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Abstract
Obesity is the main risk factor for type 2 diabetes (T2D). Studies performed over the last 20 years have identified

inflammation as the most important link between these two diseases. During the development of obesity, there is activation

of subclinical inflammatory activity in tissues involved in metabolism and energy homeostasis. Intracellular serine/threonine

kinases activated in response to inflammatory factors can catalyse the inhibitory phosphorylation of key proteins of the

insulin-signalling pathway, leading to insulin resistance. Moreover, during the progression of obesity and insulin resistance,

the pancreatic islets are also affected by inflammation, contributing to b-cell failure and leading to the onset of T2D. In this

review, we will present the main mechanisms involved in the activation of obesity-associated metabolic inflammation and

discuss potential therapeutic opportunities that can be developed to treat obesity-associated metabolic diseases.
C
tio

ed
European Journal of

Endocrinology

(2016) 174, R175–R187
Introduction
Type 2 diabetes (T2D) results from the combination of

insulin resistance and a relative deficiency of insulin

production (1). Despite the fact that both insulin

resistance and insulin insufficiency may be induced by a

number of factors that comprise genetic defects, sedentary

lifestyle, dietary factors and endocrine disruptors, among

others (1, 2, 3, 4, 5), inflammation has emerged as a

unifying mechanism capable of affecting both the action

and production of insulin (3, 4, 6, 7). Here, we will review

the main aspects linking inflammation with T2D and

point some of the therapeutic opportunities that may
emerge from the detailed characterisation of this phenom-

enon. For didactic reasons, we will organise the

mechanisms involved in metabolic inflammation into

three levels: i) triggers, ii) mediators and iii) amplifiers.

Initially, we will introduce these concepts in the context

of the general metabolic inflammation that accompanies

obesity. Thereafter, we will present data showing that

inflammation is also an important mechanism contribut-

ing to b-cell failure in T2D. Finally, we will present and

discuss studies that have evaluated methods to dampen

metabolic inflammation as an approach to treat T2D.
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Historical aspects

The association between infections and the worsening of

metabolic control in patients, with diabetes provided the

earliest evidence to support a role for inflammation in

glucose intolerance. The first detailed clinical description

of diabetes complications in a patient with an infection

was published in 1924 (8) and was followed by several

other reports showing that different types of infection

could also affect the control of blood glucose levels and

whole body metabolism (9, 10, 11, 12). However, it was

only in 1940 that a hypothesis was formulated placing the

consumption of dietary fats in parallel with infections

as causes for the defective action of insulin and glucose

intolerance in diabetes (13, 14).

The search for the mechanisms linking inflammation

and the consumption of dietary fats with insulin

resistance was proven challenging, and in 1993, tumor

necrosis factor alpha (TNFa) was first shown to be

produced in the adipose tissue of obese rodents, mediating

at least part of the effects of dietary fats to induce insulin

resistance (15). Hotamisligil et al. (15) work had a

revolutionary impact on the field, which resulted in the

identification of a number of inflammatory factors that

were either produced in the adipose tissue or were directly

stimulated by dietary fats or lipopolysaccharide (LPS),

playing important roles in the induction of insulin

resistance (3, 16). In addition, more recently, studies

have shown that inflammation plays an important role

in the progressive deterioration of b-cell function in T2D

(17, 18, 19).
The triggers of metabolic inflammation

The consumption of dietary fats is amongst the most

important environmental factors leading to obesity and

insulin resistance (20, 21). As obesity evolves, most of the

long-chain fatty acids in the body are stored within the

cells of the adipose tissue as esterifies lipids (22). However,

it is not only intracellular lipids that are increased in

obesity. In fact, both the consumption of dietary fats and

obesity result in increased blood levels of free fatty acids

(FFAs) (22), which is a well known risk factor involved

in the development of metabolic diseases (23, 24, 25).

