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Doxorubicin (DOX) is an anthracycline chemotherapy drug, which is indispensable in antitumor therapy. However, its
subsequent induction of cardiovascular disease (CVD) has become the primary cause of mortality in cancer survivors.
Accumulating evidence has demonstrated that cardiac mitochondrial bioenergetics changes have become a significant marker
for doxorubicin-induced cardiotoxicity (DIC). Here, we mainly summarize the related mechanisms of DOX-induced cardiac
mitochondrial bioenergetics disorders reported in recent years, including mitochondrial substrate metabolism, the
mitochondrial respiratory chain, myocardial ATP storage and utilization, and other mechanisms affecting mitochondrial
bioenergetics. In addition, intervention for DOX-induced cardiac mitochondrial bioenergetics disorders using chemical drugs
and traditional herbal medicine is also summarized, which will provide a comprehensive process to study and develop more
appropriate therapeutic strategies for DIC.

1. Introduction

With continuing development of medical technology and
increasing improvements in tumorous diagnoses, the life-
spans of patients with malignant tumours have been signifi-
cantly prolonged. However, morbidity and mortality from
complications caused by anticancer therapy are increasing
year by year, among which cardiovascular disease (CVD)
has become the main cause of death for cancer survivors.
It has been reported that approximately 20%~30% of cancer
patients die due to CVD [1, 2]. In this situation, cardio-
oncology as a new field has come into being. Doxorubicin
(DOX), an anthracycline chemotherapeutic drug, is indis-
pensable in antitumor therapy. Low doses of DOX are effec-
tive in treating various cancers. However, accumulating
doses of doxorubicin can induce severe cardiotoxicity
(DIC), which largely limits its application [3]. DIC is clini-

cally characterized by increased ventricular wall thickness,
decreased left ventricular ejection fraction, arrhythmias,
and heart failure, finally leading to death [4, 5]. To date,
the most widely accepted hypothesis for DIC is that the
DOX quinone moiety, oxygen molecules, and other cellular
electron donors make an electronic exchange to generate
excessive reactive oxygen species (ROS). DOX can also
undergo redox cycling, and then generate oxygen radicals
by forming complexes with iron. Although increased ROS
production in cardiomyocytes after DOX therapy has been
confirmed in vivo and in vitro, antioxidants and iron chela-
tion both cannot prevent DIC. Collectively, although mas-
sive effort is to be made in identifying strategies to prevent
DIC, a satisfying approach is lacking [6–9].

Heart is a high-energy-consuming organ that requires a
large amount of ATP every day to ensure its normal physio-
logical function [10]. In healthy adult hearts almost all ATP
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is produced by the oxidative metabolism of mitochondria.
Drugs that interfere with mitochondrial function may lead
to the exhaustion of ATP, and finally leading to myocardial
dysfunction. Mitochondrial bioenergetics is related to myo-
cardial substrate utilization, the mitochondrial respiratory
chain, high-energy phosphate storage, transport and energy
signalling pathways, and other processes related to mito-
chondrial structure and function. It has been reported that
DOX-induced mitochondrial bioenergetic collapse (DiMBc)
may be mediated in numerous ways: by damaging the Krebs
cycle, fatty acid β-oxidation, the respiratory chain, and oxi-
dative phosphorylation, resulting in a bioenergy crisis that
ultimately leads to cardiomyocyte necrosis [11–13]. Mecha-
nistically, mitochondrial bioenergetic collapse has become
a significant feature of DIC, whether at an early stage, inter-
mediate stages, or in the long-term [14]. Understanding the
mechanisms of DiMBc could help identify new targets to
develop novel strategies for preventing DIC in cancer
patients. Herein, we concentrated on describing the molecu-
lar processes regulating mitochondrial bioenergy whose dys-
regulation has been linked to DIC. DOX interferes with
cardiac bioenergy production at multiple levels by affecting
cardiac mitochondrial substrate metabolism, ATP storage
and utilization, mitochondrial respiratory chain function,
and a range of metabolically related targets (Figure 1). In
an hPC-CM model system, a GO analysis centred on genes

that involved in DNA damage, ROS generation, and mito-
chondrial pathway showed powerful evidence of upregula-
tion of these pathways by DOX [15]. Although some
molecular mechanisms have not yet been absolutely estab-
lished, mitochondrial bioenergy metabolism plays an impor-
tant role in DIC according to current studies. Further study
of this mechanism and the development of drugs targeting
these targets are expected to provide more and better
options for improving DIC. Moreover, we discuss how the
determination of key players in mitochondrial bioenergy is
instrumental to refining current relevant achievements in
drug intervention for DiMBc.

2. Myocardial Mitochondrial
Substrate Metabolism

In normal myocardium, approximately 60%~90% of energy
comes from mitochondrial fatty acid β-oxidation, with a
limited amount coming from glucose metabolism [16]. The
oxidation of fatty acids is similar to glucose oxidation: both
undergo a series of oxidative decarboxylation reactions to
produce acetyl-CoA and NADH/FADH2, after which the
former enters the Krebs cycle (TCA cycle), and the latter
participates in electron transfer in the mitochondrial respira-
tory chain to produce a large quantity of ATP [17]. DOX
mediates cardiotoxicity by affecting myocardial bioenergy
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Figure 1: Multiple mechanisms of doxorubicin-induced myocardial mitochondrial bioenergetics disorder.
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generation at multiple levels of myocardial substrate metab-
olism. Mechanistically, DOX has been proved to impact
gene expression involved in anaerobic glycolysis and aerobic
fatty acid oxidation (FAO). Recently, DOX-related DNA
transcription obstruction has also been related to mitochon-
drial dysfunction. It is speculated that the early metabolic
changes of the heart in DIC may be related to systemic
DNA damage [18, 19]. (Figure 2).

