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Abstract

Human body temperature is regulated within a very narrow range. When exposed to hyperthermic

conditions, via environmental factors and/or increased metabolism, heat dissipation becomes vital

for survival. In humans, the primary mechanism of heat dissipation, particularly when ambient

temperature is higher than skin temperature, is evaporative heat loss secondary to sweat secretion

from eccrine glands. While the primary controller of sweating is the integration between internal and

skin temperatures, a number of non-thermal factors modulate the sweating response. In addition to

summarizing the current understanding of the neural pathways from the brain to the sweat gland, as

well as responses at the sweat gland, this review will highlight findings pertaining to studies of

proposed non-thermal modifiers of sweating, namely, exercise, baroreceptor loading state, and body

fluid status. Information from these studies not only provides important insight pertaining to the basic

mechanisms of sweating, but also perhaps could be useful towards a greater understanding of

potential mechanisms and consequences of disease states as well as aging in altering sweating

responses and thus temperature regulation.
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2. INTRODUCTION AND HISTORICAL PERSPECTIVE

Evaporative heat loss is critical for human survival in a hot environment, particularly when

environmental temperature is higher than skin temperature. Exercise or exposure to a hot

environment elevates internal and skin temperatures, and subsequently increases sweat rate

and skin blood flow. Historically it was thought that skin temperature was more important than

internal temperature in the control of sweating (24,109). In 1956 Kuno (46) proposed a novel

concept that sweating responses were primarily controlled by a central thermoregulatory

center, although he did not evaluate sweating as a function of internal temperature in those

studies. Later, Benzinger was the first to present a relationship between internal temperature

and sweat rate (5,6) and proposed that ‘under steady state conditions increases in sweat rate

during exercise and/or variations in the environmental temperature were very closely correlated

to the elevation in tympanic temperature; a finding later supported by Nielsen and Nielsen

(69). However Nielsen and Nielsen emphasized an importance of skin temperature given that
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rapid decreases in mean skin temperature reduced sweat rate in the absence of a change in

internal temperature. With the understanding that internal and mean skin temperatures both

have the capability to control sweating, researchers began to assess the relationship between

contributions of skin to internal temperature in the modulation of sweat rate (25,59,64,77,78,

93,108). Early in the 1970’s, Nadel and colleagues (65,66) performed seminal work in this area

during ‘dynamic’ increases in internal temperature in humans. The question of the influence

of internal and skin temperatures in governing sweating was further addressed in non-human

primates in which direct measures of brain temperature were obtained (91). Those studies

concluded that sweating is primarily controlled by brain temperature and secondarily

modulated by mean skin temperature, which is generally the current consensus of the scientific

community. The concept of mean body temperature originated from these studies, with this

variable being a weighed sum of internal and mean skin temperatures (64,65).

Given these and other findings, sweating responses are now commonly characterized by the

internal or mean body temperature threshold for the onset of sweating, as well as the slope of

the relationship between the elevation in sweating relative to the elevation in internal or mean

body temperature, as eloquently presented by Gisolfi and Wenger (19). They proposed that an

increase in the internal or mean body temperature threshold for the onset of sweating and/or

an attenuation of the elevation in sweating relative to the elevation in internal or mean body

temperature is representative of impaired sweating responsiveness. Conversely, a reduced

internal or mean body temperature threshold for the onset of sweating and/or an elevated slope

is representative of enhanced sweating responsiveness, as which occurs with heat acclimation.

3. NEURAL PATHWAY FROM THE BRAIN TO SWEAT GLAND

The primary thermoregulatory center, first reported in the late 1800s, is located within the pre-

optic hypothalamic regions of the brain (4,34,63,71). Because of the difficulty of precisely

identifying neural pathways responsibility for sweating, in humans these pathways are not

entirely understood. However based upon evidence from animal studies and human anatomical

data (46,51,67,80), the neural pathway from the brain to sweat gland is thought to be as follows;

efferent signals from the pre-optic hypothalamus travel via the tegmentum of the pons and the

medullary raphe regions to the intermediolateral cell column of the spinal cord. In the spinal

cord, neurons emerge from the ventral horn, pass through the white ramus communicans and

then synapse in the sympathetic ganglia. Postganglionic non-myelinated C-fibers pass through

the gray ramus communicans, combine with peripheral nerves and travel to sweat glands, with

these nerve fibers “entwined around” the periglandular tissue of the eccrine sweat gland (99).

