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A discussion of nonlinear dielectric phenomena and their relationship to free-energy transduction in 
biological systems is given. It transpires that the conditions required for observing the nonlinear 
dielectric behavior of biological membranes can be expected under easily realizable circumstances, 
and may potentially form the basis for powerful techniques for studying membrane and other proteins 
in their native environment. 

We develop a nonlinear dielectric theory, which generalizes the dielectric permittivity to include 
real and imaginary parts of harmonics of the fundamental frequency. An analytical relationship is 
derived between these permittivities and the kinetic constants of a model protein. Of special relevance 
is the occurrence of higher harmonics in the dielectric displacement even when the exciting electric 
field consists of a single sinusoidal frequency. This is manifested by the analytical result that the 
corresponding higher order permittivities are in general not equal to zero, as well as by the results of a 
calculation of the Fourier spectrum of the dielectric displacement of a membrane enzyme subjected to 
a sinusoidal electric field. Interestingly, the Fourier spectrum of the dielectric displacement betrays 
kinetic characteristics of the enzyme. 

In the nonlinear domain discussed here, additional free-energy transduction from the field to the 
reaction catalyzed by the enzyme is possible. A study of the nonlinear dielectric behavior of biological 
systems (“2-dimensional dielectric spectroscopy”) could serve to account for the fact that free energy 
may be harvested by enzymes (with a concomitant change in their activities) from energetically rather 
modest exogenous electrical fields. 

1. INTRODUCTION 

In the accompanying paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11, we described some linear, passive electrical 
properties of biological systems, and argued that it might be fruitful, in order 
better to understand the relationship between dielectric spectra and the ability of 
enzymes to transduce free energy from electrical fields, to consider the nonlinear 
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dielectric behavior of real, biological systems, and exactly how this differed from 
that of the rather simple model systems usually considered. We started by giving 
an example of lateral protein motions in spherical shell bilayers. 

In this paper we shall try to examine some of the properties to be expected of 
proteins, and more specifically of enzymes, if one describes their behavior with 
the more general nonlinear equations. This behavior will include nonlinear 
dielectric phenomena, such as interfrequency crossing, as well as electrochemical 
phenomena such as the transduction of free energy from the nonstationary 
electric field to chemical or transport work. Rather than on reviewing existing 
literature, we shall focus on principles responsible for these phenomena. 

Our ultimate purpose is to formulate an amalgam of dielectric theory, enzyme 
kinetics and (Mosaic) non equilibrium thermodynamics. We intend this amalgam 
to be optimal for describing interactions between the catalytic cycles of enzymes 
and dynamic electric fields. The availability of such a theory should allow us to 
bridge the existing gap between dielectrics on the one hand and biochemistry on 
the other. Such a bridge may then enrich biological dielectrics with the spectrum 
of interesting properties of enzymes and provide (membrane) biochemistry with a 
tailored tool; a new form of dielectric spectroscopy. 

2. NONLINEAR DIELECTRIC BEHAVIOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1. 

In order better to understand how nonlinear effects arise and under what 
circumstance they are apt to lead to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmeasurable deviations from predictions based 
on linear response theory, let us specify a simple enzyme model. We imagine a 
planar bilayer membrane (Figure 1) which is sufficiently large to accommodate 
many molecules of a particular protein, where we assume that the average 
distance between proteins is great enough that protein-protein interactions may 
be ignored. Furthermore, for the sake of simplicity we take it that all protein 
molecules are oriented in the same direction. Each individual protein can exist in 
two electrically distinguishable conformational states (which may, as discussed 
later, be a part of an enzyme catalytic cycle) and makes stochastic transitions 
between them according to well-defined rate constants which are instantaneous 
functions of the local electric field, as shown below. 

Where nonlinear dielectric behavior begins in a model protein 

e ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC e, (1) 
It is assumed that the various configurations making up each conformation attain 
internal equilibrium on a time scale much faster than both the inverse frequency 

FIGURE 1 A bilayer membrane with an enzyme that can exist in two conformations with different 
dipole moments. 
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I1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANONLINEAR DIELECTRICS 81 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of any applied field to be considered and the relaxation time of the conforma- 
tional equilibrium itself [cf., 21. 

The imposition of an electric field shifts the chemical potential of a dipolar 
molecule, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ,  (usually denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,, but this would cause confusion with its 
dipole moment), according to the Gibbs Equation (3), which for isobaric and 
isothermal conditions is [4-71: 

(&OT,pressure = P I  dE (2) 
Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg f  is the concentration independent part of the chemical potential, and p 1  is 
the component parallel to the electric field of the partial molar macroscopic 
polarization. p i  has the dimension (charge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. distance) of dipole moment. For a 
second conformation the analogous equation applies so that: 

where 6p is the difference in partial molar polarizabilities between el and e2,  
p2-p , .  This Sp might consist solely of a difference, 6,u, in permanent dipole 
moment, which could originate from different orientations of alpha-helical 
segments between the two conformations (81 or the two conformations of the 
enzyme may also differ in the position of a charge carried by the protein. If the 
electric field is homogeneous, the difference in position is 6s and the charge is q,  
then this contributes an extra zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqSs to the difference in polarization. Further, the 
two conformations of the enzyme may have different polarizabilities a, for 
instance because the alpha-helices in one conformation can more easily orient 
relative to the field than in the other conformation. This would contribute a term 
E 6 a  to 6p.  

Equation 3 gives the change in equilibrium constant for the protein conforma- 
tional transition with a change in the electric field. Comparing the equilibrium 
constant in the presence of the electric field, KE,  to that in the absence of the 
field, KO, this equation yields: 

KE = KO exp[EGp/(RT) + EqSs/(RT) + iE26a / (RT) ]  (4) 
Only in the case that [Ebp  + qE6s + (6a/2)E2]  << RT can Equation 4 be 
approximated by the formula [9] 

(SK/K),pressure = (by + qbs + ;EGW)GE/ (RT)  = G P ~ E / ( R T )  (5 )  

For our planar bilayer system it is interesting to analyze the anticipated 
behavior of the system in response to an alternating field. Assume 6a and 6y to 
be positive. For amplitudes such that E 2 6 a  << ESP, the positive phase of the field 
will favor the right hand (e2) state in 2, while in the negative phase, the left hand 
(el) state will be favored. This represents a permanent dipole relaxation 
mechanism. If, however, E26a >> Ebp,  which would be the case at very large 
amplitudes of the field, the left hand state (el) will be more favored than at zero 
field during both positive and negative phases of the field, This situation 
represents an inducible dipole mechanism. The quadratic dependence of the 
power of the exponential term in Equation 4 on E may explain the “amplitude” 
window seen in the stimulation of active transport by an A.C. field [7]. 