Evidence demonstrates that heart energy mainly comes
from fatty acid β-oxidation metabolism in the presence of
oxygen. Moreover, it has been reported that DOX treatment
causes a significant increase in plasma and cardiac total cho-
lesterol, triglycerides, high-density lipoproteins, and low-
density lipoproteins in animal models [20–22]. Therefore,
systemic lipid indicators are considered attractive predictors
for long-term cardiovascular events, which need to be fur-
ther validated. Thereafter, statins, as lipid-lowering drugs,
can inhibit the activity of β-hydroxy-β-methylglutaryl CoA
(HMG-CoA) reductase, thereby reducing the production
and utilization of cholesterol and ultimately leading to the
reduction of blood lipids, thus reducing coronary atheroscle-
rosis and other cardiovascular events in patients [23, 24]. In
addition, statins can act on Rac1, an indispensable subunit of
NADPH oxidase and necessary for its activity. DOX induces
DIC through Rac1 in both ROS-dependent and ROS-
independent p53 pathways. Statins inhibit Rac1 activation,
thereby alleviating DIC [25]. In addition, peroxisome
proliferator-activated receptors (PPARs), which are ligand-
activated transcription factors, can control the expression
of genes involved in lipid metabolism and inflammation
[12]. Studies have shown that DOX significantly downregu-

lates the mRNA or protein levels of PPARs, thereby affecting
the expression of corresponding target genes [26–28].
PPARγ agonists significantly reduce serum TAG, suggesting
that DOX may inhibit the expression or activity of target
genes such as lipoprotein lipase (LPL) by inhibiting PPARγ
to inhibit the hydrolysis of TAG and uptake into tissue cells
[28–30]. However, some studies have indicated that DOX
significantly reduces the content of myocardial triglyceride
(TAG) but does not affect the expression or phosphorylation
of enzymes related to TAG catabolism and storage such as
hormone-sensitive lipase (HSL), adipose triglyceride lipase
(ATGL), and perilipin 5 (PLIN5). Importantly, ATGL over-
expression further reduces TAG levels but improves cardiac
function. It is suggested that DOX reduces the myocardial
TAG level by reducing the uptake of cardiac fatty acids
and the synthesis of new TAGs rather than increasing the
catabolism of TAGs, and this is an adaptive response which
may also be related to DOX inhibition of PPARs [31].

Fatty acids need to enter cells before they can be oxi-
dized. Human leukocyte differentiation antigen 36 (CD36),
also described as fatty acid translocase (FAT), is a trans-
membrane transport glycoprotein and an important trans-
porter of fatty acid uptake in cardiac tissue. It is closely
related to fatty acid metabolism [32]. It has been docu-
mented that DOX can downregulate CD36 mRNA levels
thereby reducing myocardial fatty acid uptake and oxidative
metabolism as well as fatty acid resynthesis of TAG in myo-
cardial tissue. This may be related to the downregulation of
PPAR levels by DOX, since CD36 is a known target gene
of PPARs [33]. After entering the cell, fatty acids are acti-
vated in the cytoplasm to form acyl-CoA, and then enter
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Figure 2: Doxorubicin-induced myocardial mitochondrial substrate metabolism disorder. Abbreviations. AKT: serine/threonine kinase;
GLUT1: glucose transporter 1, IFNγ: interferon gamma; IFNγR: interferon gamma receptor; AMPK: adenosine 5′-monophosphate
(AMP)-activated protein kinase; ACC: acetyl-CoA carboxylase; ERK: extracellular regulated protein kinases; FAO: fatty acid oxidation;
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the mitochondria for β oxidation. Activated fatty acids need
to be transported to mitochondria by carnitine palmitoyl
transferase 1/2 (CPT 1/2) in the presence of L-carnitine, a
rate-limiting step in FAO, and these enzymes are key to
FAO. Studies have reported that DOX treatment signifi-
cantly reduces the activity of CPT1/2 and inhibits the oxida-
tion of fatty acids while supplementation with L-carnitine
restores the oxidation level of fatty acids but does not
improve the activity of CPT1/2. It is suggested that DOX
may disrupt fatty acid entry into mitochondria by disrupting
CPT1/2 activity or depleting L-carnitine leading to a
decrease in FAO [34–37].

A small part of the energy required by the heart comes
from glucose metabolism. Similarly, glucose needs to enter
the cell, mediated by glucose transporter 1 (GLUT1) on the
cell membrane [10]. It has been shown that early DOX treat-
ment significantly increases and subsequently decreases
myocardial glucose uptake. Consistent with this, DOX treat-
ment quickly promotes the recruitment of myocardial
GLUT1 to the membrane without affecting its overall level,
suggesting that the early increase in glucose uptake induced
by DOX treatment is an adaptive response to myocardial
energy deficiency [38]. In addition, DOX treatment can lead
to long-term restriction of glycolysis, which may be related
to DOX lowering the mRNA levels of hexokinase 2 (HK2)
and phosphofructokinase (PFK), which are known key
enzymes in glycolysis [39].

AMP-activated protein kinase (AMPK), a cellular energy
sensing centre, can be activated in response to energy depri-
vation and modulates its downstream targets to increase
ATP production [40, 41]. Activation of AMPK has beneficial
effects on mitochondria, triggering catabolic pathways such
as FAO metabolism and glycolysis, and downregulating
anabolism, which is mainly mediated by the mTOR signal-
ling pathway [39]. AMPK can increase oxidative mitochon-
drial metabolism via activation of PGC-1α signalling,
decrease apoptosis via inhibition of mTOR signalling, and
directly or indirectly increase autophagy via activation of
mammalian Unc-51 like autophagy activating kinase
(ULK1) or inhibition of mTOR signalling [42, 43]. AMPK
is therefore the key target for many mechanisms involved
in DIC, and cardiac AMPK signalling pathway has been
demonstrated to be impaired by DOX. Experimental evi-
dence shows that a DOX-mediated decrease in p-AMPK
levels drives metabolic disarrangements and cellular sub-
strate overload. Furthermore, DOX may activate mTOR
through the inhibition of AMPK and the activation of Akt/
ERK, resulting in a reduction in glycolipid oxidation levels
and an increase in ATP consumption. Studies suggest that
inhibition of AMPK by DOX may be mediated by crosstalk
with the Akt/ERK signalling pathway, and Akt inhibitors
can reverse DOX inhibition of AMPK [44]. Acetyl-CoA car-
boxylase (ACC), an enzyme which is directly inhibited by
AMPK, is overactivated to catalyse the formation of malo-
nyl-CoA, irreversibly inhibiting CPT1 and FAO [45, 46].
In addition, according to the report, the DOX can promote
the migration of CD11b+ macrophages from the peripheral
blood to the heart and release interferon γ (IFNγ), interfer-
ing with normal mitochondrial respiration and FAO of car-