For years, researchers have investigated the

mechanisms connecting FFAs and insulin resistance, and

it was only during the late 1990s that the first mechanisms

began to be defined (26). It is currently known that FFAs

can trigger metabolic inflammation and insulin resistance

through at least four distinct mechanisms: i) activation of
www.eje-online.org
endoplasmic reticulum (ER) stress (27), ii) activation of

Toll-like receptor 4 (TLR4) signalling (3), iii) activation of

protein kinase C3 (PKC3)/PKCq, PKCd (28), and activation

of Protein kinase R (PKR) (29). Most of the studies focus on

adipose tissue and liver, but there is evidence of similar

phenomena occurring in muscle and hypothalamus,

as well.
ER stress

The ER is the organelle responsible for translating and

folding up to 30% of the proteins in a cell (30). Most

membrane-bound and secretory proteins are handled in

the ER (30) in a process with a considerable degree of

functional complexity. Depending on the cell type, a

number of proteins can be synthesised in huge amounts;

some proteins require covalent disulfide bonding and

some are inserted into the membranes. Under certain

stressful conditions, the pace of protein synthesis and

folding can slow down, potentially threatening cellular

viability (31). To minimise the chance of protein jamming

in the ER, a sensor system has evolved – the unfolded

protein response (UPR), which is activated in response to

the accumulation of misfolded proteins in the ER lumen

(32). In the ER membrane, there are three UPR sensor

proteins, PERK, IRE1 and ATF6, which can be engaged by

two distinct mechanisms: i) the consumption of chaper-

ones, which leads to the removal of the inhibitory

chaperone BiP from the ER luminal portion of the sensor

proteins, promoting their activation and ii) the binding of

misfolded proteins to the luminal part of sensor proteins,

promoting their dimerisation and activation (30).

The main consequence of the UPR is the reduction of

general protein translation accompanied by the increase

of ER chaperone expression. However, the prolonged

incapacity to re-establish ER homeostasis results in

the UPR-dependent activation of inflammation and

eventually, apoptosis (27, 33).

In 2004, Ozcan et al. (34) showed that obesity was

accompanied by ER stress (ERS) in the adipose tissue,

leading to the activation of Jun N-terminal kinase (JNK). In

cultured adipocytes, a similar phenomenon was obtained

through the exposure to a high concentration of lipids.

The activation of JNK was capable of inducing insulin

resistance through the inhibitory serine phosphorylation

of insulin substrate receptor 1 (IRS1). In another study, it

was shown that chemical chaperones could stabilise the

ER and rescue the metabolic phenotype of obese mice (35).

Moreover, in addition to the activation of inflammatory

signalling through JNK, ERS was shown to activate
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inhibitor of kappa B kinase (IKK) (36), which demonstrates

the wide range pro-inflammatory impact of this pathway.

These findings not only confirmed the important role

played by ERS as a trigger of metabolic inflammation, but

they also provided proof of the concept that targeting ERS

could offer an attractive approach to treat metabolic

diseases. In general, the involvement of ERS in metabolic

inflammation and insulin resistance emerges as a general

mechanism occurring in most, if not all, tissues of the

body, such as the adipose tissue, liver, muscle and

hypothalamus (35, 36, 37, 38).
Toll-like receptor 4

TLR4 belongs to the TLR family of innate immune system

receptors that respond to pathogen-associated molecular

patterns (PAMPs) (39, 40). Lipid-A, a component of the

Gram-negative bacterial endotoxin, LPS, is the main

ligand of TLR4, inducing the activation of signal transduc-

tion through MyD88/IL1R-associated kinase (IRAK)-4 (41).

However, studies have shown that saturated fatty acids,

some of which are commonly found in the human diet,

can also activate TLR4 inflammatory signal transduction

(42, 43), resulting in the inhibition of the insulin

signalling system (44).

Both, genetic and diet-induced rodent models of

obesity exhibit increased expression of TLR4 in the

adipose tissue (45). In lean mice, the intravenous infusion

of lipids leads to the activation of NFkB and increased

expression of interleukin 6 (IL6) in the adipose tissue of

WT mice but not in mice knockout for TLR4 (45). In

addition, studies have shown that genetic targeting of

TLR4 results in protection against diet-induced insulin

resistance (45, 46), and depending on the genetic back-

ground of the mice, it can also protect against diet-

induced obesity (38, 47). Most of the metabolic inflam-

matory phenotypes triggered by the activation of TLR4

depend on the expression of this receptor in bone marrow

derived cells (48, 49). Studies have shown that the

presence and the inflammatory phenotype of macro-

phages in tissues affected by metabolic inflammation is

an important requirement for the induction of insulin

resistance. These facts reinforce the pivotal role of TLR4-

expressing macrophages infiltrating metabolically

relevant tissues as the central cellular players in metabolic

inflammation (50, 51).

Several attempts have been made to elucidate the

mechanisms involved in fatty acid-induced activation

of TLR4 (42, 52, 53). The greatest advance was made in

2012 when Pal et al. (54) reported that fetuin-A, an
inflammatory glycoprotein produced by the liver and

adipose tissue (55), could act as a bridge linking FFA

with TLR4, leading to its activation. Clinical studies

have provided further evidence for the role of fetuin-A

as a mediator of FFA-induced metabolic inflammation

(56, 57, 58).