D
o

w
n

lo
a

d
e

d
 B

y
: [T

h
e

 U
n

iv
e

rs
ity

 o
f M

a
n

c
h

e
s
te

r] A
t: 1

6
:5

0
 2

8
 F

e
b

ru
a

ry
 2

0
0

7
 

82 H. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. WESTERHOFF, R. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. ASTUMIAN and D. B. KELL 

In the remainder of this paper, we will consider that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIE26a/21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI(ESp + 
qE6s)l. Then, the field dependent equilibrium coefficient of Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 may be 
written in terms of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASp that is independent of the field: 

&/KO = $ = exp[ESp/(k,T)] (6) 

Thermodynamically consistent field-dependent rate coefficients for reaction 1 
may be written: 

kf(E) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkf@ (7) 

kr(E)  = k&-' (8) 

kf and k, are the forward and reverse unidirectional rate constants at zero field, 
respectively. f represents the fraction of the total dipole moment change of the 
transition expressed between state el and the transition state. The displacement 
current due to the protein conformational change is given by: 

(dp/dt)/ap = ~ / 6 p  = d(e,) /dt  = - [kf@ + kr@-l]el + k,@' 

= d(e1- eleq)/dt = - [kf@+ kr@-'](el-  e l e q )  + kfkr(@-' - @)/(kf + kr) (9) 
where el - eleq is the concentration of el minus the concentration of el that would 
be attained at equilibrium in the absence of the field. The total enzyme 
concentration el + e2 has been normalized to 1. Without loss of generality also 8p 
and (el -el,) could be normalized to 1, with peq being taken to be zero, whilst 
the rate constants are interpreted as turnover numbers. Let us first consider the 
case that the equilibrium is perturbed by an oscillating electric field re(E) = 
Eocos(S2t), with an amplitude small enough that (by a Taylor expansion of 
Equation 6) 

@ = 1 + [ fE,Sp/ (RT)]  cos(Qt) (10) 

and the analogous approximation (with 1 -f replacing f )  being valid for @ - I .  

The above Equation (9), after multiplication by Sp, then becomes: 

dp/d t  = -ap  + px - Txp 

x = [E,Sp/(RT)] cos(S2t) E X 0  cos(S2t) 

(11) 

(12) 

with the dimensionless parameter x representing the electric field dependence 

and 

Note that here, p represents a charge separation defined relative to the planar 
membrane of Figure 1, and has a definite sign even in the absence of the field. 
Thus, application of an external field can result in either an increase or decrease 
in the polarization. This is in contrast to the case of a field applied to a freely and 
rapidly orientable protein in the previous paper where the polarization always 
increased due to the field. 

In general, Equation 11 does not satisfy the conditions for ''linearity'' (cf. 
Equations 2 and 25 of the accompanying article): it forfeits condition iii of Section 



D
o

w
n

lo
a

d
e

d
 B

y
: [T

h
e

 U
n

iv
e

rs
ity

 o
f M

a
n

c
h

e
s
te

r] A
t: 1

6
:5

0
 2

8
 F

e
b

ru
a

ry
 2

0
0

7
 

I1 NONLINEAR DIELECTRICS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA83 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.3 thereof, because the rate coefficient relating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdpldt to p (i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- L Y - - ~ )  

depends on the electric field (through x ) .  Since both p and E depend on time, this 
could give rise to a cross correlation term between p and E (see below). Of 
course if x were extremely small, then all the terms depending on x in Equation 
11 would drop out, but this extreme is not of interest because the field is then 
completely without any effect. 

As discussed in the previous paper [l], the Langevin function (Equation 21 of 
Reference 1 )  is approximately linear so long as x 5 1 ,  and this is the realm 
normally taken to be describable by linear dielectric theory. With this in mind, 
there are two conditions which, if either are met, allows expressing Equation 11 
in a form analogous to Equation 2 of the accompanying paper, i.e. 

where 0, stands for the first and lower order terms in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and p. These conditions 
are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< LY or that r p  << p. Since r is typically less than or equal to LY, the first 
condition is trivially met when x << 1. We thus find that provided that the electric 
field is small enough (to the extent quite reminiscent of the extent required in 
Section 2.2 of the accompanying article), the two-state enzyme should be 
expected to obey linear dielectric theory. However, the above condition need not 
hold, even under conditions where the Langevin function (Equation 21 of the 
preceding paper [ l ] )  is given accurately by a linear approximation. 

The second condition, r p  <<PI holds if p << (Plr). The amplitude of p is not 
only field strength- but also frequency-dependent. For a given field strength, its 
DC amplitude amounts to: 

which yields the same condition as before ( x  << 1)  to insure linear behavior at low 
frequencies. At high frequencies, the polarization will not come close to its 
maximum DC value, pmax and the condition for linearity will be less stringent, 
such that r p  may be much less than 

Finally, both of the above conditions to linearize Equation (11) are trivially 
met if for any value off 

even for x -L 1. 

r =fk, + (f - i y k r  = o (18) 

and for the most natural choice, in the absence of detailed information, off = $, 
this is equivalent to k, = kr. This is precisely correct for billiard ball dipoles. For 
more complex systems, particularly involving activated chemical processes, 
Equation (18) does not necessarily hold. Then terms from the cross correlation 
between the dynamic response of the system and the applied perturbation may 
arise, even in the linear domain of the Langevin function (E,6p 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBART).  

Equation (9) allows us to investigate further when and how “linearity” may 
break down as x gets closer to 1. We do this by taking along the second order 
term of the Taylor series for 9, in addition to the first order terms shown in 
Equation (10). We find: 
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In order for Equation (19) to be reasonably approximated by the linear Equation 
(16), the terms including xp, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2,  and x2p must be negligible. As discussed above, 
this is immediately fulfilled if x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< 1. If, however, x < 1 but x = 1, a sufficient 
condition is that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkf = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, and f = 4, in which case the multipliers of xp and x 2  
become identically zero. As x <  1, the third order terms containing x2p also 
drops. This is precisely the case for spherical (billiard ball) dipoles rotating in a 
nonsaturating field, but need not in general apply to chemical reactions. 

Notice that even under conditions where the terms due to x 2  and x’p are 
negligible (e.g., i f f  = 4 whereby the multiplier of x 2  is zero irrespective of the 
values of kf and k,, and x2p <xp which is true for x < 1), the contribution of Txp 
can still be significant (greater than 25% at some time points for f = 4, kf = 1O00, 
and k, = 1). 

In the following, we will investigate more formally the phenomenology which 
may arise as a result of this cross correlation term, Txp. Our primary motivation 
is not so much that the dielectric permittivity predicted by linear dielectric theory 
may not be quite exhibited by the system, but that there will be higher harmonic 
terms in the polarization, which may be detected with an enhanced signal to noise 
ratio and may contain much mechanistic information. This, as will be discussed 
extensively later, may be particularly pertinent for studying the properties of 
membrane proteins by dielectric spectroscopy. 

2.2. 

