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Abstract 

Estrogen is a steroid hormone that has critical roles in reproductive development, bone homeostasis, cardiovascular 
remodeling and brain functions. However, estrogen also promotes mammary, ovarian and endometrial tumorigen-
esis. Estrogen antagonists and drugs that reduce estrogen biosynthesis have become highly successful therapeutic 
agents for breast cancer patients. The effects of estrogen are largely mediated by estrogen receptor (ER) α and ERβ, 
which are members of the nuclear receptor superfamily of transcription factors. The mechanisms underlying the aber-
rant expression of ER in breast cancer and other types of human tumors are complex, involving considerable alterna-
tive splicing of ERα and ERβ, transcription factors, epigenetic and post-transcriptional regulation of ER expression. 
Elucidation of mechanisms for ER expression may not only help understand cancer progression and evolution, but 
also shed light on overcoming endocrine therapy resistance. Herein, we review the complex mechanisms for regulat-
ing ER expression in human cancer.

Keywords: Cancer, Estrogen receptor, Transcription, Epigenetic modification

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background

Estrogens are steroidal hormones that function as the pri-

mary female sex hormone. �ere are three major forms of 

estrogen, namely estrone (E1), estradiol (E2) and estriol 

(E3). Estradiol (E2) is the predominant estrogen in non-

pregnant females, while estrone and estriol are primarily 

produced during pregnancy and following the onset of 

menopause [1], respectively. 17-β-estradiol is the primary 

estrogen from menarche to menopause [2]. All estro-

gens are produced from androgens through actions of 

enzymes such as aromatase [3]. Follicle-stimulating hor-

mone and luteinizing hormone stimulate the synthesis 

of estrogen in the ovaries [4]. However, some estrogens 

are also produced in smaller amounts by other tissues 

such as the liver, adrenal glands, and mammary gland 

[5]. Previous studies suggest that estrogen is associated 

with mammary tumorigenesis, ovarian and endometrial 

carcinogenesis [6]. Also, mounting evidence demonstrate 

that estrogen and its target gne progesterone receptor 

(PR) play critical roles in regulatiing breast cancer pro-

gression and cancer stem cell fate [7, 8]. However, estro-

gen may have anti-cancer effects in some organs such as 

the liver and colon, whilst more studies are needed to 

clarify this argument and better understand the mecha-

nisms [9–12].

�e biological effects of estrogen are mostly mediated 

by its binding and activation of ERα and ERβ, which are 

members of the nuclear receptor superfamily of tran-

scription factors that are characterized by highly con-

served DNA- and ligand-binding domains [3, 13]. �e 

DNA binding domain, which is extremely well conserved 

between ERα and ERβ (97% homology), contains two 

functionally distinct zinc finger motifs that are responsi-

ble for specific DNA binding, as well as mediating recep-

tor dimerization [3]. �e unliganded ER has been shown 

to be present in a cytosolic complex with hsp90 and asso-

ciated proteins, with ligand binding allowing dissociation 

from the hsp90 complex, receptor dimerisation, nuclear 

localisation and binding to estrogen response elements 

(ERE, 5′-AGG TCA nnnTGA CCT -3′) in promoters of 

estrogen-regulated genes [14, 15]. Genome-wide chro-

matin immunoprecipitation studies have confirmed that 

the majority of ER-binding sites in estrogen responsive 
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genes conform well to this consensus sequence [16]. 

While ERα and ERβ can bind to most ERE identically, the 

differences in ERα and ERβ may lead to tethering differ-

ential transcription factors and then modulating different 

target genes [17, 18]. �us, the activation of ERα or ERβ 

can produce both unique and overlapping effects.

ERα has also been shown to modulate gene transcrip-

tion through heterodimerizing with other transcription 

factors such as activating protein 1 (AP1) and nuclear 

factor kappa-light-chain-enhancer of activated B cells 

(NF-kB) [19, 20]. �ere is a large profile of estrogen-

responsive genes, including pS2, cathepsin D, c-fos, 

c-jun, c-myc, TGF-α, retinoic acid receptor α1, efp, pro-

gesterone receptor (PR), insulin-like growth factor 1 

(IGF1) [21]. Many of these ER-regulated genes, including 

IGF1, cyclin D1, c-myc, and efp, are important for cell 

proliferation and survival. C-myc is a bona-fide oncogene 

that is amplified or overexpressed in a variety of human 

tumors [22]. Efp is an ubiquitin ligase that promotes 

proteasomal degradation of 14-3-3 sigma thereby stimu-

lating cellular proliferation [23]. While PR is an estrogen-

responsive gene, it may antagonize ERα action to inhibit 

tumor growth, paticulary through interating with RNA 

polymerase III and inhibiting tRNA transcription [24].

