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Vascular calcification has severe clinical consequences and is considered an accurate pre-

dictor of future adverse cardiovascular events, including myocardial infarction and stroke.

Previously vascular calcification was thought to be a passive process which involved the

deposition of calcium and phosphate in arteries and cardiac valves. However, recent studies

have shown that vascular calcification is a highly regulated, cell-mediated process similar

to bone formation. In this article, we outline the current understanding of key mechanisms

governing vascular calcification and highlight the clinical consequences. By understanding

better the molecular pathways and genetic circuitry responsible for the pathological miner-

alization process novel drug targets may be identified and exploited to combat and reduce

the detrimental effects of vascular calcification on human health.
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INTRODUCTION

Whilst it is tempting to presume that vascular calcification is a
product of modern society, this pathological process was actu-
ally first documented in an autopsy of the mummy of an elderly
Egyptian woman, which revealed calcific aortic atherosclerosis
(Czermack, 1852). Following this report, Johann Georg Möncke-
berg described medial calcific sclerosis, a form of arteriosclerosis
or vessel hardening, where calcium deposits are found in the mus-
cular middle layer of the walls of arteries (Mönckeberg, 1903).
For many years, vascular calcification was regarded as a passive
and degenerative disease without treatment options (Virchow,
1989). Over the past two decades, extensive research has conclu-
sively shown that pathological vascular calcification is a tightly
regulated process that shares many similarities with physiologi-
cal bone mineralization (Shanahan et al., 1999; Moe and Chen,
2004; Vattikuti and Towler, 2004; Hruska et al., 2005; Demer and
Tintut, 2008; Sage et al., 2011; Zhu et al., 2011). However, the
precise mechanisms through which vascular calcification occurs
still remains unclear. Progressively enlarging calcium deposits are
seen in the major arteries of individuals older than 60 years of age
(Allison et al., 2004). Extensive vascular calcification is also fre-
quently observed in patients with atherosclerosis, chronic kidney
disease (CKD), and diabetes (Fuchs et al., 1985; Sangiorgi et al.,
1998; Allison et al., 2004; Giachelli, 2004; Reaven and Sacks, 2005;
Okuno et al., 2007; Shroff and Shanahan, 2007; Kestenbaum et al.,
2009). The incidence of vascular calcification is highly correlated
with mortality and morbidity of cardiovascular disease (Arad et al.,
2000; Rosenhek et al., 2000; Keelan et al., 2001; Wayhs et al., 2002),
in the form of reduced aortic compliance, decreased cardiac effi-
ciency, deterioration of coronary perfusion, and subendocardial
ischemia (Kelly et al., 1992; Watanabe et al., 1992; Ohtsuka et al.,
1994). Therefore the identification and characterization of novel
mediators of vascular calcification will offer the potential for future

therapeutics to inhibit progression or induce regression of vascu-
lar calcification. In this review, we will describe the mechanisms
underpinning vascular calcification and discuss the risk factors,
clinical consequences, and potential therapeutic targets for this
pathological process. Abbreviations and acronyms are detailed in
Table 1.

TYPES OF VASCULAR CALCIFICATION

Vascular calcification can be categorized into four main types
according to location: atherosclerotic intimal calcification, medial
artery calcification (Mönckeberg’s sclerosis), cardiac valve calcifi-
cation, and calcific uremic arteriolopathy. Histologically, calcified
deposits may be amorphic, chondromorphic, or osteomorphic in
structure, and may be characterized as metastatic or dystrophic.

Atheroslcerotic intimal calcification

Atherosclerosis is the development of plaques within the intimal
layer of large vessels, and underlies coronary artery disease and
cerebrovascular disease, the most common forms of life threaten-
ing cardiovascular disorders (Doherty et al., 2004). Atherosclerosis
can by induced by chronic inflammation and lipid deposition, with
dyslipidemia frequently linked to the severity of calcium deposi-
tion (Pohle et al., 2001; Schmermund et al., 2001). Atherosclerotic
calcification is the most common form of calcific vasculopathy,
and occurs as early as the second decade of life just after fatty
streak formation (Stary et al., 1995). Small aggregates of crys-
talline calcium can be detected in developing lesions, and in adults
past the fourth decade of life, greater lesion areas may be calcified
(Stary, 2000). The degree of calcification correlates with the extent
of atherosclerosis, with age, and hypertension as dominant risk
factors for systemic calcified atherosclerosis (Allison et al., 2004).
The predominant mineral form in calcified lesions is hydroxyap-
atite which may initially form in membrane bound matrix vesicles
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Table 1 | Abbreviations and acronyms.

