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Mechanism underlying 
hippocampal long‑term 
potentiation and depression 
based on competition 
between endocytosis 
and exocytosis of AMpA receptors
tomonari Sumi1,2* & Kouji Harada3

n‑methyl‑D‑aspartate (nMDA) receptor‑dependent long‑term potentiation (Ltp) and long‑term 

depression (LtD) of signal transmission form neural circuits and thus are thought to underlie learning 

and memory. These mechanisms are mediated by AMPA receptor (AMPAR) trafficking in postsynaptic 
neurons. However, the regulatory mechanism of bidirectional plasticity at excitatory synapses 
remains unclear. We present a network model of AMPAR trafficking for adult hippocampal pyramidal 
neurons, which reproduces both LTP and LTD. We show that the induction of both LTP and LTD is 
regulated by the competition between exocytosis and endocytosis of AMPARs, which are mediated 
by the calcium-sensors synaptotagmin 1/7 (Syt1/7) and protein interacting with C-kinase 1 (PICK1), 
respectively. our result indicates that recycling endosomes containing AMpAR are always ready 

for Syt1/7-dependent exocytosis of AMPAR at peri-synaptic/synaptic membranes. This is because 
molecular motor myosin  Vb constitutively transports the recycling endosome toward the membrane in 

a  ca2+‑independent manner.

Synaptic plasticity is generally regulated by the release of various neurotransmitters from the presynaptic mem-
brane and/or by varying the density, types, and properties of neurotransmitter receptors at the postsynaptic 
membrane. NMDA (N-methyl-D-aspartate) receptor-dependent long-term potentiation (LTP) and long-term 
depression (LTD) of signal transmission in excitatory neurons, such as hippocampal pyramidal neurons, is 
thought to underlie the formation of neuronal circuits during learning and  memory1–3. Fast excitatory neuro-
transmission in the mammalian brain is predominantly mediated by the AMPA (α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid) receptor (AMPAR) at the postsynaptic membrane. AMPAR is tetrameric ion channel 
composed of the subunits GluA1–A4 (or named as GluR1–R4). In hippocampal pyramidal neurons, the GluA1/
A2 heterotetramer (Fig. 1a) is the most dominant AMPAR subtype, followed by the GluA2/A3  heterotetramer4. 
It is well established that AMPAR tra�cking in postsynaptic neurons plays a decisive role in the induction of 
LTP and  LTD5–8, whereas the dominant pathway and regulatory mechanism for AMPAR tra�cking remains a 
controversial issue. 

NMDA receptor-dependent LTP and LTD are triggered by standard high-frequency stimulations (e.g., one 
or more trains of 100 Hz stimulation)9,10 and low-frequency stimulations (LFS; e.g., 700–900 pulses at 1 Hz)11–14, 
respectively. It is widely accepted that a high rise and lower rise in intracellular  Ca2+ concentrations mediated 
by NMDA receptor activation are required for the expression of LTP and LTD, respectively. Nevertheless, it 
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has been reported that a channel blocker for  Ca2+ in�ux through the NMDA receptor does not block LTD in 
the hippocampal neurons of immature rodents, thereby suggesting that LTD is attributed to an ion-channel-
independent, metabotropic form of NMDA-receptor  signaling15. Subsequently, it was carefully reexamined how 
varying extracellular  Ca2+ levels and blocking NMDA-receptor channel ion �ux with the same channel blocker 
a�ected the induction of LTD. It was recon�rmed that the LTD induced by a standard LFS in hippocampal neu-
rons of both adult and immature rodents was dependent on ionotropic NMDA-receptor  signaling16.

For more than 20 years, it has been known that  Ca2+/calmodulin-dependent protein kinase (CaMKII) activity 
is necessary for LTP.  Ca2+ ions incorporate into the cell through NMDA receptor and bind to calmodulin (CaM). 
Consequently  Ca2+/CaM is bound to CaMKII. If CaMKII is knocked out,  Ca2+/CaM binds directly to NMDA 
receptors, resulting in inactivation of the NMDA receptor channel and an accordingly signi�cantly lower rise 
in  Ca2+  concentrations17,18. On the other hand, if  Ca2+/CaM-bound CaMKII binds to the NMDA receptor and 
inhibits the direct binding of  Ca2+/CaM to the NMDA receptor, this maintains the channel activity of the NMDA 

Figure 1.  AMPAR tra�cking model at hippocampal postsynaptic neurons. (a) AMPAR which consists of two 
GluA1 (GluR1) and two GluA2 (GluR2) subunits is the most predominant AMPAR subtype in hippocampal 
 neurons4. �e serine-845 site (S845) of GluA1 is phosphorylated and dephosphorylated by protein kinase A 
(PKA)35 and protein phosphatase 2B (PP2B, or Calcineurin, CaN)36, respectively. �e serine-880 site (S880) 
of GluA2 is phosphorylated and dephosphorylated by protein kinase C (PKC)37 and protein phosphatase 
2 (PP2A), respectively. (b) A-kinase anchoring protein 150 (AKAP150)34,43,44 is an anchoring protein that 
organizes PKA, PP2B, and PKC for phosphoregulation of AMPARs at the synaptic membrane, and thus acts 
as the AKAP signaling complex. �e AKAP signaling complex forms the dimer as shown in (b) (though, for 
simpli�cation, not shown in (d–e)). (c–h) Experimentally characterized elementary processes involved in 
the AMPAR tra�cking cycle at a hippocampal postsynaptic neuron. (c) A model of tethering the GluA1 and 
GluA2 subunits to the AKAP150 signaling complex at the synaptic membrane through SAP97 and GRIP1, 
 respectively34,43,44. (d) A model of phosphorylation and dephosphorylation reactions of the AMPAR due to  Ca2+ 
signaling. Dephosphorylation of the S845 site of GluA1 is caused by  PP2B36, and SAP97 dissociates from GluA1. 
�e S880 site of GluA2 is phosphorylated by PKC, and PICK1 binds to the GluA2 subunit instead of  GRIP137,38. 
(e,f) An endocytic model for synaptic vesicles containing AMPAR mediated by the calcium-sensor  PICK137,38,47. 
(g) Active transport of the recycling endosomes by molecular motor myosin  Vb