Notably, a pool of ERα are located in the plasma mem-

brane and cytoplasm [25], where it binds to diverse 

membrane or cytoplasmic signaling molecules such as 

the p85 regulatory subunit of class I phosphoinositide 

3-kinase, mitogen-activated protein kinase (MAPK) 

and Src [26, 27]. Activation of these signal transduction 

pathways by estrogen initiates cell survival and prolif-

eration signals. Additionally, these signaling molecules 

are able to phosphorylate the ERα and its co-regulators 

to augment nuclear ERα signaling [28]. �e genomic and 

non-genomic actions of ERα play a crucial role in breast 

epithelial cell proliferation and survival, as well as mam-

mary tumorigenesis [28]. �e purpose of this review is to 

decipher the complex mechanisms underlying the abber-

ant expression of ERα and ERβ in human cancer.

Expression of ER in normal tissues

�e human ERα and ERβ cDNA were cloned in 1985 and 

1986, respectively [29, 30]. In human mammary gland, 

ERα positive cells are present in ducts and lobules, but 

not in stromal cells. ERα expression is largely hetero-

geneous within different areas of breast tissue. Only a 

small fraction of epithelial cells in ducts and lobules are 

ERα-positive [31]. �e ERα levels in mammary gland are 

affected by menstrual cycle, with more ERα-positive cells 

in the follicle stage of the cycle [32]. ERα-positive epithe-

lial cells may promote proliferation of surrounding ERα-

negative cells, probably through secretion of paracrine 

factors [33]. While ERα is expressed in luminal epithelial 

cells but not in the stroma, ERβ is present in luminal, 

myoepithelial and stromal cells [7]. Depletion of ERα 

leads to failure to initiate the pre- and postpubertal stages 

of mammary gland growth, as well as pregancy-induced 

maturation [34]. ERβ knockout, however, has little effects 

on mammary gland development [35]. In addition, ERα 

expression is also detectable in endometrium and ovary. 

ERα knockout severely disrupts sexual maturation of the 

whole reproductive tract [36]. ERβ knockout, however, 

predominantly disrupts the maturation of ovarian func-

tion [37].

ERα and ERβ are both expressed in other cell types, 

though at lower levels than those found in reproduc-

tive tissues. Myeloid and lymphoid progenitor cells, 

mature lymphocytes, and neutrophils express ERα, ERβ, 

or both receptors [38]. Although 17-β-estradiol inhib-

its T and B cell development, it enhances B cell func-

tion in ERα-dependent manner, involving both genomic 

and non-genomic ER signaling in B lymphocytes [39, 

40]. Moreover, the brain of both sexes is a major target 

of estradiol and a site of estrogen synthesis [41, 42]. ERβ 

is a dominant ER subtype in the adult cerebellum. ERβ 

expression was detected in Golgi type neurons, Purkinje 

cells, and basket cells in the adult cerebellum [43]. High 

levels of ERα expression are also found in the hypothal-

amus, with particularly elevated expression within the 

medial preoptic area, as well as the amygdala and ven-

tral medial hypothalamus [44]. Estrogen and its recep-

tors may improve memory and social behaviors, regulate 

brain lipid metabolism and prevent cortical damage fol-

lowing an ischemic episode [45–47]. In addition, estro-

gen and ER are important for bone homeostasis, hepatic 

lipid metabolism and reverse cholesterol transport [48, 

49]. While the liver predominatly expresses ERα, the gas-

tointestinal tract and the lung exclusively harbour ERβ 

[50]. Moreover, both ERα and ERβ are expressed in plate-

lets [51]. An estrogen analogue is able to induce platelets 

apoptosis and autophagy [52]. �erefore, ER is a vital 

hormone receptor for human health.