Abbreviations and acronyms

ANK Ankylosis protein

CAVS Calcific aortic valve stenosis

CKD Chronic kidney disease

CVC Calcifying vascular cell

ESRD End stage renal disease

GACI Generalized arterial calcification of infancy

MGP Matrix Gla protein

NPP1 Ecto-nucleotide pyrophosphatase/phosphodiesterases-1

NSAID Non-steroidal anti-inflammatory drug

OPG Osteoprotegerin

OPN Osteopontin

Pi Inorganic phosphate

PPi Inorganic pyrophosphate

TNAP Tissue non-specific alkaline phosphatase

VKDP Vitamin K-dependent protein

VSMC Vascular smooth muscle cell

that bud from the membranes of chondrocytes and osteoblasts
present within deposits of cartilage and bone tissue, respectively
(Yu, 1974). In addition to mineral, these lesions also contain matrix
vesicles as well as outright bone and cartilage (Tanimura et al.,
1983; Mohler et al., 2001; Hunt et al., 2002).

Medial calcification

Medial calcification, also termed Mönckeberg’s sclerosis, occurs in
the tunica media of blood vessels. It is a characteristic feature of
Generalized Arterial Calcification of Infancy (GACI), diabetes, and
CKD (Fuchs et al., 1985; Chen and Moe, 2003; Rutsch et al., 2003,
2008; London et al., 2005; Reaven and Sacks, 2005; Okuno et al.,
2007; Kestenbaum et al., 2009), and is associated with increased
cardiovascular mortality and amputation risk (Chantelau et al.,
1995; Lehto et al., 1996; London et al., 2003). Medial calcifica-
tion occurs independently of atherosclerotic calcification and is
a process similar to intramembranous bone formation, with no
cartilaginous precursor required (Towler et al., 1998; Vattikuti and
Towler, 2004). Calcium deposition can be observed throughout
most of the medial width in the early stage of disease. At later
stages of disease, the media is filled with circumferential rings of
mineral. In some cases, osteocytes and bone trabeculae can also be
observed (Shanahan et al., 1999; Zhu et al., 2011).

Cardiac valve calcification

Heart valves allow unidirectional blood flow through the heart.
The four main valves of the mammalian heart are: the two atri-
oventricular (AV) valves and the two semilunar (SL) valves. The
AV valves including the mitral valve and the tricuspid valve are
located between the atria and the ventricles. The SL valves are the
aortic valve and the pulmonary valve and are located in the arteries
leaving the heart. Calcific aortic valve disease is identified by thick-
ening and calcification of the aortic valve leaflets (Figure 1) in the
absence of rheumatic heart disease. It is divided into aortic scle-
rosis, in which the leaflets do not obstruct left ventricular outflow,
and aortic stenosis, in which obstruction to the left ventricular

FIGURE 1 | Extensive calcific aortic valve stenosis in the valve leaflets

of a patient undergoing valve replacement surgery.

outflow is present. A number of recent studies have shown that
calcific aortic valve lesions have many features characteristic of an
actively cell-regulated process, including lipoprotein deposition
(O’Brien et al., 1996; Olsson et al., 1999), chronic inflammation
(Olsson et al., 1994; Otto et al., 1994), and active calcification
(Mohler et al., 2001; Rajamannan et al., 2003) and shares similar
underlying mechanisms with atherosclerotic intimal calcification
(Salhiyyah et al., 2011).

