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Abstract. The contractile ring in dividing animal cells 
is formed primarily through the reorganization of ex- 

isting actin filaments (Cao, L.-G., and Y.-L. Wang. 

1990. J. Cell Biol. 110:1089-1096), but it is not clear 
whether the process involves a random recruitment of 

diffusible actin filaments from the cytoplasm, or a 

directional movement of cortically associated filaments 
toward the equator. We have studied this question by 

observing the distribution of actin filaments that have 

been labeled with fluorescent phaUoidin and microin- 

jected into dividing normal rat kidney (NRK) cells. 

The labeled filaments are present primarily in the 

cytoplasm during prometaphase and early metaphase, 

but become associated extensively with the cell cortex 

10-15 min before the onset of anaphase. This process 

is manifested both as an increase in cortical fluores- 

cence intensity and as movements of discrete ag- 

gregates of actin filaments toward the cortex. The con- 
centration of actin fluorescence in the equatorial re- 

gion, accompanied by a decrease of fluorescence in 

polar regions, is detected 2-3 min after the onset of 

anaphase. By directly tracing the distribution of ag- 

gregates of labeled actin filaments, we are able to de- 
tect, during anaphase and telophase, movements of 

cortical actin filaments toward the equator at an aver- 

age rate of 1.0 #m/min. Our results, combined with 

previous observations, suggest that the organization of 

actin filaments during cytokinesis probably involves an 

association of cytoplasmic filaments with the cortex, a 

movement of cortical filaments toward the cleavage 
furrow, and a dissociation of filaments from the 

equatorial cortex. 

p AST studies have indicated critical roles of actin and 
myosin in the process of cytokinesis (for reviews see 
Mabuchi, 1986; Salmon, 1989). Of particular in- 

terest is the structure of the contractile ring on the equatorial 
plane of dividing cells (Schroeder, 1970). It contains a rela- 
tively high concentration of both actin and myosin II fila- 
ments (Perry et a1.,~1971; Fujiwara and Pollard, 1976) and 
is considered to be responsible for the generation of contrac- 
tile forces for cytokinesis. 

The contractile ring is known to be a transient structure. 
Its assembly can be detected during late anaphase as an in- 
crease in the concentration of actin and myosin on the 
equatorial plane. The onset of disassembly is uncertain but 
appears to occur well before the completion of cytokinesis, 
as suggested by the constant thickness of the contractile ring 
despite the decrease of its diameter (Schroeder, 1972). 

Various possibilities have been raised regarding the mech- 
anism of the assembly of the contractile ring and the signals 
involved (discussed recently in Harris and Gewalt, 1989; 
Devote et al., 1989). In the first report of this series (Cao 
and Wang, 1990), we have described the microinjection of 
fluorescent phalloidin and fluorescent actin monomers to 
probe the redistribution of existing filaments and the sites of 
de novo filament assembly, respectively. Although some in- 

corporation of actin subunits appears to occur on the 
equatorial plane, the results are more consistent with the re- 
organization of existing filaments being the primary mecha- 
nism for the formation of the contractile ring. Much less 
clear, however, is how this reorganization takes place. Two 
possibilities may account for the concentration of filaments 
into the cleavage furrow. First, actin filaments in the contrac- 
tile ring may be recruited from the cytoplasmic pool, possi- 
bly as a result of an increase in the affinity or the number 
of binding sites for actin filaments in the equatorial cortex 
(Schroeder and Otto, 1988). In the second mechanism, 
membrane-associated filaments may move along the cell cor- 
tex from the poles toward the equator (White and Borisy, 
1983). The convergence of flow from the opposite hemi- 
spheres of the dividing cell then gives rise to the increase in 
the concentration of actin and myosin. 