40–42. In the recycling endosome, 
PP2A causes the dephosphorylation of S880 of GluA2, and GRIP1 instead of PICK1 binds to  GluA246. (h) An 
exocytic model of the recycling endosome triggered by  Ca2+-sensor synaptic vesicle protein synaptotagmin 
1 (Syt1) together with synaptotagmin 7 (not shown) and synaptobrevin-2 (Syb2)/VAMP2, complexin (not 
shown), amongst  others22,23,48–50,61.
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receptor. �is is one of the most important CaMKII functions at the early stage of NMDA receptor-dependent 
LTP induction process. In addition, the  Ca2+/CaM-CaMKII bound to the NMDA receptor phosphorylates 
 GluA119, resulting in increased channel conductance of  AMPAR20. �e activation of AMPAR by CaMKII also 
plays a crucial role in the induction of LTP. In the present study, we build a network model to reproduce NMDA-
receptor dependent bidirectional synaptic plasticity of hippocampal neurons. All of the molecular mechanisms 
incorporated into the model work downstream of these CaMKII functions; thus, the normal activities of CaMKII 
are necessary and implicitly assumed in our network model. In fact, NMDA receptor-dependent  Ca2+-in�ux is 
introduced in the network model as the input for LTP and LTD simulations. In addition, it is assumed that the 
strength of LTP and LTD induction is in proportion to the change in the AMPAR population on the postsynaptic 
membrane. �us, the e�ects of GluA2-lacking  Ca2+-permeable AMPARs are not taken into consideration in 
our simulations. However, this assumption does not in�uence the prediction of LTP expression by our network 
model, because it has been demonstrated that LTP in the hippocampal CA1 region does not require insertion 
or activation of GluA2-lacking  AMPARs21.

NMDA-receptor dependent LTP is thought to occur by incorporating AMPARs into the synaptic membrane 
through either the exocytosis of the recycling endosome at peri-synaptic/synaptic  membranes22–25, the cell surface 
long-range lateral di�usion of AMPAR from the dendrites/extrasynaptic  region26–29, or a combination of the two. 
Recently, Penn et al. examined the e�ects of crosslinking immobilization of pre-existing membrane AMPARs 
on early LTP and observed slow continuous development of early LTP without short-term potentiation (STP)26. 
�ey also observed that blocking exocytosis of AMPARs completely abolished early LTP and caused only STP 
 induction26. �e former and latter respectively indicate the following: (1) lateral di�usion movement of AMPARs 
exocytosed at the synaptic/peri-synaptic membranes as well as the extrasynaptic membranes is signi�cantly 
suppressed due to obstacle e�ects arising from jamming/crowding of crosslinked AMPARs, as predicted by 
computer  simulations30; (2) although the recruitment of pre-existing membrane AMPARs from the peri-synaptic 
membrane works for the induction of STP, it is insu�cient for maintaining the expression of early LTP. �erefore, 
the di�usion dynamics on the membrane strongly a�ect the form of LTP expression and play a crucial role in 
the rapid short-range di�usion relocation of AMPARs from the peri-synaptic to the synaptic membrane. It was 
also demonstrated by the duration of  STP26 that the short-range di�usion relocation takes, at most, only 2 min. 
On the other hand, the observed delay of LTP induction caused by the obstacle e�ects provides no de�nitive 
evidence that the long-range lateral di�usion pathway of AMPARs from the dendrites/ extrasynaptic region is 
the predominant pathway for early LTP than the short-range di�usional relocation pathway of exocytic AMPARs 
from the peri-synaptic membranes. Indeed, exocytosis of GluA1, not only in dendrites but also in synaptic spines 
including synaptic/peri-synaptic membranes, has been demonstrated using the SEP-GluA1 imaging technique, 
which resolved the  controversy27,31. Alternatively, that observation does not necessarily exclude the short-range 
di�usional relocation pathway from the promising AMPAR recruitment pathway during LTP. �is is because the 
impaired di�usional movement of AMPARs exocytosed at the peri-synaptic membranes, which is caused by the 
obstacle e�ects due to jamming/crowding of crosslinked AMPARs, can yield a delay to early LTP. �is hypothesis 
suggests that the total amount of AMPARs exocytosed at the peri-synaptic membranes should be su�ciently 
greater than that at the synaptic membrane due to the larger area of peri-synaptic membranes.

In general, the normal lateral di�usion process is isotropic; thus, the �ux of lateral di�usion from a place in 
the extrasynaptic region toward the synaptic membrane and from this place in the opposing direction are in 
equilibrium (for  instance32). �erefore, the cell surface lateral di�usion movement is thought to be ine�ective 
for long-range directional transport of AMPARs. Furthermore, the  Ca2+-dependent/independent biased surface 
di�usion mechanism of AMPAR toward the synaptic membrane from the dendrites/extrasynaptic region remains 
unclear. �e long-range transport of AMPARs should necessitate directional non-equilibrium active movement, 
e.g., driven by molecular motors that consume ATP as fuel (for  instance33).