In the accompanying article we reviewed the dielectric behavior expected for 
systems satisfying the definition of “linearity”. Here we shall examine the 
dielectric behavior to be expected of systems exhibiting significant cross correla- 
tion between the field and the polarization, yet still within the linear Langevin 
domain. First, considering the system of Figure 1, we shall deal with the case in 
which Equation (11) but not Equation (16) is a fair approximation of the system’s 
behavior. Since x =xocos(S2t) we might start out by assuming that the time- 
dependent polarization could be approximated by the result of linear dielectrics 

The effect of cross correlation between the polarization and the field 

[cf., 10, 111: 
p(t) = cos(8t + e) (20) 

then from Equation (11) the displacement current would be written: 

dp/dt = -(kf + k,)po cOS(S2t + 0) - XO cos(Qt)kfk,/(kf + k,) 

- [kff + k,(f - ~ ) ] X ~ P ~ ~ [ C O S ( ~ )  + C O S ( ~ & ~  + e)] (21) 

The appearance of the term cos(2S2t + 0) indicates that the dielectric displace- 
ment current will contain components oscillating at twice the fundamental 
frequency. Although this term is multiplied by an assumed small term, xopo, this 
phenomenon may be observable even at field amplitudes currently in use to make 
dielectric measurements, by appropriate signal averaging techniques and espe- 
cially by looking at higher harmonic frequencies. 

The above argument is illustrative but not closed: its conclusion is inconsistent 
with its premise, because the first derivative of Equation (20) does not yield the 
second harmonics following from Equation (21), i.e., Equation (20) was not a 
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definitive guess for p. We shall now try to find the true solution for p. To this 
purpose we acknowledge that (according to the Fourier theorem) the stationary 
solution of the differential Equation (11) periodic with frequency 52, can be 
written as an infinite sum of all the higher harmonics. Bold face refers to complex 

quantities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P C / E ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= P/Eo = (RT/Gp) [€,,(a) - l)] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx expCj(n - l)Qt} (22) 

(23) 

n = l  

where: 

c in Equation (22) is the concentration of the enzyme per unit volume, linking p 
(the polarization per mole) to P (the polarization per unit volume). To simplify 
the algebra, the 6,s have been formulated in terms of x rather than E. 

Equation (22) generalizes the complex permittivity [ l ]  to a set of complex 
permittivities, one for each harmonic of the polarization. E, - xo corresponds to 
the Fourier transform of the dielectric displacement. 

Equations such as Equation (11) are in principle defined only for real x and P. 
Thus, they are valid if the real parts of complex quantities x and P are inserted. 
However, since they must be valid at any time, they must be valid at both t = T 
and t = T + n / 2 8  (i.e., 90" further). If the equation is linear in x and P and if x 
and P are single harmonics, this implies that the equation must also be valid if 
the imaginary parts of x and P are inserted and hence for x and P. This is the 
basis for the use of complex functions to treat linear dielectrics. However, in the 
nonlinear equations of nonlinear dielectrics presented here, this simplification is 
no longer possible. Here the values for x and P to be inserted are the real 
components of x and P. 

x = xo  exp(jS2t) = [EoGp/(RT)] exp(j52t) 

The real component of the complex polarization P is given by: 
m 

P/(€oEo)  = {re(P)}/(EoEn) = ( € A -  1) + (24) 

The term (€6 - 1) allows for the possibility (see below) that P oscillates around a 
value different from its zero-field equilibrium value of zero. Inserting this 
expression for P and expression 12 for the real component of x into Equation 11, 
and realizing that the equality sign must hold individually for every sine and 
cosine of every harmonic, we find: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[(€A- 1) cos(n52t) + E: sin(n52t) 
n = l  

(€6 - 1) = -- :rxO(E; - I)/& 

O = nQE: + & ( E L  - I) + $XO[(E;-l - 1)(1+ 6;) + ( E L , ,  - I)] + pG;cGp/(EoRT) 

(25) 

(26) 

(27) 
and: 

where 8; equals 1 if n equals 1, else 0. These equations determine the generalized 
dielectric permittivities for the first as well as the higher harmonics in the 
polarization that results from a single component harmonic oscillation in the field. 

Equation (11) is only valid for cases where Xo << 1. For such values of xO, higher 
order permittivities will be much smaller than lower order permittivities. Thus, to 

o = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn s q ~ : ,  - 1) - (YE:: - +rxO(E:-l + 
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a good approximation, the terms and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE : + ~  may be neglected in Equations 
(26) and (27). This allows one to obtain closed expressions for the dielectric 
permit tivities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

(€; - 1) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- a 2 p c ~ p / [ ~ o ~ ~ ( d  + Q’ - ;r2x;)] (28) 

E’i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(€; - l ) / a  

( E A  - 1) = $x,(nQE:-, - a-EA-,)/(n2Q2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa’) 

E: = -$x,(nQE~-, + ae:- l ) / (n2Qz + a2) 

(29) 

(30) 

(31) 

The reader may wish to check that the presumption that the magnitudes of the 
permittivities decrease strongly with n, is retrieved; the harmonics become 
progressively less important, because the nth harmonic contains the (x0)n-’. The 
approximations may be improved by reinserting the calculated values for the 
permittivities for the E,+ ,  terms into Equations (26) and (27) and then repeating 
the above procedure. The status of the above approximation is that the relative 
error in any of the calculated permittivities is of the order of xo.  

For r = 0, Equations (28-31) describe a Debye dispersion: all permittivities 
except E :  and E;’ become equal to zero and E ;  and E’; respectively follow 
Equations (12) and (13) of the accompanying article. More importantly, these 
equations demonstrate that, unless Equation (18) applies and r is 0, there will be 
higher harmonics in the polarization induced by a single sinusoidal component 
electric field. 

Looking upon (en - 1) as a function of frequency, E(nS2) = E A - ~ E : ,  it 
corresponds to the Fourier spectrum of the polarization that results from an 
exciting electric field of single frequency 52. In Section 4.1 (cf., Figure 5) we shall 
discuss an example of such a Fourier spectrum. Here it is important to note that 
for a single frequency sinusoidal electric field, the two-state protein model 
discussed in the present section and represented by Equation ( l l ) ,  gives rise to a 
Fourier spectrum devoid of frequency components other than the exciting 
frequency line and its higher harmonics (nQ where n is a positive integer). 
Equations (28-31) demonstrate that E: and E: and hence the relative amplitudes 
and phase angles of the higher harmonics vary with (i) the kinetic properties of 
the protein (such as k,, kf, andf), (ii) the difference in dipole moment between 
the two states, (iii) the frequency of the electric field, and (iv) the amplitude of 
the electric field. 

In linear dielectric theory, mechanistic information concerning the process 
responsible for the observed polarization can only be obtained from the 
dependence of the single permittivity on the frequency of the exciting electric 
field. Investigations of nonlinear dielectric properties may yield additional 
information based on the higher harmonics in the polarization at a given 
frequency and amplitude of the exciting field. The dependence of the Fourier 
spectrum of the polarization on the amplitude of the exciting electric field is yet 
another potential source of information. As the input amplitude is increased, 
contributions from those chemical transitions (remember that simple orientational 
relaxations cannot contribute to the signal at other than the fundamental 
frequency except through cube and higher order terms in the Taylor expansion of 
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the electric field factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 )  with large dp will show up first in the second harmonic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2) spectrum, thus providing for a good selectivity for the method. This 
contrasts to the case for the fundamental frequency, where contributions from 
every physical and chemical mechanism with relaxation times shorter than the 
inverse of the frequency of the field will be seen. The selectivity obtained through 
nonlinear dielectric spectroscopy is further enhanced if the protein of interest is 
embedded in a membrane. In such a case, a large fraction of the overall potential 
drop occurs across the thin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4 nm) membrane. In such a case it may be said with 
confidence that at reasonable (<1 kV/cm) field strengths, all contribution to the 
higher harmonics of the observed dielectric Fourier spectrum will be due to 
chemical processes occurring within the membrane. 

