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Abstract

Intercellular communication between cellular compartments within the tumor and at distant sites is critical for the

development and progression of cancer. Exosomes have emerged as potential regulators of intracellular communication

in cancer. Exosomes are nanovesicles released by cells that contain biomolecules and are exchanged between cells.

Exchange of exosomes between cells has been implicated in a number of processes critical for tumor progression and

consequently altering exosome release is an attractive therapeutic target. Here, we review current understanding as well

as gaps in knowledge regarding regulators of exosome release in cancer.
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Background

Exosomes have emerged as critical regulators of cell-cell

communication. Exosomes are 40–150 nm extracellular

vesicles that are generated by all cells and exchanged

between cells. Inward budding of the late endosomal

membrane encapsulates biomolecules and generates

intraluminal vesicles (exosomes) within multivesicular

bodies (MVB) [1]. MVBs then fuse with the plasma

membrane to release exosomes into the extracellular en-

vironment [1]. Exosomes are typically characterized by

their size and expression of exosome marker proteins,

including CD63, CD81, and CD9 (Fig. 1). Essentially all

cell types have been shown to release exosomes in

culture [2–14].

Studies have shown ceramide and neutral sphingomye-

linase, which converts sphingomyelin into ceramide, is

critical for the formation of the intravesicular membrane

of MVBs [15]. In dendritic cells, a number of compo-

nents of the endosomal sorting complex required for

transport (ESCRT), including Hrs, signaling transducing

adaptor molecule (STAM1), and tumor susceptibility

gene 101 (TSG101), are involved in exosome secretion

[16]. Syndecan has also been implicated in exosome se-

cretion through its interaction with syntenin, Alix, and

several ESCRT proteins [17]. In contrast, cells depleted

of ESCRT-0, I, II, and III complexes retained the ability

to form MVBs [18], suggesting MVB biogenesis can

occur independently of ESCRT in some contexts.

In addition to regulating exosome release, ESCRTs are

thought to be involved in packaging of biomolecules into

exosomes. ESCRT proteins are involved in packaging of

lipids and ubiquitinated proteins into MVBs [19].

Higher-order oligomerization and anchoring of proteins

to the plasma membrane is also associated with protein

packaging into exosomes [20, 21]. CD63 is involved in

ESCRT-independent sorting of premelanosome protein

(PMEL) into the intraluminal vesicles of MVBs [22],

suggesting there are both ESCRT-dependent and inde-

pendent pathways of protein sorting in MVBs. How-

ever, it is unclear if these MVBs are targeted for

degradation in the lysosome or fuse with the cell

membrane to release exosomes.

Exosomes are rich in RNA cargo and studies have

sought to elucidate the mechanisms regulating RNA

loading in exosomes. Many species of RNA are present

in exosomes, including microRNA (miRNA), messenger

RNA (mRNA), vault RNA, Y-RNA, ribosomal RNA

(rRNA) and transfer RNA (tRNA) [23–26]. Preferential

accumulation of certain RNA species appears to occur

within exosomes [27], suggesting RNA packaging is not

random but rather mechanisms exist to package specific

RNAs into exosomes. The RNA processing protein

Y-box protein 1 has been implicated in packaging of

some miRNA [27] and non-coding RNA [26] into
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exosomes. Heterogeneous nuclear ribonucleoprotein

A2B1 (hnRNPA2B1) has also been implicated in miRNA

packaging in exosomes through its recognition of

miRNA sequence motifs [28]. Breast cancer cell-derived

exosomes contain components of the RNA-induced si-

lencing complex (RISC)-loading complex, including

Dicer, argonaute-2 (Ago2), and TAR RNA binding pro-

tein (TRBP), associated with miRNA [29], which may be

an additional mechanism of RNA loading in exosomes.

It remains unknown if the aforementioned pathways are

broadly applicable to RNA packaging or if additional

mechanisms exist to regulate RNA loading in exosomes.

In addition to containing RNA species, exosomes also

contain several types of DNA. Mitochondrial DNA

(mtDNA) [30–32], single-stranded DNA (ssDNA) [33],

and double stranded DNA (dsDNA) [34–36] have been

detected in exosomes. DNA incorporated in exosomes

can be transferred to and have functional consequences

in recipient cells transiently [37]. Exosomal DNA can be

transferred to and activate dendritic cells in a stimulator

of interferon genes (STING)-dependent manner [38].

