlling Solution-Mediated Reaction Mechanisms of Oxygen Reduction Using Potential and Solvent for Aprotic Lithium–Oxygen Batteries. *J. Phys. Chem. Lett.* **7**, 1204-1212 (2016).
- 23 Gao, X. et al. Phenol-Catalyzed Discharge in the Aprotic Lithium–Oxygen Battery. *Angew. Chem. Int. Ed.* **56**, 6539-6543 (2017).
- 24 Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z. & Bruce, P. G. The Carbon Electrode in Nonaqueous Li–O₂ Cells. *J. Am. Chem. Soc.* **135**, 494-500 (2013).
- 25 Wandt, J. et al. Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium– Oxygen Battery. *Angew. Chem. Int. Ed.* **55**, 6892-6895 (2016).
- 26 Mahne, N. et al. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. *Nat. Energy* **2**, 17036 (2017).
- 27 Mourad, E. et al. Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O₂ batteries. *Energy Environ. Sci.* **12**, 2559-2568 (2019).
- 28 Schafzahl, L. et al. Singlet Oxygen during Cycling of the Aprotic Sodium–O₂ Battery. *Angew. Chem. Int. Ed.* **56**, 15728-15732 (2017).
- 29 Liang, Z., Zou, Q., Xie, J. & Lu, Y.-C. Suppressing singlet oxygen generation in lithium–oxygen batteries with redox mediators. *Energy Environ. Sci.* (2020).
- 30 Park, J.-B. et al. Redox Mediators for Li–O₂ Batteries: Status and Perspectives. *Adv. Mat.* **30**, 1704162 (2018).
- ³¹ Pande, V. & Viswanathan, V. Criteria and Considerations for the Selection of Redox Mediators in Nonaqueous Li–O₂ Batteries. *ACS Energy Lett.* **2**, 60-63 (2017).
- 32 Chen, Y., Gao, X., Johnson, L. R. & Bruce, P. G. Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell. *Nat. Commun.* **9**, 767 (2018).
- 33 Gao, X. et al. A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode. *Nat. Energy* **2**, 17118 (2017).

- 34 Kundu, D., Black, R., Adams, B. & Nazar, L. F. A Highly Active Low Voltage Redox Mediator for Enhanced Rechargeability of Lithium–Oxygen Batteries. *ACS Central Sci.* **1**, 510-515 (2015).
- 35 Chase, G. V. et al. Soluble oxygen evolving catalysts for rechargeable metal-air batteries. US Patent App. 13/093,759 (2011).
- 36 Landa-Medrano, I. et al. Redox mediators: a shuttle to efficacy in metal–O₂ batteries. *J. Mat. Chem. A* **7**, 8746-8764 (2019).
- 37 Leverick, G. et al. Solvent-Dependent Oxidizing Power of Lil Redox Couples for Li–O₂ Batteries. *Joule*.
- 38 Li, Q. et al. A Spectroscopic Study on Singlet Oxygen Production from Different Reaction Paths Using Solid Inorganic Peroxides as Starting Materials *Bull. Korean Chem. Soc.* 28, 1656-1660 (2007).
- 39 Qingwei, L. et al. Singlet Oxygen Production in the Reaction of Potassium Superoxide with Chlorine. *Chem. Lett.* **36**, 496-497 (2007).
- 40 Mayeda, E. A. & Bard, A. J. Production of singlet oxygen in electrogenerated radical ion electron transfer reactions. *J. Am. Chem. Soc.* **95**, 6223-6226 (1973).
- 41 Senthil Kumar, S. & Bard, A. J. Background Emission of Electrogenerated Chemiluminescence during Oxidation of Tri-*n*-propylamine from the Dimeric ¹Δ_g State of O₂. *Anal. Chem.* **85**, 292-295 (2013).
- 42 Ando, W. et al. Formation of sulfinyl oxide and singlet oxygen in the reaction of thianthrene cation radical and superoxide ion. *J. Am. Chem. Soc.* **102**, 4526-4528 (1980).
- 43 Hassoun, J., Croce, F., Armand, M. & Scrosati, B. Investigation of the O₂ Electrochemistry in a Polymer Electrolyte Solid-State Cell. *Angew. Chem. Int. Ed.* **50**, 2999-3002 (2011).
- Kwabi, D. G. et al. Experimental and Computational Analysis of the Solvent-Dependent O₂/Li⁺ O₂⁻ Redox Couple: Standard Potentials, Coupling Strength, and Implications for Lithium–
 Oxygen Batteries. Angew. Chem. Int. Ed. 55, 3129-3134 (2016).
- 45 Pierini, A., Brutti, S. & Bodo, E. Superoxide anions disproportionation induced by Li⁺ and H⁺: pathways to ¹O₂ release in Li–O₂ batteries. *ChemPhysChem* **21**, 2060-2067 (2020).
- 46 Marcus, R. A. Electron transfer reactions in chemistry. Theory and experiment. *Rev. Mod. Phys.* **65**, 599-610 (1993).
- 47 Savéant, J.-M. *Elements of molecular and biomolecular electrochemistry*. (John Wiley & Sons, 2006).
- 48 Henstridge, M. C., Laborda, E., Rees, N. V. & Compton, R. G. Marcus–Hush–Chidsey theory of electron transfer applied to voltammetry: A review. *Electrochim. Acta* **84**, 12-20 (2012).
- 49 Feldberg, S. W. & Sutin, N. Distance dependence of heterogeneous electron transfer through the nonadiabatic and adiabatic regimes. *Chem. Phys.* **324**, 216-225 (2006).
- 50 Fawcett, W. R. *Liquids, Solutions, and Interfaces From Classical Macroscopic Descriptions to Modern Microscopic Details.* (Oxford University Press, 2004).