In addition to the emergence of harmonics of the fundamental frequency, at 
the limit of Langevin linearity (i.e., the region where Equation (11) but not 
Equation (16) is valid, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEodP/(RT)  = 0.2) a number of other features appear. One 
is that the average polarization (P) = E ~ E ~ E ~  of an enzyme exposed to a 
sinusoidally oscillating exciting field (( E) = 0) may be different from that 
pertaining in the absence of the field. Concordantly, the value of (el) (i.e., the 
time average value for the probability for the protein to be in state 1) which 
satisfies the condition for stationary oscillation [e , ( t )  = e,(t + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2n/sL)] is not equal 
to the zero field equilibrium value, but is given by: 

(el) - (e,)..rofield = E o E I z o / ( C ~ P )  (32) 
with E ;  given by Equations (25) and (28). Equation (32) demonstrates that an 
oscillating electric field can drive a protein into a different average conformation. 
To the extent that proteins in different conformational states may have different 
catalytic activities, an oscillating electric field may thus affect the catalytic 
activities. 

A second consequence of this phenomenon is that during the initial stages of 
the applied sinusoidal perturbation, there will be a relaxation of the protein to a 
new “stationary state”, and superimposed on this will be the induced oscillations 
of the system. During the transient phase, which can last for a significant number 
of cycles, the time-dependent displacement current will include terms involving 
cos(Qt) exp( - t / t ) ,  where z is a constant characteristic of the fundamental 
kinetics of the system and the amplitude of the perturbation. This implies that the 
Fourier transform will include terms in addition to those arising from the 
fundamental and harmonic frequencies of the input signal. If the relaxation 
matrix of a multistate enzyme houses complex eigenvalues, then the new terms 
are liable to include frequencies of higher harmonics plus and minus the 
eigenfrequency of the enzyme. 

The latter effect may also be met under stationary-state conditions. As we 
already indicated (in the accompanying article, after deriving Equation (26) for 
the linear case), resonant behavior in the sense of a local maximum in the 
frequency dependent permittivity may arise if the relaxation matrix of the enzyme 
(M) has complex eigenvalues. In the case of linear dielectrics the “damped” 
resonance would occur if the exciting frequency would equal the eigenfrequency 
of the enzyme (the resonance would be “damped” because the eigenvalues of the 
matrix cannot be imaginary; they must have a real component). In nonlinear 
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dielectrics resonance behavior might be accompanied by Fourier components 
corresponding to frequencies equal to the fundamental frequency or one of its 
harmonics plus or minus the eigenfrequency of the enzyme. Indeed, we might 
suggest that if an autonomous membrane oscillator, such as those frequently 
found for excitatory [12] or secretory [13] cells, were to be subjected to a 
sinusoidally oscillating external field, even a stationary response oscillation could 
contain frequency components relating to sums and differences between the input 
frequency and the characteristic time constants of the system. An appropriate 
internal oscillator could consist of a single enzyme driven very far from 
equilibrium [14], or equally well could be composed of several enzymes working 
coherently. 

The above effects have arisen, even in the linear Langevin domain, due solely 
to cross correlation between the exciting field and the system response (i.e., due 
to terms xP).  At greater perturbation amplitudes than this, the non-linearity of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ 

must also be explicitly included in the equation for the displacement current 

where the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ’s are the modified Bessel coefficients [15]. Repeating the treatment 
given above, one sees that also this effect by itself will give rise to higher 
harmonics in the polarization. Even without cross correlation, energy from the 
field may appear at frequencies other than the stimulating frequency. 

It is important to note that this type of nonlinearity can occur if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 2 6 a / 2  << E 6 p  
provided that E 6 p  > ksT. Thus, non-linear dependence does not prove the 
involvement of changes in polarizability . Even a purely permanent dipole 
mechanism will display a nonlinear dependence of polarization on E when 
E d p  > ksT. 

In general the input electric field will not be a sinusoidal field of a single 
frequency. However, the Fourier theorem allows one to treat any periodic input 
electric field as a sum of a sinusoidal field of the input period plus its higher 
harmonics. If we write the input field as: 

uz 

E = C 1 ~ ~ 1  exp(jlQt) 
/=1  

the dielectric displacement may be described by: 
m m  

D = C C E , [ E O  IE,I e x p ( j W  
n = l  I=1  

(34) 

(35) 

Here E,, is the complex dielectric permittivity in the nth harmonic of the 
dielectric displacement resulting from the Ith component of the input field. lEll is 
the amplitude of the Ith harmonic component. Note that, for the dielectric 
permittivities to be independent of the amplitudes of the components of the input 
field, the superposition principle would have to hold. This is generally not so: E,, 

will depend on the Fourier spectrum of the input field. For the single component 
input field treated above, this was already the case (cf. the xo  dependencies in 
Equations (28-31)). 
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2.3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Above we have dealt with dielectric permittivity for the nonlinear case by 
defining a series of dielectric permittivities, one for each harmonic in the 
dielectric displacement. If we would have stuck to the definition of a single 
dielectric permittivity, then this permittivity would have had to become a function 
of the input field and even of time: 

Nonlinear dielectrics and the Kronig-Kramers relations 

For the same reasons as given below equation (28) in the accompanying article, 
the polarization and the electric field obey the same symmetry as in the case of 
linear dielectrics. As a consequence also zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE defined by Equation (36) and hence 
equal to the ratio between the polarization and the single frequency electric field, 
should have the symmetry property defined in Equation (28) of the previous 
article. One of the main conditions for the derivation of the Kronig-Kramers 
relationship would hence be fulfilled. However, the dependence of E as defined 
by Equation (36) on time makes the magnitude of any Kronig-Kramers type of 
integral undetermined. 

For this reason we have defined the higher-order complex permittivities in 
Equation (22). We shall now investigate whether Kronig-Kramers relations hold 
for these higher order permittivities. To investigate the symmetry properties of 
the complex permittivities, we write: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m 

conj(P(-Q)) = conJ[~,(-Q)] conj{exp[-j(n - 1)Qtl) conj[E(-Q)] (37) 

Using the fact that taking the complex conjugate and inversing the frequency of 
a periodic wave form retains the same physical process and the fact that Equation 
(37) must be satisfied for each Fourier component individually, we conclude that, 
under conditions in which Equation (22) is valid, every higher order complex 
permittivity must have the same symmetry property as the first order component, 
which has the symmetry property described by Equation (28) of the previous 
article [l]. Indeed in the specific example discussed in Section 2.2, the dielectric 
permittivities did obey this symmetry principle (cf., Equations (28-31)). Thus, 
the Kronig-Kramers relationships will hold for even in the case of nonlinear 
dielectrics. Moreover, they will hold for any of the higher order dielectric 
permittivities, for as long as the latter are analytic functions and their limit for 
infinite frequencies goes to zero. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n = l  

3. NONLINEAR EFFECTS OF DYNAMIC ELECTRIC FIELDS ON 
ENZYMES 

3.1. 