While treatment with an epidermal growth factor recep-

tor (EGFR) [39] or topoisomerase-I inhibitors [38] in-

creases DNA packaging into exosomes, the precise

mechanisms controlling DNA packaging in exosomes re-

main to be determined.

Exosomes contain a variety of biomolecules, including

DNA, mRNA, miRNA and proteins [40, 41], and can be

exchanged between cells. The tumor microenvironment

consists of a number of recruited cells that interact to

regulate tumor progression and metastasis. As a result,

exosomes have emerged as critical regulators of inter-

cellular communication in cancer. Here, we discuss

the role of exosomes in cancer and mechanisms con-

trolling their release.

The function of exosomes in cancer progression and

metastasis

Tumors have been described as wounds that do not heal

due to the chronic inflammatory response observed in

tumors [42]. Cancer cells evolve to promote tumor

growth and evade immune recognition through intercel-

lular interactions within the tumor microenvironment

(Fig. 2). Exosomes derived from breast cancer cells sup-

press natural killer (NK) cells in vitro [43] and recruit

neutrophils to tumors in vivo [44]. Tumor-derived exo-

somes induce proliferation and expression of STAT3 in

myeloid-derived suppressor cells (MDSCs) through

Hsp72 [45]. MDSCs are able to inhibit T-cell activation,

so exosomes may act to induce immunosuppression

through the expansion and activation of MDSCs. Den-

dritic cell-derived exosomes contain major histocomp-

ability complex class I and class II molecules along with

T-cell costimulatory molecules, allowing them to func-

tion in antigen presentation [46]. Similarly, tumor cell

exosomes contain and deliver antigens to dendritic cells

for cross-presentation [47]. While these studies suggest

tumor cell exosomes can indirectly affect T cell function,

tumor exosomes containing Fas ligand can also directly

induce CD8+ T-cell apoptosis [48]. In addition, PD-L1 is

packaged in melanoma, glioblastoma and breast cancer-

derived exosomes and is thought to contribute to im-

munosuppression and lack of response to PD-1 blockade

[4, 49, 50]. Collectively, these studies implicate exosomes

as mediators of immune regulation in tumors.

Fig. 1 Exosome markers and contents. Common exosome markers include tetraspanins (CD9, CD63, and CD81), flotillin-1, integrins, major

histocompatibility complex (MHC) I and II, Hsp70, TSG101, and Alix. Exosomes also contain other proteins, different species of RNA, and DNA
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The inflammatory tumor stroma is typically also char-

acterized by an accumulation of activated fibroblasts.

Interactions between tumor cells and fibroblasts are crit-

ical for multiple stages of tumor progression [51].

Tumor cell-derived exosomes initiate fibroblast activa-

tion through transfer of transforming growth factor β

(TGF-β) [52, 53]. Activated fibroblasts can then recipro-

cally secrete exosomes containing metabolites which are

transferred to cancer cells and reprogram recipient cell

metabolism [8]. In addition, fibroblast-derived exosomes

can contribute to chemoresistance by increasing the can-

cer stem cell pool [54] and promote cancer cell invasion

through mobilization of Wnt11 [55]. While most studies

have reported fibroblast exosomes as being tumor-pro-

moting, in vivo fibroblast subsets are likely to have both

tumor-promoting and tumor-suppressive functions [51];

thus, the role of fibroblast exosomes on cancer progres-

sion is likely context-dependent. The function of exo-

somes from other tumor stromal populations is not well

characterized, though in pancreatic cancer it has been

demonstrated that macrophages transfer miRNA

through exosomes to induce gemcitabine resistance,

which can be reversed by inhibiting exosome secretion

in macrophages [3].

Exosomes have also been implicated as critical regula-

tors of communication between primary tumor cells and

distant sites. Exosome secretion is critical for the forma-

tion of invadopodia and invasive behavior of breast can-

cer cells, which may aid in the escape from the primary

tumor site [56]. In addition, migratory and invasive be-

havior can be transferred to non-invasive cells through

exosomes [57]. In vivo, uptake of exosomes derived from

metastatic cells in cells with lower metastatic capability

is associated with transfer of metastatic potential [58].

