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Enzalutamide, a second-generation small-molecule inhibitor of the androgen receptor 
(AR), has been approved for patients who failed with androgen deprivation therapy 
and have developed castration-resistant prostate cancer. More than 80% of these 
patients develop bone metastases. The binding of enzalutamide to the AR prevents 
the nuclear translocation of the receptor, thus inactivating androgen signaling. However, 
prostate cancer cells eventually develop resistance to enzalutamide treatment. Studies 
have found resistance both in patients and in laboratory models. The mechanisms of 
and approaches to overcoming such resistance are significant issues that need to be 
addressed. In this review, we focus on the major mechanisms of acquired enzalutamide 
resistance, including genetic mutations and splice variants of the AR, signaling pathways 
that bypass androgen signaling, intratumoral androgen biosynthesis by prostate tumor 
cells, lineage plasticity, and contributions from the tumor microenvironment. Approaches 
for overcoming these mechanisms to enzalutamide resistance along with the associated 
problems and solutions are discussed. Emerging questions, concerns, and new oppor-
tunities in studying enzalutamide resistance will be addressed as well.

Keywords: enzalutamide resistance, castration-resistant prostate cancer, androgen receptor mutants, androgen 
receptor splice variants, bypass, intratumoral androgen biosynthesis, lineage plasticity, tumor microenvironment

inTRODUCTiOn

Of the estimated 26,000 prostate cancer (PCa) deaths in 2016 in the United States, over 80% involved 
bone metastases (1–3). Second-line hormonal therapies such as enzalutamide (also known as 
MDV-3100) improve overall patient survival only by several months in about 50% of the patients, 
and almost all patients develop drug resistance (4–8). There is an urgent need to determine the 
mechanisms of drug resistance, identify new approaches for overcoming such resistance, and from 
that knowledge, develop better treatments for PCa bone metastasis.

The first-line treatment option for men with PCa is hormonal therapy. Huggins and Hodges 
discovered in 1941 that removing androgens or providing estrogens could inhibit the progression 
of PCa (9). Despite the initial response of most patients to androgen deprivation therapy (ADT), 
the disease typically progresses to a castration-resistant state within 18–24  months (10, 11). 
Castration-resistant prostate cancer (CRPC) is defined by disease progression despite hormonal 
therapies, which is often indicated by an increase of prostate-specific antigen (PSA), a target of 
androgen signaling activation. As the disease progresses, the CRPC ultimately metastasizes to 
bone and later to other organs. Patients with metastatic CRPC (mCRPC) have a poor prognosis 
and a predicted survival of fewer than 2 years from the initial time of progression; such patients 
account for a large portion of the PCa deaths per year (2, 3, 12, 13). In 2012, enzalutamide, which 
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FigURe 1 | Time line of FDA-approved treatments for patients with castration-resistant prostate cancer bone metastases. Treatments that improve patients’ overall 
survival are listed above the black line, and palliation treatments are listed below. The numbers in parentheses are median months of overall increased survival or 
median months delayed to first detection of skeletal-related events, respectively.
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significantly improved patient survival, was approved. The time 
line of FDA-approved treatments and their respective effects 
are shown in Figure  1 (5, 6, 14, 15). However, the survival 
benefits of enzalutamide were achieved in only up to 50% of 
PCa patients treated, and patients who initially responded 
eventually developed resistance (4). Studies of the mechanisms 
of intrinsic and acquired resistance led to approaches to over-
come it.

enZALUTAMiDe FUnCTiOn  
AT THe MOLeCULAR LeveL

The androgen receptor (AR) is a transcription factor and a 
member of the nuclear receptor superfamily. It consists of an 
N-terminal transactivation domain (exon 1), a central DNA-
binding domain (DBD; exons 2–3), a C-terminal ligand-binding 
domain (LBD; exons 4–8), and a hinge region between the DBD 
and LBD that is involved in nuclear localization and degrada-
tion (16). The N terminus has a unique LxxLL-like motif, which 
binds to a hydrophobic cleft of the C terminus that is generated 
by ligand binding to the receptor. This binding also stabilizes 
the ligand binding-caused N terminal–C terminal physical 
interaction of the receptor. The N–C interaction is initially 
intramolecular in the cytoplasm and is necessary for nuclear 
localization, but the interaction changes to intermolecular in 
the nucleus (17–22).