Calcific uremic arteriolopathy

Calcific uremic arteriolopathy is a severe type of widespread
medial vascular calcification which occurs in blood vessels of
patients with End stage renal disease (ESRD) often referred to
as stage 5 CKD (Qunibi et al., 2002). It affects cutaneous and sub-
cutaneous arteries and arterioles, leading to intimal proliferation,
fibrosis, and thrombosis (Qunibi et al., 2002; Mwipatayi et al.,
2007).

THE CELLULAR SOURCES OF VASCULAR CALCIFICATION

Cells that spontaneously produce calcified matrix and undergo
a bone-like transdifferentiation include vascular smooth muscle
cells (VSMCs), pericytes, and calcifying vascular cells (CVCs).
These cell types are closely related and may be variant phenotypes
of one another (Minasi et al., 2002; Tintut et al., 2003).

Vascular smooth muscle cells

Vascular smooth muscle cells normally reside in the media of blood
vessels and are responsible for regulating vascular tone. VSMCs
exhibit a contractile phenotype and highly express genes which are
required for the maintenance of myofilament structure and func-
tion. These genes include α-smooth muscle-actin (SMA), SM22α,
and SM-myosin heavy chain (Shanahan et al., 1993; Mackenzie
et al., 2011). VSMCs can be activated from a quiescent, differenti-
ated state into an actively proliferating and synthesizing phenotype
(Hedin et al., 1999). This phenotypic change is associated with loss
of smooth muscle cell markers and can be induced by various stim-
uli in vitro, including various growth factors, injury, or mechanical
stress (Thyberg, 1996; Worth et al., 2001). VSMCs are thought to be
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FIGURE 2 | Calcification of murine vascular smooth muscle cells

cultured in vitro in the presence of (A) high phosphate (2.5 mM)

compared to (B) control medium.

the predominant cells associated with medial calcification (Essal-
ihi et al., 2004; Narisawa et al., 2007; Zhu et al., 2011), in contrast to
intimal calcification, which also involves lipids and inflammatory
cells (Pohle et al., 2001; Schmermund et al., 2001). Vascular calci-
fication is prevalent in patients with CKD, especially those with
ESRD. ESRD patients typically have hyperphosphatemia com-
pared to healthy control patients (Giachelli, 2009). A number of
studies have shown that VSMCs cultured with high phosphate can
undergo calcification in vitro (Figure 2) which involves the pheno-
typic transition to osteoblastic, chondrocytic, and osteocytic cells
(Steitz et al., 2001; Johnson et al., 2005; Speer et al., 2009; Sage et al.,
2011; Zavaczki et al., 2011; Zhu et al., 2011). This in vitro model
has been widely used for investigating the cellular and molecular
mechanisms responsible for vascular calcification.

Pericytes

Pericytes are elongated, contractile cells found wrapped about
precapillary arterioles outside the basement membrane and are
present in veins, arteries, and capillaries. Several pericyte markers
have been identified, including SMA, non-muscle actin, non-
muscle and muscle myosin, amino peptidase-N, amino peptidase-
A, and a cell surface ganglioside (3G5; Andreeva et al., 1998).
Previous studies have shown that pericytes can differentiate
into osteoblasts and chondrocytes (Doherty and Canfield, 1999;
Farrington-Rock et al., 2004), suggesting that pericytes may be
central to the etiology of vascular calcification. Further studies
have shown that signaling through the Wnt/beta-catenin pathway
stimulates chondrogenic and inhibits adipogenic differentiation
of pericytes (Kirton et al., 2007), which may directly contribute
to the development and progression of calcium deposition. In
addition, pericytes can form multicellular nodules that contain
a mineralized matrix, similar to those found in calcified aortae
(Doherty and Canfield, 1999; Cola et al., 2004). Molecules asso-
ciated with bone development and formation have been observed
in these mineralized nodules, emphasizing the regulatory similar-
ities between vascular and bone calcification (Doherty et al., 1998;
Canfield et al., 2000).