Inhibition of exosome secretion through knockdown of

Rab27A is associated with decreased tumor growth and

metastasis in metastatic breast cancer and melanoma

models [44, 59]. Rab27A is reported to have functions

outside of exosome release, namely in MMP9 secretion

[44]; thus, it remains difficult to discern exosome-

dependent from exosome-independent effects on tumor

progression. Injection of exosomes derived from meta-

static cancer cell lines initiates formation of the pre-

metastatic niche through recruitment of bone marrow-

derived cells and induction of vascular leakage in melanoma,

pancreatic cancer, and breast cancer models [5, 59–61].

Integrins in exosomes are also associated with metastatic

organotropism, specifically α6 is associated with lung

metastasis and αv is associated with liver metastasis

[5], suggesting exosomal integrins can predict meta-

static site. While these studies suggest exogenously

provided exosomes are critical for metastasis, it is un-

clear if they accurately recapitulate native release of

exosomes from tumor cells.

Canonical regulators of exosome secretion: nSMase2 and

Rab proteins

Based on the numerous ways exosomes contribute to

tumor progression, targeting exosome secretion has

emerged as an attractive therapeutic target and has been

studied in numerous contexts (Tables 1 and 2). Early

studies of exosome release identified ceramide as a regu-

lator of exosome secretion. Ceramide is involved in the

inward budding of endosomes to form multivesicular

Fig. 2 The role of tumor and stromal cell-derived exosomes in cancer. Reported effects of tumor-cell derived exosomes on stromal cells and vice

versa within the tumor microenvironment
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Table 1 Small molecules and their effect on exosome release in cancer cells

Treatment Effect on exosome secretion Cancer cell type

GW4869 Decreases
No effect

Bladder cancer cells (T24) [63]
Epidermal cancer cells (A431) [39]
Liver cancer cells (Huh7) [64]
Melanoma cells (B16BL6) [65]
Multiple myeloma cells (OPM2) [62]
Head and neck squamous cell carcinoma cells (SCC61) [56]
Prostate cancer cells (22RV1 and PC3) [66]
Head and neck squamous cell carcinoma tumors (mEERL) [67]
Breast cancer cells (MDA MB 231) [49]
Prostate cancer cells (PC3) [70]

C6 ceramide Increases Multiple myeloma cells (OPM2) [62]

Hypoxia Increases Breast cancer cells (MCF7, SKBR3 and MDA MB 231) [80]

Shikonin Decreases Lung cancer cells (A549) [83]

Acidic pH/ protein pump inhibitors Increases Melanoma cells (Mel1-Mel3, Me665/1, MelP1-MelP3 and WM983A) [84, 85]

Tunicamycin Increases Cervical cancer cells (HeLa) [90]

Monensin Increases Leukemia cells (K562) [94]

Irradiation Increases Prostate cancer cells (LNCaP, 22Rv1 and DU145) [97]

UV radiation Increases Colon cancer cells (HCT116) [99]

Doxorubicin Increases Prostate cancer cells (PC3) [100]

Photodynamic treatment Increases Prostate cancer cells (PC3) [100]

Tipifarnib Decreases Prostate cancer cells (C4-2B) [106]

Melphalan Increases Multiple myeloma cells (SKO-007) [102]

CI-1033/ PF-00299804 Increases Glioma cells (U373) [39]

Manumycin A Decreases Prostate cancer cells (C4-2B) [66]

Table 2 Genetic manipulation of exosome release in cancer cells

Gene Effect on exosome secretion Cancer cell type

RAB27A Knockdown decreases Cervical cancer cells (HeLa) [6]
Breast cancer cells (4 T1 [44], TS/A [44], and MDA MB 231 [56,75])
Bladder cancer cells (T24 and FL3) [63]
Head and neck squamous cell carcinoma cells (SCC61 [56, 76] and mEERL [67])

RAB27B Knockdown decreases Cervical cancer cells (HeLa) [6]
Bladder cancer cells (T24 and FL3) [63]
Head and neck squamous cell carcinoma cells (mEERL) [67]

PIKfyve Knockdown increases Prostate cancer cells (PC3) [74]

Hrs Knockdown decreases Head and neck squamous cell carcinoma cells (SCC61) [56]

Syt7 Knockdown decreases Head and neck squamous cell carcinoma cells (SCC61) [56]

Cortactin Knockdown increases, overexpression decreases Head and neck squamous cell carcinoma cells (SCC61) [76]

STAT3 Knockdown decreases Ovarian cancer cells (OVCAR8) [79]

PKM2 Knockdown decreases Lung (A549) and cervical cancer cells (HeLa) [83]