Expression of ER in human tumors

Based on the ER status, breast tumors can be classified as 

ER-positive and ER-negative. About 75% of breast cancer 

cases are ERα positive at diagnosis [53]. Luminal A and 

basal subtypes are two major subtypes of human breast 

cancer. ERα is more frequently expressed in luminal A 

tumors than in basal tumors [54]. ERα-positive cases 

are not only responsive to endocrine therapies, but also 

sensitive to CDK4/6 inhibitors [55, 56]. �us, ER positiv-

ity may be associated with a better prognosis [57]. ERα-

negative tumors, on the other hand, are more aggressive 

and metastatic [58]. Importantly, ERα expression in 

breast cancer is dynamic and reversible. About 50% of 
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patients with ERα-positive primary breast tumors that 

relapse after adjuvant endocrine therapy have recurrent 

tumors in which ERα expression is lost [59]. �e ERα-

negative and human epidermal growth factor receptor 2 

(HER2)-positive breast cancer can be treated by HER2-

targeting agents [60]. Some ERα-negative breast tumors 

that are treated with growth factor receptor inhibitors 

may reexpress ERα and respond to endocrine therapy 

[61]. Except for ERα, various ERβ isoforms are expressed 

in breast cancer. Both ERβ1 and ERβ2/cx repress the 

transcriptional activity of ERα [62].

In general, ERα and ERβ differentially contribute to car-

cinogenesis and tumor progression with ERα as an onco-

gene and ERβ as a tumor suppressor. However, some ERβ 

isoforms, such as ERβ5, may act as oncogene [63]. Stud-

ies on the distribution of estrogen receptor (ER) subtypes 

in ovarian tumors demonstrated that 40–60% of ovarian 

cancers express ERα, especially in serous tumors and in 

metastasis [64, 65]. However, less than 20% of patients 

(ranging from 7 to 18%) respond clinically to anti-estro-

gen treatment [66]. ERβ expression, however, is sig-

nificantly higher in normal ovary tissues compared with 

ovarian carcinoma [67]. Advanced colon cancer is asso-

ciated with a loss of ERβ, the predominant ER in colon 

tissue [11]. ERβ specific agonists have anti-cancer effects 

on colon cancer [12]. In addition, estrogen increases the 

risk of endometrial carcinoma [64]. It appears that ERα is 

more frequently expressed in lower grade of endometrial 

carcinoma [68]. ERα expression in endometrial carci-

noma is inversely associated with lymph node metastasis 

[69].

Previous study demonstrated that both ERα and 

ERβ  were overexpressed in a proportion of hepatitis C 

virus (HCV)-related hepatocellular carcinoma (HCC) 

[70]. However, another study shows that the expression 

of ERα and ERβ were lower in HCC tissues than in nor-

mal liver tissues [71]. �e expression of ERα was lower 

in HCC with portal vein tumor thrombus (PVTT) than 

those without PVTT, suggesting that ERα-positive HCC 

is less aggressive [72]. In addition, a specific isoform of 

ERα, ERα-36, is overexpressed in HCC [73]. Estrogen 

stimulates HCC cells growth through ERα-36 [74]. �ere-

fore, variance in ERα subtypes and isoforms may dictate 

the response of HCC to estrogen.

Alternative splicing of ER

Alternatively spliced ERα mRNA has been detected in 

both normal and cancerous tissues [71, 75]. Variances 

in ERα transcripts may lead to loss of ligand-dependent 

transactivation activity, gain of ligand-independent trans-

activation activity, and differential response to tamoxifen 

[76]. �e most characterized isoform of ERα is a 66-kDa 

protein encoded by a 6.6-kb mRNA with eight exons [76]. 

�ere are six human ERα mRNA isoforms that encode 

the same 66-kDa protein but differ in their 5′ untrans-

lated region. Moreover, other variant isoforms of ERα 

mRNA that encode different proteins from the 66-kDa 

protein can occur in the presence or absence of wild-

type ERα transcript (Fig. 1a). �e variance in ERα mRNA 

may be attributed to frame-shift mutations or alternative 

splicing [77]. A genomic rearrangement in which ERα 

exons 6 and 7, which encode part of the ligand-binding 

domain of ERα, are duplicated in an in–frame fashion 

results in an ERα mRNA that can be translated into a 

80  kDa ERα [78]. In addition, a 46-kDa amino-terminal 

truncated form of ERα, ERα-46, has been identified in 

endothelial cells and breast cancer cells [75]. ERα-46 is 

encoded by an ERα transcript that lacks the first exon 

of the ERα gene [79]. �e high monility group A protein 

1a (HMGA1a) induces alternative slicing of ERα thereby 

increasing ERα-46 expresison and reducing tamoxifen 

sensitivity in breast cancer cells [80]. Mechanistically, 

HMGA1 traps U1 snRNP at the 5′ splice site of exon 1 

in ERα gene thereby inducing alternative splicing [81]. 

