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Abstract

The impact of disulfide bonds on protein stability goes beyond simple equilibrium thermodynamics effects associated with
the conformational entropy of the unfolded state. Indeed, disulfide crosslinks may play a role in the prevention of
dysfunctional association and strongly affect the rates of irreversible enzyme inactivation, highly relevant in
biotechnological applications. While these kinetic-stability effects remain poorly understood, by analogy with proposed
mechanisms for processes of protein aggregation and fibrillogenesis, we propose that they may be determined by the
properties of sparsely-populated, partially-unfolded intermediates. Here we report the successful design, on the basis of
high temperature molecular-dynamics simulations, of six thermodynamically and kinetically stabilized variants of phytase
from Citrobacter braakii (a biotechnologically important enzyme) with one, two or three engineered disulfides. Activity
measurements and 3D crystal structure determination demonstrate that the engineered crosslinks do not cause dramatic
alterations in the native structure. The inactivation kinetics for all the variants displays a strongly non-Arrhenius temperature
dependence, with the time-scale for the irreversible denaturation process reaching a minimum at a given temperature
within the range of the denaturation transition. We show this striking feature to be a signature of a key role played by a
partially unfolded, intermediate state/ensemble. Energetic and mutational analyses confirm that the intermediate is highly
unfolded (akin to a proposed critical intermediate in the misfolding of the prion protein), a result that explains the observed
kinetic stabilization. Our results provide a rationale for the kinetic-stability consequences of disulfide-crosslink engineering
and an experimental methodology to arrive at energetic/structural descriptions of the sparsely populated and elusive
intermediates that play key roles in irreversible protein denaturation.
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Introduction

Natural disulfide bonds have been known for many years to

contribute to native protein stabilization [1]. In the context of a

two-state (native to unfolded) equilibrium denaturation process,

disulfide-bond stabilization is often viewed as a consequence of the

decrease in the conformational entropy of the unfolded state

caused by the presence of the crosslink [2,3]. Hence, it is generally

accepted that engineering disulfide bridges is an efficient way to

stabilize proteins, provided that they are introduced at locations in

which they do not distort or strain the native fold or perturb the

active site [4,5,6,7,8,9,10,11].

However, there is a fundamental difference between a protein’s

thermodynamic and kinetic stability and clearly disulfide bridges

may also have an important effect on the latter. Indeed, in a

biotechnological setting, the rate of irreversible enzyme inactiva-

tion may well be affected by the presence of disulfide bridges and

be more relevant than the unfolding free energy change [12,13].

In addition, disulfide bridges in aggregation prone regions can

help prevent the dysfunctional association of proteins [14,15].

While thermodynamic stability is related to the free energy

difference between the native and the unfolded states, in the

context of transition-state theory, kinetic stability is determined by

that between the native state and the transition states for the rate

limiting steps in the irreversible denaturation pathway [16].

Furthermore, the mechanisms of irreversible denaturation can be

exceedingly complex [17,18,19], with non-native intermediate

species (states, ensembles) playing a fundamental role. According-

ly, while a correspondence between disulfide bridge effects on

thermodynamic and kinetic stability cannot be postulated a priori,

very few experimental studies have addressed the relative

importance of these effects. For instance, the failure of designed

disulfide bridges to stabilize some proteins has been related to the
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irreversible, kinetically-controlled nature of the denaturation

process [20]. However, this interpretation remains unproven,

given the low level of success often met in the rational design of

stabilizing disulfide bridges [21,22].

We here use rational computation-based procedures to design

stabilizing disulfide bridges in the phytase from Citrobacter braakii, a
biotechnologically important enzyme currently used in RONO-

ZYME HiPhos (DSM Nutritional Products, Basel, Switzerland).

The design procedure, based on heated Molecular Dynamics

simulations, was highly successful and allowed us to prepare

several stabilized variants with 1, 2 or 3 engineered bridges.

Differential scanning calorimetry combined with extensive thermal

inactivation reveals the main features of the effect of the bridges on

thermodynamic stability and their impact on kinetic stability.