The purpose of the present study is to determine how actin 
filaments become concentrated in the cleavage furrow, by 
directly following the distribution of exogenous actin illa- 
ments that have been labeled with rhodamine phalloidin (rh- 
pha) 1 and microinjected into dividing normal rat kidney 

1. Abbreviations used in this paper: NRK, normal rat kidney; rh-pha, 
rhodamine phalloidin. 
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(NRK) cells, Our results suggest that two events probably oc- 
cur during the formation of the contractile ring. The first is 
an increase in the association of actin filaments over the en- 
tire cortex during late metaphase. This is then followed by 
a directional movement of cortical filaments toward the 
equatorial plane during anaphase and telophase. 

Materials and Methods 

Preparation of Actin, Fluorescent PhaUoidin, 
and Beads 

rh-pha was purchased from Molecular Probes Inc. (Eugene, OR) as a 3.3 
#M stock solution in methanol. In a typical experiment, 400/~1 of the stock 
solution was dried under N2 and redissolved in 40 t~l of 5 mM Tris-acetate, 
pH 6.95. The solution was clarified at 25,000 rpm for 20 min in a type 42.2 
Ti rotor (Beckman Instruments, Inc., Paio Alto, CA). 

Muscle actin was purified from rabbit back and leg muscles according 
to the method of Spudich and Watt (1971). G-actin was dialyzed overnight 
in a buffer of 2 mM Tris-acetate, 0.05 mM MgC12, 0.2 mM ATP, and 0.2 
mM DTT, pH 6.95, and clarified at 25,000 rpm for 20 min in a type 42.2 
Ti rotor. Polymerization was induced by adding MgCI2 to 2 mM. The 
F-actin was then mixed with rh-pha to obtain a rh-pha/actin molar ratio of 
1.0 to 1.2 and a final actin concentration of 4.2/~M. Before microinjection, 
actin filaments were sheared by sonication for 5-10 s in a bath sonicator or 
by pilmtting up and down 30--40 times through a gel-loading pipette tip. 

Uncharged fluorescent polystyrene beads were purchased from Poly- 
sciences, Inc. (Warrington, PA; 0.1 tan plain YG Fluoresbrite microspheres). 
The beads were centrifuged and resuslmnded in 10 mg/ml BSA (Sigma 
Chemical Co., St. Louis, MO), 5 mM Tris-acetate, pH 6.95. Microinjection 
was performed after sonication in a bath sonicator. 

Cell Culture and Microinjection 

NRK epithelial cells (NRK-52E; American Type Culture Collection, Rock- 
ville, MD) were cultured in the F12K medium (l-lazleton Systems, Inc., 
Lenexa, KS) containing 10% Nu-serum (Collaborative Research, Bedford, 
MA), 50 #g/rrd streptomycin, and 50 U/ml penicillin, and were maintained 
at 36-370C under 5% CO2. Cells were plated onto special coverslip dishes 
and maintained on the microscope stage as described previously (McKenna 
and Wang, 1989) at a temperature of 32-33"C. 

Cells at various stages of mitosis were identified and microinjected as 
described in Cao and Wang (1990). The solutions were microinjected con- 
servatively, and the volume delivered is estimated to be <5 % of the cell vol- 
ume. No cell damage was visible under the phase optics, and microinjected 
cells divided normally, following a similar time course as did neighboring 
uninjected cells. 

Staining of Cells with Fluorescent PhaUoidin or with 
Hoechst 33258 

Cells were rinsed twice with warm PHEM buffer (Schliwa and van Bler- 
kom, 1981; 10 mM EGTA, 2 mM MgCI2, 60 mM Pipes, and 25 mM 
Helms, pI-I 6.9), fixed for 10 rain with 3.2 % formaldehyde (from 16 % stock, 
EM Sciences, EM Industries, Inc., Cherry Hill, NJ) in PHEM buffer, pH 
6.1, then extracted for 5 rain with acetone chilled in dry ice. The coverslip 
was rinsed twice with PHEM buffer and stained with fluorescein phalloidin 
(Molecular Probes Inc.) for 10 rain in PHEM buffer at a concentration 
of 220 nM. 