Androgen receptor antagonists all bind to the LBD (23). 
Binding of the first-generation antagonists (such as flutamide or 
bicalutamide) does not prevent the intra- or intermolecular N–C 
interactions (19). Thus, after binding of these antagonists, the AR 
still translocates to the nucleus, binds to chromatin, and acts as 
an agonist. This antagonist to agonist switch is partially due to 
the highly conserved overall configurations of LBD binding with 
ligand (testosterone or dihydrotestosterone), bicalutamide, or 
flutamide (24). Enzalutamide binds to the AR with an eightfold 
higher affinity than bicalutamide (25). Furthermore, no intramo-
lecular N–C interaction was found upon binding of enzalutamide, 

which blocks the translocation of the receptor to the nucleus and 
therefore blocks subsequent signaling activation (20).

enZALUTAMiDe ReSiSTAnCe in  
PCa CeLLS AnD APPROACHeS  
TO OveRCOMing iT

Because enzalutamide binds to the AR LBD, the presence of splic-
ing variants that lack the LBD and of constitutively activated AR 
in PCa cells apparently confer the intrinsic resistance to enzaluta-
mide. AR-V7 in circulating tumor cells (CTC) has been associated 
with enzalutamide resistance in PCa patients, although larger-
scale studies are needed to conclude that AR-v7 is the cause of 
resistance (26–30). On the other hand, the overwhelming major-
ity of enzalutamide-treated patients who have robust declines in 
PSA eventually develop resistance, with increasing PSA and/or 
progression of bone lesions that suggest acquired resistances. We 
discuss several major mechanisms of acquired resistance in the 
following sections, based on the original research publication and 
recent reviews (21, 31–33).

AR Mutations and Splice variants (AR-v)
One of the AR mutant F876L (substitution of phenylalanine 
for leucine at the 876 position), which confers enzalutamide 
resistance in  vitro and in  vivo (34, 35), spontaneously emerged 
among enzalutamide-resistant clones. These clones appeared after 
weeks of continuous enzalutamide treatments of PCa cell lines 
with AR either in culture or xenografted in immune comprised 
mice. The F876L mutation is in the LBD and is adjacent to the 
homozygous T877A mutation in LNCaP cells. The F876L muta-
tion is heterozygous, with a mutant allelic mRNA frequency of 
approximately 40% in patient samples. Mechanistically, a positive 
correlation of increased AR activation and E2F1 activation was 
found in these resistant clones, correspondently, cyclin-dependent 
kinase (CDK) 4/6 inhibitor has been tested as an approach to 
overcoming F876L-based resistance. However, the specificity of 
the inhibitor is a concern, because of the key role of CDK4/6 in 
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cell cycle and because one of the CDK4/6 inhibitors, LEE011, was 
shown to significantly reduce the viability of both parental and 
enzalutamide-resistant cells (34).

Other studies have focused on developing novel small-
molecule inhibitors targeting the AR mutants. One example is 
darolutamide (ODM-201) (36), an AR antagonist. Darolutamide 
significantly inhibited the growth of an enzalutamide-resistant 
PCa clone such as the LNCaP-derived MR49F cell line that has 
the F877L mutation in vitro and in vivo. Mechanistically, daro-
lutamide was able to inhibit the transcriptional activity of three 
AR mutants that confer enzalutamide resistance, such as F877L, 
F877L/T878A, and H875Y/T878A. Darolutamide has a different 
chemical structure than enzalutamide, and in silico simulation of 
the drug’s mode of action showed a distinct structure of darolu-
tamide binding with the AR.