Calcifying vascular cells

Calcifying vascular cells are a subpopulation of smooth mus-
cle cells which exhibit osteoblastic characteristics and undergo

spontaneous calcification in vitro (Watson et al., 1994; Balica et al.,
1997; Tintut et al., 1998; Radcliff et al., 2005). CVCs have fea-
tures in common with pericytes including a similar morphology,
osteoblastic characteristics, and 3G5 expression (Watson et al.,
1994). During osteogenic differentiation, CVCs accumulate not
only minerals but also lipids such as triglycerides. Indeed, the
induction of de novo lipogenesis promotes the calcification of
CVCs under pro-osteogenic conditions such as high phosphate
levels (Ting et al., 2011). Studies characterizing the calcific nod-
ules produced by CVCs in ApoE-null mice have revealed that
the nodules resemble calcific atherosclerotic plaque and can be
destabilized in the presence of active lipids and monocytes (Li
et al., 2012), providing a novel animal model of vulnerable plaque
dynamics.

VALVE INTERSTITIAL CELLS

Calcification of the aortic valve occurs following trans-
differentiation of the valve interstitial cells (VICs) through a
myofibroblast stage into osteoblast-like cells (Liu et al., 2007).
VICs are present in all three layers of the aortic valve and can
be induced to differentiate into myofibroblasts by inflammatory
response (often caused by endothelial damage; Liu et al., 2007) and
the release of Angiotensin, TGF-β, and matrix metalloproteinases
(Zhou et al., 1996;Kaden et al., 2003, 2005). After further accumu-
lation of lipids, changes in structure, and fibrosis, differentiation
to an osteoblast phenotype is thought to occur via wnt3-Lrp5-β
and osteoprotegerin (OPG)/receptor Activator of Nuclear Factor
Kappa B (RANK) mediated signaling pathways (Cosmi et al., 2002;
Osman et al., 2006; Rajamannan, 2009). Osteoblastic cells then
mediate deposition of mineral by processes associated with bone
formation (Rajamannan et al., 2003).

MECHANISMS OF VASCULAR CALCIFICATION

A series of clinical and basic science studies performed in the
last several years underscored the biological complexity of the
processes driving vascular calcification (Figure 3).

The pathological cell-mediated process of soft tissue calcifica-
tion shares many similarities with that of the physiological matrix
mineralization during skeletal development. Membrane-bound
matrix vesicles nucleate hydroxyapatite crystals that contain cal-
cium and inorganic phosphate (Anderson et al., 1990; Nahar et al.,
2008) forming the first nidus for calcification. This occurs via a
tightly controlled balance of inhibitors and inducers, including
metabolic alterations (Chen et al., 2006; Kapustin et al., 2011; Sage
et al., 2011; Sevinc Ok et al., 2012), inflammation (Tintut et al.,
2000; Stompór et al., 2003; Lencel et al., 2011), drugs (Kirton et al.,
2006; Helas et al., 2009; Beazley et al., 2012), and morphogens
(Radcliff et al., 2005; Nakahara et al., 2010; Shimizu et al., 2011;
Figure 4).

Matrix vesicles contain negative regulators of hydroxyapatite
crystal nucleation and growth, such as fetuin-A and matrix gla
protein (MGP; Reynolds et al., 2004; Murshed et al., 2005). In
cooperation with local mediators such as pyrophosphate (PPi),
these molecules protect the arteries from deposition and growth
of minerals (Luo et al., 1997; Harmey et al., 2004; Jahnen-Dechent
et al., 2011). In the absence of these inhibitors, or following
the stimulation of cell death-related processes, together with the
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FIGURE 3 | Diagramatic representation of selected regulatory factors and their potential roles in vascular calcification.

bone-like activity of vascular cells, calcification is readily induced
(Canfield et al., 2002; Speer et al., 2002; Shroff et al., 2008).

Osteoblasts and chondrocytes are responsible for bone and
cartilage formation and calcification within the skeleton. Nor-
mal VSMC populations contain cells that undergo phenotypic
transition to osteocytic, osteoblastic, and chondrocytic cells in
a calcified environment (Steitz et al., 2001; Johnson et al., 2005;
Speer et al., 2009; Zhu et al., 2011). Chondro-osseous and calci-
fication promoting genes reported in calcifying VSMCs include
the transcription factor Msx2 which promotes osteoblastogene-
sis (Shao et al., 2005), the osteoblast master transcription factor
Runx2 (Speer et al., 2009), the chondrocyte specific extracellular

matrix constituent aggrecan and collagen Types I, II, IX, and XI
(Johnson et al., 2008). The phosphate transporter PiT-1 is the pre-
dominant sodium-dependent phosphate co-transporter expressed
in human VSMCs. Phosphate increases PiT-1 expression, which
leads to increased levels of intracellular phosphate. This induces
Runx2 expression and the osteogenic conversion of VSMCs (Li
et al., 2006).