Chromosomes were stained by replacing medium with culture medium 
containing Hoechst 3358 (Sigma Chemical Co.) at a concentration of 10 
#g/rnl. After incubation for 40 rain, the dye-containing medium was 
replaced with fresh medium and the cells were incubated for 1 h before 
microinjection. 

Fluorescence Microscopy and Image Processing 

Fluorescence microscopy was performed as described previously (Cao and 
Wang, 1990). Image acquisition and processing were performed with a 
model 3120 Workstation (Silicon Graphics, Mountain View, CA) in con- 
junction with series No. 150 image processing boards (Imaging Technology, 
Inc., Woburn, MA). For the detection of extremely faint structures, 300 
video frames were summed into a 16-bit frame buffer, and the background 

obtained by summing 300 dark images was subtracted. The resulting images 

were divided by two repeatedly until the maximal pixel value became <256 
(and thus can be displayed as 8-bit images). T'mae-lapse sequences were 
recorded at a 30-60-s interval. Moving structures were identified by dis- 
playing images in rapid succession with the image processor (Wang, 1990) 
and were analyzed as in McKenna et al. (1989). 

Results 

Distribution of Microinjected Actin Filaments in 
Dividing Cells 

We have microinjected a trace amount of F-actin labeled with 
rh-pha into dividing NRK cells in order to follow the distri- 
bution of actin filaments during cell division. The injected 
actin was initially localized near the site of microinjection 
but dispersed within 10-30 min. The rate of dispersal in mi- 
totic cells was much higher than that in interphase cells 
(Sanders and Wang, 1990) and varied according to the de- 
gree that actin filaments had been sheared. Fluorescence as- 
sociated with weU-sonicated fragments dispersed from the 
the site of microinjection within 10 min, without breaking 
down into smaller aggregates. However, gently sheared fila- 
ments often formed multiple aggregates after microinjection, 
which remained detectable for an extended period of time 
(discussed later). In neither case did the microinjection in- 
duce detectable changes in cellular morphology or affect the 
time course of cell division. 

The distribution of actin filaments was first studied with 
well-sonicated fragments microinjected into prometaphase 
cells. After dispersion from the site of microinjection, the 
fluorescence remained diffuse within the cytoplasm during 
prometaphase and early metaphase (Fig. 1 a). In some cells 
a very slight concentration in the cortex was observed (Fig. 
1 a). The cortex showed an increase in intensity at late 
metaphase (Fig. 1 b), 10--15 (11 + 2.5 SEM, n = 13) min be- 
fore the onset of anaphase, and became readily detectable at 
the onset of anaphase (Fig. 1 c; chromosomal distribution 
shown in Fig. 1 d). During anaphase, the fluorescent actin 
became relocated gradually onto the equatorial plane, such 
that a clear concentration of fluorescence in the furrow could 
be observed 2-3 min after the onset of anaphase (Fig. 2). 
However, since no discrete structures could be resolved, it 
was difficult to determine whether or not the reorganization 
involves a directional movement of actin filaments. The 
fluorescence intensity in the polar regions showed a concom- 
itant decrease in all cells that rounded up during cytokines 
(Fig. 2 b). However, the decrease was less pronounced in a 
small fraction of cells that maintained numerous processes 
and remained spread during cytokinesis. 