Another development is an AR degradation enhancer, ASC-J9 
[5-hydroxy-1,7-bis(3,4-dimethoxyphenyl)-1,4,6-heptatrien- 
3-one] (37–39). ASC-J9 suppressed enzalutamide-resistant PCa 
progression (40), and it degrades not only wild-type AR but also 
AR-F876L and splice variants of such as AR-v7 (41–45). ASC-J9 
degrades the AR by enhancing its association with the murine 
double minute protein 2 (MDM2) (41), an E3 ubiquitin ligase 
that drives AR clearance via proteasome-mediated degrada-
tion. However, this has not been confirmed by rescuing the 
AR degradation using proteasome inhibitors. It is not known 
whether the same mechanism applies for the downregulation of 
AR-F877L by ASC-J9. This is possible, because one amino acid 
mutation may completely change the AR structure and endow 
it with enzalutamide resistance but still allow it to interact with 
MDM2. ASC-J9 was also shown to have additional effects that 
contribute to the inhibitions of PCa progression and metastasis. 
For example, in PCa cells, ASC-J9 was able to suppress expression 
fatty acid synthase that stimulates PCa cell growth and invasion 
(46) or to inhibit the phosphorylation of STAT3 that promotes 
PCa stem/progenitor cells invasion (39); in the cells of the tumor 
microenvironment, ACS-J9 could suppress the CD4+ T  cell 
migration that contribute to the progression of prostatitis (47), 
or the macrophage infiltration that stimulated PCa cell invasion 
(38). Together, these studies suggested that ACS-J9 was very 
promising in battling PCa. However, its broader effects on other 
signaling pathways and on cells from the microenvironment need 
to be explored further before being translated to clinical trials.

Furthermore, BET [bromodomain (BRD) and extraterminal] 
inhibitors, such as JQ1 and OTX015, have been shown to overcome 
enzalutamide resistance of CRPC conferred by AR-V (48, 49).  
BET inhibitors target the amino-terminus of BRD proteins, BRD4, 
and exhibit proliferation inhibition in a wide range of cancers, 
including CRPC. The underlying mechanistic studies suggested 
that JQ1 inhibited expression of full-length AR and AR-V, thus 
overcoming enzalutamide resistance (50). However, BET inhibi-
tors as single agents may not succeed in the clinic because of a 
recent study showing acquired resistance to BET inhibitors in 
CRPC cells (51). It is not known whether the combination of 
BET inhibitors with enzalutamide induce resistance, or whether 
combination of BET inhibitors with CDK9 and/or PARP (poly 
ADP ribose polymerase) inhibitors overcomes enzalutamide 
resistance.

In summary, the above approaches target the outcomes of 
enzalutamide resistance. We believe targeting the causes of drug 
resistance will be most effective, which will require answers to 
pivotal questions such as: How does enzalutamide treatment 
induce mutations of AR? and What types of PCa cells will develop 
enzalutamide resistance?

Bypassing Signaling Pathways
The bypassing of AR signaling through increasing glucocorticoid 
receptor (GR) expression at both the mRNA and protein levels 
has been identified in enzalutamide-resistant PCa cells, and 
increases of GR have been confirmed in clinical samples (52, 53). 
The activation of the GR by dexamethasone is sufficient to confer 
enzalutamide resistance, and a novel GR antagonist, arylpyra-
zole compound 15, can restore sensitivity to the drug (52–54). 
However, blocking glucocorticoid signaling is neither practical 
nor effective, because glucocorticoid is essential for life, and also 
because GR antagonists activate AR target genes (52). Therefore, 
researchers have focused on how enzalutamide increases gluco-
corticoid signaling. One recent study (55) found that enzaluta-
mide treatment sustained the level of cortisol, the active ligand 
for the GR, thus elevating glucocorticoid signaling and producing 
a loss of 11β-hydroxysteroid dehydrogenase-2 (11β-HSD2), the 
enzyme that converts cortisol to the inactive form, cortisone. 
It was further shown that 11β-HSD2 loss was mediated by an 
increase of AMFR, an ubiquitin E3-ligase autocrine mobility fac-
tor receptor. Approaches such as overexpression of 11β-HSD2 or 
knock-down of AMFR were effective in reversing enzalutamide 
resistance. Future research will need to address how to translate 
these approaches to therapies for patients.