Method
Network model. In the network model presented here, we incorporate elemental processes involved in 
AMPAR tra�cking cycles that have been characterized experimentally for hippocampal postsynaptic neu-
rons (Fig.  1). �e AMPAR tra�cking cycle is constructed around the phosphorylation/dephosphorylation 
dynamics of AMPAR at the synaptic membrane (Fig. 1c,d)34–36, the endocytosis of vesicles containing AMPAR 
(Fig. 1e,f)37,38, the transport of the recycling  endosomes8,39 by molecular motor myosin  Vb

40–42 (Fig. 1g), and 
exocytosis of the recycling  endosomes22,23, followed by the incorporation of AMPARs into the peri-synaptic/
synaptic membranes (Fig. 1h). �e key facilitators of the AMPAR tra�cking  cycle43 are summarized as follows: 
the GluA1/A2 heterotetramer (Fig. 1a); A-kinase anchoring protein 150 (AKAP150)34,44,45, which dimerizes (as 
shown in Fig. 1b but not shown in Fig. 1c–e) and forms a signaling complex along with protein kinase A (PKA)35, 
protein kinase C (PKC)34, and protein phosphatase 2B (PP2B, also known as Calcineurin, CaN)36 (Fig. 1b); the 
AMPAR interacting proteins such as synaptic associated protein 97 kDa (SAP97)43,44 and glutamate receptor 
interacting protein 1/2 (GRIP1/2)43,46; and two calcium-sensor proteins: protein interacting with C-kinase 1 
(PICK1)37,38,47 and synaptotagmin 1/7 (Syt1/7)22,23,48–50.

�e GluA1/A2 heterotetramer becomes localized during di�usional relocation at the synaptic membrane by 
tethering to AKAP150 via SAP97, which binds to the serine-845 site (S845) of  GluA144,45,51,52, and via GRIP1, 
which binds to the dephosphorylated serine-880 site (S880) of  GluA246, (if S845 of GluA1 has been phosphoryl-
ated by cAMP-dependent  PKA35,53, Fig. 1c). �is is because the AMPAR interacting proteins SAP97 and GRIP1 
have PDZ  domains43 and thus bind preferentially to AKAP150, which also has PDZ  domains44. If S845 of GluA1 
is dephosphorylated by  Ca2+-dependent  PP2B36, SAP97 dissociates from GluA1 (Fig. 1d). Furthermore, phospho-
rylation of the S880 GluA2 site by  Ca2+-dependent  PKC37,54 causes dissociation of GRIP1, at which point PICK1, 
which also has PDZ domains, binds to GluA2  instead37 (Fig. 1d). Increases in  Ca2+ concentrations through 
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NMDA receptors induces the active state of the  Ca2+-sensor PICK1 and then the endocytosis of AMPARs, which 
are comprised of two GluA1s with dephosphorylated S845 and two GluA2s with phosphorylated  S88037,38,47,55. 
Consequently, the endocytic vesicles containing these AMPARs undergo di�usion in the cytosol (Fig. 1e,f). At 
this point, it is assumed that the S880 of GluA2s in recycling endosomes are dephosphorylated by PP2A 56,57, 
PICK1 dissociates from GluA2, whilst GRIP1 binds to GluA2 (Fig. 1g) 43,46. It has been demonstrated using 
GRIP1 and/or GRIP2 knock-out mice that GRIP1 and GRIP2 regulate AMPAR tra�cking 46. However, for 
simpli�cation, we assume that the functions of GRIP2 are also taken into consideration through the model of 
GRIP1 in the present study.

We explicitly take into consideration the active transport of recycling endosomes containing AMPARs by 
myosin  Vb in our network model. Myosin  Vb binds to the recycling endosome via Rab11 and transports it toward 
the peri-synaptic/synaptic membrane 31,40–42 (Fig. 1g). Although  Ca2+-dependent activity of myosin V has been 
reported 58, the run speed and mean run length are almost constant at the  Ca2+ concentrations that we consider 
in this study 59. �erefore, we model the myosin-Vb transport of recycling endosomes as a  Ca2+-independent 
constitutive movement toward the peri-synaptic/synaptic membrane, which is driven by ATP hydrolysis energy. 
Exocytosis of the recycling endosomes transported by myosin  Vb is mediated at the peri-synaptic/synaptic mem-
brane by the  Ca2+-sensor synaptic vesicle protein synaptotagmin 1 (Syt1), together with synaptotagmin 7 (Syt7) 
(not shown in Fig. 1), synaptobrevin-2/VAMP2, and complexin (not shown in Fig. 1), amongst  others22,23,49,50,60,61. 
As a result, the AMPARs are incorporated into the peri-synaptic/synaptic membrane (Fig. 1h). In fact, exocy-
tosis of GluA1 not only in dendrites but also in synaptic spines including peri-synaptic/synaptic membranes 
has been demonstrated using the SEP-GluA1 imaging  technique31. �e localization of Syt1 at the peri-synaptic/
synaptic membranes, which has been observed for hippocampal postsynaptic  neurons48, also supports the Syt1-
mediated exocytosis pathway of the recycling endosomes. �e exocytic AMPARs incorporated into the peri-
synaptic membrane are relocated into the synaptic membrane via a local di�usional movement, which takes, 
at most, only 2 min, as shown by the observation on the duration of  STP26. In the present study, we did not 
introduce enough �ne space resolution into our network model to identify whether AMPARs are located at the 
peri-synaptic or synaptic membrane. However, the ~ 2-min delay of AMPAR incorporation into the synaptic 
membrane a�er exocytosis at the peri-synaptic membrane would be taken into consideration via e�ective rates 
for synaptotagmin-dependent exocytosis. In addition, the di�usional relocation dynamics of AMPARs at the 
synaptic membrane plays a crucial role in meeting and interacting with the signaling complex AKAP150, thereby 
resulting in the stabilization of AMPARs at the synaptic membrane by tethering to AKAP150 via SAP97 and 
GRIP1, as mentioned above.