These variants thus provide an excellent comparison of the effects

of engineered disulfide bridges on thermodynamic and kinetic

stability. We report the crystal structure of one of the variants.

Results and Discussions

Computational Design of Disulfide Bridges
The design of the engineered disulfide bridges was based on

molecular dynamics simulations performed at several tempera-

tures on a homology model of the phytase from C. braakii, no 3D

structure being available at that time (see Text S1 for details).

Molecular dynamics simulations are well established for the study

of protein folding and unfolding [23,24,25] and, indeed, the

isotropic root mean square deviations (iRMSF) of the Ca carbons

at the different temperatures suggest that the enzyme displays a

clear unfolding behavior in the simulations performed at 500 K

(see Figure 1) while at the lower temperatures the available

thermal energy is only able to excite fluctuations of specific

regions.

The design of the additional disulfide bridges targeted regions of

the structure with a substantial tendency to unfold in the

Molecular Dynamics simulations. The strategy was to introduce

the disulfides in regions of the structure significantly displaced with

respect to one another at 500 K, in comparison with the starting

structure (Figure 2). Once these regions were identified, the

positions to mutate were chosen by geometric considerations in the

protein structure. This approach was based on the following

hypotheses: i) the targeted regions are likely to be more flexible

and may be expected to accommodate the engineered disulfides

without straining or distorting the native structure; ii) the targeted

regions could be unfolded in the kinetically relevant transition state

and their stabilization by disulfide crosslinking may increase the

free-energy barrier for irreversible denaturation and enhance

kinetic stability. Since we aimed at enhancing both the thermo-

dynamic and kinetic stabilities of the phytase without compromis-

ing function, we deemed it advisable to focus engineering on those

regions with a substantial tendency to unfold which lined the rim

of the substrate binding pocket or were in direct contact with

them, involving key residues for the enzymatic activity.

The procedure described above led us to prepare three variants

(see Text S1 for details) each with a single engineered disulfide

bridge: S1 (N31C/T177C), S2 (G52C/A99C) and S3 (K141C/

V199C). Among these three single disulfide variants, S2 proved to

be the most stable (see below). Therefore, we deemed it

appropriate also to study multiple-disulfide variants in which the

bridge in S2 (G52C/A99C) was combined with the other bridges.

The following variants with two or three of these bridges were

therefore made: D1 (N31C/T177C+G52C/A99C), D2 (G52C/

A99C+K141C/V199C) and T (N31C/T177C+G52C/

A99C+K141C/V199C).

Figure 1. Molecular Dynamics simulations performed on a homology model of the phytase from C. braakii. Simulations were performed
at several temperatures (shown in Kelvin in the inset of the upper panel). Upper panel: isotropic root mean square deviations (iRMSF) of the Ca at the
different temperatures. Middle panel: secondary structure assignment with red regions representing a-helices and yellow regions representing b-
sheets. Bottom panel: mean distances between Ca of the starting structure and Ca of the structures at different temperatures. These profiles suggest
that at high temperature the enzyme displays an unfolding behavior while at low temperatures the available thermal energy is only able to excite
fluctuations of specific regions. Dashed grey lines mark the position of the residues mutated to engineer disulfide bridges.
doi:10.1371/journal.pone.0070013.g001

Engineered Disulfide Crosslinks
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Preliminary Assessment of the Activity and Stability of
the Variants with Engineered Disulfide Bridges
All the variants showed similar activity levels in the standard

phytase assay (Figure 3 A; see Text S1 for details) and essentially

identical pH profiles (Figure 3 B). Furthermore, very similar

temperature dependencies of activity are observed at sub-

denaturational temperatures (Figure 3 C) while the high temper-

ature activity drop associated with irreversible denaturation is

shifted to higher temperatures as the number of disulfide bridges

increases. These results suggest that, while the engineered

crosslinks do enhance stability, they do not cause dramatic

alterations in the native, functional structure of the enzyme,

corroborated by the 3D-structure of one of the variants. Dynamic

light scattering experiments support that irreversible denaturation

in this system is linked to significant protein aggregation (Figure

S1).