Direct recordings of human post-ganglionic skin sympathetic nerve activity (SSNA) are

accomplished by the microneurography technique. Much of the original work characterizing

SSNA was performed by Wallin and his colleagues (11,23,104). The neural signal recorded

from this technique contains efferent activity responsible for sweating, cutaneous

vasoconstriction, pilomotor responses, and perhaps cutaneous vasodilation (7,8,11). Due to

this integrated nature of the SSNA recordings, caution must be taken when attempting to link

an efferent response (e.g., sweating, cutaneous vasoconstriction, etc.) to specific neural

activity. Nevertheless, during heat stress SSNA is partially synchronized with galvanic skin

response (an index of sweating) and pulsatile sweat expulsion (7,94), with approximately 80%

of SSNA bursts being reported to be synchronized with pulsatile sweat expulsion (95). These

observations suggest a dominance of the recorded SSNA signal in heat stressed subjects to be

sudomotor in nature. However in mildly heat stressed individuals, increased SSNA bursts

amplitude was related with increases in cutaneous vasodilation as well as sweat expulsion

(35), thereby raising the possibility that active cutaneous vasodilator signals may also be

contained within the integrated SSNA signal. Because sympathetic axons are clustered within

a nerve fascicle, such recordings have been primarily limited to the analysis of multi-unit neural

Shibasaki and Crandall Page 2

Front Biosci (Schol Ed). Author manuscript; available in PMC 2011 January 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



activity; although Macefield and Wallin recorded neural activity from single sympathetic

neurons proposed to innervate sweat glands (55,56). However, confirmation that the activity

from a single unit recording specifically innervates sweat glands, at the exclusion of other

structures (e.g., cutaneous blood vessels), would be challenging at best.

The sympathetic nerves distributed to sweat glands consist of large numbers of cholinergic

terminals and a few adrenergic terminals (99). The effect of these adrenergic terminals in

causing sweating is minimal given that exogenous administration of adrenergic agents will

cause only minimal sweating relative to acetylcholine administration, the latter of which is the

primary neurotransmitter causing sweating (73–75,79). Local and systemic administration of

atropine (a muscarinic receptor antagonist) greatly attenuates or abolishes sweating during a

thermal challenge or during exogenous administration of acetylcholine or its analogs (17,38,

40,50,57), further confirming the dominance of the cholinergic system and muscarinic

receptors in human sweating.

In addition to a central neural drive for sweating, sweating can also be initiated by an axon

reflex (53). Exogenous administration of acetylcholine, or its analogues, not only directly

stimulates muscarinic receptors on sweat glands, but also activates an axon reflex via

stimulation of axonal nicotinic receptors. The neural impulse due to the activated axon terminal

is thought to travel antidromically to a branch-point, and then travel orthodromically to other

nerve terminals, culminating in the release of acetylcholine (52). Thus not only the central

drive from thermoregulatory center but also local mechanisms (e.g., perhaps endogenous

acetylcholine stimulation of the axon reflex) can contribute to the modulation of sweating.

Acetylcholine released from cholinergic nerves is rapidly hydrolyzed by acetylcholinesterase

(50). Thus acetylcholinesterase is capable of modulating sweat rate during low to moderate

sweating activity but its effectiveness is greatly reduced when sweat rate is substantially

increased (85). Consistent with this finding, elevations in sweat rate occur earlier with

exogenous methacholine than with acetylcholine administration, given the reduced

cholinesterase susceptibility of methacholine (39).

The neurotransmitter(s) responsible for active cutaneous vasodilation has yet to be fully

elucidated, although neuropeptides such as calcitonin gene-related peptide (CGRP), vasoactive

intestinal polypeptide (VIP), and substance P as well as nitric oxide (NO) have been implicated

(37). See the chapter by J.M. Johnson in the current volume for further insight regarding these

vasodilators (29). For a number of years researchers have inquired whether these peptides and

NO modulate the sweating response. Studies have shown a presence of VIP immunoreactive

nerve fibers around the eccrine sweat glands of cat foot pads (54) as well as in human eccrine

sweat glands (13,45). The function of these fibers is not entirely clear, although VIP enhances

sweat secretion based upon findings from in vitro and in vivo studies (81,110). The distribution

of immunoreactivities towards atrial natriuretic peptide (ANP), calcitonin gene-related peptide