As a result, we propose the network model for bidirectional hippocampal synaptic plasticity that consists 
of 285 reaction equations for 191 components, including: (1)  Ca2+ dynamics, (2) the phosphorylation/dephos-
phorylation dynamics of the tetrameric AMPAR ion channel subtype GluA1/A2, (3) the endocytosis/exocytosis 
dynamics of the AMPARs, mediated respectively by the  Ca2+-sensors PICK1 and Syt1, and (4) the recycling 
endosome active transport by molecular motor myosin  Vb toward the peri-synaptic/synaptic membrane (Fig. 2, 
Supplementary Table S2). �us, our network model involves the previously proposed model on bidirectional 
synaptic plasticity based on the phosphorylation/dephosphorylation of GluA1  S84562. �e validity of the network 
model is also demonstrated by reproducing the impairments of LTP and LTD caused respectively by genetic 
chemical inhibition of myosin  Vb  transport42 and by AKAP150ΔPIX knock-in mice, which selectively disrupt the 
anchoring of PP2B to  AKAP15036. �e network model reveals that the competition between exocytosis caused 
by Syt1, and endocytosis caused by PICK1 depends on transient increases in intracellular  Ca2+ concentrations, 
which therefore regulate AMPAR tra�cking resulting in LTP or LTD. �e obtained results also indicate that the 
constitutive active transport of the recycling endosomes by myosin  Vb increases the basal concentration of the 
recycling endosomes localized on the peri-synaptic/synaptic membrane surface, so that the AMPARs, which 
are ready for Syt1-mediated exocytosis, can be immediately incorporated into the postsynaptic membranes by 
LTP stimulation. �is insertion mechanism resolves the long-standing contradiction between the prompt LTP 
induction and the several-minute delay on the starting time of myosin  Vb transport following  LTP42.

Simulations. We built the network model for hippocampal LTP and LTD which is consisted of a well-mixed 
single compartment. �e ordinary di�erential equations for the network model comprised of 285 reaction equa-
tions on 191 components were solved using COPASI biochemical system simulator (ver. 4.23)63. �e detailed 
description of the model including components, reactions, and parameters can be found in the SI text. We 
employed the steady-state concentrations as the initial condition and performed the simulations of the LTP and 
LTD inductions for 5,400 s.

Results
Simulated  ca2+ pulses induce Ltp and LtD. �e magnitudes of LTP and LTD depend on experimen-
tal protocols, though typical forms of LTP and LTD have been found. For instance, it has been observed that 
high-frequency stimulation (HFS) at 100 Hz for 1 s sharply induces LTP, increasing synaptic transmission up 
to ~ 200% compared to basal  levels9,36,64. �e magnitude drops rapidly to ~ 150%, and then slowly decreases 
toward basal transmission level. Our network model reproduces the change in the membrane AMPAR level that 
is qualitatively consistent with experimentally observed LTP induction (Fig. 3a), when we mimic a rapid tran-
sient increase in intracellular  Ca2+ concentration caused by HFS-induced  Ca2+ in�ux through NMDA receptors, 
which is the input for LTP simulation, using a single Gaussian function (Fig. 3b). On the other hand, it has been 
found experimentally that induction of LTD requires LFS (700–900 pulses at 1 Hz)11–14. Synaptic transmission 
gradually decreases down to ~ 60%11,13, and then slowly increases toward the basal transmission  level12,14. When 
the transient rise of intracellular  Ca2+ caused by LFS is modelled using three Gaussian functions (Fig. 3b), our 
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network model reproduces the experimentally observed membrane AMPAR level for  LTD11 (Fig. 3a). In addi-
tion, we found that the network model reproduces LTP and LTD inductions under a wide range of  Ca2+ peak 
pulse amplitudes (see Supplementary Fig. S1). Furthermore, we con�rmed that these LTP and LTD inductions 
were held even if we used two sigmoid functions to mimic  Ca2+ in�ux instead of the Gaussian functions (see 
Supplementary Fig. S2). �ese results indicate the validity of the network model for bidirectional synaptic plas-
ticity. Here, it is noted that the network model reproduces the slow reduction in the amplitude of LTP and LTD 
toward the basal condition, which has been observed experimentally. �us, the LTP yielded by the network 
model, which is based on AMPAR tra�cking, corresponds to the early phases of LTP. �e relaxation of LTP and 
LTD is mediated by constitutive endocytosis and exocytosis of AMPAR, thus indicating that the constitutive �ux 
of the recycling endosome occurs under basal conditions.

PICK1 is activated by both LTP and LTD stimulation whereas synaptotagmin 1 is mainly acti‑
vated by Ltp stimulation. In our network model, the  Ca2+-sensors Syt1 and PICK1 play a dominant role 
in the exocytosis and endocytosis of AMPARs that regulate AMPAR tra�cking during LTP and LTD induc-
tion. We built biochemical models of Syt1 and PICK1 based on experimentally determined association con-
stants of  Ca2+ ions to  Syt160 and  PICK155 (see the SI text). Syt1 has two  Ca2+-binding domains, C2A and C2B, 
which bind three and two  Ca2+ ions and directly interact with the recycling endosome and plasma membrane, 
 respectively50. PICK1 has two  Ca2+-binding domains, one each on the N-terminus and C-terminus, which inter-
act with the phosphorylated S880 of GluA2 and the synaptic plasma membrane,  respectively37,38. It has been 
demonstrated that  Ca2+-binding site mutations of Syt1 in both the C2A and C2B domains block hippocampal 