In addition to the direct effect of FFAs as triggers of

metabolic inflammation through the activation of TLR4,

studies have shown that blood levels of LPS are increased

in experimental models of diet-induced obesity and also

in lean rodents or humans fed a high-fat diet (59, 60).

Although the blood level of LPS detected in obesity or after

the consumption of dietary fat is not as high as in sepsis,

for example, it is sufficient to activate TLR4 in macro-

phages and in cells of metabolically relevant tissues, such

as adipocytes, hepatocytes and muscle cells (59, 61, 62).

Therefore, it is currently believed that obesity and

dietary fats can promote the activation of TLR4 through

the direct action of FFAs in addition to the classical

action of LPS (3, 59, 63).

An important piece of information regarding the

activation of TLR4 in obesity and metabolic diseases was

added by studies showing changes in gut microbiota of

obese rodents and humans (64). According to these

studies, the composition of the diet has a profound

influence on the landscape of bacterial species present in

the gut (65). A diet composed of large amounts of fibre-rich

foods results in an increased proportion of Prevotella,

whereas Bacterioides correlates positively with the con-

sumption of a protein-rich diet (66). However, the greatest

advance was provided by the demonstration that obese

humans and experimental models of obesity present a

shift in the relative amounts of the two most common

phyla of gut bacteria, Bacteroidetes and Firmicutes (67, 68).

In lean subjects, there is proportionally more Bacteroidetes,

whereas in obese subjects there is proportionally more

Firmicutes (68). Changes in the gut microbiota landscape

result in modifications to gut physiology, which can be

affected by a number of distinct mechanisms. At least two

mechanisms have a direct impact on obesity: i) certain

bacteria present in larger amounts in the gut of obese

subjects express enzymes that improve energy harvesting

from nutrients (69) and ii) obese gut microbiota can

change the permeability of the intestine to nutrients and

toxins (70). As a consequence of these modifications, there

is increased whole body energy availability, increased

absorption of fatty acids and increased gut transposition of

LPS, which act in concert to accelerate body mass gain and

trigger insulin resistance through TLR4.
www.eje-online.org

Downloaded from Bioscientifica.com at 08/24/2022 06:54:35AM
via free access

www.eje-online.org


E
u

ro
p

e
a
n

Jo
u

rn
a
l

o
f

E
n

d
o

cr
in

o
lo

g
y

Review A Coope and others Inflammation in type 2 diabetes 174 :5 R178
PKC isoforms

At least three isoforms of PKC, PKC3, PKCd and PKCQ,

have been implicated as links between lipid overload

insulin resistance in liver and muscle respectively (28, 71).

The activation of the novel PKC isoforms depends on the

increase of diacylglycerol in the intracellular compart-

ment, which is induced by increased lipid uptake (72).

Upon activation, PKC3/PKCd/PKCQ can catalyse the

serine phosphorylation of IRS1 in muscle (PKCd and

PKCQ) and liver (PKC3), leading to the insulin resistance

phenotype (26, 28, 73). Different genetic approaches have

been employed with success to reduce the action of PKCs,

resulting in increased insulin sensitivity and improved

glucose tolerance (28, 74).
Protein kinase R

PKR was first identified as a cytosolic sensor of viral

double-stranded RNA, leading to the activation of an

inflammatory response aimed at eliminating the invader

(75, 76). Later on, it was shown that dietary lipids could

activate PKR, triggering an intracellular inflammatory

response that integrates nutrient overload with metabolic

pathways (29). In animal models of obesity and in lean

mice submitted to a lipid overload, PKR is activated,

leading to the inhibition of insulin signalling by two

distinct mechanisms: i) direct phosphorylation of IRS-1 in

serine residues and ii) integration with ERS, leading to the

activation of JNK and thus, indirectly targeting proteins of

the insulin signalling cascade (29). In addition, it was

shown that PKR is also activated in metabolically relevant

tissues in obese subjects, and body mass reduction

resulting from bariatric surgery attenuates PKR activity

(77). A study has reported that the inhibition of PKR using

chemical inhibitors resulted in considerable improvement

of the metabolic phenotype, which places PKR in an

attractive position as a potential target for the treatment

of T2D (78, 79).
The intracellular mediators of metabolic
inflammation

In cells of the immune system and metabolically relevant

tissues, the cellular signals generated in response to the

triggers of metabolic inflammation can activate signal

transducers that act as mediators of metabolic inflam-

mation. At least three mediators have been characterised

in depth: i) JNK, ii) IKK/factor kappa B (NFkB) and

iii) mammalian target of rapamycin (mTOR)/S6K. It is
www.eje-online.org
important to mention that PKC3/PKCq, PKCd and PKR can