Cortical Movement of F-actin 

Gently sheared actin filaments, which remained as visible 
aggregates during cytokinesis, were microinjected at ana- 
phase to allow direct observations of the movement of actin 
filaments. The site of injection was located outside the mi- 
totic spindle, approximately halfway between the equator 
and one of the poles. The size and number of aggregates var- 
ied according to the extent that actin had been sheared. Large 
aggregates of actin usually stayed near the site of microinjec- 
tion and underwent a gradual decrease in intensity without 
a clear movement. However, smaller aggregates were ob- 
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Figure 1. Distribution of fluorescently labeled actin filaments in dividing NRK cells during metaphase and early anaphase. The cell was 
labeled with Hoechst 33258 and microinjected with sonicated actin filaments during prometaphase, rh-pha-labeled actin filaments are 
distributed more or less uniformly in the cytoplasm during metaphase (a). Limited association with the cortex can be observed in some 
areas (a, arrowhead). The association with the cortex starts to increase ~13 min before anaphase (b, arrowhead), and becomes readily 
detectable at the onset of anaphase (c, arrowhead; taken 1 min after the onset of anaphase). The two groups of separating chromosomes, 
stained by Hoechst 33258, were recorded ,~2 min after the onset of anaphase using a different filter set (d, arrows). Bar, 5 #m. 

served to separate from the site of  microinjection and in 
some cases move toward the edge of the cell and became as- 
sociated with the cortex (Fig. 3). Like weU-sonicated illa- 
ments, gently sheared actin filaments became concentrated 

on the equatorial plane during cytokinesis (Figs. 3-5), al- 
though the extent of concentration and the pattern of distri- 

bution were affected by the degree of dispersion from the site 
of microinjection. In cells injected during late anaphase, the 

fluorescence was often concentrated on one side of the 
equatorial plane, near the site of microinjection (Fig. 5). 

Directional movement of actin toward the cleavage furrow 
was observed with small aggregates located both along the 

edge (Fig. 3) andOn the top surface (Fig. 4) of the cell. The 
movement showed an average rate of 1.0 #rn/min relative to 
the substrate (+ 0.2 SEM, r~ - 10) and proceeded without 
a detectable reversal in direction until the aggregates reached 

Figure 2. Redistribution of fluoresceutly labeled actin filaments into the cleavage furrow during cytokinesis. A cell was microinjected with 
sonicated actin filaments during prometaphase as in Fig. 1. The fluorescence is concentrated along the entire cortex ,~2 min before the 
onset of anaphase (a), but becomes redistributed into the cleavage furrow during cytokinesis (b). Intensities near polar regions show a 
concomitant decrease. Bar, 5 #m. 
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Figure 3. Movement of actin filaments during anaphase and telophase. An NRK cell was microinjected during early anaphase with gently 
sheared, rh-pha-labeled actin filaments. A small aggregate (arrows) dissociates from the site of injection (a, arrowhead) 2-3 min after 
microinjection (a), and subsequently moves toward the edge of the cell (b, dotted line). It then becomes associated with the cortex during 
the early stage of cytokinesis (c), and moves into the cleavage furrow along the edge of the cell (d). Aggregates near the site of injection 
disappear over the period of observation. Boundaries of the cell during anaphase (dotted lines) were determined after extensive contrast 
enhancement. In both this sequence and Fig. 4, the culture dish remained stationary throughout the period of observation, and the time-date 
on the micrographs can be used as reference points. Bar, 5/~m. 

Figure 4. Movement of actin aggregates during telophase. The cell was microinjected as in Fig. 3. a was recorded 2-3 rain after microinjec- 
tion. The microscope was focused on the top surface of the cell, thus the edge of the cell (dotted lines ) is not as clearly defined as in 
Fig. 3. Several aggregates, identified by numbers and black arrows, become separated from the site of microinjection and move into the 
cleavage furrow as cytokinesis proceeds. A large aggregate remains near the site of microinjeetion (a, arrowhead) throughout the period 
of observation. Equators are defined by white arrows. Bar, 5 #m. 