One of the main purposes of the above discussion was to serve as an introduction 
to another, though cognate, type of nonlinear behavior which is of strong 

Structural and catalytic effects of nonstationary electric fields 
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relevance to the problem of how an exogenous electrical field (where the average 
energy of interaction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp E  may be less than k,T)  can affect the kinetics of an 
enzyme [7, 9, 16-18; see also 19-21]. The following considerations hinge on the 
fact that a chemical system, when exposed to an electric field, can minimize its 
free energy by two mechanisms. The most commonly considered involves motion 
such as rotation of dipoles or electrophoresis of dipolar proteins within a spherical 
shell. The second involves chemical relaxation, in which chemical transformation 
of molecules to states of lower free energy in the field is stimulated. This second 
possibility has been discussed in the context of homogeneous systems by Schwarz 
[22]. Crucially, the return to the starting state in the absence of the field may, be 
either a back reaction or a forward reaction completing a catalytic cycle. As 
discussed for instance by Kell and Harris [19], electric fields can modulate existing 
interaction between enzymes and hence the coupling of chemical reactions. 

While dipole rotation in the homogeneous case minimizes the chemical effect, 
movement of proteinaceous dipoles in the “spherical” bilayer in cell suspensions 
could muximise the chemical effect of the field (once steady state has been 
reached) by localizing the dipolar molecules in regions of the cell surface where 
the differential interaction energy between two conformational states of a protein 
is the greatest, thus increasing the interaction between the enzymes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As discussed above, electric fields can also directly affect the rate constants for 
transitions in an enzymes catalytic cycle, this especially if the catalytic transition 
involves a conformational change of the protein in which its dipole moment 
changes. Thus an electric field can modulate the catalytic effectiveness of an 
enzyme by affecting the rate of one of its rate controlling steps. Alternatively an 
electric field can cause a redistribution of an enzyme over a conformation in 
which it is an active catalyst and a conformation in which it is much less so. 
Catalytic effects such as these can be caused by both stationary and nonstationary 
electric fields, as discussed in more detail elsewhere [17,18]. 

3.2. 

When the effect of the electric field is said to be catalytic, it is meant that the 
electric field cannot drive the reaction catalyzed by the enzyme away from 
equilibrium, and merely speeds up or slows down an enzyme-catalysed process. 
For transduction of free energy from a dynamic electric field to chemical or 
transport reactions to occur [7,16,23], the latter reactions must be driven away 
from their zero field equilibrium. Free energy absorbed from the field can then be 
stored in a metabolically useful form rather than being dissipated. The efficiency 
and rate with which energy is converted is a function of the matching between the 
frequency of the input field and fundamental kinetic coefficients of the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 181 
and therefore represents a potentially useful means for determining the dynamic 
properties of membrane enzymes. A simple physical picture of the field induced 
cycling of an enzyme is presented in Figure 2 [17]. The basic idea is that during 
the positive phase of the field, the overall relaxation from state 4 to 2, dictated 
thermodynamically by the field, proceeds initially more rapidly via state 1 than by 
state 3, while during the negative phase of the field, the net flux from state 2 to 4 
occurs mainly via state 3. Thus net clockwise flux may be driven by an oscillating 

Dynamic Field Driven Enzyme Cycling: free-energy transduction 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

out 
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

- t 

E- P - + 

+ - 
S E-  

+ - 

- + 

FIGURE 2 A four-state enzyme in a membrane that can catalyze free-energy transduction from an 
oscillating electric field into a chemical reaction. (A) The enzyme. In states 1 and 2 the negative end 
of its dipole moment points to the OUTside of the membrane, in states 3 and 4 it points to the INside. 
The transition from state 3 to state 4 is coupled to the conversion of substrate S to product P. (B) The 
effect of an oscillating electric field on the enzyme. The polarity of the field is indicated by the 0, - , 
and + on the two sides of the membrane, Time runs from top to bottom. The enzyme is in the states 
indicated by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. The arrow indicates the prevalent transition of the enzyme under the ambient field 
conditions. In the absence of an electric field it is in states 2 and 4 (these are the most stable 
conformations). As a result of the oscillating electric field the enzyme will move clockwise through its 
catalytic cycle [16,17] and thus convert S to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. In case the chemical potential of P exceeds that of S, 
free-energy transduction from the oscillating electric field to the free-energy difference between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP and 
S may occur. 

field, even against an unfavorable free energy difference between P and S ,  given 
certain characteristics of the enzyme. One important factor seems to be that the 
majority of the field dependence reside in the net rate coefficient for the forward 
process for the overall reaction step 4- 1- 2, but in the rate coefficient for the 
reverse process for the step 4+3+2.  This may be achieved either by having 
state 4 exhibit a much greater affinity for substrate on the outside than state 1 for 
substrate on the inside [MI, or by an a prior; apportionment factor f > 4 €or the 
process 4-1, and <i for 3 e 2  [24,25]. 

These concepts have also allowed [16-18, 23, 24, 261 discussion of a number of 
points in regard to energy coupling by enzymes in membranous system, in terms 
of Coulombic interactions. 

3.3. Free-energy transmission in nonlinear dielectrics 

3.3.1. General principles 

Because of the emergence of higher harmonics in nonlinear dielectrics, the 
composition of a proper energy balance sheet requires that both the fundamental 
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and harmonic frequencies and the possible exchange of free energy between them 
be taken into account. We shall limit the discussion to the stationary state, and 
first discuss the case of a single frequency sinusoidal input electric field. Using 
Equation (34) of the previous paper for the definition of the input power (W,“) 
and Equation (22) for the dielectric displacement, we find: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= c re(E) re[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeOen jn BEo exp(jn Bt)] 

m 

. 

n = l  

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe0 nB(Eo)’ cos(Bt){ el, sin(nS2t) + E:  cos(n&t)} (38) 

Again (cf. Section 2.6 of the previous paper [l]) one may distinguish two fractions 
in w,,, i.e., W,, and W,: 

n = l  

co 

w,, = E~(E,)’  c o s ( ~ t ) ~  c nek sin(nBt) (39) 
n = l  

m 

w, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA€o(E,), cos(Bt)& c ne; cos(nQt) (40) 
n = l  

If, as in the case of linear dielectrics, only the fundamental frequency occurs in 
the dielectric displacement (i.e., en = 0 for n > 1), then Eqs. 35 and 36 of the 
previous article are retrieved. 

As in linear dielectrics, W,, is temporarily stored power in the sense that its 
time integral over an entire cycle is zero: 

m II 

G,, = EO(EO)’ c n e ~  cos(a) sin(na) da = o (41) 
n = l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, 

W, consists of the same W, as in the linear case plus W,, i.e., a sum of 
components corresponding to harmonics of the fundamental frequency. Time 
integrals of W,, over the entire field cycle reduce to zero: this is also 
temporarily-stored free energy. The higher harmonics in the dielectric displace- 
ments do not absorb free energy out of the single component exciting electric 
field. 