3D-structure of a Phytase Variant
The structure with a disulfide bridge engineered between

residues 141 and 199 was refined to 2.3 Å spacing with two

independent protein monomers in the asymmetric unit (see Text

S1 for details). The fold (Figure 4) has two domains and is very

similar to those of previous 3- and 6-phytases in the PDB from the

bacteria E. coli [26], Hafnia alvei [27], Klebsiella pneumoniae [28] and

Yersinia kristensenii [27] and the fungi Aspergillus ficuum [29], A.

fumigatus [30], A. niger [31] and Debaryomyces castellii [32] and is

typical of members of the histidine acid phosphatase superfamily.

The major domain on the right is composed of residues 6–28, 47–

135 and 260–410 and is colored blue and grey. At its backbone is a

mainly parallel b-sheet, surrounded by a-helices and loops. The

second domain, primarily a-helical, is composed of two insertions

(residues 39–46 and 136–259) in the first domain and is seen on

the left of the Figure in red/yellow. The active site is at the

interface between the two domains, its position indicated in the

Figure by superimposing the myo-inositol hexakissulfate complex of

the H. alvei [27] enzyme (PDB 4aro, 4arv and 4aru). The

engineered disulfide between residues 141 and 199 crosslinks an a-

helix and a coiled loop of the a-helical domain and has well-

defined electron density (Figure 4 B) indicating a highly successful

introduction of this new element into the phytase fold.

The high degree of conservation of fold in the 3- and 6-Phytases

of the HAP superfamily is illustrated by the superposition of the C.

braakii structure on that of the H. alvei enzyme in Figure 4B. The

rmsd in,380 equivalent Ca positions is 1.18 Å. The four disulfide

bridges can be seen to be totally conserved.

Figure 2. Disulfide crosslink design. Upper panel: structure of the
homology model of the phytase from C. braakii used in Molecular
Dynamics simulations showing the residues mutated to introduce
disulfide bridges. Bottom panel: superposition of the MD structures at
500 K and low temperature (blue and green, respectively). Regions
targeted for disulfide bridge engineering are those showing significant
displacement between the two structures.
doi:10.1371/journal.pone.0070013.g002

Figure 3. Preliminary assessment of the activity and stability of
the phytase variants with engineered disulfide bridges. (A)
Activity values for the wild-type and the variants studied at pH 4.5. (B)
Profiles of activity vs. temperature at pH 4.5. The drop in activity at the
higher temperatures indicates denaturation and provides a first
estimate of the thermal stability. (C) Profiles of activity vs. pH for
wild-type and the variants. In panels B and C, the maximum activity
value of each profile is normalized to 100, while in panel A wild-type
phytase is assigned a value of 100. Code color for the variants in panels
B and C refers to the number of engineered bridges (black 0, blue 1,
green 2, red 3) and is more clearly apparent in Figure 5A.
doi:10.1371/journal.pone.0070013.g003
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Determination of Termal Stability Through Differential
Scanning Calorimetry
DSC transitions (Figure 5: see Text S1 for details) for the

thermal denaturation of wild-type phytase and the engineered

variants were only partially reversible and showed a small but

significant scan-rate dependence (Figure 5E). This indicates that

the thermally-induced transitions reflect a degree of irreversible

denaturation and are probably kinetically distorted by the process

responsible for the irreversibility. We have therefore refrained

from carrying out a detailed equilibrium thermodynamic analysis

of the transitions. However, some general and robust trends are

evident. Firstly, the transition temperature increases monotonically

with the number of engineered bridges (Figure 5B), which clearly

validates the approach used for computational disulfide design.

Indeed, the effects of the engineered disulfides on thermal stability

appear to be roughly additive; for instance adding the Tm

enhancements (relative to wt) found for the single variants (2.2, 6.3

and 1.3uC for S1, S2 and S3, respectively), DTm values of 8.5, 7.6

and 9.8uC are predicted for D1, D2 and T, while the experimental

Tm enhancements relative to wt for these variants are 9.8 (D1), 8.2

(D2) and 12.1uC (T). Secondly, the reversibility is higher for

variants with two and three engineered bridges (Figure 5C). In

addition, the degree of reversibility decreases with increasing

protein concentration (Figure 5D), suggesting a role for aggrega-

tion in the irreversible denaturation, an interpretation supported

by dynamic light scattering experiments (Figure S1).