Tissue non-specific alkaline phosphatase (TNAP), a key
enzyme for bone calcification, is also central to vascular cal-
cification through the hydrolysis of the calcification inhibitor
PPi and the generation of phosphate for hydroxyapatite forma-
tion in VSMCs (Narisawa et al., 2007; Lomashvili et al., 2008).
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FIGURE 4 | Positive and negative regulators of vascular calcification.

Conversely, the ankylosis protein (ANK) and ecto-nucleotide
pyrophosphatase/phosphodiesterases-1 (NPP1) inhibit vascular
calcification through the promotion of extracellular PPi levels in
VSMCs (Johnson et al., 2005; Narisawa et al., 2007), with mice
lacking NPP1 developing severe aortic calcification (Figure 5).
PPi inhibits calcium phosphate crystal growth and helps to prevent
VSMC chondro-osseous differentiation and calcification (Rutsch
et al., 2003; Johnson et al., 2005). Arterial calcification is also
physiologically limited by VSMC expression of OPN, which is
a recognized inhibitor of hydroxyapatite crystal formation and
growth and promotes mineral resorption (Speer et al., 2002).
OPG, the endogenous inhibitor MGP and the circulating inhibitor
fetuin-A have also been shown to block VSMC calcification (Bucay
et al., 1998; Canfield et al., 2002; Speer et al., 2002; Bennett et al.,
2006; Matsui et al., 2009).

Changes to several intracellular signal transduction pathways
have been reported during vascular calcification, including the
induction of the extracellular signal-regulated kinase 1/2, c-Jun
N-terminal kinase, and p38 Mitogen Activated Protein Kinase
pathways (Simmons et al., 2004; Tanikawa et al., 2009). The growth
arrest-specific gene 6 (Gas6)/Axl survival signal, which exerts an
antiapoptotic effect through the Bcl2-mediated phosphatidylinos-
itol 3-kinase/protein kinase b pathway has also been shown to be
one of the key mechanisms for phosphate-induced calcification
(Collett et al., 2007; Son et al., 2007). These studies suggest that
therapeutics targeting the Axl receptor may open up new avenues
for the prevention of vascular calcification in vivo.

CLINICAL CONSEQUENCES OF VASCULAR CALCIFICATION

Calcification of blood vessels is a common consequence of aging,
atherosclerosis, CKD, and diabetes (Fuchs et al., 1985; Sangiorgi
et al., 1998; Allison et al., 2004; Giachelli, 2004; Reaven and Sacks,
2005; Okuno et al., 2007; Shroff and Shanahan, 2007; Kesten-
baum et al., 2009; Mackenzie and MacRae, 2011) and is associated

with significant mortality and morbidity of cardiovascular disease
(Arad et al., 2000; Rosenhek et al., 2000; Keelan et al., 2001; Wayhs
et al., 2002). Indeed clinically,vascular calcification is now accepted
as a valuable predictor of coronary heart disease (Greenland et al.,
2007). The clinical ramifications of vascular calcification in CKD,
atherosclerosis, and cardiac valve calcification are described here
in more detail.

Chronic kidney disease

It has been reported that approximately 40% of patients with CKD
have vascular calcification compared with 13% of control patients
with normal renal function (Russo et al., 2004). Kramer et al.
(2005) demonstrated a positive association between the presence
of vascular calcification and renal failure, and that this association
increased markedly in CKD diabetic patients. Converging evidence
from clinical, epidemiological, and translational research stud-
ies has suggested that vascular calcification progresses inexorably
during dialysis and may only partially reverse after successful
transplantation (Ossareh, 2011; Shroff, 2011). Medial calcification
leads to vascular stiffness and decreases the compliance of blood
vessels. These changes result in both increased pulse pressure (Dao
et al., 2005) and left ventricular hypertrophy (Speer and Giachelli,
2004). In dialysis patients, medial calcification contributes to cal-
cific uremic arteriolopathy, a necrotizing skin condition with high
mortality rates (Coates et al., 1998).