Figure 5. Longitudinal bundles of actin in the cleavage furrow. The cell was microinjeeted with pipette-sheared, rh-pha-labeled actin fila- 
ments during late anaphase, and was fixed and stained with fluorescein phalloidin during mid-cytokinesis. The image of rh-pha (a) shows 
several bundle-like structures lying almost perpendicular to the equator (delineated by white arrows). The bundle-like structures are con- 
centrated near the lower side of the cell, where the microinjection was performed (approximate site marked by .k in b). The image of 
fluorescein phalloidin (b) shows a distribution typical of cells at this stage, with intense staining in the cleavage furrow but no visible longitu- 
dinal bundles. Bar, 5 #m. 

the cleavage furrow. Frequently the actin filaments merged 
into bundle-like structures perpendicular to the equator 
(Fig. 5). However, the pattern of the distribution of total ac- 
tin filaments in such cells, as revealed by fixation and stain- 
ing with fluorescein phalloidin, was identical to that of unin- 
jected cells, and no bundle structures perpendicular to the 
equatorial plane could be resolved (Fig. 5 b). Thus the bun- 
dles probably represent labeled filaments aligned along 
defined paths as they moved into the cleavage furrow rather 
than artifactual structures nucleated by the injected illa- 
ments. 

The movement of actin filaments was compared to that of 
fluorescent polystyrene beads microinjected into late meta- 
phase cells. The beads showed no directional movement when 
microinjected away from the mitotic apparatus and exhibited 
poleward movement when microinjected near the mitotic ap- 
paratus. Similar poleward movement was reported in Ech- 
inoderm eggs by Hamaguchi et al. (1986) and by Wadsworth 
(1987). The behavior of the beads was clearly different from 
that of microinjected actin filaments, indicating that the as- 

Figure 6. A hypothetical mod- 
el showing the path of actin 
movement during cytokinesis. 
Cytoplasmic actin filaments 
become associated with the 
cortex (arrowheads) and sub- 
sequently move toward the 
cleavage furrow (curved ar- 
rows). The filaments then dis- 
sociate from the cortex and 
re-enter the cytoplasm (short 
arrows). Poleward movement 
of filaments in the cytoplasm 
(long arrows, question marks), 
possibly as a result of interac- 
tions with the cortex, may 
bring the filaments back to the 
polar cortex. 

sociation with the cortex and the movement toward the equa- 
tor may represent processes specific for actin filaments or 
actin-associated structures. 

Discussion 

Because of the dynamic nature of the contractile ring, it has 
been very difficult to study the mechanism of its assembly 
and disassembly with conventional biochemical, immunoflu- 
orescence, or ultrastructural techniques. The microinjection 
of fluorescent analogues provides us with a powerful means 
for observing directly the distribution of specific compo- 
nents in living cells. In the present study we ask the ques- 
tions, Do actin filaments undergo any directional movement 
during cell division, and how might the movement be related 
to the formation of the contractile ring? 

We have microinjected, into dividing cells, actin filaments 
that had been fluorescently labeled and stabilized with rh- 
pha. The behavior of such injected filaments during mitosis, 
such as the association with the cortex during late metaphase 
and the concentration into the cleavage furrow during cytoki- 
nesis, closely parallels that of endogenous actin reported 
previously (Sanger, 1975; Kitanishi-Yumura and Fukui, 
1989). In addition, we have observed similar distributions 
of fluorescence in cells microinjected with a trace amount of 
rh-pha alone (Cao and Wang, 1990), which labels endoge- 
nous F-actin, and with rh-pha-saturated exogenous F-actin. 
Thus, it is likely that the results observed with exogenous ac- 
tin reflect the normal mechanism for the reorganization of 
actin filaments during cell division. 

Our results demonstrate that exogenous actin filaments can 
be incorporated into the cleavage furrow. This is consistent 
with our previous conclusion that the contractile ring is 
formed primarily through the reorganization of existing actin 
filaments, rather than polymerization of new filaments (Cao 
and Wang, 1990). The present results further suggest that the 
concentration of actin into the cleavage furrow is probably 
achieved through a directional movement along the cortex. 
Although recruitment of actin filaments into the cortex was 
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also detected, the incorporation appears to occur throughout 
the entire cortex and is unlikely to account for the concentra- 
tion in the equatorial region. 