diomyocytes by inhibiting the AMPK/ACC axis depending
on the p38 branch, linking inflammatory signalling, meta-
bolic remodelling, and DIC [47, 48]. The renin-angiotensin
system is the core factor regulating blood pressure and elec-
trolytes. Clinical studies have discovered that angiotensin II
(Ang II) type 1 receptor (AT1R) antagonists can prevent
cardiovascular events. Studies have confirmed that Ang II
can activate AMPK by stimulating NADPH oxidase and
inducing reactive oxygen species production. DOX signifi-
cantly increases Ang II levels, suggesting that DOX may acti-
vate AMPK through upregulation of Ang II levels [49–51].
Leptin is a cytokine-like hormone that can be produced in
the heart. An increasing number of studies have shown that
leptin regulates energy homeostasis through a direct effect of
peripheral lipids and glucose metabolism. Studies have
shown that in mice with diet-induced obesity (DIO), an
increase in leptin can promote an increase in AMPK phos-
phorylation, which leads to an increase in FAO. It is known
that DOX treatment increases cardiac leptin levels, suggest-
ing that DOX may also promote AMPK phosphorylation
through the upregulation of leptin. The exact mechanisms
need to be further confirmed [52–54]. The restoration of
AMPK activity makes a beneficial impact on mitochondria,
reducing oxidative stress and maintaining mitochondrial
energy production against DIC [42]. Collectively, this evi-
dence indicates that AMPK plays a pivotal role in DiMBc
and regulates cardiac metabolic remodelling by interacting
with energy metabolism-related targets. The development
of drugs targeting these metabolism-related proteins of car-
diac substrates is a promising direction.

DOX has also been reported to reduce citrate synthase
(CS) activity, thereby affecting the TCA cycle [55]. DOX also
interferes with the expression of many cardiac genes, in par-
ticular downregulating genes for several enzymes involved in
energy metabolism, including enzymes in relation to mito-
chondrial oxidative phosphorylation such as iron-sulfur
Protein, cytochrome c oxidase, phosphofructokinase, energy
transfer enzyme (MCK), and adenylate kinase AK3 [56]. In
addition, in clinical studies, patients with DIC have shown
changes in citric acid and aconitine, and the plasma levels
of purine and pyrimidine metabolites underwent significant
changes [57]. These results indicate that DOX can affect
multiple levels and targets in myocardial substrate metabo-
lism, suggesting that substrate metabolism is an important
mechanism and treatment direction for DIC.

3. Myocardial Mitochondrial Respiratory Chain
and Storage/Utilization of ATP

The reductive equivalents generated by substrate metabo-
lism are transferred sequentially between four main multien-
zyme complexes in the inner membrane of mitochondria, in
which CI and CII are coupled with a proton pump, and elec-
tron transfer is accompanied by hydrogen proton transfer
from the mitochondrial matrix to the intermembrane space
[58]. Finally, cytochrome aa3 (Cytaa3) transfers electrons
from cytochrome c (Cytc) to oxygen molecules to form reac-
tive oxygen species, which can combine with hydrogen pro-
tons to generate H2O. The electrochemical gradient
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generated on the mitochondrial membrane provides the
essential free energy for ATP synthase to catalyse the synthe-
sis of ATP from ADP and Pi [59]. ATP transfer is achieved
through the energy shuttle mechanism of creatine kinase, an
enzyme that delivers energy to cardiac myofibrils for utiliza-
tion [60]. (Figure 3).

Cardiolipin is an important component of the inner
mitochondrial membrane and is necessary for the activities
of the enzymes of respiratory chain such as cytochrome c
oxidase [61]. Cytc, a small water-soluble protein, is involved
in the formation of respiratory chain complexes as an elec-
tron transporter. Cardiolipin binds to it under electrostatic
action thereby promoting the conformational change of its
prosthetic group haem catalytic centre to form Cytc oxidore-
ductase. DOX has a strong affinity for cardiolipin, and its
specific irreversible binding prevents cardiolipin from acting
as a cofactor of the respiratory chain complex, destroying the
activity of CI, CIII, and CIV that require cytochromes in the
electron transport chain (ETC), leading to ROS excessive
generation and ATP synthesis disorder [62]. This also leads
to the loss of normal function in cardiolipin-dependent inor-
ganic phosphate carriers andmtCK, inhibiting oxidative phos-
phorylation and the storage and utilization of ATP [63]. In
addition, cardiolipin is structurally or functionally related to
ANT and VDAC involved in the formation of the mitochon-
drial permeability conversion pore (mPTP). Studies have
shown that DOX binding to cardiolipin can also promote
the opening of mPTP, resulting in content leakage and loss
of mitochondrial structure and function [39].