Generalized arterial calcification of infancy

Generalized Arterial Calcification of Infancy is a rare autosomal
recessive disease which is characterized by the calcification of
arteries, in conjunction with arterial stenosis caused by intimal
proliferation. The majority of affected children die within the first
6 months of life as the result of end-organ damage. In a subset of
patients, peri-articular calcification of joints also occurs (Rutsch
et al., 2003, 2008).
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FIGURE 5 | Medial calcification of the aorta due to depressed levels of

the calcification inhibitor pyrophosphate in the (A) Enpp1-null mouse,

compared to (B) wild-type control.

Atherosclerosis

Previous studies have shown that intimal calcification is pos-
itively correlated with atherosclerotic plaque burden (Rum-
berger et al., 1995; Sangiorgi et al., 1998), increased risk of
myocardial infarction (Beadenkopf et al., 1964; Loecker et al.,
1992), and plaque instability (Fitzgerald et al., 1992; Burke
et al., 2000). Furthermore, calcium deposits may directly alter
atherosclerotic plaque stability (Wong et al., 2012). However,
a major limitation of using calcium score progression as a
marker of risk is that the positive predictive value appears
to be low with substantial overlap among those with and
without future adverse cardiovascular events (Greenland et al.,
2007).

Cardiac valve calcification

In the aortic valve, calcification gives rise to life-threatening steno-
sis. Calcific aortic valve stenosis (CAVS) is the leading reason for
valve replacement in Europe and North America, and is consid-
ered to be a major mode of failure of native as well as bioprosthetic
valves (O’Keefe et al., 1991; Lindroos et al., 1993). CAVS is also cor-
related with a high risk of cardiovascular dysfunction, and is the
third leading cause of cardiovascular disease (Ribeiro et al., 1998;
Nkomo et al., 2006).

RISK FACTORS FOR VASCULAR CALCIFICATION

Elevated serum phosphate levels are recognized as a major risk
factor for cardiovascular events in the general population (Dhin-
gra et al., 2007; Kestenbaum et al., 2009) and in CKD (Young
et al., 2005; Adeney et al., 2009). Serum phosphate levels greater
than 5.5 mg/dL are strongly correlated with mortality in ESRD
patients (Block et al., 2004; Tentori et al., 2008). Furthermore, rel-
atively small increases in serum phosphate (3.5–4.5 mg/dL) have
also been correlated with increased risk of cardiovascular and
all-cause mortality in CKD patients (Kestenbaum et al., 2005)
and the general population with normal renal function (Tonelli
et al., 2005). Increased susceptibility of CKD patients to vascu-
lar calcification likely underlies this high risk of cardiovascular
disease-related deaths in CKD patients.

A number of clinical studies have also shown an association
between elevated serum calcium and increased risk of myocardial
infarction and vascular calcification in both CKD patients and in
the general population (Yamada et al., 2007; Kovesdy et al., 2010;
Larsson et al., 2010; West et al., 2010). Furthermore, a recent meta-
analysis has reported that dietary calcium supplementation is asso-
ciated with a significantly increased risk of myocardial infarction
(Bolland et al., 2010). Clinical studies investigating the patterns of
systemic atherosclerotic calcification have further revealed age and
hypertension as the dominant risk factors for calcification (Allison
et al., 2004).