The cortical movement of actin filaments is suggested not 
only by the direct observation of the translocation of actin 
aggregates (Figs. 3 and 4), but also by the pattern of distribu- 
tion of actin filaments during anaphase and telophase (Figs. 
2 and 5). First, the increase of actin in the cleavage furrow 
was accompanied by a decrease of prelabeled filaments at the 
poles (Fig. 2; Cao and Wang, 1990), consistent with a flow 
that originates in polar regions and directs towards the equa- 
tor. Second, when actin was microinjected during anaphase 
and underwent a limited dispersion during cytokinesis, the 
fluorescence was still capable of concentrating in the cleav- 
age furrow on the side that received the microinjection. This 
suggests that the reorganization probably involves a bulk 
translocation of actin filaments. Third, although other expla- 
nations are possible, the observations of bundle-like struc- 
tures perpendicular to the equator are also consistent with 
a cortical flow of actin filaments toward the equator (Fig. 5). 
Such axially oriented filaments have been observed previ- 
ously in flattened Dictyostelium with immunofluorescence 
and polarization optics (Kitanishi-Yumura and Fukui, 1989; 
Fukui, 1990), and in higher animal cells with electron mi- 
croscopy (Maupin and Pollard, 1986). They are probably 
difficult to resolve with phalloidin staining (Fig. 5 b) because 
of the high density of filaments in the furrow region (Maupin 
and Pollard, 1986), but may become visible when the distri- 
bution of labeled actin filaments is limited to small areas 
(Fig. 5 a). 

A cortical flow of actin during cytokinesis is also consis- 
tent with previous studies of cortical organelles and mem- 
brane receptors. Dan (1954) reported the directional move- 
ment of cortical pigment granules toward the cleavage 
furrow in Arbacia eggs. Concentration of membrane recep- 
tor-bound Con A into the cleavage furrow has been observed 
with fertilized sea urchin eggs and with cultured macro- 
phages (McCalg and Robinson, 1982; Koppel et al., 1982). 
Koppel et al. (1982) analyzed the pattern of recovery after 
photobleaching fluorescent Con A and reached the conclu- 
sion that the concentration into the furrow most likely 
represents directional movement rather than trapping of 
receptors. As commonly proposed, such directional move- 
ment of membrane receptors is probably driven by the move- 
ment of underlying cytoskeletal networks (Bourguignon and 
Bourguignon, 198~). 

Our hypothetical model of actin reorganization during 
cytokinesis is shown in Fig. 6. We propose that there is a con- 
tinuous recruitment of actin filaments from the cytoplasm 
into the cortex. The cortical actin filaments then move to- 
ward the equatorial plane where they become organized into 
the contractile ring and may subsequently dissociate from 
the cortex as suggested by Schroeder (1972). The dissociated 
filaments may then move away from the equatorial region 
and reassociate with the cortex, thus completing the cycle. 
It is noteworthy that a similar process, involving backward 
cortical flow and cytoskeletal recycling, has long been pro- 
posed in polarized interphase cells (discussed in Bray and 
White, 1988; McKenna et al., 1989). Thus one interesting 
view is that cytokinesis may represent the establishment of 
opposite cortical flow in the two daughter cells as they enter 
interphase. 

The source of forces responsible for the cortical flow is un- 
known. White and Borisy (1983) proposed that the move- 
ment may be a result of relaxation at the poles (Schroeder, 
1981), which disturbs the balance of forces on a contracting 
cortex and drives the contractile elements toward the 
equatorial region. Alternatively, it is conceivable that forces 
may be generated by interactions between the cortex and the 
underlying cytoplasm. This interaction may contribute to the 
process of cytokinesis since counter forces directed toward 
the poles would be exerted on the cytoplasm, thus driving 
the cytoplasm in the equatorial region toward the poles and 
causing the constriction of the cell. 
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