(CGRP), galanin and substance P have been confirmed in human skin; although CGRP, but

not substance P, have been specifically identified around eccrine sweat glands (96). Consistent

with this observation, exogenous CGRP increases sweat rate, while exogenous substance P

suppressed sweat rate (44,84), during administration of sudorific agents. Finally NO also has

been shown to augment sweat rate during exogenous acetylcholine administration as well as

during an exercise heat stress (48,105). Although acetylcholine is the primary neurotransmitter

responsible for sweat secretion, enhanced sweating due to local administration of VIP, CGRP,

or NO suggest that these peptides as well as NO may contribute to the overall modulation of

sweating during a thermal challenge.

Aquaporins (AQPs) are a family of membrane water channel proteins. At least 10 mammalian

aquaporins have been identified (1) and some have been implicated in physiological processes.

Shibasaki and Crandall Page 3

Front Biosci (Schol Ed). Author manuscript; available in PMC 2011 January 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



AQP5 has been localized to the apical membrane of multiple secretory glands, including

lacrimal glands, salivary glands and submucosal glands of airways (70). These glands facilitate

the secretion of large amounts of fluid. Nejsum et al. (68) identified the distribution and

function of AQP5 in the apical membranes of sweat glands in rat, mouse and humans. They

demonstrated that sweat secretion was markedly diminished in paws of AQP5 null mice.

Furthermore, AQP5 immunoreactivity was also observed from the dark cells of the secretory

portion of human eccrine sweat glands (32). Given that AQP proteins have been identified in

human sweat glands, coupled with findings that botulinum toxin inhibits water permeability

via AQP-dependent mechanisms (72), botulinum toxin, which is recognized to abolish

sweating (38), may do so via pre- and post- cholinergic synaptic mechanisms; although

botulinum toxin is considered primarily as a pre-synaptic inhibitor of neurotransmission.

Recently, Shibasaki et al. (86) found that local administration of botulinum toxin in human

skin completely blocked the sweating response to exogenous acetylcholine, lending support to

a post-synaptic mechanism by which botulinum toxin can abolish sweating. Future studies are

warranted to identify the precise mechanism(s) by which botulinum toxin blocks sweating

independent of inhibition of cholinergic neurotransmission.

4. NON-THERMAL MODULATORS OF SWEAT RATE

Independent of the aforementioned controllers and modulators of sweat rate, a number of

perturbations have been suggested to alter the sweating response, specifically exercise,

baroreceptor perturbations, and fluid/osmolality status (Figure 1).

4.1. Effect of exercise in modulating sweat rate

The mechanisms associated with human temperature regulation during exercise is complex,

resulting in a number of proposed theories and concepts (19). Generation of heat associated

with muscular contraction during dynamic exercise rapidly elevates internal temperature,

followed by appropriate increases in sweat rate. It is interesting to note that factors unrelated

to this elevation in internal temperature, which are engaged during exercise, modulate the

sweating response. van Beaumont and Bullard (100,101) were the first to report this

phenomenon upon observing that sweating occurred immediately (within 1.5–2 sec) with the

onset of dynamic exercise, as well as during isometric exercise of humans in warm

environmental conditions (Figure 2). Importantly, the increase in sweating occurred prior to a

measurable change in internal temperature. Later, Gisolfi and Robinson (18) observed rapid

changes in sweating during intermittent exercise independent of changes in internal, muscle,

or skin temperatures. Consistent with these observations, during sinusoidal dynamic exercise

(i.e. workload was changed in sinusoidal manner) sweating response followed the change in

workload but not skin or internal temperatures (111,112). Together, these findings strongly

suggest that non-thermal factors related to exercise (i.e. independent of skin and internal

temperatures) modulate sweating, perhaps via a feed-forward mechanism.

To address the possible mechanism(s) by which exercise increases sweating independent of

temperature, one needs to understand the work of Johansson (28) who postulated that two

separate and distinct neural mechanisms control cardiovascular responses during exercise. One

mechanism arises from the central nervous system that irradiates impulses from the motor

cortex. Krogh and Lindhard (43) termed this central mechanism as “cortical irradiation” and

later it was called “central command” (20). The other mechanism, termed the exercise pressor

reflex, originates from the stimulation of afferent nerve endings within the skeletal muscle and

is engaged during muscle contraction (3). Later it was shown that mechano and metabo-

sensitive afferent nerves were responsible for evoking this exercise pressor reflex (60,61).