act both as triggers and as mediators of metabolic

inflammation.
Jun N-terminal kinase

JNK, also known as the stress-activated protein kinase,

belongs to the mitogen-activated protein kinase (MAPK)

superfamily and exists as ten different isoforms (80). Stress

signals, such as hyperlipidemia, cytokines (IL6, TNFa),

hypoxia, toxins, heat shock and drugs, can activate JNK,

which binds and phosphorylates c-Jun in two different

serine residues, Ser63 and Ser73 (81, 82). Phosphorylated

c-Jun forms dimers with members of Fos (c-Fos), Jun

(JunB, JunD) or ATF families, resulting in the

assemblage of the transcription factor activator protein 1

(AP-1), which is an important regulator of inflammation,

cytokine production, apoptosis, neurodegeneration,

cellular differentiation, migration and proliferation (83).

Studies have shown that the isoform JNK1 is implicated

in the pathogenesis of insulin resistance, T2D and

obesity (80, 84). In experimental obesity, JNK1 is activated

in the adipose tissue, leading to insulin resistance,

because it catalyses the phosphorylation of IRS1 in serine

residues (84).

In obesity, excessive dietary fats can be sensed by TLR4

in the hypothalamus, triggering activation of JNK and

IKK/NFkB in a MyD88-dependent manner or indirectly via

the activation of ERS (34, 47, 85). Indeed, the UPR sensor

protein IRE1 activates JNK, leading to phosphorylation of

IRS1 in serine residues and contributing to the develop-

ment of insulin resistance (34, 86). Moreover, JNK1

ablation, specifically in the CNS, normalises adiposity,

glucose intolerance, insulin resistance and obesity in DIO

mice (87). Tsaousidou et al. (88) developed an interesting

model with constitutive activation of JNK1 in AgRP

neurons, which resulted in leptin resistance and obesity

when fed a high fat diet (HFD).

Several approaches have been used to inhibit JNK in

T2D and obesity, and in all cases, there was at least some

beneficial impact on metabolic abnormalities (revised

in (3, 16)). Therefore, JNK is regarded as one of the

most important intracellular mediators of metabolic

inflammation.
Inhibitor of kappa B kinase/NFkB

At least three triggers of metabolic inflammation can lead

to the activation of IKK/NFkB pathway – i) ERS, ii) TLR4

and iii) PKR (3, 16, 29). The NFkB family is composed of
Downloaded from Bioscientifica.com at 08/24/2022 06:54:35AM
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highly evolutionary conserved proteins, ubiquitously

expressed in all mammalian cells. It acts as a transcription

factor that controls a number of cellular processes, such as,

cell growth, proliferation, cellular adhesion, apoptosis,

inflammation and immune response (89, 90). Primarily,

NFkB activity is negatively regulated by protein

interaction with the inhibitor of kappa B (IKK), which

maintains NFkB in the cytosol, preventing its nuclear

activation and transcriptional function. In response to

inflammatory cytokines, bacterial products or others stress

signals, cytokines or TLR receptors activate a signalling

cascade that converges on the phosphorylation of the

inhibitor of the IKK complex (91). The IKK complex is

composed of the kinases IKKa and IKKb, and of the

regulatory subunit NEMO/IKKg. The activation of IKK

complex induces serine phosphorylation of IkB, which

allows its polyubiquitination and degradation by the

proteasome machinery. The degradation of IkB exposes

the nuclear localisation sequence and the DNA binding

domain of the NFkB, allowing its translocation to the

nucleus and regulation of target genes (89, 90, 92). Under

normal circumstances, a signal decay and termination

of NFkB activity plays a role in limiting the appearance

of deleterious effects. The protein deubiquitinase A20 and

de novo synthesis of IkB molecules act as important

negative regulators. In addition, NFkB can regulate the

transcriptional activity of A20 and IkBs proteins,

suggesting that NFkB controls its own signal decay and

termination (91, 93).