In case the exciting electric field consists of more than one frequency, our 
analysis requires the use of Equation (35) instead of Equation (22). Here, we will 
make this generalization. The free energy exchanged with the external electric 
field consists of two components, G,, and G2, which as before are the time 
integrals of the two components of the input power. 

w,, = e0 C 1 ~ ~ 1  1 ~ ~ 1  ~ ; [ s i n ( n ~ t )  cos( rn~t )  (42) 
nlm 

Note that (C,El ) (CIEl )  may be written ( E m  C l  E , E m )  which is why the double 
sum over E in the above equation appears. As usual, integration of this part of 
the interaction power over complete field cycles yields zero. 

w, = €0 C lEIl lEml € ; I  cos(nQt) cos(rnQt) (43) 
nlm 
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Integration of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW, over complete cycles recovers only the terms resulting from 
coupling between input and output harmonics of the same frequency: 

Terms in W, containing cos(nB2t) cos(mSlt) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn Z m ,  merely function as 
temporary storage of free-energy. Thus, in the nonlinear dielectric case, both EL/ 
(for m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 )  and E ; ~  (rn # 1) correspond to reversible free-energy exchange 
between the electric field and the enzyme. Only with m = 1 gives rise to 
free-energy absorption from the field. 

As discussed above (Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.2), certain enzymes when placed in a nonsta- 
tionary electric field can harvest free energy from it and transduce that to 
chemical work or transport work. For such a case, the relationship between 
free-energy dissipation, output work, and free energy absorbed from the field per 
cycle is: 

jcAcoUt = C lEil I&I  ELI^ - @ (45) 
Im 

Here jc  is the number of turnovers of the output reaction per field cycle [cf., 161. 
The net heat exported from such a system is (per field cycle) [3]: 

If we convert Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(45) to units of (time)-' by multiplication by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2nQ, we 
obtain for the dissipation function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa: 

@conv = -@abs + (47) 
where QConv is -JAG,,, and aabs is the free energy irreversibly absorbed per unit 
time. 

We wish to note that the situation is somewhat paradoxical: harvest of 
free-energy from an oscillating electric field (even one at a well-defined single 
frequency [7,16]) by an enzyme requires nonlinear behavior (though, as we shall 
discuss, not nonlinear behavior with respect to the polarization of the enzyme). 
Nonlinear dielectric behavior (i.e., with respect to the polarization) gives rise to 
higher harmonics, which do not absorb free energy from a single component 
input field. The inescapable conclusion is that the free-energy converter must 
direct free energy absorbed from the exciting field at the fundamental frequency 
to the higher harmonics, as well as/or to the thermodynamically uphill chemical 
or transport process. We shall next examine if, as in the case of enzymes 
following linear equations (cf. Section 2.6 of ref. l), this absorbed free-energy is 
merely dissipated, or if it may be transduced to chemical or transport work. 

3.3.2. A special case: jreeenergy transduction in an enzyme with linear dielectric 
behavior 

In Section 2.6 of the previous article, we demonstrated that in systems described 
with linear equations only, no free-energy transduction from the field to some 
output process could occur. In this demonstration, we used the assumption that 
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FIGURE 3 Diagram of a two-state enzyme. Note that there are two pathways between the two 
states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe2, such that there is a catalytic cycle. The upper, or a-branch, may be coupled to the 
conversion of S to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. Its forward (i.e., from state 1 to state 2) rate constant is af, its reverse rate 
constant a;. The forward and reverse rate constants of the lower (B-)  branch are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/3, and 8, 
respectively. For the enzyme to act as a catalyst it must cycle, i.e., move from state 1 to state 2 
through the a-branch and back through the /3-branch, or vice versa. If states e ,  and e2 differ in 
effective dipole moment, then the four rate constants must depend on the electric field, as further 
described in the text. 

the flux along any single pathway leading from one enzyme state to another could 
individually be expressed by a linear equation of the form of Equation (38) of the 
previous paper. Here, we will show that for a simple, but more realistic, two state 
model for an enzyme, net cyclic flux may not obey a linear equation even if the 
polarization can be treated as entirely linear. We consider the schematic two state 
enzyme diagram shown in Figure 3, with the rate coefficients being given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Lyr = a@[ 1 + fx] 

CU, = a r d l +  (f - 11x1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(48) 

(49) 

B r  = B r 0 P  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(h - 11x3 (51) 

and we let arO = pro and f = 1 and h = 0. In this case, the change in the 
probability of enzyme state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe, (Lea, the polarization) with time is given by 

de,/dt  = J ,  + J, = - (2q0 + ar0 + &,)el + [aro + pr0(l - x)] (52) 

which is a strictly linear relationship according to our previous definitions since all 
of the cross correlation terms cancel. However, the cyclic (catalytic) flux is 

2.J =Ja - J, = - B&l + (a@ + BfO)xe1 - [ w o  + Pr& - 1)1 (53) 

This includes potentially non-zero cross correlation terms (xe,),  and shows that a 
dynamic field (given by x )  may induce net cyclic flux in such a system. 

If also ar0 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApfo the reaction catalyzed by the enzyme is at equilibrium, and for 
that case this demonstration does not prove free-energy transduction from the 
field to the output reaction. When we however considered that substrate is in ten 
fold excess over product and calculated (@), (aabs), and then from Equation 
(47)) (@),,,,) with x xo cos(Qt), we obtained Figure 4 (Astumian et al., 1988), 
which illustrates that a portion of the free energy irreversibly absorbed by an 
enzyme from the field may be transduced to the output reaction of that enzyme. 
The amount of free energy transduced is frequency dependent. 
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FIGURE 4 Free-energy absorption, dissipation and conversion calculated for the two state model 
enzyme of Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 exposed to an oscillating field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.8 cos(Qt)] versus frequency, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ. All zero field 
rate coefficients were taken to be unity, with field dependencies according to Equations 48-51 of the 
text. The apportionment factors were taken to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf = 1, and h = 0. 

To keep the mathematics simple, we have thus far limited the discussion to 
enzymes that are taken to be describable by a two state diagram (although by 
implication in such a diagram as shown in Figure 3, each conformational state 
consists of a multitude of configurational substates which are assumed to be in 
rapid equilibrium). In general, however, enzymes tend to have many states 
[2,27], and importantly for the catalysis of biological free-energy transduction [3] ,  
transitions between states occur in an ordered fashion [note that indeed, the two 
state model with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf = 1 and h = 0 is obtained by reduction of the four state model 
of Figure 2 treating states 1 and 3 as steady state intermediates [ll]]. Referring 
now to Figure 2, an enzyme in state 4 can get to state 2 by either passing through 
state 1 or state 3. Depending on the instantaneous magnitude of the field, one of 
these paths may be more kinetically favorable than the other. What we see 
illustrated in the field induced cycling of Equation (53) is a case of the oscillating 
field causing an alternation of the relative favorability of the two paths. This may 
lead to a tendency to undergo net clockwise (or counterclockwise, depending on 
the characteristics of the enzyme) cycling. An output force will also cause a 
tendency to cycle in one direction or the other, and if these two tendency are 
counterposed free energy transduction from the oscillating electric field to a 
chemical reaction will occur if the “tendency” due to the field is greater than that 
due to the output reaction. 