Mitochondrial respiratory chain CI can catalyse the
reduction of DOX to the semiquinone type, which forms
ROS or RNS in redox cycling, further damaging the mito-
chondrial respiratory chain [64, 65]. RNS mainly causes

myocardial damage through the rapid reaction of NO and
superoxide to nitrite, such as inhibiting creatine kinase,
interfering with cell calcium circulation, and affecting mito-
chondrial function [66, 67]. DOX binds to DNA topoisom-
erase IIβ (TOPIIβ) and DNA in cardiomyocytes to form a
term-cracking complex, downregulating the expression of
Ndufa3, Sdha, and Atp5a1 involved in the ETC; inducing
mitochondrial ultrastructure and function changes; and
exacerbating mitochondrial dysfunction and ROS formation
[56, 68, 69]. DOX interferes with complex IV subunit 1 and
uncoupling protein 3 (COXI-UCP3) coupling through Bcl-
2/19-kDa interaction protein 3 (Bnip3), resulting in mito-
chondrial membrane potential loss and inhibition of normal
mitochondrial respiration [70]. In vivo and in vitro animal
experiments have proved that DOX destroys the activity of
mitochondrial respiratory chain-related enzymes through a
variety of mechanisms, disrupting the generation of myocar-
dial energy. Additionally, the destruction of the mitochon-
drial respiratory chain is closely related to the generation
of ROS, and the two interact with each other to further
aggravate myocardial injury.

Phosphocreatine is the stored form of energy in the
heart. Under the action of creatine kinase, creatine is con-
verted to phosphocreatine, powered by ATP. When ATP is
insufficient, phosphocreatine can break down and release
energy to promote the phosphorylation of ADP to ATP.
Studies have shown that DOX may downregulate the CK
level, reducing the phosphocreatine to creatine ratio, which
results in changes in mitochondrial creatine kinase activity
[71]. Only the CK-MB isozyme of creatine kinase is
expressed in cardiac tissue, and DOX can react with Fe2+,
resulting in the oxidative damage of creatine isozyme, thus
destroying the utilization of ATP by cardiac cells [72, 73].
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These results suggest that drugs targeting the CK system
may play a significant role in preserving the heart from DIC.

4. Other Mechanisms by which DOX Affects
Myocardial Mitochondrial Bioenergy

DOX can not only affect processes such as myocardial sub-
strate utilization, mitochondrial respiratory chain, high-
energy phosphate storage, and transport but also directly
destroy mitochondrial structure and quantity through other
mechanisms, resulting in mitochondrial bioenergetic col-
lapse. (Figure 4).

4.1. Mitochondrial Permeability Transition Pore (mPTP)
Opening. Mitochondrial permeability conversion (mPT) is
a pathophysiological state of the mitochondrial intima
(IMM), mainly realized through the mPT pore (mPTP).
mPTP is a protein complex which is located between the
outer and inner membranes of mitochondria. ANT, VDAC,
and CypD are believed to be involved in the formation or
regulation of mPTP. ANT is an adenine nucleotide (ADP/
ATP) translocator involved in the exchange of cytoplasmic
ADP and mitochondrial ATP [73]. Although it is controver-
sial whether ANT is an essential component of mPTP, it
undeniably plays a crucial role in regulating the activity of
mPTP [74, 75]. DOX reduces the ANT content of cardiac
mitochondria, resulting in increased mPTP opening, mito-
chondrial fragmentation, and reduced respiration [76, 77].
Cyclophilin D (CypD) is also a functional regulator of
mPTP, and impaired NF-κB signalling is the basis of
CypD-mediated mPTP opening in DIC. Nuclear factor-

kappa B (NF-κB) is a transcriptional repressor of the mito-
chondrial death protein Bnip3. DOX can inhibit NF-κB,
thereby activating Bnip3 and localizing to mitochondria
through its carboxy-terminal transmembrane domain
(TM). mPTP opening is mediated by the formation of pro-
tein complexes with CypD, resulting in the loss of mitochon-
drial membrane potential and the raising in ROS
production. It may be proved beneficial to maintain NF-κB
signalling in reducing mitochondrial dysfunction in DIC,
while the protection offered by NF-κB may be temporary
[70, 78]. Another major trigger for mPTP opening is mito-
chondrial calcium (Ca2+) overload. Mitochondrial matrix
Ca2+ regulates basic cellular processes such as energy metab-
olism. The biological basis of mitochondrial Ca2+ homeosta-
sis has received extensive attention owing to the calcium
dysregulation characteristic of impaired mitochondrial bio-
energetics and cardiomyocyte death in DIC [79]. It has been
given evidence that DOX triggers the RIP3-mediated activa-
tion of CaMKII, leading to mPTP opening and myocardial
necroptosis [80]. In addition, DOX stimulates mPTP open-
ing by weakening the binding of phospho-GSK-3β (Ser9)
to ANT [81]. In addition, DOX also activates acidic sphingo-
myelinase, which contributes to ceramide accumulation,
thereby coupling volt-independent B-type calcium channel
activity with mPTP opening [82]. The mPTP is also thought
to be a common pathway leading to many types of cell death
such as apoptosis, necrosis, and ferroptosis. Importantly,
mPTP is identified as the primary target of DOX-induced
iron-dependent death acting on isolated mitochondria.
mPTP protectors can counteract iron-DOX complex-
induced Ca2+-dependent mPTP opening [74]. These data

NF-𝜅B Bnip3

Bn
ip

3VDAC

Pi Pi H+ H+
H+

H+

CypD
TM

ATP

ANT

ATPADP-Pi
ADP

PiC
PiPi

mPTP opening

OMM

IMM

BAX/BAK

Caspase-3/9

p53

p53

ERK

GATA-4
PGC-1𝛼
NRF-1
TFAM
UCP2

PARP

mtDNA
damage

Mitophagy

P53

Parkin

Energy
failure

P P
DRP1 mTOR

TFEB
DOX

Cytc

AIF

Ca2+

Calcium
handing

ROS

SR
Ca2+ sensitive

ROS generating
enzymes

Mito-apoptosis

Figure 4: Other mechanisms by which DOX affects myocardial mitochondrial bioenergy. Abbreviations. VDAC: voltage-dependent anion
channels; ANT: adenine nucleotide (ADP/ATP) translocator; NF-κB: nuclear factor kappa-B; Bnip3: Bcl-2/19-kDa interaction protein 3;
AIF: apoptosis inducing factor; DRP1: dynamin-related protein 1; NRF-1: nuclear respiratory factor 1; TFAM: mitochondrial
transcription factor A; UCP2: mitochondrial uncoupling protein 2; GATA-4: GATA-binding protein 4; PGC-1α: peroxisome
proliferator-activated receptor-gamma coactivator (PGC)-1alpha.