Since sweating during exercise can occur prior to a change in thermal status, coupled with the

aforementioned responses associated with modulating cardiovascular responses during
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exercise, researchers sought to identify whether similar mechanisms could be responsible for

modulating sweat rate during exercise.

Partial neuromuscular blockade (e.g. using curare derivatives) has been used to augment central

command during exercise, resulting in greater increases in heart rate and blood pressure at a

given workload (27,49,60). Shibasaki et al. (90) used this technique to test the hypothesis that

central command is capable of modulating the sweating response. Subjects performed

isometric handgrip exercise under control conditions (without neuromuscular blockade) and

when central command was augmented via partial neuromuscular blockade. Under both

conditions, isometric exercise increased sweat rate, however the increase in sweat rate was

significantly greater when central command was augmented. This, and a related study assessing

SSNA to isometric exercise during partial neuromuscular blockade (102), provide strong

evidence that central command is capable of modulating sweating during exercise.

Alam and Smirk (2,3) showed that blood pressure increases during dynamic and static exercise

and remains elevated if blood flow to that limb was occluded just prior to the cessation of

exercise. Upon release of the occlusion, blood pressure returns to pre-exercise levels. Their

observations led to numerous and ongoing studies investigating the role of muscle

metaboreceptors in modulating blood pressure during exercise. A number of studies have been

performed to investigate the possible role of metaboreceptors in modulating sweating responses

during exercise (9,41,87). In general, the cited studies were performed by monitoring sweat

rate during isometric exercise and subsequent post-exercise ischemia, to isolate muscle

metaboreceptor stimulation. In those studies sweat rate increased during isometric exercise,

remained elevated during post-exercise ischemia, and then returned towards pre-exercise levels

following release of ischemia. This pattern of response provides evidence that stimulation of

muscle metaboreceptors is capable of modulating sweat rate during exercise. Interestingly, if

the breakdown of acetylcholine was inhibited via local administration of neostigmine, the

aforementioned metaboreceptor-dependent stimulating of sweating occurs even in non-heat

stressed subjects (Figure 3; lower panels).

During post-exercise ischemia blood pressure is also elevated and may therefore contribute to

the elevation in sweating secondary to the loading of baroreceptors. To test this hypothesis,

Shibasaki et al. (87) performed an experiment in which blood pressure during the post-exercise

ischemia period was restored to pre-exercise levels via intravenous administration of sodium

nitroprusside (Figure 3, right panel). Under these conditions muscle metaboreceptors remained

stimulated but blood pressure returned to pre-exercise levels. Despite returning to pre-exercise

levels, sweat rate remained elevated throughout the ischemic period (87). Thus, the elevation

in sweat rate during post-exercise ischemia occurred through activation of metaboreceptors

and was independent of the increase in blood pressure during post-exercise ischemia and

presumably during isometric exercise. In addition, sweat rate is enhanced during dynamic

exercise when performed in combination with lower body positive pressure (i.e. accumulation

of metabolites due to partial ischemia of leg muscle blood flow) relative to exercise without

the application of this positive pressure (14,33). Together, these findings strongly suggest that

the muscle metaboreflex is capable of modulating sweat rate.

Another muscle afferent signal that could contribute to sweating responses during exercise is

that related to mechanical stimulation that occurs during muscle contraction (31,42,76,89),

which has been suggested to contribute to the exercise pressor response (60,61). The cited

studies used protocols involving passive limb movement or passive cycling to stimulate muscle

mechanoreceptors, without central command and with little muscle metaboreceptor

stimulation, while assessing sweating responses in heat stressed subjects. In general, these

findings suggest that stimulation of muscle mechanoreceptors is capable of modulating sweat
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rate, although responses are appreciably less than that observed during augmentation of central

command or muscle metaboreceptor stimulation.