Munc13–4 Knockdown decreases Breast cancer cells (MDA MB 231) [96]

miR-155 Knockdown decreases, overexpression increases Pancreatic cancer cells (Panc1) [101]

EGFR Oncogenic EGFRvIII increases Glioma cells (U373) [39]

Ras Oncogenic HRas increases Intestinal epithelial cells (IEC-18) [37, 105]

hnRNP H1 Knockdown decreases Prostate cancer cells (C4-2B) [66]

Liver Kinase B1 Expression restoration increases Lung cancer cells (H460 and A549) [107]

EIF3C Overexpression increases Liver cancer cells (PLC5, SNU449 and Huh7) [64]
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bodies (MVBs) containing exosomes and is generated by

neutral sphingomyelinase (nSMase2) [15]. Exosomes are

enriched in ceramide and secretion is reduced through

inhibition of nSMase2 with siRNA or the small molecule

inhibitor GW4869 [15]. Alternatively, treatment of mul-

tiple myeloma cells with C6 ceramide induces release of

exosomes [62]. A number of other studies have impli-

cated ceramide synthesis in the secretion of exosomes

by cancer cells [39, 49, 56, 62–67]. Knockout of

nSMase2 reduces angiogenesis and metastasis in breast

tumors, which may be mediated through exosome secre-

tion [68]. In addition, mice treated with GW4869 and

inoculated with LLC1 cells display a reduced number of

lung colonies, likely due to reduced exchange of exoso-

mal miRNAs [69]. GW4869 sensitizes breast tumors to

immune checkpoint blockade by reducing secreted exo-

somal PD-L1 [49]. However, at least one study has re-

ported ceramide as being dispensable for exosome

release [70]; consequently, it remains to be determined if

this pathway is a conserved regulator of exosome secre-

tion across all cancer types. In addition, it is unclear if

the effects of GW4869 in vivo are due to inhibition of

exosome release by cancer cells specifically or through

organism-wide inhibition of exosome secretion.

A number of vesicle-trafficking related genes have

been implicated in the release of exosomes. In oligoden-

drocytes, TBC1D10A functions to activate Rab35 in

order to induce exosome secretion [71]. Expression of a

dominant-negative form of Rab11 in K562 cells is associ-

ated with reduced exosome release [72]. Rab11 is also

involved in MVB interactions with autophagosomes in

K562 cells [72]. Further studies demonstrated Rab11 is

involved in the docking of MVBs to the plasma mem-

brane [73]. Upon induction of autophagy, Rab11 colocal-

izes with the autophagosome marker LC3, which is

associated with decreased exosome release [72]. Alterna-

tively, inhibition of PIKfyve, an enzyme that phosphory-

lates phosphatidylinositol, induces secretory autophagy

and increases exosome secretion [74]. Thus, the role of

autophagy in the release of exosomes remains to be elu-

cidated and may be context dependent.

While Rab11 appears to be critical for exosome release

in K562 cells, it is dispensable for exosome secretion in

HeLa cells [6]. In HeLa cells, silencing of Rab2B, Rab5A,

Rab9A, Rab27A, and Rab27B reduces exosome secre-

tion, with Rab27A and Rab27B having the largest effects

[6]. Rab27A regulates the size of MVBs, whereas Rab27B

controls their cellular localization [6]. The role of

Rab27A/B in exosome release has been confirmed in

many additional cancer cell types [6, 44, 56, 59, 63, 67,

75, 76]. MVBs containing Rab27A are secreted at inva-

dopodia sites [56] and Rab27A in conjunction with cor-

tactin and coronin 1b acts to control stability of MVB

docking sites [76] allowing for exosome secretion (Fig. 3).

Consequently, Rab27A and exosome secretion are in-

trinsically linked to cancer cell invasion. In addition,

knockdown of Rab27A and Rab27B is associated with

increased accumulation of tumor-suppressive miRNA

within bladder cancer cells, suggesting the secretion of

tumor-suppresive miRNA through exosomes may be

critical for tumor progression [63]. Knockdown of

Rab27A in metastatic breast cancer cells (4 T1) reduces

primary tumor growth and metastasis, but has no effect

on nonmetastatic breast cancer (TS/A) [44]. Loss of

Rab27A also reduces lung metastasis in melanoma, likely

through reducing the recruitment of bone-marrow de-

rived cells in the lung [59].