Figure 2.  �e network model of AMPAR tra�cking that mediates hippocampal LTP and LTD. For 
simpli�cation, the AMPAR is schematically depicted as two particles corresponding to the GluA1 and GluA2 
subunits. �is network model is based on the experimental observations that are summarized in Fig. 1. Here, 
the reaction network on the phosphorylation/dephosphorylation dynamics of GluA1 and GluA2 is also 
displayed schematically. �e recycling endosomes containing AMPAR are actively transported by myosin  Vb 
toward the peri-synaptic/synaptic membrane. �e lateral di�usion relocation of AMPAR is assumed to occur 
during the phosphorylation and dephosphorylation of AMPAR at the synaptic membrane, in addition to the 
local di�usional relocation movement of the exocytic AMPAR from the peri-synaptic to synaptic membrane. 
�e phosphorylation state of GluA1 and GluA2 regulates localization of the AMPARs at the synaptic membrane 
via interactions with various AMPAR interacting proteins (SAP97, GRIP1, PICK1)43.
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 LTP22. �erefore, it would be appropriate to use  Ca2+-binding constants of Syt1 to model a  Ca2+-dependent 
regulating factor on the exocytosis mediated by Syt1 together with Syt7, synaptobrevin-2/VAMP2, and com-
plexin, amongst  others22,23,49,50,60,61. During LTP stimulation, the concentrations of multiple  Ca2+-binding species 
of Syt1,  (Ca2)ASyt1,  (Ca2)A(Ca)BSyt1, and  (Ca2)A(Ca2)BSyt1, rapidly rise in relation to the increase in [(Ca)ASyt1]. 
Here and herea�er, we use square brackets to refer to concentrations. However, at this scale, [(Ca3)A(Ca2)BSyt1] 
does not show a signi�cant increase (Fig. 3d).[Ca2PICK1] increases with a delay following the transient increase 
in [CaPICK1] (Fig. 3c). �erefore, both Syt1 and PICK1 are activated by LTP stimulation. Nevertheless, LTP is 
induced because the Syt1-mediated exocytosis overcomes the PICK1-mediated endocytosis. In contrast, at this 
scale during the LTD stimulation, increases in the concentration of multiple  Ca2+-binding species of Syt1 are 
not seen (Fig. 3f), whereas  [Ca2PICK1] and [CaPICK1] rise in relation to the rise in  [Ca2+] (Fig. 3e). As a result, 
the PICK1-mediated endocytosis overcomes the Syt1-mediated exocytosis, causing the induction of LTD (the 
numerical results will be provided below). �e di�erence in  Ca2+-dependent activity of PICK1 and Syt1 during 
the LTP and LTD stimulation is attributable to that in  Ca2+-binding a�nity of these proteins (see Supplementary 
Fig. S3). Graupner and Brunel proposed that the total times when  Ca2+ transient spends above depression and 
potentiation thresholds of synaptic transmission determined LTD and LTP  induction65. �e former and latter 

Figure 3.  Hippocampal LTP and LTD are regulated by the activation of  Ca2+-sensors Syt1 and PICK1 in 
response to  Ca2+ in�ux. (a) Time course of the membrane AMPAR population, indicating induction of LTP 
and LTD. Here, 100% represents the basal AMPAR population at the membrane. (b)  Ca2+-pulse concentrations 
corresponding to the LTP and LTD stimulation are shown on the le� and right axis, respectively. (c–f) �e 
concentrations of  Ca2+-binding species of PICK1 (c,e) and Syt1 (d,f) as a function of time (t) during LTP (c and 
d) and LTD induction (e,f). In (f), the concentration of multiple  Ca2+-binding species other than (Ca)ASyt1 is 
too small to see at this scale, indicating that Syt1 is mostly not activated. �erefore,  Ca2+-dependent exocytosis 
mediated by Syt1 occurs during LTD.
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might correspond to  Ca2+ concentrations that activate PICK1-dependent endocytosis and Syt1-dependent exo-
cytosis in our network model.

It has been reported that the regulatory mechanism of AMPAR tra�cking on hippocampal synaptic plasticity 
of rodents is development dependent. In fact, LTD is modestly a�ected in juvenile PICK1-knock out (KO) mice, 
whereas LTD induced by LFS is obviously reduced in PICK1-KO adult  mice66. Although many factors other 
than PICK1 work in  Ca2+-dependent endocytosis of AMPAR during LTD especially in hippocampal neurons of 
juvenile rodents, PICK1 plays a dominant role in the regulation of  Ca2+-dependent endocytosis in adult rodents 
together with other proteins including clathrin and  dynamin67. �us, the regulatory mechanism of hippocampal 
bidirectional synaptic plasticity presented in this study is valid, especially for adult rodents. Very recently, it was 
demonstrated using synaptotagmin 3 (Syt3) KO that Syt3 is actually involved in the endocytosis of AMPARs 
during  LTD68. However, the  Ca2+ a�nity of Syt3 has been reported as being tenfold higher than that of  Syt169, 
at levels more similar to PICK1. �erefore, Syt3-mediated endocytosis does not prevent the  Ca2+-dependent 
regulatory mechanisms of exocytosis and endocytosis presented here, and the network model would reproduce 
the bidirectional synaptic plasticity even if it was also taken into consideration.

competition between exocytosis and endocytosis during the induction of Ltp and LtD. As 
predicted from the  Ca2+-dependent activation of Syt1 and PICK1 (Fig. 3c–f), LTP stimulation causes exocytic 
and endocytic �uxes simultaneously, whereas the exocytic �ux should be much larger than the endocytic �ux 
(Fig.  4a). On the other hand, the endocytic �ux should be much larger than the exocytic �ux during LTD 
stimulation (Fig.  4c). Unexpectedly, we �nd that the maximum endocytic �ux in response to LTD stimula-
tion (~ 7 × 10–20 µmol/s, Fig. 4c) is considerably smaller than the maximum endocytic �ux in response to LTP 
stimulation (~ 32 × 10–20 µmol/s, Fig. 4a). Indeed, the total endocytosis of AMPARs induced by LTD stimulation 
(2.5 × 10–17 µmol) is smaller than that induced by the LTP stimulation (4.1 × 10–17 µmol). �is is because the  Ca2+ 
concentration during the LTP stimulation is signi�cantly higher than during LTD. Nevertheless, LTD is induced 
by a smaller endocytic �ux than during LTP stimulation because during LTD, the exocytic �ux is su�ciently 
smaller than the endocytic �ux. Likewise, LTP is induced even though the endocytic �ux is larger than that fol-
lowing LTD stimulation because during LTP stimulation the exocytic �ux is su�ciently higher than the endo-
cytic �ux. It is remarkable that an increase in the level of AMPAR internalized by the endosome a�er LTP induc-
tion could be observed  experimentally70. In addition, it has been observed that NMDA-receptor-dependent LTP 
and LTD are impaired in PICK1-KO mice where PICK1-dependent endocytosis is  inhibited66,71. �ese observa-