4.2. Effects of baroreceptors in modulating sweat rate

Given that prolonged exposure to hyperthermic conditions and/or exercise reduces blood

volume if fluid intake is not adequate, coupled with baroreceptors being sensitive to changes

in blood volume through alterations in blood pressures (i.e., arterial and perhaps central venous

blood pressures), it seems reasonable to hypothesize that sweating associated with these

conditions could be modulated by baroreceptor unloading. However, the effects of baroreceptor

unloading on attenuating the elevation in sweat rate are controversial. Johnson and Park (30)

assessed the internal temperature threshold for the onset of sweating during exercise and found

that this threshold was unaltered regardless of whether the individual exercised in the upright

(i.e. baroreceptor unloading) or supine positions. In contrast, Mack et al. (58) observed an

increase in the internal temperature threshold for the onset of sweating (i.e., a delayed sweating

response) during exercise in combination with lower-body negative pressure (LBNP), which

simulates the upright position and unloads baroreceptors.

The effect of baroreceptor unloading on sweat rate was further addressed by applying LBNP

in passively (i.e., non-exercising) heat stressed subjects (10,92,103). These studies suggested

that sweat rate was not affected by baroreceptor unloading. A possible explanation for

differences in findings between LBNP studies (10,58,92,103) was proposed by Vissing et al.

(103) who suggested that reduced electrodermal response (index of sweating) and SSNA during

LBNP resulted from skin cooling that frequently occurs upon application of LBNP, not via

baroreceptor unloading. To address this question, Wilson et al. (106) assessed sweat rate and

SSNA in heat stressed subjects during bolus and steady-state infusions of pharmacological

agents (nitroprusside and phenylephrine) to perturb baroreceptors without causing cooling that

accompanies LBNP. Despite pronounced changes in blood pressure, neither SSNA nor sweat

rate was significantly affected. However, it should be stressed that pharmacologically-induced

decreases in blood pressure will likely perturb baroreceptors differently relative to LBNP or

head-up tilt.

Dodt et al. (12) addressed this question differently by exposing subjects to a mild heat stress,

followed by 30° head-up tilt. They observed significant reductions in forearm SSNA and an

index of sweat rate during tilt, and concluded that baroreceptor unloading could modulate

SSNA and sweating. Differences in conclusions between Dodt et al.’s study and the findings

of others (10,92,103,106) may be related to the lower level of heat stress employed by Dodt

et al. (12). For example, baroreceptors may be capable of modulating sweating under mild to

moderate heating conditions but not during more pronounced heat stress. To address this

question, Wilson et al. (107) measured SSNA and sweat rate during multiple 30° head-up tilts,

with tilting occurring every 10 min throughout the heat stress. Regardless of the level of heating,

they did not observe a reduction in sweat rate or SSNA during the same magnitude of tilt used

by Dodt et al. (12). Taken together, although findings remain controversial, relatively acute

unloading of baroreceptors (i.e. on the order of minutes) is unlikely to modulate sweat rate.

4.3. Effects of body fluid status and osmolality on sweat rate

Prolonged exposure to hyperthermic conditions and/or prolonged exercise in the heat can

induce water deficits due to profuse sweating, resulting in hypohydration. This water deficit

lowers both intracellular and extracellular volumes and results in plasma hyperosmolality and

hypovolemia; both of which impair sweating. For example, Greenleaf and Castle (22) proposed

that the excessive rise in internal temperature in dehydrated subjects was due to inadequate

sweating secondary to the dehydration. Expanding this concept, Sawka et al. (83) observed

that in progressively dehydrated subjects sweat rate was dramatically reduced despite greater
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elevations in rectal temperature. Later Montain, et al. (62) demonstrated that the threshold for

the onset of sweating was elevated while the slope of the relationship between the elevation in

sweat rate relative to the elevation in internal temperature was attenuated as a function of the

level of dehydration; both of which are strongly suggestive that dehydration impairs sweating

responsiveness.

Fortney et al. (16) conducted a study to identify the importance and independence of decreases

in fluid volume (hypovolemia) from increases in plasma osmolality (hyperosmotic) on sweat

rate. Normovolemic subjects were exposed to heat stresses under hyperosmotic and iso-

osmotic conditions while sweat rate was assessed. During the ensuing exercise bout, the

internal temperature threshold for the onset of sweating was significantly elevated relative to

the response during exercise under iso-osmotic conditions, although the slope of the

relationship between the elevation in sweating and the elevation in internal temperature was

not affected by increased plasma osmolality. Takamata et al. (97,98) extended these findings

upon assessing sweat rate in heat stressed subjects who received an infusion of 0.9% or 3%

saline. They found that the threshold for sweating in the hyperosmotic condition (i.e. 3% saline

infusion) was greatly shifted to a higher internal temperature relative to the iso-osmotic

condition (Figure 4). This hyperosmolality induced suppression of sweating occurred

regardless of heat acclimation status (26).