Thermal Inactivation Kinetics
Irreversible denaturation of wild-type phytase and the variants

was characterized by thermal inactivation kinetics. Briefly, samples

were kept at a given temperature, aliquots were withdrawn at

several times, quickly cooled down to 0uC and assayed for phytase

activity (see Text S1 for details). Unfolded phytase (as well as

partially-unfolded states ‘‘reversibly-linked’’ to the native state)

should be able to fold to the native, active protein upon cooling, so

the observed fall in activity with time can be primarily attributed

to irreversible denaturation.

Thermal inactivation profiles were determined for each variant

(representative examples in Figure 6) at several temperatures and

total protein concentrations. For any given temperature, kinetic

profiles were found to depend on total protein concentration,

again consistent with a role for aggregation in the irreversible

denaturation. However, mechanisms of protein aggregation can

be exceedingly complex, involving conformational re-arrange-

ment, nucleation and growth steps, as well as processes of

aggregate fragmentation, aggregate coalescence to yield larger

aggregates and phase separation of insoluble aggregates [33,34].

Analysis of typically featureless thermal inactivation profiles, such

as those in Figure 6, in terms of a detailed mechanism is clearly not

possible. Our approach is more modest but more robust. We aim

at a simple, approximate phenomenological description of the

profiles so that a single metric for the time scale of the irreversible

denaturation process can be derived. Since no lag phases were

observed in the experimental profiles, we used a simple n-order

chemical kinetics equation:

A(t)~A0 1zCnz1(n{1)k
� �

1=1{n ð1Þ

where A(t) and A0 stand for the activities at time t and time zero, C

is the total protein concentration and k is the n-order rate constant

for the process. Fits of equation 1 to the thermal inactivation

profiles were visually good (Figures 6 A and 6 B) and yielded n

values typically of about 3–4 (Figure 6 C), a result generally

consistent with the proposed role of aggregation in phytase

irreversible denaturation. The phenomenological adequacy of

equation 1 within the 0.5–1 mg/mL range of total protein

concentration is further supported by the agreement

Figure 4. Structural consequences of an engineered disulfide
crosslink. (A) The fold of Chain A of C. braakii phytase in ribbon
format, with residues 6–18 in ice blue, 19–46 yellow, 47–135 blue, 136–
259 red and 260–410 grey. The four conserved disulfide bridges are
shown as cylinders, and the engineered ones as spheres. The phytate
analogue myo-inositol hexakissulfate – shown as cylinders-has been
modeled into the active site based on its position in its complex with H.

alvei phytase (PDB 4aro). (B) The electron density in the final 2Fo–Fc
synthesis contoured at the 1s level around the engineered disulfide
bridge between residues 141 and 199. (C) Superposition of the
structures of the E. coli (green, PDB 1dkq) and H. alvei (coral, PDB
4ars) enzymes on C. braakii phytase (blue), using the SSM option [44] in
CCP4mg. The structures are shown in worm and tube format. Figures 4
A–C were all made with CCP4mg [45].
doi:10.1371/journal.pone.0070013.g004
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(Figures 6D,E) of the rate constants obtained at these two protein

concentrations (equation 1 possibly breaks down at lower protein

concentrations: see Figure S2).

This allows a suitable metric of the time scale for irreversible

denaturation to be calculated as the time t1/2 at which the activity

falls to half the initial value:

t1=2~
(0:5)1{n

{1

Cn{1(n{1)k
ð2Þ

All our subsequent analyses are based upon the temperature

and mutational effects on this time scale.