Figure 4.  Competition between exocytosis and endocytosis of AMPARs yields LTP and LTD. (a,c) Total excess 
�uxes of exocytosis, endocytosis, and myosin  Vb transport of recycling endosomes during (a) LTP stimulation 
and (c) LTD stimulation. (b,d) �e time course of concentrations for predominant components during (b) LTP 
and (d) LTD.



8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:14711  | https://doi.org/10.1038/s41598-020-71528-3

www.nature.com/scientificreports/

tions and our simulation results showing an impairment of both the LTP and LTD (see Supplementary Fig. S4) 
are the convincing evidence that supports our competition mechanism of bidirectional synaptic plasticity.

endocytic vesicles newly generated during Ltp and LtD are transported by myosin  Vb toward 
the peri‑synaptic membrane. Endocytic vesicles containing AMPARs newly generated during the 
induction of LTP and LTD undergo di�usion in the cytosol as a recycling endosome. During the di�usion move-
ment these recycling endosomes bind to molecular motor myosin  Vb via Rab11 and are actively transported 
by it toward the peri-synaptic/synaptic  membrane40–42. �e long-term �ux by myosin  Vb transport is found in 
Fig. 4a,c. �is indicates that the myosin  Vb transport of recycling endosomes continues for a while a�er LTP and 
LTD are induced. Indeed, such active transport continues for ~ 7 and ~ 13 min from the onset of the LTP and 
LTD stimulation, respectively (Fig. 4a,c). �e result obtained for LTP is consistent with experimental observa-
tions where the cooperative movements of recycling endosomes and myosin  Vb molecules start a few minutes 
later than the LTP induction, and continue for several  minutes42.

Recycling endosomes transported by myosin  Vb are localized on the surface of the peri‑synap‑
tic membrane, and thus are already prepared for exocytosis. We assume that the myosin  Vb active 
transport takes place in a  Ca2+-independent manner based on experimental  observations58,59. �us, the recycling 
endosomes in the cytosol are constitutively transported by myosin  Vb toward the peri-synaptic and synaptic 
membranes. Consequently, the recycling endosomes are expected to become localized on the membrane surface 
under basal conditions. In fact, we see that the most dominant components in the cytosol under basal conditions 
(t = 0 s) are pre-exocytic recycling endosomes bound to the peri-synaptic/synaptic membrane surface, namely, 
R1R2psd(GRIP2)MyoVSyt1 (Fig. 4b,d). Such localization is necessary for the immediate exocytosis mediated by 
Syt1 a�er LTP stimulation. Speci�cally, this causes the rapid incorporation of AMPARs into the peri-synaptic/
synaptic membranes during LTP induction. Sharp decreases in [R1R2psd(GRIP2)MyoVSyt1] occur immediately 
a�er LTP stimulation until it is depleted by the Syt1-mediated exocytosis. Simultaneously, the AMPAR popula-
tion at the membranes increases due to Syt1-mediated exocytosis, then immediately begins to decrease a�er it 
reaches its peak (see Fig. 3a). Such a rapid decrease in the AMPAR population following the prompt increase 
is interpreted as being due to PICK1-mediated endocytosis following Syt1-mediated exocytosis, as seen in the 
excess �uxes during LTP (Fig. 4a). �e increase in [R1R2psd(GRIP2)MyoVSyt1] following depletion (Fig. 4b) is 
therefore attributed to the myosin  Vb-transport of the endosomes newly internalized into the cytosol through 
endocytosis (Fig. 4a). Likewise, endocytic vesicles internalized during LTD induction are also transported by 
myosin  Vb and are present in greater quantities on the membrane surface than under basal conditions (Fig. 4d), 
thus playing an important role in exocytosis due to subsequent LTP stimulation.

Discussion
Assessment of the validity of the network model for hippocampal LTP and LTD. To con�rm 
the validity of the network model for bidirectional synaptic plasticity, we applied the model to two experimental 
observations: (1) reduction in LTP induction through genetic chemical inhibition of myosin  Vb  transport42, 
and (2) impaired LTD induction in AKAP150ΔPIX knock-in mice where the anchoring of PP2B to AKAP150 
is selectively  disrupted36. �e former is useful to reveal how myosin  Vb transport a�ects LTP induction. �is is 
not a trivial issue, because the myosin  Vb transport starts a few minutes later than the LTP induction, and the 
movement of recycling endosomes continues for ~ 10  min42. �e latter is important to reveal how the competi-
tion between the phosphorylation/dephosphorylation of GluA1 S845 by PKA and PP2B a�ects LTD induction. 
Indeed, on the basis of localization of AMPARs at the synaptic membrane regulated by phosphorylation of 
GluA1 S845, a model of bidirectional synaptic plasticity has been  proposed62.

Our network model reproduces the experimentally observed reduction in LTP due to the inhibition of myosin 
 Vb transport (Fig. 5a)42, i.e., that the LTP magnitude is lower in the early stage (~ t = 700 s) than in the wild-type 
model, and that the following reduction of LTP toward basal levels is accelerated. �e model also reproduces 
experimentally observed LTD impairment by disrupting dephosphorylation of GluA1 S845 by PP2B (Fig. 6a)36. 
Additional demonstrations of the network model are presented in Supplementary Fig. S5. �ese simulation 
results are also useful to further support the validity of the bidirectional regulatory mechanism of the network 
model on the induction of both LTP and LTD.