In addition to regulating tumor cell-intrinsic properties,

Rab27A/B are also involved in the exchange of exosomes

between different cells within the tumor microenviron-

ment. Genetic deletion of both Rab27A and Rab27B in

head and neck squamous cell carcinoma cells reduced

exosome-mediated induction of innervation both in vitro

and in vivo [67]. Exosome secretion by macrophages is

also regulated by Rab27A/B [3]. While the function of

Rab27A and Rab27B in exosome release has been estab-

lished in a number of models, Rab27A has additional

exosome-independent roles in tumor progression [44].

Fig. 3 Mechanisms of exosome biogenesis. Multivesicular bodies

(MVBs) are formed from budding of early endosomes, which is in

part regulated by neutral sphingomyelinase 2 (nSMase2), endosomal

sorting complex required for transport (ESCRT), syntenin, ALIX,

tetraspanins, and phospholipase D2 (PLD2). In addition, vesicles

derived from the Golgi apparatus can fuse with endosomes to

be incorporated into MVBs. MVBs fuse with the plasma membrane

releasing their contents (exosomes). Membrane docking is regulated

by Rab7, Rab11, Rab27, Rab35, soluble NSF attachement protein

receptors (SNAREs), cortactin and coronin 1b
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In addition, the role of Rab27A/B in exosome secretion is

largely based on in vitro experiments, and it remains un-

clear if Rab27A/B function similarly in vivo.

Microenvironmental control of exosome release

Cancer cells exist within a complex tumor microenvir-

onment, consisting of recruited endothelial cells, fibro-

blasts, and immune cells embedded within extracellular

matrix that support tumor growth. As the tumor ex-

pands, cells compete for nutrients, oxygen, and growth

factors; consequently, tumor cells develop mechanisms

to survive under these stressful conditions. It has been

proposed that tumor cells may use exosome secretion as

a way to survive under stress [77, 78].

A hypoxic microenvironment increases the secretion

of exosomes by inducing a secretory lysosome pheno-

type [79]. Exposure of breast cancer cells to hypoxia in-

creases exosome secretion and packaging of hypoxia-

related miRNA into exosomes in a hypoxia-inducible

factor 1α (HIF-1α)-dependent manner [80]. Exosomes

secreted under hypoxic conditions also contained more

STAT3 and FAS, which can be transferred to other

tumor cells to promote tumor progression and metasta-

sis [79]. Moreover, exosomes from glioblastoma cells

cultured in hypoxia induce angiogenesis and tumor

growth, potentially through the exchange of hypoxia-re-

lated RNAs and proteins [81]. Collectively, these studies

demonstrate hypoxia increases secretion of tumor

cell-derived exosomes which influence cell behavior in

the microenvironment.

Exposure to hypoxia induces downstream metabolic

reprogramming to rely on aerobic glycolysis. Pyruvate

kinase M2 (PKM2) expression is increased in cancer

cells to promote glucose uptake and lactate production

through activation of HIF, β-catenin, STAT3, and

OCT4-mediated transcription [82]. Studies demon-

strated lung cancer cells have high levels of glycolysis,

which correlates with high levels of exosome secretion

[83]. Inhibition of glycolysis with shikonin decreases

exosome release, whereas induction of glycolysis with

tumor necrosis factor α (TNF- α) increases exosome se-

cretion [83]. Exosome release can be modulated through

the expression of PKM2, suggesting a link between cel-

lular metabolic state and exosome secretion. PKM2

functions to regulate exosome secretion through phos-

phorylation of synaptosome-associated protein 23

(SNAP-23) [83]. Additional studies demonstrated exo-

somes are transferred from cancer-associated fibroblasts

(CAFs) to modulate cancer cell metabolism to increase

glycolysis [8], potentially further modulating exosome

secretion.

Hypoxia within tumors is typically associated with in-

creased glycolysis and buildup of lactate in the extracellular

environment, which leads to an acidic microenvironment.

Intracellular pH also has an effect on the biogenesis of exo-

somes, with acidic pH (pH= 6.0) increasing exosome secre-

tion [84]. Similarly, inhibition of proton pumps reduces

exosome secretion [85]. Alkaline pH reduces exosome se-

cretion as well as exosomal protein and RNA [86]. In

addition, acidic extracellular pH has been shown to alter in-

tegrin activation. Integrins are critical regulators of exo-

some uptake [87]; thus, microenvironmental pH may also

influence exosome entry into recipient cells. While acidic

pH increases exosome release, storage in acidic solutions

(pH = 4.0) is associated with exosomal protein degradation

[88]. Although this condition is outside of the typical

physiological pH range of the tumor microenvironment

(pH 6.5–6.9), these studies suggest exosomes may have de-

creased long-term stability in acidic environments poten-

tially influencing their physiological functions.