Analysis of the Mutation and Temperature Dependencies
of the Time Scale for Irreversible Denaturation
Figures 7A and 7B show plots of time scale for irreversible

denaturation versus temperature for a total protein concentration

of 0.5 mg/mL (similar plots are obtained at 1 mg/mL: see Figure

S3). Figure 7 shows that, for a given temperature, irreversible

Figure 5. Differential scanning calorimetry (DSC) of the
thermal denaturation of wild-type phytase and the disulfide
variants. A) Representative DSC profiles at a protein concentration of
0.5 mg/mL and a scan rate of 200 degrees/hour. B) Plot of transition
temperature (derived from the results in panel A) versus number of
engineered bridges. C) Plot of degree of reversibility of the thermal
denaturation process versus the number of engineered bridges. The
degrees of reversibility shown were derived from DSC experiments
performed with a protein concentration of 0.25 mg/mL, at a scanning
rate of 200uC /hour. In all cases, the first scan was stopped at 100uC and
a re-heating run was performed after letting the sample cool in the
calorimetric cell. The degree of reversibility was calculated as the ratio
between the maximum heat capacity values for the reheating and the
first transitions after suitable chemical baseline correction. D) Degree of
reversibility for the variant with three engineered bridges versus protein
concentration. E) Scan-rate effect on the transition temperatures
(circles) derived from DSC experiments. Extrapolation to 1/v = 0 (i.e.,
to infinite scan-rate) should remove kinetic distortions associated to
partial irreversibility (the squares at 1/v = 0 actually represent the
denaturation temperatures for equilibrium unfolding determined from
model fitting to rate data). In panels B–E the colors refer to the different
variant studied as specified in panel A.
doi:10.1371/journal.pone.0070013.g005

Figure 6. Thermal inactivation kinetics data for wild-type
phytase and variants. (A) and (B) Illustrative plots of activity versus
time for experiments performed at several temperatures with (A) a
variant with two engineered bridges and (B) wild-type. Total protein
concentration is 0.5 mg/mL. The continuous lines represent the best fits
of equation 1 to the experimental data. The fastest kinetics are
observed at an intermediate temperature (74uC in A and 69.5uC in (B).
(C) Values of the reaction order derived from the fitting of equation 1 to
inactivation profiles for wild-type phytase and all the variants. (D)
Agreement between the rate constants obtained with total protein
concentration of 0.5 and 1 mg/mL. (E) Representative example of the
protein concentration effect on the rate of irreversible denaturation
(variant D1, 76uC).
doi:10.1371/journal.pone.0070013.g006
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denaturation becomes slower (larger value of t1/2) as the number

of engineered disulfides is increased. However, the most surprising

result is the unexpected temperature-dependence of the rate of

irreversible denaturation: for essentially all variants the plot of

ln(t1/2) versus temperature has an asymmetric-V shape with a

minimum at a temperature that roughly agrees with the

temperature range of the denaturation transition seen by DSC

(see figure 5A and the thicker lines in the plots of Figure 7A). This

pattern strongly suggests (Figure 8) that some species, different

from the native state (N) and the fully unfolded state (U) are critical

for the irreversible denaturation process and that such species

represent a partially-folded intermediate state (I) that attains a

kinetically relevant concentration within the denaturation transi-

tion range. Straightforward theoretical analysis of this model (see

Text S2) leads to a simple equation describing the temperature

dependence of the time scale for irreversible denaturation:

lnt1=2~Az
mDHI

R

1

T
{

1

T0

� �

zmln 1zexp {
DHU

R

1

T
{

1

T0

� �� �� 	

ð3Þ

where T0 is the equilibrium denaturation temperature (i.e., the

temperature at which the equilibrium constant for the N to U

conversion is unity), A is a constant (related to the value of the

equilibrium constant for the N to I conversion at T0), m is the

reaction order for species I in the phenomenological rate equation

and DHI and DHU are, respectively, the enthalpies of I and U

relative to the native state. Fits of equation 3 to the experimental

t1/2 versus T data were excellent (Figure 7 and Figure S3; see Text

S2 for additional details on the fitting process) and are further

validated by the fact that the values obtained for T0 (the

equilibrium unfolding temperature) are consistent with the

extrapolations to infinite scan-rate of the denaturation tempera-

tures determined from the DSC transitions (Figure 5E).