Moreover, some normal or cancer tissues may express 

the ERα variant that is lack of exon 7 [82]. While the 

splicing factor HTRA2-β1 is responsible for ERα exon 

7 inclusion, heterogeneous nuclear ribonucleoprotein 

(hnRNP) G induces exon 7 skipping and then promotes 

the generation of the exon 7-skipping isoform of ERα 

[83]. In addition, a 36-kDa spliced variant of ERα, ERα-

36, has been cloned. ERα-36 is defective of exons 1, 7 and 

8, which encode transcriptional activation domains AF1 

and AF2 [73]. Both ERα-46 and ERα-36 are located in 

the plasma membrane, cytosol, and nucleus. ERα-46 and 

ERα-36 can mediate, at least in part, the membrane-initi-

ated estrogen-dependent activation of mitogenic signal-

ing pathways [27]. ERα-36 also negatively regulates the 

transactivation activity of ERα-66 and ERβ [84]. Finally, 

overexpression of the nuclear protein E3-3 (NPE3-3) 

promotes the generation of another alternatively spliced 

variant of ERα, ERαV, which contains only exons 1, 2, 7 

and 8, and encodes a 37-kDa ERα [85]. Notably, NPE3-3 

interacts with multiple splicing factors, including serine/

arginine-rich protein (SRp)-30c, SRp40, and splicing fac-

tor SC-35 [85].

Variant isoforms of ERβ have also been identified in 

both normal and cancerous tissues (Fig.  1b). Alterna-

tive splicing of exon 8 in the ERβ gene results in five ERβ 

isoforms (ERβ1, ERβ2, ERβ3, ERβ4 and ERβ5) [86]. �e 

originally cloned ERβ transcript is termed as ERβ1, which 

is the only isoform that is fully functional. �e levels of 

ERβ1 are low in many tissues, while ERβ2 (also known 

as ERβcx) is expressed in many tissues and aggressive 

cancer [87–91]. ERβ4 and ERβ5, however, are predomi-

nantly expressed in the testis and placenta, respectively 
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[90]. Both ERβ4 and ERβ5 bind to promoter sequences 

of DNA but do not bind estrogen. ERβ2, ERβ4 and ERβ5 

can heterodimerize with ERα and negatively regulate its 

transactivation activity [91]. ERβ1 overexpression is asso-

ciated with better survival in women with breast cancer 

[92, 93]. Cytoplasmic expression of ERβ2 is associated 

with poor overall survival in patients with breast cancer 

and serous ovarian carcinoma [94, 95]. While ERβ1 has 

tumor suppressive effects on glioblastoma, ERβ5 exhibits 

oncogenic effects on this type of cancer [62]. Moreover, 

ERβ5 is associated with poor outcome in HER2-positive 

and triple-negative breast cancer patients [96]. Taken 

together, it appears that the ERβ isoforms have different 

roles in tumorigenesis. Identification of the relative lev-

els of ERβ isoforms may help predict the prognosis in 

cancer patients. �e mechanisms underlying the alter-

native splicing of ERβ remains largely unknown. �e 

RNA-binding protein Nova1 can bind to the consensus 

sequences in the ERβ pre-mRNA transcript and then 

promote exon exclusion of the ERβ2-specific nucleotide 

sequence, which in turn abolishs ERβ2 mRNA expression 

but increases ERβ1 mRNA expression [97].

Transcriptional regulation of ER expression

Transcription factors that regulate ER expression

�e human ERα gene spans approximately 300  kb of 

chromosome 6, including the 140  kb containing the 

eight protein-coding exons. Since 1988, intensive efforts 

have been taken to identify human ERα promoters. �e 

regulation of ERα transcription is controlled by multiple 

promoters. So far, at least nine promoters have been dis-

covered upstream of the translation start site of human 

ERα. A unified nomenclature for human ERα promoters 

was suggested by Gannon et  al. [98]. �e promoters of 

Fig. 1 The major ERα and ERβ isoforms. a There are three major isoforms of ERα, including ERα-66, ERα-46 and ERα36. ERα-36 differs with ERα-46 
in the C-termini. b ERβ has five major isoforms, namely ERβ1, ERβ2, ERβ3, ERβ4 and ERβ5. AF1 activation function 1, AF2 activation function 2, DBD 
DNA-binding domain, LBD ligand-binding domain
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ERα contain multiple transcription factors-binding sites. 