6 Oxidative Medicine and Cellular Longevity



offer new treatment options to the modulation of the toxic
influence of DOX on mitochondria by reducing their dys-
function. In addition, DOX upregulates the expression of the
proapoptotic proteins BAX and BAK, mediating the opening
of mPTP and the release of Cytc and AIF and causing signifi-
cant mitochondrial morphological disorders, including crest
loss and mitochondrial fragmentation, which ultimately leads
to mitochondrial bioenergy disorders [5]. Mitochondrial
phosphate carrier (PiC) is the main pathway of mitochondrial
phosphate transmembrane transport and acts as a regulator of
mPTP, promoting mPTP opening and Cytc release. A recent
finding shows that prolonged doxorubicin treatment signifi-
cantly increases phosphate carrier protein expression [83]. In
summary, DIC is thought to be mediated partly via disruption
of mitochondrial function, increased opening of the mPTP,
and the release of Cytc, resulting in myocyte apoptosis and
disruption of mitochondrial bioenergetics.

4.2. Mitochondrial DNA (mtDNA) Damage. Each cardio-
myocyte has thousands of mitochondria with their own
DNA, called mitochondrial DNA (mtDNA), which can
encode multiple proteins in the mitochondrial respiratory
chain [84]. Topoisomerase II (TOPII) can cleave two strands
of DNA and untie the superhelix structure of DNA double
strands, playing an important role in gene replication and
transcription. There are two TOPII types: TOPIIα and
TOPIIβ. TOPIIα, a known marker for cell proliferation, is
overexpressed in tumour cells, while only TOPIIβ expres-
sion has been detected in cardiomyocyte mitochondria [85,
86]. One target of DOX is TOPII. In tumour cells, DOX
binds DNA and TOPII to form a ternary division complex
that causes tumour cell death, the molecular basis of DOX
anticancer activity. DOX can also form a terpolymer com-
plex with TOPIIβ-DNA in normal hearts to induce DNA
double-strand breaks (DSBs) leading to cardiomyocyte
death, the molecular basis of DIC [87, 88]. In addition,
DOX inhibited the expression of genes involved in mito-
chondrial function and oxidative phosphorylation in the
presence of TOPIIβ, such as downregulating the expression
of Ndufa3, Sdha, and Atp5a1, which are involved in the elec-
tron transport chain, as described above, and induced mito-
chondrial ultrastructural changes. This may be due to the
DOX-TOPIIβ complex binding to the PGC-1α/β promoter
and thereby inhibiting its expression [68]. PGC-1α is a
major regulator of mitochondrial biogenesis that interacts
with nuclear transcription factors to promote the expression
of transcription factors required for mtDNA replication,
thereby enhancing mitochondrial biogenesis. DOX can
downregulate the expression of PGC-1α and its downstream
signals, such as nuclear respiratory factor 1 (NRF-1), mito-
chondrial transcription factor A (TFAM), and mitochon-
drial uncoupling protein 2 (UCP2), by inhibiting AMPK,
which has been known to play an essential role in maintain-
ing redox homeostasis, endoplasmic reticulum, and mito-
chondrial homeostasis in cells, resulting in the reduction
and oxidation of mtDNA [89–91]. In addition, DOX can
combine with TOPIIβ to induce mtDNA damage, resulting
in activation of poly adenosine diphosphate ribose polymer-
ase (PARP) and depletion of intracellular NAD+ and ATP.

Eventually, glycolysis and mitochondrial respiration rates
are slowed [92, 93]. DOX downregulates the expression of
the mitochondrial enzyme NAD+-dependent deacetylase 3
(SIRT3), thereby increasing mtDNA damage and ROS pro-
duction and inhibiting mitochondrial respiration [55]. Stud-
ies have also shown that ROS production depends on
TOPIIβ. DOX treatment increases the production of ROS,
which promotes the release of calcium from sarcoplasmic
reticulum (SR) and the damage of myocardial cells of cal-
cium removal system to increase levels of calcium in cells.
Overloading of mitochondrial calcium causes mitochondrial
permeability transition, leading to mitochondrial membrane
potential losing, mitochondrial swelling, rupture, and the
release of Cytc and apoptosis-inducing factors, which trigger
mtDNA damage. Increased calcium, in turn, induces ROS
production through calcium-sensitive ROS-producing
enzymes, thus forming a vicious cycle [94–96]. Currently, dex-
razoxane, the only drug approved by the Food and Drug
Administration (FDA) for DIC prevention, prevents double
chain rupture by combining with iron chelates to target
TOPIIβ or promote degradation of TOPIIβ, thereby improv-
ing DIC, suggesting a specific role for this mechanism. How-
ever, dexrazoxane still failed to meet the expectations of
preclinical studies and its clinical use has been limited by rea-
son of serious adverse reactions such as bonemarrow suppres-
sion [97, 98]. Therefore, further study and development of
drugs targeting TOPIIβ with few toxic side effects is very
important. Collectively, it is obvious that the accumulation
of mtDNA damage links with the progression of DIC.