In recent years, several studies have demonstrated the positive
relationship between vascular calcification and bone health (Frye
et al., 1992; Kiel et al., 2001). Vascular calcification is often accom-
panied by either decreased bone mineral density or disturbed bone
turnover. This association has been observed in general popula-
tions (Hyder et al., 2007) and also in patients with osteoporosis,
Paget’s disease, and CKD (Laroche and Delmotte, 2005; Raggi
et al., 2007; Toussaint et al., 2008; Osako et al., 2010; Bandeira
et al., 2012). It appears that in patients with CKD that both
extremes of bone remodeling, low turnover (adynamic bone), and
hyperparathyroid bone, may accelerate vascular calcification by
not allowing calcium or phosphorus into bone, or resorbing it
out of bone, respectively (Moe and Chen, 2004). In genetically
altered animals with deletions of OPG and klotho, a combined
osteoporosis-arterial calcification phenotype has been observed
(Bucay et al., 1998; Nabeshima, 2002). Furthermore, bone loss and
vascular calcification share various common mechanisms, includ-
ing estrogen deficiency, vitamin D and K abnormalities, chronic
inflammation, and oxidative stress (Hofbauer et al., 2007).

Calcific aortic valve stenosis is associated with classic athero-
sclerotic risk factors, including hypercholesterolemia, hyperten-
sion, smoking, and male gender (Mohler et al., 1991; Stewart
et al., 1997). A faster disease progression has also been reported in
patients with a metabolic syndrome (Briand et al., 2006). Lifestyle
modifications are therefore likely to be advantageous, however a
beneficial effect of controlling cardiovascular risk factors has yet
to be demonstrated in CAVS.

POTENTIAL THERAPEUTIC TARGETS

Specific drugs capable of inhibiting vascular calcification have
yet to be developed. Potential strategies that have recently
been investigated include the administration of vitamin K,
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statins, bisphosphonates, TNAP inhibitors, and Non-Steroidal
Anti-Inflammatory Drugs (NSAIDs).

VITAMIN K

The vitamin K-dependent proteins (VKDPs) MGP and Gas-6 are
produced by VSMCs and pericytes. The process of converting
VKDPs to their biologically active forms requires the carboxy-
lation of glutamic acid residues by vitamin K (Furie et al., 1999).
In rats, inactivation of MGP by treatment with the vitamin K
antagonist warfarin leads to rapid calcification of the arteries.
This can be regressed by a vitamin K-rich diet (Schurgers et al.,
2007). Specifically, Vitamin K2 supplementation prevents arte-
rial calcification, yet vitamin K1 does not (Howe and Webster,
2000; Spronk et al., 2003). In the population based Rotterdam
study, increased intake of vitamin K2, but not K1, was shown
to be inversely related to all-cause mortality (relative risk = 0.91)
and severe aortic calcification (relative risk = 0.74; Geleijnse et al.,
2004). A more recent investigation examined the association of
vitamin K1 and vitamin K2 intake with coronary calcification
in a cross-sectional study among 564 post-menopausal women
(Beulens et al., 2009) 0.62% of the women had coronary calci-
fication. Vitamin K2 intake was again associated with decreased
coronary calcification (relative risk = 0.80). Interestingly, one of
the major dietary sources of vitamin K2 is cheese (Schurgers and
Vermeer, 2000), which although is not related to a healthy lifestyle
or diet, has yet to be established as a dietary risk factor for car-
diovascular disease. It is therefore possible that cheese could exert
a beneficial effect in the cardiovascular system and that the high
cheese consumption in France and the Mediterranean countries
may possibly account for the lower prevalence of cardiovascular
disease.

Statins

The mechanism attributed to the pleiotrophic effects of statins
involves the inhibition of RhoA/Rho-kinase (ROCK) activity (Rik-
itake and Liao, 2005). Inhibition of ROCK with the inhibitor
Y-27632 or siRNA significantly increased ALP activity and cal-
cification of bovine VSMCs and rat aorta organ cultures (Chen
et al., 2010). Furthermore, matrix vesicles isolated from bovine
VSMCs incubated with Y-27632, show increased ALP activity
and increased ability of MVs to subsequently calcify collagen
by 66% (Chen et al., 2010). Together these data clearly demon-
strate that the RhoA/ROCK signaling pathway is an impor-
tant negative regulator of vascular calcification. Exposure to
fluvastatin has been shown to directly inhibit calcification in
VSMCs in vitro, with warfarin treatment abolishing this ben-
eficial effect (Nakano-Kurimoto et al., 2009). Atorvastatin has
also been shown to protect cultured VSMCs from phosphate-
induced calcification by inhibiting apoptosis via restoration of
the Gas6-Axl pathway (Son et al., 2007). However, the clin-
ical use of statins has yet to be shown to effectively inhibit
vascular calcification, with neither fulvastatin (Forbat et al.,
1998) nor atorvastatin (Schmermund et al., 2006) therapy able
to attenuate coronary artery calcification progression. Further-
more a recent clinical trial focusing on changes in coronary
artery plaque composition and plaque volume during aggres-
sive dual lipid-lowering therapy with atorvastatin and ezetimibe