It is important to note that our analysis of the model in

Figure 8A assumes that the population of intermediate species is

always much lower than the total protein concentration (see Text

S2). While the species I is not assumed to be significantly

populated, its critical role in kinetics is reflected in the

experimental t1/2 versus T profiles and its energetics are readily

derived from the fits of equation 3 to those profiles. Thus, the

enthalpy of I relative to the native state (DHI) is directly

determined as a fitting parameter in equation 3 and a suitable

metric of the free energy of I relative to N (DG9I) can be easily

calculated from the values of the fitting parameters A, T0 and DHI

in a straightforward manner (see Text S2 for details).

The energetic description afforded by the DHI and DG9I values

for the variants immediately indicates an extensively unfolded

intermediate species, with the enthalpy of the intermediate being

close to that of the unfolded state (both relative to the native state),

Figure 7C. Furthermore, a plot of the free energy of the

intermediate versus that of the unfolded state (both relative to

the native state) including all variants studied is linear with a slope

close to unity (Figure 7D). The plot of DG9I versus DGU is in fact a

Figure 7. Temperature dependence of the time scale (t1/2) for
the irreversible denaturation of wild type phytase and
variants. (A) and (B) Plots of ln(t1/2) versus temperature for the
variants (for the sake of clarity, only wild type and the variant with three
engineered bridges are included in panel A). The continuous lines
represent the best fits of equation 3 and the Inset in panel B is a plot of
a measure of goodness of fit (x2) versus the reaction order m in
equation 3 (see main text and Text S2 for details). Thicker lines indicate
the temperature range of denaturation transition as seen by DSC
(Figure 5A). The colors of the lines and data points refer to the variant,
as specified in panel A of Figure 5, with the number of engineered

bridges indicated. (C) Enthalpies of the unfolded and intermediate
states (relative to the native state) plotted versus the corresponding T0
value. (D) Correlation between the effect of engineered disulfide
bridges on the free energy of the unfolded and intermediate states
(relative to the native state) at a temperature of 70uC.
doi:10.1371/journal.pone.0070013.g007
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comparison between the effect of the engineered disulfide bridges

on the changes in free energy for the NRI and NRU processes

and, therefore, it is equivalent to a mutational w-value analysis

[35] of the structure of the intermediate. Indeed, the plot suggests

a w value around unity, consistent with a substantially unfolded

intermediate species.

Methods

See Text S1.

Conclusions
We have used C. braakii phytase to probe the effect of designed

disulfide bridges on protein kinetic stability. The rational design

procedure, based on high temperature molecular dynamics

simulations, was highly successful, leading to variants with

enhanced thermodynamic stability and, furthermore, with much

slower inactivation kinetics. However, as expounded below, the

congruence between the effect of the engineered disulfides in the

thermodynamic and kinetic stabilities is actually a complex

phenomenon.

The inactivation kinetics for the variants shows a striking, non-

Arrhenius temperature dependence, with the time-scale for the

irreversible denaturation process generally reaching a minimum at

a given temperature within the range of the unfolding transitions.

This pattern is a clear signature of the key role played by an

intermediate state which, being partially unfolded, becomes

maximally populated at intermediate temperatures. In fact,

inspired by reasoning commonly found in the literature on protein

aggregation [33], we can intuitively view the ‘‘unusual’’ temper-

ature dependence reported as reflecting the conformational

changes required to reach the critical intermediate species. Thus

the native structure needs to undergo significant unfolding to

produce the key intermediate and this unfolding process becomes

favored as the temperature is increased. In contrast, the unfolded

state needs to become structured to reach the intermediate and

such folding is disfavoured at the higher temperatures. Accord-

ingly, the rate of the irreversible denaturation decreases with

temperature when the initial state of the process is the unfolded

protein, while the rate of irreversible denaturation of the native

state increases with temperature. The combination of these two

opposing trends produces the ‘‘V-shaped’’ dependencies in plots of

time-scale for irreversible denaturation versus temperature. The

‘‘V’s’’ are clearly asymmetric with nearly flat high temperature

branches, indicating that the intermediate is highly-unfolded

retaining little structure. This interpretation is confirmed by the

fittings of the experimental time-scale profiles on the basis of the

model embodied in Equation 3 (Figures 7 and 8) and, in

particular, by the observation that the derived enthalpy values

for the intermediate species are close to those expected for the

unfolded state (Figure 7C). This, of course, does not mean that the

intermediate species is to be considered as roughly equivalent to

the unfolded state. In fact, the intermediate species probably

contains a structured region that, although necessarily small (on

account of the substantially unfolded character of the intermedi-

ate), provides an efficient nucleus for the aggregation process.