It is interesting to note that Takamata et al. (97) found that when hyperosmotic subjects drink

deionized water (38 °C) that sweat rate immediately increased, and this occurred in the absence

of changes in plasma osmolality. In contrast, drinking deionized water in iso-osmotic subjects

did not alter sweat rate. In a follow-up study, Kamijo et al. (36) confirmed such a release of

sweating suppression by drinking occurred during exercise. These investigators concluded that

stimulation of an oral-pharyngeal reflex, associated with the act of drinking, releases an

otherwise inhibition of sweating by dehydration. These findings demonstrate that increased

plasma osmolality, independent of plasma volume, impairs sweating responses, and that

stimulation of an oral-pharyngeal reflex can modulate the sweating response in hyperosmotic

individuals (97).

Fortney et al. (15) addressed the opposite question relative to that presented above, in that they

investigated whether changes in blood volume, while keeping plasma osmolality constant,

modulates the sweating response. They found that iso-osmotic hypovolemia reduced the slope

of the relationship between the change in sweating relative to the change in internal

temperature, without altering the internal temperature threshold for the onset of sweating

(15). Such a finding suggests that once sweating has begun, for the same elevation in internal

temperature there was less of an elevation in sweating when the individuals were hypovolemic

but iso-osmotic. Conversely, iso-osmotic hypervolemia did not change the internal temperature

threshold for sweating nor the aforementioned slope (15,47), unless plasma/blood volume

expansion occurs via erythrocyte infusion (82). These observations suggest that sweating can

be inhibited by iso-osmotic hypovolemia, whereas hypervolemia in the absence of erythrocyte

infusion does not alter sweating responses.

5. SUMMARY

Neural control of sweating, primarily regulated by the integration of internal and skin

temperatures, is paramount for temperature regulation. However, a variety of other non-thermal

factors, such as factors associated with exercise and fluid status, modify the sweating response.

Further studies are necessary to identify the precise mechanisms by which these non-thermal

factors serve to accentuate or attenuate sweating in the resting and exercising human.
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Figure 1.

Schematic illustrating possible non-thermal modifiers of sweating. From Shibasaki et al.

Exercise Sport Science Review 31(1): 34–39, 2003. Reprinted with permission from Wolters

Kluwer/Lippincott, Williams & Wilkins.
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Figure 2.

The first report that sweating can be induced by non-thermal factors. In heat stressed subjects,

that were already sweating, performing “very hard work” resulted in immediate increases in

calf and forearm sweat rate despite the absence of an increase in internal temperature. From

van Beaumont & Bullard, Science, 141: 643–646, 1963. Reprinted with permission from

AAAS.
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Figure 3.

Influence of isometric exercise on sweat rate in normothermic subjects. In normothermia,

isometric exercise increased sweating rate (SR) at the neostigmine-treated site but not at the

control site. Neostigmine is a cholinesterase inhibitor and thus inhibits the breakdown of

acetylcholine. Sweat rate remained elevated during post-exercise ischaemia (PEI) at the

neostigmine treated site regardless of whether mean arterial blood pressure (MAP) remained

elevated during PEI (left panel) or was reduced via bolus infusion of sodium nitroprusside

(right panel; see arrow). These data provide evidence that stimulation of muscle

metaboreceptors can increase sweating. From Shibasaki, et al. Journal of Physiology, 534(Pt2):

605–611, 2001. Reprinted with permission from Blackwell Publishing.
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Figure 4.

Effects of elevated plasma osmolality (cell dehydration; CDH) on body core temperature (Tes;

panel A) and local chest sweat rate (SRch; panel B) in humans. During the heat stress, when

plasma osmolality was elevated, the increase in body core temperature was greater, while sweat

rate was significantly reduced, when compared with iso-osmotic (EH) conditions. Differences

in local sweat rate between osmotic conditions were primarily due to a delay in the onset of

sweating during the hyperosmotic heat stress. From Takamata, A. et al., American Journal of

Physiology 268:R414 R422, 1995. Reprinted with permission from the American

Physiological Society.
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