The accelerated reduction of LTP toward basal levels reflects inhibition of myosin  Vb trans‑
port. Inhibition of myosin  Vb transport does not a�ect the rapid increase in the membrane AMPAR popula-
tion just a�er the onset of LTP stimulation (Fig. 5a). However, following this rapid increase, the AMPAR popula-
tion steeply drops down to lower levels than that of the wild-type model (~ t = 700 s), showing an impairment of 
LTP induction. �e steep decrease a�er the initial increase can be attributed to PICK1-mediated endocytosis, 
which occurs concurrently during LTP induction (Fig. 4a). Normalized endocytic �uxes, de�ned as the total 
endocytic �ux divided by the basal [AMPAR] at the membrane, indicate that the ratio of endocytic AMPARs rel-
ative to the total amount of membrane AMPARs is increased by the inhibition of myosin  Vb transport (Fig. 5b). 
Whilst the increase in the normalized endocytic �ux is unexpected, it can be interpreted through changes in the 
population that are related to PICK1-bound species, to which myosin  Vb does not directly bind (Supplementary 
Fig. S6). �ese observations show that the reduction in LTP in the early stage (~ t = 700 s) is attributable to indi-
rect e�ects of the inhibition of myosin  Vb transport. In fact, the cooperative movement of recycling endosomes 
and myosin  Vb molecules starts several minutes later than LTP induction.

On the other hand, the accelerated reduction in LTP magnitude toward basal levels compared with the 
wild-type model can be interpreted as the direct e�ects due to inhibition of myosin  Vb transport. Indeed, the 
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concentration of recycling endosomes to which myosin  Vb binds, [R1R2endo(GRIP2)MyoV], is signi�cantly 
increased due to the inhibition of myosin  Vb transport not only under basal conditions (t = 0 s) but also at times 
a�er the induction of LTP (e.g., t = 1,000 s, Fig. 5d). In contrast, in the wild-type model, [R1R2endo(GRIP2)
MyoV] slightly increases only during LTP stimulation, and immediately vanishes due to myosin  Vb trans-
port (Fig. 5c). �e slow increase in the concentration of the recycling endosomes on the membrane surface, 
[R1R2psd(GRIP2)MyoV], by inhibiting myosin  Vb transport re�ects the rate-limiting process in the constitutive 
cycle of AMPAR tra�cking, which results in a faster reduction in LTP toward basal  levels42.

Phosphorylation/dephosphorylation dynamics of AMPARs at the synaptic membrane regu‑
late AMPAR trafficking. AKAP15034,44,45 forms a signaling complex with PKA, PKC, and PP2B (Calcineu-
rin, CaN, Fig. 1b) and a�ects the phosphorylation/dephosphorylation dynamics of the tetrameric AMPAR ion 
channel GluA1/A2 (Fig. 1c,d). �e S845 site of GluA1 is phosphorylated and dephosphorylated by PKA and 
PP2B, respectively. �e enzymes PKA and PP2B control the localization of GluA1/A2 to the synaptic membrane 
by tethering GluA1 to AKAP150 via SAP97, due to the fact that SAP97 preferentially binds to the phosphoryl-
ated S845 site of  GluA135,36. However, it remains unclear how these opposing e�ects of PKA and PP2B are regu-
lated during the induction of LTD. To address this issue, AKAP150ΔPIX knock-in mice, where the anchoring of 
PP2B to AKAP150 is disrupted, have been developed. Using the knock-in mice, it has been demonstrated that 
inhibition of the interaction between AKAP150 and PP2B impairs hippocampal LTD  induction36. In this study, 
we modeled hippocampal synapses for AKAP150ΔPIX knock-in mice by suppressing the dephosphorylation 
rate of GluA1 S845 by PP2B (Supplementary Table S5). �e LTD induction is impaired in the AKAP150ΔPIX 
model compared with the wild-type model (Fig. 6a). In Fig. 6c,d, R1R2(pS2) species that bind SAP97, R1(pS-
SAP)R2(pS2), and R1(pS2-SAP2)R2(pS2), show larger populations than species that do not bind SAP97 by dis-
rupting PP2B-anchoring to AKAP150. �is is because dephosphorylation of GluA1 S845 is suppressed in the 
AKAP150ΔPIX model. Consequently, the population of the main species in preparation for endocytosis, such 
as R1R2(pS2-PICK1) and R1R2(pS2-CaPICK1), is reduced in the AKAP150ΔPIX model, resulting in a decrease 
in the normalized endocytic �ux (Fig. 6b). Note that R1R2(pS2-PICK1), which is displayed in Fig. 6c, is not 
shown in Fig. 6d owing to its lower levels than that of other species. �ese observations indicate that the com-
petition between the phosphorylation/dephosphorylation of AMPARs at the synaptic plasma membrane a�ect 

Figure 5.  Myosin  Vb transport predominantly governs the long-term behavior of LTP induction. (a) Time 
courses of the membrane AMPAR population obtained for the wild-type and genetically inhibited model of 
myosin  Vb  transport42. (b) Normalized endocytic �uxes de�ned as the endocytic �ux divided by the basal 
[AMPAR] at the membrane. (c,d) �e populations of predominant components in the cytosol during LTP 
induction for (c) the wild-type model and (d) a model with inhibited myosin  Vb transport, shown as functions 
of time (t). Myosin  Vb-binding recycling endosome in the cytosol, [R1R2endo(GRIP2)MyoV], is increased 
under basal conditions by the inhibition of myosin  Vb transport, and furthermore is increased during impaired 
LTP induction, as seen in (d).
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AMPAR tra�cking. In addition to the results shown here, we �nd that the activation levels of PKA and PP2B are 
not e�ectively regulated by di�erences in  Ca2+ concentration during LTP and LTD stimulation (Supplementary 
Fig. S7). �us, although the unbinding of GluA1 from the synaptic membrane is necessary for the LTD induc-
tion, the previous model based on only the GluA1-binding to /GluA1-unbinding from the synaptic  membrane62 
is insu�cient to explain the NMDA receptor-dependent synaptic plasticity. �e  Ca2+-dependent competition 
between Syt1-mediated exocytosis and PICK1-regulated endocytosis is necessary as the dominant mechanism 
on LTD as well as LTP.