Several studies have implicated IKK/NFkB in the

pathogenesis of metabolic disorders, such as T2D, obesity

and atherosclerosis (36, 94, 95). In experimental models of

T2D and in obese, insulin resistant humans, IKK is

activated, leading to the inhibitory serine phosphoryl-

ation of the insulin receptor substrate 1 (95, 96, 97). Both

rodents and humans with T2D treated with inhibitors of

IKK present at least a partial improvement of glucose

intolerance (95, 98). Moreover, under nutrient overload,

fatty acids can be sensed by TLR4 receptors, triggering

activation of IKK/NkFB signalling pathway, which leads to

a burst in inflammatory responses (38, 43). It has been

shown that consumption of dietary fats can lead to the

activation of IKK/NFkB in the hypothalamus, which

results in the anomalous regulation of food intake and

energy expenditure, therefore contributing to continuous

body mass gain and further enhancing whole body insulin

resistance (36). These findings place IKK/NFkB in a

strategic position as potential targets for treating glucose

intolerance and insulin resistance.
Mammalian target of rapamycin/S6K

mTOR is a highly evolutionally conserved protein, which

exists as the catalytic subunit of two different complexes:

mTORC1 and mTORC2 (99). The role of mTORC2 is still

under investigation, but there are studies showing that it

can be regulated by growth factors leading to the activation

of PI3-kinase/Akt signalling and the control of cellular

cycle, proliferation and cellular survival (100, 101, 102).

Conversely, more is known about mTORC1, which can

induce cellular growth by integrating and coordinating

signals arising from: i) nutrients (glucose and amino acids),

ii) growth factors (insulin and IGF1), iii) energy sensors

(AMPK), and iv) stress (hypoxia) (102). When activated by

growth factors and nutrients, mTORC1 induces anabolism

with consequent lipid, protein and nucleotide synthesis,

lipid accumulation and inhibition of the autophagic

catabolic process (102). mTORC1 activity induces the

phosphorylation of three main target substrates: the

ribosomal S6 kinase 1 and 2 (S6K1 and S6K2) and

the eukaryotic initiation factor 4E (eIF-4E), which regulate

the initiation and progression of mRNA translation, leading

to the enhancement of protein synthesis (101, 102, 103).

Studies have provided evidence for a role of mTOR in

metabolic inflammation. In an experimental study, IL6 was

shown to activate mTOR action through STAT3, leading to

insulin resistance due to the increased expression of SOCS3

(104). The inhibition of mTOR using rapamycin was

sufficient to revert IL6-induced insulin resistance (104). In

another study using diet-induced obese mice, the disrup-

tion of the mTORC1 complex using a genetic approach

resulted in improved insulin action due to the inhibition of

the obesity-associated activation of the JNK and NFkB

pathways (105). Overnutrition is also involved in the

chronic activation of mTOR-signalling, leading to lipogen-

esis in important metabolic tissues, such as muscle, liver

and WAT. mTORC1 overstimulation triggers the S6K-

dependent negative feedback loop, in which S6K phos-

phorylates and down-regulates the main substrates of the

insulin receptor, IRS1 and IRS2, in serine residues, leading

to insulin resistance (100, 103, 106, 107). In addition, it was

shown that S6K1 deficiency results in enhanced insulin

sensitivity, which is sustained even under prolonged

exposure to a high-fat diet, supporting the important role

of mTORC1/S6K in the pathogenesis of T2D.
The amplifiers of metabolic inflammation

A number of cytokines and pro-inflammatory factors

can be induced and secreted by immune cells
www.eje-online.org
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infiltrating metabolically relevant tissues, leading to the

amplification of metabolic inflammation. Studies have

shown that some cells of metabolically relevant tissues,

such as adipocytes and hypothalamic neurons, can also

produce and secrete such inflammatory amplifiers. Here,

we present data regarding the roles of three important

cytokines that are involved in the pathogenesis of T2D:

i) TNFa, ii) IL1b and iii) IL6.
Tumor necrosis factor alpha

TNFa was the first pro-inflammatory cytokine implicated

in the pathogenesis of insulin resistance, T2D and obesity

(15). TNFa is mainly produced by macrophages and

regulates pleiotropic functions, such as innate immunity,

Th1 response, inflammation, cell differentiation, prolifer-

ation, apoptosis and energy metabolism (108, 109). TNFa

is synthesised as a 24 kDa-transmembrane precursor

(mTNFa), which undergoes cleavage by the metalloprotei-

nase TNFa converting enzyme (TACE) to a bioactive 17 kDa

soluble molecule (sTNFa). In obesity and T2D, both

isoforms are increased and exert their biological functions

by binding to TNFa receptors TNFR1 (p55) and TNFR2 (p75)

in cells of the adipose tissue, liver and other metabolically

relevant tissues (108, 110). Receptor activation leads to the

induction of pro-inflammatory IKK/NFkB and JNK/AP-1

signalling, which busts inflammation by inducing gene

transcription of cytokines, cytokines receptors, growth

factors, adhesion molecules and nitric oxide, among

others. Additionally, TNFa can trigger apoptosis

through the recruitment of caspases to the death domain

of the p55/TNFR1 receptor.