Lack of nutrients and dysregulated protein synthesis in

cancer cells is also associated with increased protein

misfolding and endoplasmic reticulum (ER) stress [89].

Induction of endoplasmic reticulum stress increases

MVB formation and subsequent exosome release

through ER stress sensors inositol required enzyme 1

(IRE1) and PKR-like ER kinase (PERK) [90]. In chorio-

carcinoma cells, severe ER stress is associated with se-

cretion of exosomes containing DAMP molecules [91],

which may induce an inflammatory response. ER stress

also induces splicing of X-box binding protein 1 (XBP1),

which is then incorporated in exosomes [92]; thus, ER

stress and unfolded protein response may not only influ-

ence the secretion of exosomes, but also exosomal pack-

aging of biomolecules.

Calcium signaling plays critical roles in tumorigenesis,

progression and metastasis through its involvement in

transcription, cell cycle, genotoxicity, angiogenesis and

migration [93]. In addition, treatment of cells with mon-

ensin, an ionophore that acts as a Na+/H+ antiporter

and reverses the activity of the Na+/Ca2+ exchanger, in-

creases exosome release [94]. Treatment of cells with

thapsigargin, which leads to increased cytosolic Ca2+con-

centration, also increases exosome secretion in neuronal

cells [95]. Recently, studies demonstrated Munc13–4 is

upregulated in invasive cancer cells and is involved in

MVB maturation [96]. Increased Munc13–4 is associated

with increased Ca
2+

uptake and exosome release [96].

In addition to adapting to survive under lack of nutri-

ents and oxygen, tumor cells also acquire the ability to

survive after radiation and chemotherapy treatment. Ir-

radiation of prostate cancer cells increases exosome se-

cretion in a p53-dependent manner [97]. Exosomes

derived from cells following UV exposure [98] or ioniz-

ing radiation [99] are able to elicit a bystander effect in

treatment naïve cells through the exchange of RNA species.

Treatment with a phototherapeutic or doxorubicin also in-

creased exosome release [100]. Long-term treatment with
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gemcitabine induces miR-155 expression in pancreatic can-

cer cells, which is associated with increased exosome secre-

tion and transfer of chemoresistance to surrounding cells

[101]. Reduction of exosome secretion through knockdown

of miR-155 or Rab27B attenuated these phenotypes [101].

The alkylating agent melphalan induces secretion of exo-

somes, which are able to stimulate interferon-γ production

in NK cells [102]. Thus, DNA damage through radiation

and chemotherapy induces release of cancer cell exosomes

which have effects on surrounding cells.

Oncogenic regulation of exosome biogenesis

Studies have demonstrated tumor-bearing patients have

increased exosomes in circulation compared to healthy

patients [103], suggesting that tumorigenesis is associ-

ated with increased exosome secretion. Overexpression

of oncogenic EGFRvIII in glioma cells increases secre-

tion of exosomes with EGFRvIII [104]. These vesicles

can be transferred to other glioma cells lacking EGFR-

vIII, resulting in transfer of oncogenic activity [104]. In

addition, in cells that are dependent on mutant EGFR,

inhibition of EGFR with small molecule inhibitors leads

to increased secretion of exosomes with genomic DNA

[39]. Consequently, in gliomas driven by EGFR, EGFR is

intrinsically linked to the packaging and release of

exosomes.

Expression of oncogenic RAS in non-tumorigenic epi-

thelial cells increases exosome secretion [105]. These se-

creted exosomes have HRAS DNA, RNA, and protein

which can be transferred to recipient cells in a transient

manner. Similarly, inhibition of RAS signaling with a far-

nesyl transferase inhibitor (tipifarnib) or manumycin A

decreases exosome secretion in prostate cancer cells

[106]. Manumycin A-dependent exosome release suppres-

sion is associated with inhibition of the oncogenic splicing

factor hnRNP H1 in an ERK-dependent manner [66].