4.3. Key Receptors, Kinases, and Transcription Factors. Prote-
ase-activated receptor 1 (PAR-1), a G-protein-coupled
receptor, participates in cardiac injury and adverse remodel-
ling [99]. DOX has been found to activate PAR-1, resulting
in increased ROS production, mitochondrial membrane
potential losing, and bioenergy impairment in cardiomyo-
cytes and fibroblasts [100]. GATA-4, a key transcription fac-
tor in cardiac development, activates the antiapoptosis gene
Bcl-XL to regulate apoptotic pathways [94]. Dox inhibits the
expression of the mitochondrial GATA-4 gene, thereby inhi-
biting mitochondrial synthesis and metabolism [72].
Caspase-3 and Caspase-9 are major biomarkers for mito-
chondrial apoptosis. DOX activates cardiac myocyte p53
through the ERK pathway and upregulates the expression
of BAX, thus inducing myocardial mitochondrial apoptosis
through Caspase-3 and Caspase-9 [101]. In addition, DOX
upregulates the expression of the p53 gene, which binds to
the Parkin and inhibits the autophagy clearance of the dam-
aged mitochondria, resulting in mitochondrial biological
energy depletion [102]. Lysosomal signalling and function
are governed by transcription factor EB (TFEB). Loss of
TFEB inhibits lysosomal function and lysosomal autophagy,
inducing cardiomyocytes susceptible to DiMBc [103]. In
addition, studies have proved that TFEB downregulation is
associated with dynamin-related protein 1 (DRP1) and
mTOR, and phosphorylation of mTOR is known to inhibit
TFEB expression. DRP1 is required for fission of mitochon-
dria and peroxisomes. DOX can inhibit DRP1 phosphoryla-
tion and TFEB expression and upregulate mTOR
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phosphorylation, while MDIVI-1, a selective inhibitor of
DRP1, further upregulates mTOR phosphorylation and
inhibits TFEB expression. These results suggest that DOX pro-
motes the phosphorylation of mTOR and inhibits the expres-
sion of TFEB by inhibiting DRP1 phosphorylation, resulting
in the interruption of mitochondrial autophagy, excessive
ROS production, and damage to mitochondrial function
[104–106]. Previous studies have demonstrated that antioxi-
dant enzymes can protectively detoxify ROS/RNS into less
active substances. They are also associated with many redox
signalling pathways; for example, glutathione peroxidase 4
(GPX4) can inhibit iron-dependent lipid peroxidation [5,
107]. DOX administration results in significantly reduced glu-
tathione levels and the activity of antioxidant enzymes such as
catalase, and superoxide dismutase [108]. Overall, these stud-
ies may promise therapeutic targets for preventing DIC.

5. Drug Intervention

Currently, there are no specific treatments to prevent or cure
DOX-induced cardiotoxicity, and few cardioprotective drugs
are trialled in patients for treatment of DIC and these drugs
are limited to standard heart failure medications. The only
drug approved by FDA which specific for DIC is dexrazox-
ane. Dexrazoxane is an iron-chelating agent targeting oxida-
tive stress. However, it has failed to achieve the desired effect
from preclinical studies while also presenting concerns
about its safety [109, 110]. A substantial list of compounds
has been shown to alleviate DOX-mediated mitochondrial
bioenergetics disorders and is summarized below.

5.1. Chemical Drug or Active Substance. Studies have con-
firmed that some chemical drugs such as hypoglycemic
drugs, calcium antagonists, antioxidants, redox modulators,
iron chelators, and some related receptor antagonists can
prevent DIC [111]. Metformin has a hypoglycemic effect
and is widely used to treat type 2 diabetes [112]. Studies have
shown that metformin has a protective effect on DOX-
mediated mitochondrial damage in mice by activating the
AMPK pathway and reducing H2O2 levels [43, 94]. As a
nonselective β-blocker, carvedilol has been extensively used
in the clinical treatment of hypertension and chronic heart
failure. Studies have shown that carvedilol can inhibit
DOX-induced oxidative stress and inhibit CI, thereby reduc-
ing the production of semiquinone-doxorubicin [113]. Sta-
tins rely on RNS and RAS-related C3 botulinum toxin
substrate 1 (Rac1) to activate the AMPK pathway in the
myocardium [43]. Although RNS adversely affects the myo-
cardium, NO is indispensable for the integrity of cardiovas-
cular function. Supplementation with nitrate, the primary
storage form of NO in vivo, has been shown to enhance
the activity of CI and its NADH dehydrogenase and coun-
teract the decline in DOX-induced mitochondrial oxidative
phosphorylation [114]. It has been reported that LCZ696, a
novel angiotensin receptor antagonist, can restore mito-
chondrial structure and morphology, improve mitochon-
drial CI activity, and increase ATP production in DOX-
induced dilated cardiomyopathy mice by inhibiting
dynein-associated protein 1 (Drp1)-mediated mitochondrial

dysfunction [105]. EMPA, an SGLT2 inhibitor, has been
shown to have a protective effect on DOX-treated mice
and H9C2 cardiomyocytes, increasing cell viability, improv-
ing mitochondrial dysfunction, and increasing intracellular
ATP levels [115]. It has been reported that in cells dexrazox-
ane, it can be turned into a ring-opening chelating agent,
which can replace the DOX-Fe3+ complex and bind to iron,
interfering with iron-mediated ROS production and block-
ing the inactivation of respiratory enzymes by the iron com-
plex [64]. Tedesco et al. reported that a novel original
formulation named α5 consisting of essential amino acids,
precursors of the tricarboxylate cycle, and a cofactor pro-
motes mitochondrial biogenesis and anti-ROS production
by activating the Akt/eNOS/mTORC1 signalling axis, pre-
venting DOX-induced mitochondrial damage [116]. The
development of these chemical agents or active ingredients
has greatly improved the therapeutic efficacy of DOX and
has provided more possibilities for addressing adverse prog-
noses from DOX.