demonstrated no significant differences in plaque calcification
(Kovarnik et al., 2012). These clinical data may be due to statins
inhibiting the initiation rather than the progression of vascular
calcification.

Bisphosphonates

Bisphosphonates are used as standard therapy for osteoporosis.
Studies in rats have shown that alendronate and ibandronate
inhibit warfarin and uremia induced media calcification at doses
that inhibit bone resorption (Price et al., 2001, 2006). However, it
has recently been reported that whilst etidronate and pamidronate
prevent the development of vascular calcification in rats with
adenine-induced chronic renal failure, bone formation, and min-
eralization are adversely affected (Lomashvili et al., 2009). These
findings support and extend previous results showing that the
most effective etidronate dose for the prevention of arterial calci-
fication also reduced bone mineral density in 5/6-nephrectomized
rats (Tamura et al., 2007). In 2008, a multicenter genetic study
and retrospective observational analysis of subjects affected by
GACI revealed a positive association between survival and bis-
phosphonate treatment (Rutsch et al., 2008). More recently, the
long-term survival of a severe case of GACI diagnosed prena-
tally and treated with etidronate over a 2-year period has been
reported. Progressive resolution of arterial calcification was seen
by 3 months of age, which was maintained until 2 years of age.
Throughout the 2-year follow-up the patient developed mild
hypophosphatemia, due to renal phosphate wasting, without signs
of rickets (Edouard et al., 2011). This study supports the develop-
ment of a formalized approach for the treatment of GACI with
bisphosphonates.

TNAP inhibitors

Novel TNAP inhibitors which result in higher PPi levels and lower
Pi levels have been reported (Narisawa et al., 2007). These com-
pounds have been shown to be capable of reducing in vitro VSMC
calcification, and will serve as scaffolds for future efforts to develop
novel drugs for the treatment of soft tissue calcification.

Non-steroidal anti-inflammatory drugs

Non-Steroidal Anti-Inflammatory Drugs are commonly used for
anti-inflammation and analgesia post-operatively in orthopedic
patients. However, several studies have demonstrated that these
drugs suppress bone growth, remodeling, and repair (Nilsson
et al., 1986; Keller et al., 1987; Ho et al., 1995) through mecha-
nisms including cell cycle arrest and cell death induction (Chang
et al., 2005). The administration of Tanshinone IIA, one of the
major lipophilic components extracted from the root of Salvia

miltiorrhiza Bunge (Shang et al., 2012), attenuates atheroscle-
rotic calcification in a rat model, through inhibition of oxidative
stress (Tang et al., 2007). Furthermore, the natural antioxidants
curcumin and silybin inhibit VSMC calcification in vitro (Roman-
Garcia et al., 2011). However, the cyclooxygenase-2 inhibitor
Celecoxib induced no significant changes in atherosclerotic cal-
cification in a mouse model of atherosclerosis (Bea et al., 2003).
Further studies are therefore required to more fully investigate
the potential therapeutic applications of NSAIDs in suppressing
vascular calcification.
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CONCLUSION

Vascular calcification is associated with a number of human dis-
eases including CKD, diabetes, and atherosclerosis, and is a signifi-
cant independent risk factor for the development of cardiovascular
disease. Whilst the molecular mechanisms of vascular calcification
are similar to the process of bone mineralization, further insights
are required to determine the precise pathways involved that will

allow the identification of effective targets for the development of
novel therapeutics.
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