�e availability of these transcription factors may dictate 

the tissue-specific or context-dependent expression of 

ERα (Fig. 2a).

Previous studies demonstrated that estrogen recep-

tor promoter B associated factor 1 (ERBF-1) is critical 

for the transcription activity of a distal promoter (pro-

moter B) in ERα-positive breast cancer cells [99]. ERBF-1 

is exclusively expressed in cells expressing ERα mRNA 

transcribed from promoter B and plays an important role 

in the expression of the ERα gene in breast cancer [100]. 

In addition, the transcription factor AP2 interacts with 

cis-regulatory elements via formation of dimers to regu-

late target gene expression. ERα expression is associated 

with AP2 activity in human breast and endometrial can-

cer [101]. �e AP2 family proteins are recognized as key 

regulators in the development and progression of breast 

and endometrial cancer [102]. Both AP2α and AP2γ can 

trans-activate the human ERα promoter [100]. AP2γ 

recognizes a region in ERα promoter containing the 

sequence CCC TGC GGGG thereby inducing changes in 

the chromatin structure of ERα promoter and stimulating 

ERα transcription [103, 104].

�e Forkhead box protein FOXO3a, which can be inac-

tivated by Akt, is a positive regulator of ERα gene tran-

scription [105]. However, FOXO3a interacts with ERα 

and ERβ proteins and inhibits ligand-dependent ER sign-

aling and tumorigenesis [106]. FOXM1, another forkhead 

transcription factor, also regulates ERα transcription. 

FOXM1 activates the transcriptional activity of human 

ERα promoter primarily through two closely located 

forkhead response elements located at the proximal 

region of the ER promoter [107]. Reciprocally, FOXM1 

protein and mRNA expression is regulated by estrogen, 

tamoxifen and fulvestrant in breast carcinoma. Depletion 

of ERα in MCF-7 cells down-regulates FOXM1 expres-

sion [108]. Moreover, FOXM1 and ERα can simultane-

ously bind to the same genomic sites and stimulate ERα 

transcriptional activity [109]. �ese finding suggest that 

ERα and FOXM1 may be two key components within a 

positive cross-regulatory loop.

�e GATA proteins are a family of zinc finger DNA 

binding proteins that recognize the consensus motif T/A 

GATA A/G [110]. GATA-3 is highly expressed in T lym-

phoid cells and is a master regulator of immune cell func-

tion [111]. In the mammary gland, GATA-3 is expressed 

only by the epithelium and its expression increases dur-

ing early pregnancy [111]. GATA-3 is an essential regu-

lator of mammary gland morphogenesis and luminal cell 

differentiation [112]. �e expression of GATA-3 is tightly 

correlated with ERα in human breast carcinoma [113]. 

GATA-3 binds to two cis-regulatory elements located 

Fig. 2 Mechanisms for regulating ERα and ERβ expression. The expression of ERα (a) and ERβ (b) is regulated by transcription factors (TFs), DNA 
methylation, histone modification, RNA-binding proteins and miRNA
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within the ERα gene and stimulates ERα transcription 

[114].

While there are many transcription factors that posi-

tivily regulate ERα expression, little is known about the 

negative regulators of ERα transcription. �e zinc finger 

repressor B-lymphocyte-induced maturation protein 

(BLIMP1) is able to bind to ERα promoter and inhibit ER 

transcription [115]. In addition, the transcription factor 

NF-kB can indirectly repress ERα transcription through 

inducing the expression of BLIMP1 and the Enhancer of 

Zeste Homolog2 (EZH2), which negatively regulates ERα 

transcription by inducing the di- and tri-methylation of 

histone 3 residue 27 [20, 115]. However, NF-kB enhances 

the recruitment of ERα to target DNA and increases the 

transcriptional activity of ERα [116]. �us, the levels of 

ERα may be not always proportional to its activity.