Dynamics of recycling endosomes during Ltp induction and the role of myosin  Vb trans‑
port. Myosin  Vb is widely expressed in most neurons, including those in the hippocampus, which implies the 
possibility that myosin  Vb could mediate endosomal tra�cking during LTP  induction40,42,72. Indeed, it has been 
demonstrated that the genetic chemical inhibition of myosin  Vb motility through the binding of nonhydrolyz-
able PE-ADP impairs LTP  induction42. On the other hand, on the basis of several experimental observations, 
it has been suggested that the cell surface long-range lateral di�usion pathway of AMPARs from the dendrites/
extrasynaptic region to the synaptic membrane is the dominant mechanism for AMPAR recruitment during 
 LTP26–29. �us, it is deduced that during hippocampal LTP, AMPARs are recruited into the synaptic membrane 
through either  Ca2+-dependent exocytosis at peri-synaptic/synaptic membrane, the cell surface long-range lat-
eral di�usion movement, or a combination of the two. However, in spite of extensively observing numerous 
experimental  evidences22–25,31,73, the  Ca2+-dependent exocytosis pathway of the recycling endosome assisted by 
myosin  Vb transport seems to have lately fallen out of favor as the main pathway for AMPAR tra�cking. In fact, 
recently proposed models for cerebellar LTP and LTD have taken into account the lateral di�usion of AMPARs 
from the extrasynaptic area to the synaptic membrane as the main pathway of AMPAR  tra�cking57,74. In addi-
tion to the in�uential arguments that support the long-range lateral di�usion  pathway26–29, one of the reasons 

Figure 6.  Dephosphorylation of GluA1 S845 by protein phosphatase 2B (PP2B, Calcineurin) regulates the 
induction of LTD. (a) Time courses of the membrane AMPAR population for wild-type and PP2B-anchoring 
de�cient AKAP150ΔPIX  mice36. (b) Normalized endocytic �uxes, de�ned as the endocytic �ux divided by the 
basal [AMPAR] at the membrane. (c,d) �e populations of the main (top �ve) components at the membrane 
during induction of LTD for (c) the wild-type model and (d) the AKAP150ΔPIX model are shown as functions 
of time (t). PICK1-binding AMPARs at the membrane, which have been prepared for PICK1-mediated 
endocytosis, such as R1R2(pS2-PICK1) and R1R2(pS2-CaPICK1) (c), are decreased by disrupting the PP2B-
dependent dephosphorylation of GluA1 S845. It is noted that R1R2(pS2-PICK1) shown in (c) is not displayed in 
(d) because it is present at levels lower than the other components shown here. On the other hand, the AMPARs 
that are bound to the membrane through tethering of GluA1 to AKAP150 via SAP97, such as R1(pS-SAP)
R2(pS2) and R1(pS2-SAP2)R2(pS2), are increased by the inhibition of the PP2B-dependent dephosphorylation of 
GluA1 S845.
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for this in the case of hippocampal LTP arises from the following observation: LTP induction is immediately 
caused by the prompt incorporation of AMPARs into the synaptic membrane, whilst myosin-Vb transport starts 
several-minutes later than the onset of LTP stimulation, and continues for ~ 10 min42. �ese facts, that seem to 
contradict each other at �rst glance, are actually not problematic, at least in the context of hippocampal LTP. 
In our simulation, the �ux from myosin  Vb transport of newly internalized endosomes reaches a maximum 
at 2 min a�er the onset of LTP stimulation (Fig.  4a), and continues for a total of ~ 10 min (see the increase 
in [R1R2psd(GRIP2)MyoVSyt1] in Fig.  5c). Even so, LTP induction can still be reproduced by the network 
model. Such an apparent discrepancy can be resolved as follows: the prompt incorporation of AMPARs into 
the synaptic/peri-synaptic membranes followed by the rapid di�usional relocation of AMPARs from the peri-
synaptic to synaptic membrane, which is required for the immediate induction of hippocampal LTP, is achieved 
by the Syt1-mediated exocytosis of recycling endosomes localizing on the membrane surface (Fig. 7). �is is 
because the recycling endosomes have already been transported into the synaptic/peri-synaptic membrane sur-
face by myosin  Vb in a  Ca2+-independent manner. �is theoretical prediction is supported by the colocaliza-
tion of Syt1 with endosomal  vesicles50 and the localization of Syt1 at the peri-synaptic/synaptic  membranes48. 
Taking the experimental observations discussed in this study and our simulation results together, we reach a 
plausible hypothesis that reconciles the long-standing controversy around the AMPAR tra�cking pathway: the 
short-range di�usional relocation pathway of AMPARs exocytosed by  Ca2+-dependent Syt1 at the peri-synaptic 
membranes can primarily contribute to AMPAR recruitment during LTP more than the cell surface long-range 
lateral di�usion pathway for AMPARs exocytosed at the dendrites/extrasynaptic region. In addition, to concili-
ate this hypothesis with Penn’s  observations26, we can conclude that the total amount of AMPARs exocytosed at 
the peri-synaptic membranes should be su�ciently larger than that at the synaptic membrane due to the larger 
area of peri-synaptic membranes. �erefore, the short-range di�usional relocation pathway of exocytic AMPAR 
from the peri-synaptic membranes should be more dominant than the direct exocytosis pathway of AMPAR into 
the synaptic membrane.
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