In contrast, restoration of liver kinase B1 (LKB1/STK11)

expression, a tumor suppressor frequently mutated or lost

in lung cancer, increases exosome secretion [107]. Restor-

ation of LKB1 is associated with decreased proliferation

but increased cell migration [107]. LKB1 has several func-

tions in nutrient sensing, p53-related pathways [108] and

Rab7 interactions [109]; thus, it is unclear which pathways

downstream of LKB1 are critical for exosome release.

Eukaryotic translation initiation factors (eIFs), includ-

ing eIF3, have been implicated in tumorigenesis [110]. In

hepatocellular carcinoma (HCC), high expression of

eIF3C is associated with poor survival. Exosome secre-

tion is increased in HCC cells expressing eIF3C to pro-

mote angiogenesis through S100A11 [64]. Inhibition of

eIF3C-dependent exosome release in vitro and in vivo

with GW4869 reverses angiogenesis and inhibits tumor

growth [64]. Together, these studies implicate oncogenic

signaling in the secretion of exosomes.

Conclusions

There is accumulating evidence that many aspects of

tumor progression regulated by cancer cells and the

tumor microenvironment can impact the exchange of

exosomes. Studies have suggested exosomal cargo can

be transferred to recipient cells; however, the fate of exo-

somes and their cargo in recipient cells remains incom-

pletely understood. Tracking of fluorescently tagged

purified exosomes with confocal microscopy demon-

strated exosomes enter cells at filipodia, are transferred

into endocytic vesicles to the endoplasmic reticulum,

and then targeted to lysosomes for degradation in fibro-

blasts [111]. Other studies showed labeled fibroblast-de-

rived exosomes colocalize with mitochondria in breast

cancer cells [31]; thus, exosomes or exosome subpopula-

tions may not be trafficked the same way in all cell types.

In addition, it remains to be determined if exosomal

cargo is trafficked similarly to the exosomal membrane

and membrane-bound proteins. Additional studies could

provide critical insight into the fate of exosomes and

how this ultimately influences recipient cell behavior.

Most of the studies implicating exosomes in cancer

progression utilize in vitro culture systems or inject exo-

somes isolated ex vivo. As a result, it is unclear if the

mechanisms identified from these studies are conserved

in vivo. Recently, rat models expressing CD63-GFP were

developed to study exosome release in vivo in the whole

organism and specifically in neural stem cells [112, 113].

Using a transgenic CD63-GFP mouse model, Manca et

al. demonstrated exosomes can be transferred to nursing

pups through milk [114]. Disparate results were found

by directly nursing mice with endogenously tagged exo-

somes compared with oral administration of labeled

purified exosomes [114], suggesting CD63 may only

label a subset of exosomes in vivo or endogenously se-

creted exosomes have a different uptake pattern com-

pared to purified exosomes. Further characterization of

exosome exchange in these models will be critical for

understanding the physiological role of exosomes.

In another study, direct exchange of exosomes be-

tween cancer cells and host cells was demonstrated

using the Cre-LoxP system [58]. Exosomes released from

cancer cells entered cells at both local and distant cells;

however, the degree of exchange was significantly lower

than what was observed in vitro, suggesting the transfer

of exosomes in vivo may not be fully recapitulated in

vitro. It remains to be determined if the mechanisms of

exosome release and entry into recipient cells identified

in vitro are also conserved in vivo. Furthermore, while

studies have utilized cells genetically engineered to ex-

press fluorescently labeled exosomes [29, 115], the use

of cell lines precludes studying exosomes in naturally de-

veloping tumors and at early stages of tumorigenesis.

Additional mouse models to track endogenous exosome
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release in vivo may clarify the precise mechanisms can-

cer cells utilize to secrete exosomes and subsequently in-

fluence tumor progression.

The small size of exosomes coupled with the lack of

techniques to study exosome exchange in distinct cell

compartments in vivo has limited our knowledge of the

functional role of exosomes in vivo. In addition, while

many potential regulators of exosome secretion have

been identified, few have been validated in vivo and it is

unclear if these regulators are universal to all cell types.

The development of additional tools to study exosome

exchange between cancer cells, immune cells, fibro-

blasts, and endothelial cells in vivo will be critical to elu-

cidate interactions within the tumor microenvironment.

The exchange of exosomes within the tumor micro-

environment and at distant sites may influence tumor

progression, metastasis and therapy response. Unravel-

ing the mechanisms regulating exosome release and fate

in recipient cells has the potential to identify novel ways

to target intercellular communication and prevent the

progression of cancer.
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