The pro-inflammatory cytokines TNFa, IL1b and IL6

are increased in murine models of obesity and T2D, and

pharmacological or genetic neutralisation of TNFa

increased insulin sensitivity reduces hepatic glucose

production, while increased thermogenesis reduces

inflammation and body mass gain (47, 111, 112). TNFa

contributes to the pathogenesis of insulin resistance

through the induction of serine kinases that attenuate IR

and IRS1 signalling pathways in important metabolic

tissues (113, 114). Taken together, these data suggest

that TNFa or its signalling pathway could be a

therapeutic target for metabolic diseases. In fact, long-

term treatment with TNFa antagonists (infliximab or

etanercept) decreases inflammation, as well as fasting

glucose, while increasing adiponectin levels; however it

did not affect insulin sensitivity in obese diabetic

subjects (115, 116).
www.eje-online.org
Interleukin1b

The polypeptide IL1 belongs to a family of cytokines

mainly secreted by macrophages, monocytes and

dendritic cells responsible for mediating immunological

reactions, inflammation and tissue injury (117). The

family member IL1b (17 kDa), which is secreted early in

immune responses, is initially synthesised as a 31 kDa

precursor, pro- IL1b, which undergoes capase-1-mediated

cleavage to become active (118). IL1b is one of the most

important pro-inflammatory cytokines, which activates

JNK/AP1 and IKK/NFkB, leading to regulation of its

own gene transcription, in addition to other cytokines,

such as TNFa, therefore boosting the inflammatory

response (117).

Over the last 30 years, several studies have shown the

important role of IL1b on the pathogenesis of T2D, insulin

resistance and obesity (119, 120, 121). IL1b mediates diet-

induced inflammation (121, 122). Studies have shown

that murine models lacking components of the inflamma-

somes IL1b or IL1R1 are protected from insulin resistance

and diet-induced inflammation, supporting an important

role for IL1b activity in the development of metabolic

disorders (123, 124). Several studies have used different

approaches to inhibit IL1b as an attempt to modify the

course of metabolic disorders. The natural endogenous

inhibitor IL1Ra (IL1b receptor antagonist), produced by

healthy resting cells, binds to IL1R1 and blocks the

interaction and signal transduction of IL1b(125). The use

of a recombinant IL1Ra (anakinra) or IL1b antagonists

(gevokizumab, canakizumab and LY2189102) improved

insulin sensitivity, reduced inflammation markers, cor-

rected glycated haemoglobin levels and improved b-cell

function in patients with T2D (126, 127). Taken together,

all of these studies show that targeting IL1b activity has a

high impact on the treatment of obesity-induced inflam-

mation, hyperglycaemia, and insulin resistance.
Interleukin6

Almost 30 years ago, IL6 was identified as a T-cell derived

factor, responsible for differentiating the activated

B-lymphocytes into plasma antibody-producing cells

(128). IL6 (21–26 kDa) is a pleiotropic cytokine produced

by a wide spectrum of cells, including adipocytes,

myocytes, islet, endothelial and immune cells, involved

in the acute phase response, inflammation, immune

regulation, haematopoiesis and tissue regeneration (129).

IL6 binds to its cognate receptor, IL6R, present in

leucocytes, hepatocytes and many other cells (130, 131).
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In addition, it can also bind to the soluble receptor (sIL6R-

55 kDa) present in the serum and tissue fluids forming the

complex IL6/sIL6R (130, 131). Upon binding to the

transmembrane IL6R, IL6 promotes the phosphorylation

of the gp130 protein in tyrosine residues, triggering the

activation of JAK2/STAT3 and MAPK/PI3-kinase signalling

pathway and inducing the expression of acute-phase

proteins, adhesion molecules, chemokines, antiapoptotic

proteins and cytokines (129, 132). The gp130/JAK2/STAT3

signalling upregulates the expression of SOCS3, which

acts as a negative feedback inhibitor of JAK2 activation

(129, 132).