Androgen signaling not only activates but also suppresses 
various downstream target genes, some of which are oncogenic, 
such as c-Met (56), c-Myb (57), or enhancer of zeste homolog 2 
(EZH2) (58). Blocking either any of these proteins or their respec-
tive downstream targets was shown to inhibit castration-resistant 
PCa cell proliferation (in  vitro) or growth (in  vivo). Logically, 
since enzalutamide treatment induces c-Met, c-Myb, and EZH2 
or activates the target genes, the combination of enzalutamide 
with inhibition of each of these targets may have better efficacy. 
However, further preclinical and clinical testing are needed for 
confirmation and validation.

On the other hand, enzalutamide treatment was shown 
to activate PI3K/AKT signaling by reducing FK506 binding 
protein 5 (a chaperone for the PHLPP) that destabilizes PHLPP 
(PH domain and leucine rich repeat protein phosphatases), the 
AKT phosphatase (59). Combining enzalutamide with BEZ235 
(a dual PI3K and mTORC1/2 inhibitor) or AKT1/2 inhibitor 
led to significant inhibition of PCa tumor growth in mice (59). 
Another study showed increased noncanonical Wnt signaling, 
independent of increased GR, in CTC obtained from enzaluta-
mide-resistant PCa patients compared with enzalutamide-naïve 
PCa patients by analyzing the RNA sequences of the single 
CTC (60). Furthermore, increased Wnt5A was confirmed to 
represent the noncanonical Wnt signaling in CTC, as well as 
in enzalutamide-treated or enzalutamide-resistant LNCaP PCa 
cells (60). However, the effectiveness of inhibiting PCa growth by 
combining enzalutamide with medicinal approaches for blocking 
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noncanonical Wnt signaling or Wnt5A has not been tested. 
This avenue to overcoming enzalutamide resistance is practical 
since the Wnt5a antagonist has been tested in clinical trials in 
breast and colorectal cancers (61). Enzalutamide treatment has 
also been shown to increase autophagy, in which the AMPK 
pathway was upregulated (62). Combinations of enzalutamide 
with autophagy inhibitors enhanced the therapeutic response, 
particularly when using clomipramine or metformin, both of 
which are FDA approved as antidepressant and antidiabetic 
drugs, respectively. However, increasing autophagy is a general 
cause by blocking AR signaling, because the same effect was also 
observed in bicalutamide-resistant cells (62).

Other bypass pathways have also been reported. The associa-
tions of β-catenin, miRNA16, and oncostatin M with enzaluta-
mide resistance were identified by gene profiling of parental cells 
versus enzalutamide-resistant cells (31). Correlations between 
each of these and CRPC cells had been reported in various studies 
(63–67). However, the effectiveness of overcoming enzalutamide 
resistance by blocking each target individually or in combination 
needs to be tested.

intratumoral Androgen Biosynthesis
Intratumoral androgen biosynthesis has been recognized as one 
of the mechanisms of resistance to ADT and the development 
of CRPC (68–71). Elevated androgen levels were recently found 
in the bone marrow of patients treated with enzalutamide (72). 
An increase of intratumoral androgen biosynthesis is reported 
to be involved in enzalutamide resistance (73). Mechanistic 
studies revealed that several genes involved in the androgen 
synthesis pathway were significantly increased in enzalutamide-
resistant PCa cells relative to the parental cells, including AKR1C3  
(aldo-keto reductase family 1 member C3) (73).

AKR1C3 is an enzyme that participates in the conversion of 
weak androgens such as androstenediones to more-active andro-
gens such as testosterone or dihydrotestosterone. Knock-down 
of the AKR1C3 gene or blocking of the AKR1C3 enzyme using 
a drug such as indomethacin can overcome enzalutamide resist-
ance. Furthermore, overexpression of AKR1C3 can cause enza-
lutamide resistance in PCa cells (73). While this was a thorough 
study both in vitro and in vivo, validation from patient samples is 
needed to justify more effort in translating this work.