Acknowledgements

S.A.F. is indebted to the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 636069) as well as IST Austria. O.F thanks the French National Research Agency (STORE-EX Labex Project ANR-10-LABX-76-01). The authors thank R. Saf for help with the MS, J. Schlegl for manufacturing instrumentation, M. Winkler of Acib GmbH, G. Strohmeier and R. Fürst for HPLC measurements, and S. Mondal and S. Stadlbauer for kinetic measurements.

Author Contributions

S.A.F., Y.K.P., E.M., C.L., C.P., D.M., and S.M.B. performed experiments. S.B., A.W., and E.Z. did DFT calculations. C.S. helped with synthesis. O.F. contributed to data interpretation. S.A.F. conceived and directed the research, set up and performed all types of experiments, analysed the results, and wrote the manuscript. All authors contributed to the discussion and interpretation of the results.

Competing Financial Interests

The authors declare no competing financial interests

Methods

Materials. Lithium bis(trifluoromethane)sulfonimide (LiTFSI, 99.9%, Solvionic) was dried under reduced pressure for 24 h at 140°C. 2,2,6,6-tetramethyl-1-piperidinyloxy(TEMPO), tris[4-(diethylamino)phenyl]amine (TDPA), *N,N,N',N'*-tetramethyl-*p*-phenylenediamine (TMPD), 2,2'dithiobis(benzothiazole) (MBT₂), thiobis(benzothiazole) (MBTH), ferrocene (Fc), I₂, 5,10-dihydro-5,10-dimethylphenazine (DMPZ), N-methyl phenothiazine (MPT), and tetrafluorobenzoquinone (F₄BQ) were from Sigma Aldrich. MBT₂, MPT, F₄BQ, and I₂ were recrystallized from ethanol or sublimated, respectively. Ethylene glycol dimethyl ether (DME, >99.0%, Aldrich) and tetraethylene glycol dimethyl ether (TEGDME, ≥99%, Aldrich) were dried over lithium, distilled under Ar and further dried and stored over activated molecular sieves. The water content was determined by Karl-Fisher titration and found to be below 5 ppm. 9,10-Dimethylanthracene (DMA, >98.0 %, Aldrich) was recrystallized from ethanol and its purity confirmed by ¹H-NMR spectroscopy and HPLC analysis. Lithium peroxide (Li_2O_2) was synthesized as described previously²⁴. Its purity was confirmed by XRD and ATR-IR spectroscopy. Formic acid, water, and acetonitrile as HPLC solvents were from Fluka, Sigma, and VWR, respectively. LiFePO₄ was from MTI.