3.3.3. 

In Section 2.6 of the previous article, we demonstrated that in linear dielectric 
systems no free-energy transduction from the field to some output process could 
occur. We shall now show why in the case of nonlinear dielectrics such a 
demonstration is no longer possible. In the case of nonlinear dielectrics, k, and 
k-,, as well as kE in Equation (38) of the previous article [l] may depend on E. 
Taking the average of this equation yields terms like ( kcel) ,  which, because both 
k, and el now vary with time, in a correlated fashion, no longer yields ( k c ) ( e l ) .  
Also, as shown by Equation (32), in the nonlinear case ( e l  - eleq)  may not equal 
zero. Consequently, in the case of nonlinear dielectrics, it cannot be excluded 

Freeenergy transduction and nonlinear dielectric behavior 
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that the flux across a conformational transition of an enzyme can become nonzero 
due to a pushing effect of the oscillating electric field. However, for a two-state 
enzyme with only one reaction path connecting the two conformations, the 
average reaction rate along the single pathway must equal zero; for catalysis to 
occur an enzyme must be able to undergo a cycle [3,27]. 

The simplest cycle consists of two distinguishable transitions between two states 
(cf. Figure 3). We shall assume that only one of these transitions is coupled to the 
interconversion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS and P. In order to simplify the algebra, we shall take a 
special case: pathway 1, which interconverts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS to P is characterized by Equation 
(11) and the rate constants zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$a and kf (note that its f = l), whereas pathway 2 
is characterized by Equation (11) and rate constants +a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$p, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-k, (its f = 0). 
As a consequence of these choices, Equation (11) applies to the sum of the 
transitions along the two pathways (a and p)  (with r = kf - kr):  If kf # k, the 
enzyme exhibits nonlinear dielectric behavior in the sense specified in Section 2.2. 

Subjecting the enzyme to the field described by Equation (12), we obtain for 
the average flux along either path: 

Thus, the conversion of P to S can be driven by the oscillating electric field, 
provided that kf # k,. The rate at which this occurs depends on the square of the 
electric field (through xoEo).  The phenomenon arises because of the cross 
correlation between P and x ((Px) #0) and the nonlinear dependence of the 
dielectric displacement current on the electric field. 

3.4. 

Above we have shown that enzymes of which the effective dipole moment varies 
as they proceed through their catalytic cycle, can be driven around that cycle by 
nonstationary electric fields in their environment. Conversely, as such an enzyme 
turns over, it will generate a nonstationary electric field. Only if many such 
enzymes turn over in synchrony, will a macroscopic fluctuating electric field 
become detectable (such a phenomenon might occur upon excitation of a 
membrane with light-driven proton or electron pumps with a train of intense light 
flashes). In the absence of such a synchrony, the fluctuating electric field 
generated by turnover of an enzyme will only be significant in the immediate 
vicinity of that enzyme. We have estimated that less than 2nm away that field 
would be comparable in magnitude to the macroscopic transmembrane electric 
fields reported across biological membranes and implicated in biological free- 
energy transduction [18,26]. Putting 1 and 2 together and being aware of the fact 
that in some cases of biological free-energy transduction part of the free-energy 
required to drive observed processes is missing [3,35], we proposed that two 
enzymes juxtaposed in a biological membrane may exchange free energy through 

Dynamic electric fields as intermediates between enzymes 
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dynamic interactions [17, 18,24,26,36]. The one enzyme would generate locally 
a fluctuating electric field, the other would be driven by it in much (though not 
quite [24]) the same way as enzymes can be driven by an externally imposed 
oscillating electric field (cf., the previous sections). We recently established that 
this is consistent with thermodynamics [24,26, 111. 

The exciting possibility is that this kind of energy coupling between membrane 
enzymes constitutes an important aspect of biological free-energy transduction. In 
separate publications we have been reviewing preliminary evidence for this 
[18,37]. This line of thought suggests that experimental methods inspecting the 
interactions between dynamic electric fields and macromolecules (such as 
dielectric spectroscopy), offer the potential of significantly increasing our insight 
in biological free-energy transduction. What is needed however is a substantial 
improvement of the signal to noise ratio of many such methods. Below we shall 
discuss what observations one may expect and how one may adapt dielectric 
spectroscopy so as to improve the signal to noise ratio. 

4. EXPECTED NONLINEAR DIELECTRIC OBSERVATIONS IN 
ENZYME STUDIES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4.1. 

For the enzyme depicted in Figure 2 we showed previously that in theory 
free-energy transduction may occur from a single component electric field to 
transport work [16]. For one of the calculated conditions with a single frequency 
sinusoidal field as the input, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(m) in Figure 5 shows the Fourier spectrum (in terms 
of the norm of the Fourier components) of the calculated dielectric polarization. 
In line with the theoretical considerations given above, higher harmonics appear 
in the polarization. 

The x’s in Figure 5 indicate that the Fourier spectrum of the dielectric 
displacement depends on the magnitude of the output free-energy of the system. 
Rather strikingly, if the output free-energy is lowered to zero, all even harmonics 
disappear from the dielectric displacement. This probably results from the 
occurrence of symmetry in the kinetics of this particular model enzyme under 
such level flow conditions: it is probably not a general phenomenon at level flow. 
Further evidence for the dependence of the Fourier spectrum of the dielectric 
displacement on the kinetics of the enzyme, stems from A in Figure 5: 10-fold 
increase of all the kinetic constants of the enzyme (or a tenfold reduction in the 
frequency of the field) alters the Fourier spectrum. 

We also performed a calculation at very low field strength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.01) and found 
that the dielectric displacement then only contained the fundamental frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(0). At extremely high electric fields (not shown), the dielectric displacement 
itself as a function of time began to look like a square wave and its Fourier 
spectrum like the well defined Fourier spectrum of a square wave [15]. 

From these calculations we conclude that especially the relative amplitudes of 
the higher harmonics may contain kinetic information about the enzymes present 
in a biological specimen. 

Calculated nonlinear diefectric spectrum for a membrane enzyme 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. 