5.2. Traditional Herbal Medicine or Biologically Active
Ingredients. In addition to chemical drugs, many studies
have shown that traditional herbal medicine or biologically
active ingredients have an attractive protective effect against
DIC, and many studies have shown that some herbal medi-
cines can improve the mitochondrial bioenergy disorders
caused by DOX (Table 1). Resveratrol can activate the
AMPK pathway, reducing DOX-induced ROS levels and
improving antioxidant levels [108]. In addition, the natural
analogue of resveratrol, taxane, prevents DIC by enhancing
AMPK and SIRT1 cascade reactions, activating PGC-1α,
and thereby reducing oxidative stress [93]. Allicin, the active
ingredient of garlic, can combat oxidative damage and heart
cell apoptosis caused by the inactivation of DOX-mediated
antioxidants such as catalase and superoxide dismutase
[117]. Cryptotanshinone is one of the primary bioactive con-
stituents isolated from Salvia miltiorrhiza and ameliorates
DIC by targeting the Akt-GSK-3β-mPTP pathway in vitro
[81]. Curcumin, a natural compound extracted from tur-
meric, has anti-inflammatory effects. Studies have shown
that curcumin upregulates the PI3K/Akt/mTOR pathway,
which is essential for cell survival and differentiation and
has a regulatory effect on DOX-induced cardiac metabolic
remodelling [108]. Luteolin, an active substance extracted
from vegetables and fruits, has been shown to improve
DOX-induced mitochondrial dysfunction through a Drp1/
mTOR/TFEB-dependent mechanism [104]. Ferruginol, iso-
lated from Salvia, may promote FAO and improve mito-
chondrial bioenergy by upregulating the expression of the
deacetylases SIRT1 and PGC-1α [118]. Harpagoside, a
monomer of Scrophularia ningpoensis, was reported to
improve DiMBc via P53-Parkin-mediated mitophagy [119].
In addition, other studies have shown that Honokiol [69],
Schisandrin B [120], Berberine [121], and Compound Dan-
shen Dripping Pill [122] have a protective effect on the heart
and can reverse the damage to mitochondrial biological
function caused by DOX. A growing number of studies have
reported that traditional herbal medicines can regulate
DOX-induced myocardial mitochondrial bioenergy disorder
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Table 1: Herbal medicine and its small molecules that target mitochondria effectively prevent DIC.

Molecules
Study
model

Methods (drug/dose/route/duration)
Key mechanisms against dox-induced
mitochondrial biogenetics disorder

Refs

Chrysin SD rats
(i) Chr/50mg/kg/4 times/w/ig/4 w+dox/5
Mg/kg/w/ip/4 w

Oxidative stress↓

[127]p53↓

Mito-apoptotic pathway↓

Tetrandrine
C57
mice

(i) Tet/50mg/kg/d/po/4 d+dox/15mg/kg/single
dose/ip/3 d (start 1 d after Tet)

Nrf-2↑
[128]

Oxidative stress↓

Irvingia gabonensis
Wistar
rats

(i) IGESE/100mg/kg/d/po/13 d+dox/15mg/kg/
single dose/ip/3 d (start 10 d after IGESE)

Oxidative stress↓
[129]

Serum lipids↓

Hippophae
rhamnoides
(alk-A, alk-B)

H9C2
cells

(i) Alk-A, alk-B/10,20,40μM/25 h+dox/2.5 μM/24 h
(start 1 h after alk)

Oxidative stress↓

[130]
caspase3↓

mtDNA damage↓

ATP↑

Compound Danshen
Dripping Pill

C57
mice

(i) CDDP/660,2640mg/kg/d/po/31 d+dox/2mg/kg/
7 d/ip/28 d (start 3 d after CDDP)

Nrf-2↑

[122]
p-AMPK↑

HK↑

CS↑

Licorice root extract
H9C2
cells

(i) Gg/40μg/ml/24 h+dox/5 μM/24 h

Oxidative stress↓

[131]
Disruption of ΔΨm↓

Lipid accumulation↓

SIRT-1/PPARγ↑

Shenmai injection
H9C2
cells

(i) SMI/0.5%,0.25%/24 h+dox/1 μM/16 h
(start 8 h after SMI)

Mito-superoxide anion↓

[132]

Disruption of ΔΨm↓

Mitochondrial fragmentation↓

p-AMPK↑

p-DRP1↑

Mito-respiratory dysfunction↓

Cryptotanshinone
H9C2
cells

(i) Cts/5,10,25 μM/48 h+dox/1 μM/24 h
(start 24 h after Cts)

Oxidative stress↓

[81]

Mito-apoptotic pathway↓

Disruption of ΔΨm↓

p-GSK-3β-ANT interaction↑

ANT-CypD complex↓

Astragali Radix
H9C2
cells

(i) AR/400-1600μg/ml/30 h+dox/0.5 μM/24 h
(start 6 h after AR)

Fatty acid metabolism↑
[133]

PPARγ↑

Esculetin
H9C2
cells

(i) Dox/8 μM/24 h+Esc/10 μM/2 h

caspase3↓

[134]PARP↓

Oxidative stress↓

Curcumin

Wistar
rats
H9C2
cells

(i) Dox/40mg/kg/single dose/ip +Cur/100
mg/kg/d/po/7 d(start 5 d after dox)
(ii) Cur/20 μM/48 h+dox/15 μM/24 h
(start 24 h after Cur)

Oxidative stress↓
[135,
136]

caspase3↓

Uphold mitochondrial integrity

Honokiol
C57
mice

NRCMs

(i) HKL/0.2mg/kg/d/ip/5 w+dox/5mg/kg/w/ip/4 w
(start 1 week after HKL)
(ii) dox/2 μM/24 h+HKL/10μM/24 h

Mito-respiratory dysfunction↓

[33,
55]

Oxidative stress↓

PPARγ↑

Oxidative stress↓

mtDNA damage↓

Citrate synthase activity↑

SIRT-3↑
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Table 1: Continued.

Molecules
Study
model

Methods (drug/dose/route/duration)
Key mechanisms against dox-induced
mitochondrial biogenetics disorder

Refs

Matrine

C57
mice
H9C2
cells

(i) Dox/4mg/kg/w/ip/4 w+Mat/200mg/kg/d/ig/4 w
(ii) Mat/200μM/L/24 h+dox/1 μM/L/24/h

Oxidative stress↓

[137]Mito-apoptotic pathway↓

AMPKα/UCP2↑

Berberine
SD rats
H9C2
cells

(i) Ber/10,20mg/kg/d/po/16 d+dox/20mg/kg/2 d/ip/
6 d (start 11 d after Ber)
(ii) Ber/0.1,1,10 μM/48 h + dox/1 μM/24 h (start 24 h
after Ber)