�ere are several transcription factors that regulate 

ERβ transcription (Fig.  2b). �e transcription factors 

c-jun and CREB can bind to ERβ promoter and promote 

ERβ transcription [117]. In addition, AP2α and AP2γ, 

two transcription factors that regulate ERα transcrip-

tion, bind to ERβ promoter and stimulate ERβ transcrip-

tion [118]. An evolutionally conserved E-box motif (CAC 

GTG ) has been identified in the ERβ promoter. Tran-

scription factors containing the basic-helix-loop-helix 

(bHLH) protein structural motif typically bind to E-boxes 

or related variant sequences and enhance transcription 

of the downstream gene [119]. CLOCK and BMAL1 are 

members of the bHLH-PAS family of transcription fac-

tors that bind to E-box motifs and induce the transcrip-

tion of target genes [120]. Both CLOCK and BMAL1 

are positive set of components in an envolutionarily 

conserved feedback loop that controls the oscillation 

of circadian clock [120]. CLOCK-BMAL1 induces ERβ 

transcription via the E-box motif, whereas it does not 

regulate ERβ mRNA levels [121].

Epigenetic regulation of ER expression

ER promoter methylation

Gene expression may be silenced by methylation of a 

cytosine- and guanine-rich area, termed CpG island, 

in the promoter of the gene [122]. Methylation of CpG 

islands has been shown to inhibit transcription by pre-

venting the binding of transcription factors to the pro-

moter or by stabilizing structural changes in chromatin 

that prevent transcription [123]. �e absence of ERα gene 

expression in ERα-negative breast cancer cells is associ-

ated with abnormal methylation in the CpG islands of 

multipe promoters of the ERα gene [124, 125]. Mecha-

nistically, methylation of ERα promotet may prevent the 

recruitment of transcription factor such as AP2. In addi-

tion, ZEB1 can induce ERα promoter methylation, down-

regulate ERα expression and promote anti-estrogen 

resistance in breast cancer [126]. Treatment of ERα 

negative human breast cancer cells with demethylating 

agents can induce partial demethylation of the ERα CpG 

islands and reactivate ERα gene expression [127]. Inhibi-

tion of DNMT1 by antisense oligonucleotides also caused 

ERα gene re-expression and the restoration of estrogen 

responsiveness in ERα negative breast cancer cells [128]. 

Demethylation of promoter C region in the ERα gene is 

in part responsible for the enhanced expression of ERα 

gene in long-term estrogen deprived MCF7 cells [129].

�e expression of ERβ is also regulated by promoter 

methylation. Two promoters, promoter 0K and 0N, con-

trol the transcription of ER-β [130]. �e lack of ERβ1, 

ERβ2 and ERβ4 transcription in some breast, ovarian and 

prostate cancer tissues and cell lines may be attributed 

to methylation of CpG sites in the promoter 0N [131]. 

In contrast, the 0K promoter is demethylated in malig-

nant breast and ovarian cancer cells, as well as in normal 

breast and ovarian epithelial cells [132, 133]. Hence, ERβ 

promoter 0N methylation may be a target for manipulat-

ing ERβ expression.

Histone modi�cation and ER transcription

Gene transcription is also regulated by chromatin 

remodeling. �e so-called histone code is important for 

dynamic regulation of chromatin assembly and gene 

transcription [122]. Chromatin structure is modulated by 

histone phosphorylation, acetylation, and methylation. 

Histone acetyltransferases (HAT) transfer an acetyl moi-

ety to lysine residue on histones, leading to neutraliza-

tion of the positive charge, reduced affinity of histone for 

DNA, and the transformation of a tight-coiled inactive 

chromatin structure into a loose, transcriptionally active 

one [134]. Histone acetylation also plays a role in ER 

expression. Treatment of ERα negative breast cancer cells 

with histone deacetylase (HDAC) inhibitors can restore 

ERα transcription [135]. Moreover, combination of DNA 

demethylating agents and HDAC inhibitors can induce 

ERα expression to more extent than treatment of ERα 

negative breast cancer cells with these agents alone [136]. 

Moreover, ERα expression is regulated by histone meth-

ylation in ERα enhancers. �e H3K4 methyltransferase 

KMT2C up-regulates ERα through regulating H3K4me1 

and H3K27ac at ERα enhancers [137]. Regulation of both 

enhancers and promoters may synergistically affect ERα 

transcription.

Posttranscriptional regulation of ER expression

Transcription of the ERα gene gives rise to an mRNA 

that is 4.3 kb long and contains an extensive 3′ untrans-

lated region (UTR) that is three-fold longer than its open 

reading frame [76]. �e ERα 3′-UTR is known to con-

tain several regulatory elements, including long tracts of 
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AU-rich sequence and 13 copies of AUUUA [138]. AU-

rich elements may direct mRNA destablization through 

mechanisms involving polyadenylase tail digestion and 

distributive deadenylation [139, 140]. Similar to AU rich 

elements in the 3′-UTR of other transcripts, the AU-rich 

elements in the 3′-UTR of ERα mRNA play critical roles 

in ERα mRNA destablization [137]. AUFp45 binds ERα 

mRNA and increase its stability by protecting it from 

RNAases [141]. In addition, the RNA-binding protein 

HuR plays a critical role in stablizing ERα mRNA [142]. It 

remains to know if there are other RNA-binding proteins 

that regulate the stability of ERα mRNA.