In health, the expression of IL6 is transient, contribut-

ing to host defence and tissue injury, and decreasing when

tissue homeostasis is restored. However, the chronic and

anomalous production of IL6 plays an important role in

the pathogenesis of several inflammatory diseases, includ-

ing obesity, insulin resistance and T2D (131, 133, 134).

Interestingly, IL6 can act as both a pro- and an anti-

inflammatory cytokine, depending on the target tissue

and metabolic state. Elevated plasma levels of IL6 are

correlated with T2D development, body mass gain and

circulating FFA, as seen in diabetic patients (134, 135).

Additionally, in adipose tissue and liver, IL6 has pro-

inflammatory properties, inducing insulin resistance by

enhancing SOCS3 expression, which impairs IR/IRS1

phosphorylation (113, 136, 137). Thus, IL6 positively

modulates insulin resistance and inflammation when

secreted acutely, during exercise, or negatively when

secreted chronically, as seen in T2D and obesity.
Metabolic inflammation and pancreatic
islet dysfunction in T2D

Systemic metabolic inflammation can affect pancreatic

islets through distinct mechanisms, contributing to b-cell

failure in T2D (4). Early studies focused on the adipose

tissue as the source for inflammatory factors, leading to

pancreatic islet dysfunction in obesity (138). In humans,

the removal of part of the visceral adipose tissue has a

profound impact on whole body glucose homeostasis,

mostly because of improved first phase insulin secretion

(139). However, inflammation associated with obesity can

affect insulin secretion by other mechanisms. Obesity-

associated hypothalamic inflammation is accompanied

by the loss of the first phase of insulin secretion (140).

Furthermore, intracerebroventricular administration of

saturated fatty acids or TNFa can induce a dysfunctional

increase in insulin secretion, which is accompanied by the

increased expression of apoptotic markers, such as BAX,
and also proteins involved in mitochondria function, such

as PGC1a and UCP2 in pancreatic islets (140). The

increased expression of UCP2 is responsible for affecting

glucose-induced insulin secretion due to the reduction of

ATP production (140). The connection between the

dysfunctional hypothalamus and pancreatic islets is

dependent on sympathetic innervation and sympath-

ectomy is sufficient to restore insulin secretion (140).

It has been suggested that pancreatic islet inflam-

mation is associated with very early insulin resistance.

Using a nonhuman primate model exposed during foetal

life to a fat-rich diet, there was an early increase of IL1b

and IL6 expression in pancreatic islets, which was

associated with a decreased first-phase insulin secretion,

increased fasting glucose levels and infiltration of the

pancreatic islets with macrophages before the onset of

glucose deregulation and obese phenotypes (141).

The multiprotein activation complexes – inflamma-

somes – regulate the processing and release of proin-

flammatory cytokines during insulin resistance and T2D.

The recruitment of pro-caspase-1 to inflammasomes leads

to caspase-1 activation, which induces the proteolytic

maturation and secretion of active IL1b(142). Inflamma-

somes can be activated by PAMPs and damage-associated

molecular patterns, such as aggregates of insoluble islet

amyloid deposits, derived from the amylin peptide (IAPP)

secreted by b-cells. In humans, IAPP increases the

transcription of IL1b in macrophages and contributes to

islet inflammation (143, 144). IL1b has been described as

playing a central role in inflammation in the absence of

infection (sterile inflammation) and its secretion has a

negative impact on b-cell function and survival (122).

There is a strong evidence showing that the recruitment

and activation of IL1b-producing macrophages mediate

islet inflammation (122). A study demonstrated increased

numbers of immune cells in the pancreatic islet of T2D

patients and in animal models of obesity (138). Addition-

ally, b-cells producing and secreting IL1b have been

observed in pancreatic sections obtained from patients

with T2D, suggesting an autocrine effect of IL1b on b-cell

survival and function (120, 145). Interestingly, leptin,

which is increased in obesity, can act as a proinflammatory

cytokine, inducing b-cell apoptosis and generating an

imbalance between IL1b and the endogenous antagonist

of the IL1 receptor (IL-1Ra) in human islets (146).

ERS has been described as an important mechanism

leading to pancreatic islet inflammation and b-cell

dysfunction (4, 147). The first piece of evidence of the

role of ERS in defective insulin secretion came from studies

with monogenic forms of diabetes (148, 149). However, it
www.eje-online.org
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was subsequently shown that the increased demand for

insulin production in common forms of T2D could also

impose perturbations in the ER, leading to the activation

of the UPR (150, 151). Furthermore, as in other tissues

(147), FFAs can act as a trigger of ERS in pancreatic islets,

acting in concert with high glucose (19, 152).