A x  = .  
A A x  

B-0-e-0-x 
m .  

n ZR 3R LQ 5Q b1 

frequency 

FIGURE 5 Fourier components in the dielectric displacement of a model membrane enzyme subject 
to an oscillating electric field. The four-state enzyme described in Reference 16 was subjected to a 
sinusoidal oscillating electric field (frequency Q). Its polarization as a function of time was calculated 
through numerical integration of the appropriate rate equations, combining flow through the upper 
and the lower branches (cf. Figure 2). A Fourier analysis was then performed using the REALDFT 
operator of MLAB on three periods of the polarization after discarding the first (nonstationary) 
half-period. Standard case (W): field amplitude 71 mV (across the membrane), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 1 (=case 3 of 
Reference 16). (x): p = 1 (“level flow”) (=case 1 of Reference 16). (0): as (W) except that the field 
amplitude was reduced to 2.4 mV (amplitude was multiplied by 100). (A) at tenfold lower frequency 
of the exciting electric field, otherwise as (W). At frequencies other than the harmonics, no 
polarization was found. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExperimental feasibility of Non-Linear Dielectric Spectroscopy of biological 

system 

Let us estimate how membrane protein conformational changes may lead to 
observable results along the lines of Schwarz’s discussion of a chemical contribu- 
tion to the “linear” dielectric increment except here specified for the case of 
membrane embedded proteins. If the protein of interest is present at a 
concentration of 10 mg/ml and has a molecular mass of 500 000 (values typical for 
the ATP hydrolase in the chromatophore experiments of Kell and Harris 
[28,29]); if the relevant difference in permanent dipole moments between the two 
states of interest is 500 D (1.67 * lO-”Cm, equivalent to 2-3 charges moving 
across the membrane); and if we assume (incorrectly) that Kirkwood’s g 
parameter attains only its minimum value of unity, we have from Equation (23) 
of the previous article [l; see also 301 at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25”C, E ;  = 30 permittivity units, which is 
easily measurable. Given that other enzymes are certainly present and that 
Kirkwood’s g factor is doubtless >1, it is not impossible that intramolecular 
conformational changes contributed to the novel low-frequency dielectric disper- 
sion (p-dispersion) observed previously [28,29], particularly since it is to be 
expected that increasing the viscosity of the aqueous phase will affect enzymatic 
(inter-conformational) rate constants [31]. 

That simple non-linear systems may have the effect of “dumping” electrical 
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energy into frequencies different from the exciting one, or converting it into 
electrically silent work, opens up an entirely new arena for the dielectric 
investigation of membrane and other processes [32]. What are the possibilities for 
generating a strong enough oscillating field in real life? In homogeneous solution, 
even for dipoles, or dipolar transitions involving changes of 1000 D, the field 
strength required to go beyond the linear Langevin regime would be 
1MV/m. Such an AC field is probably near the limit of those attainable in 
aqueous solutions without dielectric breakdown. In a cell suspension, however, 
because of the basic geometry of a spheroidal closed nonconducting membrane 
immersed in a relatively highly conducting medium, the application of lower, (say 
4 0  kV/m) fields can result in changes in the membrane potential of 4 0  mV, an 
intramembrane field strength of =10MV/m, at the poles of the cells zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7]. Any 
transmembrane proteins in this region will therefore experience an extremely 
intense electric field, which if oscillatory will certainly lead to significant 
non-linearity. Thus, we conclude that measurement of the nonlinear dielectric 
properties of membrane proteins at easily attainable external field strength is in 
principle accomplishable (although we note that, given the well-known tendency 
of simple electrochemical systems to generate harmonics [33] , a 4-terminal 
approach would prove technically prudent), and the characterization of the 
frequency response of the system may well present a useful method for 
determining both structural and functional properties of membrane proteins. 

Of particular relevance is the promise of specificity of the higher harmonics for 
membrane enzyme-linked processes. From Equations (28) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(30), we may 
estimate for the case that 6 = 1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkf = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, that the amplitude of the second 
harmonic is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx0/2  times the amplitude of the fundamental frequency, in the 
low-frequency limit. In other words, where the amplitude of the fundamental 
frequency in the dielectric displacement is proportional to E6p,  the amplitude of 
the second harmonic is proportional to (Edp)’,  and that of the third harmonic to 
( E ~ P ) ~ .  We shall compare bulk water with dipole moment of 1.85D [34] in a 
field of 10 kV/m to a membrane protein with dipole moment difference between 
two conformations of 185 D in a field of 10 MV/m. Consequently the x-factor for 
the protein is about 100000 times greater than that for water. We use a protein 
concentration of 1 mg/ml, and a protein molecular mass of 0.5 Md. This leads to 
a concentration ratio of protein to bulk water of 4/10’ (mole/mole). Thus, at the 
fundamental frequency, the dispersion by the water will swamp out that by the 
protein by a factor of 250. However, even at the second harmonic, the dispersion 
by the protein will exceed that by the bulk water, by a factor of 400. At the third 
harmonic the dispersion by the membrane protein will exceed that by the bulk 
water by a factor of 40 million. It is to be recalled here that we are imposing an 
oscillating sinusoidal electric field of but a single frequency. 

We conclude that the rather general properties of typical proteins, i.e. their 
possession of conformational flexibility between states of different dipole mo- 
ments, leads to their expression of extremely interesting nonlinear dielectric 
behavior, and that this may indeed be exploited in understanding their dynamics 
and ergo in biosensing [32]. Further enhancement of specificity may be obtained 
by specifically looking at higher harmonics at zero phase shift, which is indicative 
of saturation behavior. 
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CONCLUDING REMARKS 

In these twin papers we have been searching through the theories of dielectrics, 
enzyme kinetics and non equilibrium thermodynamics for the best combination 
for describing the interactions between enzymes and dynamic electric fields. 
Although linear dielectrics does describe many interesting phenomena connected 
with the interaction of oscillating electric fields and proteins or membranes, it is 
not fit to address interactions that affect catalysis. 

More specifically, three phenomena necessitated the exit from the linear 
domain. First, the interaction between thermodynamic parameters (such as 
electric fields) and rate constants tends to follow exponential dependences. Such 
dependences are linear only at low magnitudes of the applied field. As soon as 
the applied field is large enough to be of energetic significance (i.e., to exceed 
RT), its effect on the system can no longer be approximated by a linear 
dependence. Second, because of the conservation of the total enzyme concentra- 
tion, enzyme kinetics its intrinsically nonlinear. Finally, oscillations in the electric 
field may entrain fluctuations in the state probabilities of the enzyme. The 
correlations between the oscillations and the fluctuations also affect the average 
rates of processes [ll]. We wish to point out that in our studies, nonlinearity 
arises already from the interaction of a single enzyme molecule with its 
nonstationary environment. That is, we do not require ferroelectric properties 
such as cooperative interaction between many enzyme molecules or many lipid 
molecules. Nonlinear theories developed by various authors for such ferroelectric 
systems [e.g., 38, 39, see also reviews in 40, 411 are not fit to address the 
interaction between dynamic electric fields and the catalytic cycling of enzymes. 
Of course, our emphasis on the role of fluctuations in catalysis and free-energy 
transduction is not new (cf., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40, 41 and references therein). 

In the second paper we have elaborated a description of the nonlinear 
interactions between nonstationary electric fields an enzymes. This required us to 
cross the limits of linear relations imposed by linear dielectric theory. The 
rewards are ample. First, the resulting nonlinear theory provides a smooth 
transition between dielectric theory, enzyme kinetics and non equilibrium 
thermodynamics. Second, it proved that when transgressing the bounds of the 
linear domain, one comes to expect that enzymes may transduce free energy from 
nonstationary electric fields. This opens up a wealth of concepts that may be 
important for bioenergetics and biochemistry more in general; hitherto elusive 
energetic “intermediates” in biological free-energy transducing systems may turn 
out to amount to nonstationary electric fields. Third, it suggest a new approach to 
dielectric spectroscopy, which may strongly increase the “signal” to “noise” ratio, 
where the “signal” is the properties of enzymes that are involved in their 
interactions with dynamic electric fields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin vivo. 
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