MicroRNAs (miRNAs) are small non-coding RNA that 

regulates gene expression at posttranscripton or trans-

lational level [143]. Both ERα and ERβ expression are 

regulated by miRNAs [144]. �e expression of miRNA-

206 is increased in ERα-negative tumors and it directly 

targets ERα by base pairing to the 3′-untranslated region 

of the ERα mRNA [145, 146]. miR-22, miR-130a, miR-

17/92, miR-145 and miR-206 also directly target ERα 

mRNA and inhibits its expression [147, 148]. In addi-

tion, miR-27a indirectly regulates ERα expression by 

targeting ZBTB10, a repressor of specificity protein that 

regulates ERα expression [149]. Interestingly, some of 

the ERα-targeting miRNAs are also regulated by ERα. 

For example, ERα agonists downregulate miR-22, miR-

206, miR-221, and miR-222 expression [150]. Moreover, 

miR-92 inhibits ERβ1 expression by direct targeting the 

3′-untranslated region of the ERβ mRNA [151]. Cer-

tainly, there will be more ERβ-targeting miRNAs that 

may be uncovered in future studies. Furthermore, both 

ERα and ERβ regulate the expression of multiple miRNAs 

[152–156]. Because one miRNA is able to regulate many 

genes, ERα and ERβ may link multiple miRNAs to regu-

late the expression of a large pool of genes.

Concluding remarks

In light of the critical roles of estrogen receptors signaling 

in diverse cellular processes and development, it is rea-

sonable that the expression of ER and the activity of ER 

must be tightly regulated. Deregulation of ER is involved 

in tumorigenesis in multiple organ sites, including breast, 

ovary, endometrium and colon. ER expression can be 

regulated at multiple levels. Dynamic expression of ER is 

also a feature of human breast cancer. Even in ER-posi-

tive breast tumors, the expression of ER is not always 

permanent. Progression from an ER-positive phenotype 

to an ER-negative phenotype typically involves the con-

stitutive activation of growth-promoting signals, thereby 

leading to a loss of estrogen dependence and resistance 

to anti-estrogens. �is increased activation of growth 

factor receptors correlates with increased MAPK activity 

[156, 157]. Abrogation of MAPK activity can reverse the 

downregulation of ERα by growth factor signaling and 

restore its activity [158].

�e detection of ERα expression in breast cancer is a 

routine practice in clinical setting. Given that there are 

multiple isoforms of ERα with different localization and 

functions, it may be necessary to discriminate which iso-

form is expressed in human breast cancer specimens. 

Moreover, the expression of ERβ isoforms should be 

detected. Detection of these isoforms may not only guide 

endocine therapy and/or other emerging therapeutics for 

breast cancer [159], but also help better judge the prog-

mosis of cancer patients. Except for the levels of ER, the 

activity of ER may be more critical for the sensitivity to 

endocine therapy. �e levels of estrogen responsive genes 

may reflect, at least in part, the activity of ER in human 

breast cancer. Currently, immunohistochemical analysis 

of PR positivity in human breast cancer is routine proce-

dure in the clinic. Other estrogen responsive genes may 

also be detected to strenghten this facet.

Since ERα-negative breast tumors are less likely to 

be responsive to endocrine therapy, restoration of ERα 

expression could allow endocrine therapy to be effective 

in a subset of ERα-negative breast cancer. After reviewing 

the mechanisms underlying the regulation of ER expres-

sion, it is obvious that ER expression can be restored by 

multiple agents, including signal transduction inhibi-

tors, monoclonal antibodies, DNA-demethylating agents 

or HDAC inhibitors. In addition, inhibition of Src can 

enhance ERα expression and anti-estrogen response by 

preventing ERα proteolysis [160]. Conversion of ERα-

negative tumors to ERα-positive phenotype may allow 

an endocrine therapy that would prevent tumor progres-

sion. Whether or not these approaches can achieve clini-

cal success remains to be determined.
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