Indeed, since the order of reaction for the intermediate in the rate

equation is approximately unity (see inset in Figure 7B) while the

overall reaction order for the aggregation process is about 3–4

(Figure 6C), it appears plausible that the structured region in the

intermediate is able to recruit protein molecules in other states

(native and unfolded) for the aggregation process. Furthermore,

the small structured region must contribute to a high free energy

with respect to both the native and unfolded states to explain the

low population of the intermediate and it is therefore probably

non-native-like. Overall, it is clear that the intermediate species,

although substantially unfolded, cannot be viewed as a ‘‘member’’

of the unfolded ensemble.

While many critical intermediates in protein irreversible

denaturation processes (such as aggregation and fibrillogenesis)

are typically described as ‘‘partially-folded’’, ‘‘molten-globule-like’’

or even ‘‘native-like’’ [36,37,38,39,40], a highly-unfolded inter-

mediate state (with at most a small structured region) has been

proposed to play a key role in the misfolding of the prion protein

[41,42]. Since the key intermediate state in the thermal

inactivation of phytase is also highly unfolded, we may expect

mutation effects on its free energy value (measured with respect to

the native state) to parallel the corresponding mutation effects on

Figure 8. Model used to derive equation 3 and describe the
experimental thermal inactivation profiles for wild-type phy-
tase and variants (Figures 7A and B). (A) An intermediate state (or
ensemble) is assumed to be critical for the irreversible denaturation
process. (B) and (C) At equilibrium, the population of I is always low,
although it reaches a maximum roughly within the temperature range
of the transition. When using a logarithmic scale (panel C) the shape of
the population of I versus temperature profiles matches that of the
ln(t1/2) versus temperature plots of Figure 7, with the maximum of
population of I corresponding to the minimum of t1/2 (see equation
3). The profiles in panels B and C have been calculated using equations
provided in Text S2.
doi:10.1371/journal.pone.0070013.g008
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thermodynamic stability. The experimental data validate this

expectation (Figure 7D).

Of course, the congruence found between the effect of the

engineered disulfide bridges in the thermodynamic and kinetic

stabilities is a direct consequence of the highly-unfolded character

of the key intermediate in the particular case of phytase and

cannot be taken as a general feature for all proteins. We can easily

imagine protein systems for which the key intermediate is native-

like (thermodynamic stability enhancements caused by engineered

disulfide bridges will not lead to kinetic stabilization), partially

unfolded (thermodynamic stability enhancements will be partially

reflected in kinetic stability) or structurally polarized (only those

thermodynamic stability enhancements associated to crosslinks in

the region of the protein molecule that becomes unstructured in

the intermediate will have consequences for kinetic stability).

Nevertheless, the methodology we propose should discriminate

between these alternatives. Furthermore, the usefulness of the

approach goes beyond providing a general framework for the

understanding of the effect of disulfide crosslinking on protein

stability. While it is widely accepted that intermediate states/

ensembles play key roles in many processes of protein aggregation

and fibrillogenesis, their typically low population has made their

characterization elusive. For instance, in the paradigmatic case of

lysozyme amyloidoses, a recent characterization of the critical

non-native states/ensembles relied upon sophisticated experimen-

tal methodologies combined with destabilizing solvent conditions

[39,43]. The results reported here suggest that the temperature

dependencies of suitable metrics of the rate of irreversible protein

denaturation may reveal distinct signatures of key intermediate

states in the process and that the corresponding energetic/

structural descriptions can be derived from mutational analyses of

these signatures.
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