Lineage Switching
When lung cancer is exposed to targeted therapies, such as epi-
dermal growth factor receptor (EGFR) inhibitor, adenocarcinoma 
cells can switch from EGFR dependent to EGFR independent 
with expression of neuroendocrine lineage markers, or to cells 
that lack all EGFR expression (74, 75). Researchers of Dr. Swayers’ 
group applied this idea to determine whether lineage plasticity 
is a novel mechanism of enzalutamide resistance in PCa. They 
found that combined TP53 and RB1 alterations were significantly 
higher in disease progressed tumors from men under treat-
ment with enzalutamide or abiraterone (an androgen synthesis 
inhi bitor) (76). The combined knock-down of TP53 and RB1 
in human PCa LNCaP/AR and CWR22Pc-EP cells did confer 
enzalutamide resistance in vitro. Further characterization of the 
cells revealed increased expression of neuroendocrine markers 

but decreased luminal cell markers in both of the double knock-
down cells compared with their respective parental LNCaP/AR 
and CWR22Pc-EP luminal PCa cells, and the cells switch from 
AR dependent to AR independent. In PCa, lineage switching 
from adenocarcinoma to neuroendocrine PCa cells has been 
reported, but without complete understanding of the mechanism 
that drives the plasticity (77). A back-to-back publication showed 
that loss of RB1 and TP53 genes conferred the PCa lineage 
plasticity, metastasis, and enzalutamide resistance by developing 
a genetically engineered mouse model crossed with a Pten knock-
out mouse (78). Together, these data suggest lineage plasticity 
under selective pressure such as enzalutamide treatment. Finally, 
pluripotency transcription factor, SOX2, was identified to be 
required for the lineage plasticity and enzalutamide resistance by 
the loss of TP53 and RB1. Based on these significant advances, the 
future directions are to investigate how to target SOX2, discover 
the mechanisms of enzalutamide-induced loss of TP53 and RB1, 
and to determine whether these mechanisms are targetable.

COnTRiBUTiOnS FROM THe TUMOR 
MiCROenviROnMenT

Cancer is a systemic disease, and studies showed that paracrine 
factors such as hepatocyte growth factor, Wnts, basic fibroblast 
growth factor (or FGF2), and some cytokines from the microenvi-
ronment contribute to PCa initiation, progression, and metastasis 
(64, 79–83). Therefore, it is possible that paracrine factors influ-
ence the efficacy of enzalutamide treatment. The most studied 
and most easily targeted factor from the microenvironment is 
interleukin 6 (IL6) (84–88), which signals through the Janus 
kinase/signal transducer and activator of transcription 3 (JAK/
STAT3) pathway. One of the functions of IL6/JAK/STAT3 in 
PCa cells is stimulating the expression of stemness/self-renewal 
genes. IL6/JAK/STAT3 also induces the expression of suppressor 
of cytokine signaling 3 (SOCS3), which in turn suppresses the 
transcriptional activity of IL6/JAK/STAT3.

Culig led a study (84) to determine the effect of long-term 
enzalutamide treatment in an inflammatory environment, study-
ing PCa cells treated with enzalutamide plus IL6 for 3  weeks. 
They found this combination treatment suppressed self-renewal 
genes and AR target genes in PCa cells that had SOCS3 over-
expression, but the AR target genes were induced in PCa cells 
with SOCS3 knocked out, suggesting that uncontrolled IL6/
JAK/STAT3 transactivation of androgen signaling conferred 
enzalutamide resistance. This study showed that an inflammatory 
microenvironment could control the efficacy of enzalutamide 
by fine-tuning signaling of the inflammatory cytokine IL6 
(84). Others reported that bicalutamide or enzalutamide could 
promote macrophage infiltration that subsequently enhances 
PCa invasion. The mechanistic studies showed that blocking 
AR signaling in macrophages increased the expression of CCL2 
through inhibiting the expression of PIAS3 (protein inhibitor of 
STAT3) and subsequent increase of STAT3 phosphorylation (38). 
To overcome this effect, ASC-J9, the AR degrader, could directly 
inhibit the STAT3 phosphorylation and activation (38).