Oxidative stress↓

[121]
Disruption of ΔΨm↓

Mitochondrial Ca2+ overload↓

SIRT-1↑

Salidroside
C57
mice

NRCMs

(i) SAL/180mg/kg/d/ig/8 w+dox/5mg/kg/w/ip/5 w
(start 3 weeks after SAL)
(ii) SAL/100μM/L/48 h+dox/1 μM/24 h (start 24 h
after SAL)

Oxidative stress↓

[138]
caspase3↓

Liensinine
Mice

NMVMs

(i) LIEN/60mg/kg/single dose/ip/6 d+dox/5mg/kg/
single dose/ip/6 d
(ii) LIEN/20μM/24 h+dox/5 μM/24 h

Mito-aconitase activity↑

[139]

Mito-respiratory dysfunction↓

Disruption of ΔΨm↓

Oxidative stress↓

Mitochondrial fission↓

ERK/DRP1↓

Mitophagy↓

Yellow wine
polyphenolic
compounds

SD rats
H9C2
cells

(i) YWPC/30mg/kg/d/ig/4 w+dox/3mg/kg/3 times/
w/2w
(ii) YWPC/50mg/L/24 h+dox/5 μM/L/24 h

Oxidative stress↓

[140]

Uphold mitochondrial integrity

Disruption of ΔΨm↓

caspase3↓

Nucleus Nrf-2↑

Epigallocatechin-3-
gallate

C57
mice

NRCMs
H9C2
cells

(i) Dox/2.5mg/kg/2 times/w/ip/3 w+EGCG/20mg/
kg/d/ig/6 w (start 1 h after dox)
(ii) EGCG/20 μM/72 h+dox/1 μM/48 h (start 24 h
after EGCG)

AMPKα2↑

[141]

TCA cycle↑

Oxidative stress↓

Lipid metabolism↑

Mito-respiratory dysfunction↓

Disruption of ΔΨm↓

Mitochondrial iron overload↓

Cardamonin

C57
mice
HL-1
cells

(i) CAR/20,40,80mg/kg/d/ig/4 w+dox/5mg/kg/w/
ip/4w
(ii) CAR/50,100 μM/24 h+dox/5 μM/24 h

Oxidative stress↓

[142]
Mito-apoptotic pathway↓

Ferruginol

C57
mice
H9C2
cells

(i) Dox/5mg/kg/1 time/w/iv/4w+FGL/20mg/kg/d/
ig/4w (start 1 w after last dose of dox)
(ii) FGL/0.1-50 μM/24 h+dox/1 μM/24 h

Mitochondrial biogenesis↑

[118]

FAO↑

Oxidative stress↓

SIRT-1/PGC-1α↑

Disruption of ΔΨm↓

Harpagoside

Zebrafish
C57
mice
H9C2
cells

(i) HAR/25 μM/3 d+dox/100 μM/L/3 d
(ii) dox/5mg/kg/1 time/w/iv/4 w+HAR/42mg/kg/d/
po/4 w (start 1 w after last dose of dox)
(iii) HAR/1-500 μM/48 h+dox/1 μM/24 h (start 24 h
after HAR)

mtDNA damage↓

[119]

Oxidative stress↓

p53↓

Parkin↑

Mitophagy↑

↑: increase or activate; ↓: decrease or inhibit; NRCMs: neonatal rat cardiomyocytes; NMVMs: neonatal mouse ventricular myocytes; w: week/weeks; mito-:
mitochondrial; ΔΨm: mitochondrial membrane potential; TCA cycle: tricarboxylic acid cycle.

10 Oxidative Medicine and Cellular Longevity



and protect the heart (Table 1). Other compounds not clas-
sically related to mitochondrial bioenergy have been demon-
strated to have cardioprotective effects on DIC. For example,
a previous study has shown that tanshinone IIA may restore
the dynamic balance of autophagosomes/autolysosomes in
DIC by targeting Beclin1/LAMP1 [123]. Dihydrotanshinone
I, another natural product from Salvia miltiorrhiza, as a
novel cardioprotective compound, it could react in the
anti-inflammation management of DIC via the mTOR-
TFEB-NF-κB signalling pathway [124]. In summary, plenti-
ful evidence indicates the effectiveness of traditional herbal
medicine in preventing DIC, a basis for further research into
the development of traditional herbal medicine compounds
that can intervene in DIC with multiple targets, better
effects, and fewer adverse reactions.

6. Future Perspectives

Although DOX induces severe cardiotoxicity, including left
ventricular dysfunction, cardiomyopathy, arrhythmias, and
heart failure [5, 125], it remains the dominant anthracycline
in the treatment of a series of cancers due to its high efficacy
at low doses, a wide spectrum of antineoplastic effects, and
lethality to various tumorous cells with various growth cycle
effect advantages [3, 126]. Studies have been carried out to
develop more appropriate interventions and treatment strat-
egies for patients receiving anthracycline chemotherapy. A
new view suggests that cardiometabolic alterations can be
used not only as an early marker for iatrogenic cardiac injury
but also as a target for drug intervention [17]. The exact
mechanism of DIC is still unclear; here, the mechanism of
DiMBc is systematically elucidated, providing an up-to-
date source for experimental studies. Furthermore, the roles
of oxidative stress and autophagy in DIC have been con-
firmed but the pathways of intracellular redox reactions
and cell death are complex and interchangeable and the
exact relationship between them and energy metabolism
remains to be further explored. Regarding the treatment of
DIC, many studies have described DOX-mediated cardio-
metabolic changes in pharmacological therapy, including
imidazolidine, natural extracts, animal extracts, and syn-
thetic artificial antioxidants [82], but the effects of many
active ingredients remain to be clinically validated. In addi-
tion, advances have been made in bioenergy-based preven-
tive therapies. As a natural library for drug molecular
screening, traditional herbal medicine compounds can
potentially aid the prevention and treatment of DIC; thus,
the development of drugs targeting biological energy based
on traditional herbal medicine has broad prospects. How-
ever, few solid preclinical and clinical studies have been per-
formed to date and it remains necessary to conduct in-depth
research and develop drugs to prevent and treat DIC more
effectively.
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