Oxidative stress is also an important mechanism

leading to b-cells dysfunction and death in T2D (153). In

b-cells, mitochondrial activity is more than two times

greater than in any other cell, since insulin secretion is

coupled with exogenous glucose sensing and endogenous

glucose oxidation in mitochondria (120). Moreover,

b-cells are particularly sensitive to oxidative stress since

the expression of antioxidant enzymes is lower compared

to other metabolically active tissues (154). Reactive

oxygen species (ROS) generation in b-cells induces the

activation of stress kinases, such as JNK1. ROS also initiates

the formation of inflammasomes through its association

with thioredoxin-interacting protein (TXNIP) released

from the complex with thioredoxin, which activates

IL1b processing (155, 156).

Recent evidence suggests that products from arachi-

donic acid metabolism are also involved in the generation

of ROS in b-cells. 12-HETE, a 12-lipoxygenase (12-LO)

product, is involved in NADPH oxidase-1 (NOX-1)

activation in mouse and human islets (157). The use of

12-LO inhibitors reduces ROS and restores glucose-

stimulated insulin secretion in response to proinflamma-

tory cytokines through the attenuation of NOX-1

expression (157). In addition, in pancreatic 12-LO-

knockout mice fed a HFD, the major transcriptional

activator of antioxidant enzymes superoxide dismutase

and glutathione peroxidase, the nuclear factor erythroid

2-related factor 2 (Nrf2), was present in high levels,

demonstrating the role of 12-LO and its products in

oxidative stress in pancreatic islets (158).

As a whole, pancreatic islet inflammation can be

triggered by distinct mechanisms, which occur frequently

in obesity. It is expected that therapeutic approaches

targeting islet inflammation may be useful for delaying or

interrupting the progression towards relative insulin

insufficiency, which is a hallmark of T2D.
The potential role of anti-inflammatory
approaches to treat T2D

A number of experimental studies have employed distinct

pharmacological and genetic methods to inhibit meta-

bolic inflammation. In many circumstances, there were

beneficial outcomes of such inhibitory approaches and
www.eje-online.org
many of them have been cited in the preceding sections.

However, only a few clinical studies were designed and

performed to evaluate the impact of anti-inflammatory

approaches in human T2D.

An observational study reported improved insulin

sensitivity in patients under prolonged use of immuno-

neutralising antibodies against TNFa to treat psoriatic or

rheumatoid arthritis (115). With this concept in mind, a

randomised, placebo-controlled, six-month intervention

was undertaken and etanercept was shown to improve

fasting glucose and increase adiponectin levels in obese

subjects (116). The inhibition of IL1b was also evaluated

in humans with metabolic disease. In a double-blind,

phase II, randomised study, the immunoneutralisation

of IL1b for 12 weeks reduced fasting glucose and

HbA1c levels in patients with T2D (126). In addition,

inhibition of the IL1 receptor using a recombinant

receptor antagonist resulted in reduced HbA1c levels

and increased C-peptides, suggesting a beneficial effect

for the pancreatic b-cell (159).

Attempts have been made to inhibit NFkB for the

treatment of T2D. Early observational data reported

improvement of glucose tolerance during the use of

salicylates (160). However, side effects were always a

concern and to date, no inhibitor of NFkB is approved

for the treatment of T2D. Recently, salsalate, a non-

acetylated pro-drug form of salicylic acid with fewer side

effects was employed in several clinical trials with

generally positive results, reducing fasting glucose and

HbA1c (161, 162).

An additional issue regarding the future perspectives

for employing anti-inflammatory approaches to treat

patients with T2D is the pleotropic nature of the

subclinical inflammatory process in metabolic diseases.

It is possible that optimal effects of anti-inflammatory

approaches are to be achieved on individualized basis

only (163). Therefore, further studies are required to

provide advance in the pathophysiology of metabolic

inflammation.
Conclusions

Currently, obesity- and diet-associated inflammation is

considered an important inducer of insulin resistance and

defective b-cell function. As most patients with T2D are

obese, prevention must be focused on reducing the

prevalence of obesity. However, pharmacological

approaches aimed at restoring glucose tolerance may

benefit from the development of drugs that can reduce

metabolic inflammation without important side effects.
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It is expected that in the near future, new drugs with

anti-inflammatory activity will be evaluated in clinical

trials for the treatment of T2D.
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