Synthesis. Oxidized mediators were obtained by oxidizing the reduced forms using one equivalent nitrosonium tetrafluoroborate (NOBF₄, Aldrich) in CH₃CN during 3 hours under agitation. They were purified by precipitation in cold ether, filtration, and drying under vacuum at 30 °C for 12 hours. Highly pure Li₂O₂ was synthesized as follows. All operations were performed in an Ar filled glove box. Freshly cut Li metal was dissolved in 5-fold excess of ultra-pure water (Millipore, 18.2 MΩ) that was degassed by an Ar flow. LiOH was obtained by drying at 120°C under vacuum. Its purity was confirmed by the carbonate/carboxylate analysis⁵¹. The LiOH was converted into Li₂O₂ with 1.85-fold excess of 30 % H₂O₂. After stirring for 30 min, the water was removed and the Li₂O₂ was dried at 120°C for 12 h under vacuum. Identity and purity was confirmed by XRD, FTIR, and carbonate/carboxylate analysis⁵¹. To obtain Li₂O₂ that could be pressed into self-standing pellets, PTFE suspension (60% in water, Aldrich) was added to the LiOH in an extent to get 90/10% w/w Li₂O₂/PTFE. Syntheses of MBTLi, BP55, BP56 and BP66 are detailed in the Supplementary Methods.

Electrochemistry and analysis. Electrochemical experiments were run on a potentiostat/galvanostat (SP-300 or MPG-2, Bio-Logic). Cyclic voltammograms were recorded in a three-electrode arrangement with glassy carbon disc working electrode (3 mm) or a gold UME (12.5 μ m), a Pt wire counter electrode and partially delithiated LiFePO₄ in 0.1 M LiClO₄/TEGDME behind a vycor glass frit as reference electrode inside a glass cell with PTFE lid. The reference was checked versus Fc⁺/Fc. The cells were run inside an Ar filled glovebox and purged with high-purity Ar. For rotating disc measurements, a Princeton Applied Research device with in-house made 5 mm GC disc was used. The LiFePO₄ counter electrode was separated from the electrolyte using a Li-conducting ceramic (Ohara), glued into a PEEK cell using silicon glue (RS), the LiFePO₄ reference electrode was separated by a Vycor glass frit (ALS). Metal-O₂ cells with integrated pressure transducer were of the type PAT-Cell-Press (EL-Cell GmbH, Hamburg, Germany) with custom modified cathode plunger. The atmosphere was pure O₂ at a pressure of ~1.2 bar and the cell kept in an incubator at 20±0.1 °C. Working electrodes were made by mixing

Ketjen Black carbon black with PTFE (9/1 w/w) using isopropanol to obtain a paste which was then rolled on a glass plate to 100 μ m thickness. The punched electrodes were dried on air, then washed with 1/1 water/acetone mix and dried overnight at 200 °C in vacuum. Li₂O₂ loaded electrodes were made by mixing Ketjen Black carbon black with PTFE (9/1 w/w) with isopropanol and water to obtain a thin slurry, which was thinly spread on a glass plate, dried on air, scratched off and dried overnight at 200 °C in vacuum. This powder was mixed inside a glove box with Li₂O₂ (1/1 w/w with respect to C) and rolled to 100 μ m thick electrodes. The LiFePO₄ counter electrode was separated from the working electrode using a PEEK insert with a Li-conducting ceramic (Ohara) glued in using silicon glue (RS).

Singlet and triplet oxygen yields were measured by injected solutions of 10 mM RM^{ox} in tetraethyleneglycol dimethylether (TEGDME) into a closed vessel containing an excess of Li_2O_2 or KO₂. The sample setup was similar to the one described in Ref. ⁵¹ and consisted of a glass vial with a volume of 7 mL equipped with a stirring bar. A PEEK plug with glued in PEEK tubes and a septum was sealed against the glass vial with a flat rubber seal. Reagents were added through a septum using a gas tight syringe (Hamilton). All solutions were degassed with N2 to remove dissolved CO2 and O2. The head space was purged with 5 mL·min⁻¹ Ar 6.0 to a mass spectrometer (MS) to quantify the evolved ³O₂. The mass spectrometry (MS) setup was built in-house and described in more detail in Ref ²⁶. The solutions also contained 30 mM 9,10-dimethylanthracene (DMA) to probe ¹O₂ formation²⁶. DMA reacts selectively with ¹O₂ to its endoperoxide (DMA-O₂) and the DMA-to-DMA-O₂ conversion Highperformance liquid chromatography (HPLC) was used to determine the degree of the DMA-to-DMA-O₂ conversion as described in more detail Ref. ²⁶. While the reaction between DMA and ¹O₂ is fast, the ¹O₂ amount determined from DMA-to-DMA-O₂ conversion has to be considered as a lower limit since competing ${}^{1}O_{2}$ decay routes may prevail. The O₂ evolution rate during the disproportionation reaction was measured using a high-precision pressure transducer (Omega, PAA35X) connected to the closed vessel instead of the MS. Reagents were added with a gas tight syringe through glued-in tubing.