In PCa bone metastases, because the bone matrix is a reservoir 
rich in cytokines, we suspect that there are other cytokines that 
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could also contribute to enzalutamide resistance, such as IL8, stro-
mal cell-derived factor 1 (also known CXCL12), and granulocyte 
colony-stimulating factor, which have been identified in cancer 
drug resistance (89). On the other hand, the PCa bone meta-
static lesions are results of dysregulated activities of osteoclasts 
and osteoblasts that were hijacked by cancer cells. However, we 
do not know whether and how osteoclasts or osteoblasts affect 
enzalutamide resistance. Targeting osteoclasts that resorb bones 
using zoledronic acid or denosumab is effective in palliation (5, 6). 
Metastasized PCa cells adhere in the osteoblast niche, developing 
into overt metastatic lesions (90–95). Will combining enzalutamide 
with approaches that target the proliferation or differentiation of 
osteoblasts or osteoclasts be better therapies? Will the effects of 
enzalutamide on osteoblasts or osteoclasts contribute to the drug 
resistance? We believe combination therapies using enzalutamide 
plus approaches that target the bone microenvironment (either 
paracrine factors or the bone cells themselves) might be able to 
prevent and/or overcome the enzalutamide resistant in mCRPC.

SUMMARY AnD COnCLUSiOn

Currently, enzalutamide is the best therapeutic drug for improv-
ing the survival of mCRPC patients. Due to their heterogeneity 

and plasticity, cancer cells have various mechanisms of drug 
resistance that we have begun to learn about, knowledge that 
will lead to targeted approaches to improving the efficacy of 
enzalutamide. The current mechanisms of enzalutamide 
resistance, the approaches for overcoming resistance, and the 
problems and solutions associated with these mechanisms are 
summarized in Table  1. The ultimate solution to drug resist-
ance will be found only through future studies on the effects 
and mechanisms of enzalutamide action at the cellular and 
molecular levels.
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TABLe 1 | Summary of mechanisms and approaches of overcoming the enzalutamide resistance in preclinical PCa model.

Mechanisms of  
resistance

Targets Approaches 
(drugs)

Mechanism of action Problems and solutions

Constitutive AR  
signaling activation

AR-V ASC-J9 Degrades ARs Unknown other effects

BET inhibitors  
(JQ1, OTX015)

Inhibits expression of ARs Develop of resistance to BET inhibitor.  
Combination of BET inhibitor with CDK9  
inhibition or/and PARP inhibitor

AR mutations AR mutants ASC-J9 Degrades ARs Other effects unknown

Transcriptional activities Darolutamide 
(ODM-201)

AR antagonist Unknown

CDK4/6 CDK4/6 inhibitor 
(LEE011)

Inhibits AR-induced cell proliferation Non-specificity (target all proliferative cells)

Bypassing AR signaling GR Arylpyrazole 
compound 15

GR antagonist GR signaling is essential for normal  
functions, and GR antagonists activate AR

To increase 11β-HSD2 
expression or/and 
activity

Unknown Converts cortisol (active form of GR ligands)  
to cortisone (inactive form of GR ligands)

Unknown

AMFR (A ubiquitin 
E3-ligase)

Unknown Degrades 11β-HSD2 Unknown

Wnt5A siRNA Wnt5A knock-down Unknown

Autophagy Clomipramine or 
metformin

Inhibits autophagy Non-specificity

Intratumoral androgen 
synthesis

AKR1C3 Indomethacin Inhibits conversion of weak androgens to  
more-active androgens

Validation in human

Lineage switching SOX2 Unknown Mediates the lineage plasticity by loss of RB1  
and TP53

Unknown

Microenvironmental effects IL6/JAK/STAT3 ASC-J9 Inhibits STAT3 phosphorylation and activation Other effects unknown

IL6 Inhibits PCa cells with SOCS3 overexpression Opposite effect in PCa cells without SOCS3 
expression

AR, androgen receptor; GR, glucocorticoid receptor; AMFR, autocrine mobility factor receptor; SOCS3, suppressor of cytokine signaling 3; JAK/STAT3, Janus kinase/signal 
transducer and activator of transcription 3; IL6, interleukin 6; 11β-HSD2, 11β-hydroxysteoid dehydrogenase-2; AKR1C3, aldo-keto reductase family 1 member C3; ASC-J9, 
5-hydroxy-1,7-bis(3,4-dimethoxyphenyl)-1,4,6-heptatrien-3-one; LEE011, a small-molecule inhibitor for CDK4/6; PCa, prostate cancer; CDK, cyclin-dependent kinase.
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