UV-Vis absorption spectra were recorded on a Cary 50 spectrophotometer (Varian) or V-770 (Jasco). Reaction kinetics were measured by operando UV-vis in a 1 cm quartz cuvette (Hellma) with a gas tight injection lid. $Li_2O_2/PTFE$ powder (90/10 % w/w)) or pure KO₂ powder, respectively, were pressed with

a 7 mm die set and a hand press (PIKE) to ~0.5 mm thick pellets in an Ar-filled glove box. A pellet was placed in a PTFE frame in the cuvette with magnetic stirrer on top and RM^{ox} solution was injected using a gas tight syringe (Hamilton). Data are shown in Supplementary Figs. 3 to 6. For the slowest kinetics, the reaction kinetics was additionally measured by following the pressure evolution upon bringing KO₂ or Li₂O₂ powder in contact with RM^{ox} solution in TEGDME. For Li₂O₂, the solution contained additionally 0.1 M LiTFSI and the rate was calculated taking into account the fraction of ³O₂ evolved. To establish relative surfaces of the pellet and the powders, the latter were also measured using DMPZ⁺ and TEMPO⁺. The quenching efficiency was measured by monitoring the disappearance rate of the ¹O₂ trap DMA in presence or absence of the quenchers during continuous photochemical ¹O₂ generation as frequently used in the literature⁵². Details are described in Ref. ⁵³.

References

- 51 Schafzahl, B. et al. Quantifying Total Superoxide, Peroxide, and Carbonaceous Compounds in Metal–O₂ Batteries and the Solid Electrolyte Interphase. *ACS Energy Lett.* **3**, 170-176 (2017).
- 52 Wilkinson, F., Helman, W. P. & Ross, A. B. Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet-State of Molecular-Oxygen in Solution An Expanded and Revised Compilation. *J. Phys. Chem. Ref. Data, Monograph 9, 4th ed.* **24**, 663–1021 (1995).
- 53 Petit, Y. K. et al. DABCOnium: An Efficient and High-Voltage Stable Singlet Oxygen Quencher for Metal–O₂ Cells. *Angew. Chem. Int. Ed.* **58**, 6535-6539 (2019).

Data availability. The data that support the plots within this paper and other findings of this study are available from the corresponding author S.A.F. upon reasonable request. Source Data for Figs. 2–4 and Extended Data Figs. 2–13 are provided with the paper.

Extended Data Figure 1 | ³O₂ loss upon superoxide disproportionation in presence of RM^{ox}. KO₂ powder was immersed in 0.1 M LiTFSI/TEGDME containing 0, 0.5, 1, or 2 equivalents of the indicated RM^{ox}. One equivalent is the amount to theoretically evolve all O₂ (0.5 mol RM^{ox}/mol KO₂) considering 0.5 mol O₂/mol KO₂ to evolve from disproportionation. Equal amounts of electrolytes were used and hence the RM^{ox} concentration adapted. **a**, The found amounts of ³O₂ relative to the total amount expected from disproportionation and oxidation for the indicated RM^{ox}. The dashed lines are quadratic polynomial fits. To prove that the RM^{ox} rather than RM^{red} drives ³O₂ loss, we also used the reduced form of DMPZ. **b**, The data in a plotted versus the redox potential of the RMs. The trendlines are to guide the eye. See Supplementary Note 7 for in-depth discussion.

Extended Data Figure 2 | **Oxidation kinetics and RM**^{ox} **concentration. a**, Comparision of the mediated superoxidation kinetics k_2 and apparent peroxide oxidation kinetics k_{app} including the fits with the Marcus expression in equation (6). **b**, 1/k which is proportional to the required RM^{ox} concentration ($c_{\text{RM}^{ox}} = \nu/k$) to drive a certain areal oxidation rate $\nu = k \cdot c_{\text{RM}^{ox}}$.